SCHRODINGER-POISSON SYSTEMS IN THE 3-SPHERE

EMMANUEL HEBEY AND JUNCHENG WEI

ABSTRACT. We investigate nonlinear Schrodinger-Poisson systems in the 3-
sphere. We prove existence results for these systems and discuss the question
of the stability of the systems with respect to their phases. While, in the
subcritical case, we prove that all phases are stable, we prove in the critical case
that there exists a sharp explicit threshold below which all phases are stable
and above which resonant frequencies and multi-spikes blowing-up solutions
can be constructed. Solutions of the Schrédinger-Poisson systems are standing
waves solutions of the electrostatic Maxwell-Schrédinger system. Stable phases
imply the existence of a priori bounds on the amplitudes of standing waves
solutions. Unstable phases give rise to resonant states.

We investigate in this paper nonlinear Schrédinger-Poisson systems in the 3-
sphere. These are electrostatic versions of the Maxwell-Schrodinger system which
describes the evolution of a charged nonrelativistic quantum mechanical particle
interacting with the electromagnetic field it generates. We adopt here the Proca
formalism. Then the particle interacts via the minimum coupling rule

.q .q
at—>6t+7/ﬁ§0 5 V—>V—zﬁA

with an external massive vector field (p, A) which is governed by the Maxwell-
Proca Lagrangian. In particular, we recover as part of the full system the massive
modified Maxwell equations in SI units, which are hereafter explicitly written down:

V.E =pleo — piP¢,
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These massive Maxwell equations, as modified to Proca form, appear to have been
first written in modern format by Schrodinger [25]. The Proca formalism a priori
breaks Gauge invariance. Gauge invariance can be restored by the Stueckelberg
trick, as pointed out by Pauli [21], and then by the Higgs mechanism. We refer to
Goldhaber and Nieto [14, 15], Luo, Gillies and Tu [20], and Ruegg and Ruiz-Altaba
[24] for very complete references on the Proca approach. In the electrostatic case
of the Maxwell-Schrodinger system, looking for standing waves solutions, we are
led to the nonlinear Schrodinger-Poisson system we investigate in this paper. It is
stated as follows:

2 2 — Pl
5m3 Agu+ w u+ quu = u (0.2)
Ao+ miv = drqu? |
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where w € R, p € (4,6], Ay, = —div,V is the Laplace-Beltrami operator, the
constants f, mg, m; and ¢ are positive, and u,v > 0 in S3. Solutions of (0.2) are
standing wave solutions v(z,t) = u(z)e™ /" with purely electrostatic field v, of
the Maxwell-Schrodinger system in Proca form we mentioned above. The system
(0.2) is energy critical when p = 6. We refer to the temporal frequency w as the
phase and investigate both the question of the existence of one or more solutions to
(0.2), and the question of the stability of phases in (0.2). Stability of a phase implies
compactness of the set of associated solutions of (0.2). We define the stability of a

phase as follows.

Definition 0.1. Let (S3,g) be the unit 3-sphere, and p € (4,6]. A phase w € R
is stable if for any sequence o (z,t) = uq(x)e@at/m

electrostatic field vy, solutions of

h? 2 — .p—1
{ 53 Agua + Wil + qUala = Ub,

of standing waves, with purely

Agvo + miv, = dmqu?,

for all a € N, the convergence w, — w in R as a — 400 implies that, up to a
subsequence, the ugy,’s and vy, ’s converge in C2(S3) to solutions u and v of (0.2) as
o — +00.

In particular, if w is stable then we get an upper bound on the L*-norm of the
amplitude of arbitray standing waves with phases close to w. The first result we
prove addresses the subcritical case p € (4,6) in (0.2). The mountain pass solutions
we obtain in our theorems are precisely defined in Section 2. These are variational
solutions which inherit an additional ground state structure in the Nehari setting.

Theorem 0.1 (Subcritical case). Let (S3,g) be the unit 3-sphere, h,mg, m; > 0,
and g > 0. Letp € (4,6). For any w there exists a mountain pass solution of (0.2).
Moreover, all phases w € R are stable.

As an interesting remark it can be noted that both the bounds 4 and 6 on the
nonlinearity are sharp with respect to the stability issue in the theorem. Stability
as in Theorem 0.1 is indeed false in general when p = 4 (see Section 3). As shown
in Theorem 0.2, it is also false when p = 6 and w takes specific (sufficiently) large
values. When p = 6, a critical threshold for w appears. In the case of S3 that we
consider in this paper this can be made very explicit. We let A(mp) be given by

_VE
2\/5’!77,0 '

The theorem we prove in the critical case answers positively the question of existence
of special solutions and of stability of phases in the range (—A(mg), +A(my)), and
asserts that resonant frequencies appear in the complementary range.

Theorem 0.2 (Critical case). Let (S3,g) be the unit 3-sphere, h,mg, m; > 0, and
q>0. Let p==6. For any w € (—A(myo),+A(myg)) there exists a mountain pass
solution of (0.2) and the solution is nonconstant when m; < q. Moreover:

(1) all phases w € (—A(mo),+A(myg)) are stable,

(1) there exists an increasing sequence (wg)gp>1 of phases such that w1 = A(my),
wi — +00 as k — +o00, and both all the —wy’s and wy’s are unstable.
In particular, resonant frequencies appear outside (—A(mg), +A(myg)), starting with
+A(myo), and the threshold A(my) is critical.
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The mountain pass solution we obtain in Theorem 0.2 comes in addition to
the constant solution when m; < ¢ and we thus get two solutions in that case.
As already mentioned, the stability of phases implies the existence of an upper
bound for the amplitude of standing waves ¥(z,t) = u(x)ei‘*’Qt/h when w is in
compact subsets of (—A(myg), +A(mo)). The resonant frequencies wy break this
upper bound. As we will see when proving the second part of Theorem 0.2, they
come with blowing-up sequences of multi-spike solutions.

1. CouPLING NLS WITH A MASSIVE FIELD

The nonlinear focusing Schrédinger equation (NLS) is written as

. 8"/} _ ﬁ2 p—2
ihoy = WAW — [P .

By coupling (NLS) with a gauge vector field (p, A) governed by the Maxwell-Proca

theory, the coupling being made via the minimum substitution rule,
at—>3t+i%g0 : V—>V—¢%A7

we get a system of particle-electromagnetic field describing the interactions of a

matter scalar field ¢ with its electromagnetic field (¢, A). Here, h is the reduced

Planck’s constant, mg > 0 represents the mass of ¥, ¢ its charge, and m; > 0

represents the mass of (¢, A) in the Maxwell-Proca theory. To be more precise, let

1/, op— P q ), 1
- (inZy - v —ila 21l
Eavis = (10500 ~ aplof? = 5o 96 = i 40P ) + S0P , and
1104
87 | Ot
where Vx is the curl operator, and define S = J [ (Lnrs + Larp) dvgdt to be the

total action functional. Writing ¢ = ue® in polar form, v > 0, and taking the
variation of & with respect to u, S, ¢, and A, we get that

%Agu—l— (%—l—q(p—i— 2728|VS—QA|2>U:UP—1

B 4 LV (VS - gA)?) =0

—ﬁv. (%‘ —|—V<p) + %:tp = qu? ]

7 (VX (VxA) + 5 (5 + V) + ThA = ;5 (VS — qA) u® .

2 2

1 m?2 m
Lyp(p,A) = +Vo| — —=IVx AP+ 2o’ - AP,
8 8 8

(1.1)

Letting F = — ;- (% + V), H=2-VxA, p=qu? and J = 1, (VS — qA) u?,
we recover the Maxwell-Proca equations (0.1) with the two last equations in (1.1),
where 2 = m?/(4n) and we normalize such that g9 = 1 and pp = 1 (the last two
equations in (0.1) are automaticaly satisfied due to the choice of E and H). The
second equation in (1.1) then reads as the charge continuity equation % +V.J=0.
We assume in what follows that A and ¢ depend on the sole spatial variables, thus
we restrict our attention to the static case of (1.1), and look for standing waves
solutions of (1.1), namely

Bla,t) = ula)e T .

The fourth equation in (1.1) then implies that A = 0, while the second equation in
(1.1) is automatically satisfied since S = w?t. The first and third equations in (1.1)
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are rewritten as

2 2 — 1

ngAgu—i—w u+ quu = u (12)
Agp +mip = dmrqu? .

Letting ¢ = v, the system (1.2) is precisely the system (0.2) we investigate in this
paper. Solutions of (0.2) are standing wave solutions of (1.1) in the static (or purely
electrostatic) case.

2. FUNCTIONAL SETTING AND EXISTENCE OF MOUNTAIN PASS SOLUTIONS

Let mg,m; > 0, w € R, and ¢ > 0. We aim in getting mountain pass solutions
for (0.2). For this purpose we define an auxiliary functional ® : H! — H! by letting
®(u) be the unique solution of

Ay ®(u) +mi®(u) = drqu? (2.1)

for w € H'. Then ® is C'' and its differential ®, at u, when computed over ¢ € H!,
solves an equation like (2.1) with a right hand side like 8mqup. In particular,
H(u) = [u?®(u) is C! with Hy(p) = 4 [ u®(u)p for ¢ € H'. For p € (4,6], we
define I, : H* — R by

h? 9 w? 9
Iy(u) = 2 Je |Vul“dvg + 7 L u”dvg

1
+g/ u2<I>(u)dvg—f/ (ut)Pdvy ,
4 S3 P Jss

where u* = max(u,0). If u > 0 is a critical point of I, then (u, ®(u)) solves (0.2).
As is easily seen, ®(tu) = t2®(u) for all ¢ and all u, and ®(u) > 0 for all u. We
prove the existence part of Theorem 0.2 in what follows. We say that (u7 <I>(u)) is
a mountain pass solution of (0.2) when u is obtained from I, by the mountain pass
lemma from 0 to an endpoint u; such that I,(u1) < 0. Existence in the subcritical
case somehow follows from a direct application of the mountain pass lemma.

(2.2)

Proof of Theorem 0.1 - Existence part. Let p € (4,6) and ug € H! be such that
ug # 0. There holds I,(0) = 0, and there exists T = T (ug) such that I,,(Tpug) < 0.
For any 0 < § < 1, there exists €5 > 0 such that ®(u) > e5 for all u € H! satisfying
that [|ullgr = 1 and ||ul|gz > §. It follows that there exists g > 0 such that
Jss (IVul]® + ®(u)u?) dvg > &q for all u € H*' satisfying that |lul|g = 1. Since
®(tu) = t2®(u), we then get that there exist C1,Cy > 0 such that

Ip(u) = Cillull g — Collullf

for all u such that ||u]|g1 < 1. In particular the mountain pass lemma can be
applied since p > 4. Let

@ = R 23
where P is the set of continuous paths from 0 to Toug. Since [u?®(u) < Cllul|%1,
mountain pass sequences associated to ¢, are bounded in H'. Standard arguments
then give the existence of u, > 0 such that I,(u,) = ¢,, and such that u, and
vp = ®(u,) solve (0.2). Then up,v, are smooth and by the maximum principle
up,vp > 0 in S3. This ends the proof of the existence part in Theorem 0.1. O
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From now on we assume p = 6. Let zo € S®, (34)a be a sequence such that
Ba > 1 for all « and B, — 1 as a — +00, and define

(382 — 1)

olx) = , 2.4
Pa(x) e —cor) (2.4)
where 7 = dg(xo,x). The ¢,’s are 1-spike solutions of
3
Agpa+ 70a =0 (2.5)
and they satisfy the energy estimates
1 1
Voo |?dv, = — + o(1 / Sdvg = —= , 2.6
[ 19, = g o) . [ v, = (2.6

where K3 = is the sharp constant for the Euclidean Sobolev inequality

2
lulle < Ks5||Vul/pz. The proof of the existence part in Theorem 0.2 is as follows.

Proof of Theorem 0.2 - Existence part. There holds ¢, — 0in LP for p < 6. Hence
P(po) — 0 in H*P for p < 3, and we get that ||®(¢4)|/z~ — 0 as @ — +oo. By
(2.6) there exists T' > 1 such that Is(Tp,) < 0 for all a > 1. Let
3 2m3
He(u) = / \Vaul?dv, + (5 — 5)/ u?dv, — Mo lu|®du,, .
SB 4 S3 3ﬁ2 S3

Since |w| < A(myp) and ||®(¢q)||Le — 0 as & — 400 we get that there exists g > 0
such that
h2
o%%XT Is(toa) 4m3 ogagXT

3/2
V2h? (fsﬁ |V‘Poc|2dvg + (% — €0) fsB (pid%)
3 1/3

12mg (fss wgdvg) /

for all & > 1. There also exist C;,Cs > 0 such that

I(u) > Chllullz — Collul|3n

for all u such that ||u g1 < 1. We let ug = ¢, for a > 1 sufficiently large, Tp = T,
and we define

IN

HEU (t(pa)

<

— inf I, 2.7
¢o = jnf max 6(u), (2.7)

where P is the set of continuous paths from 0 to Thug. According to the above and
by (2.5), there exist dp > 0 and &1 > 0 such that

S0 < cg < — ( f )3 . (2.8)
6 < —=|—] —e1, .
0= =353 \ Vame 1

where ¢g is as in (2.7). Since Ig(0) = 0, the mountain pass lemma can be applied.
We obtain the existence of a Palais-Smale sequence (uq)q such that Ig(us) — ¢ and
I{(ua) — 0 as @ — +oo. Noting that [u?®(u) < C|lu||}e, the u,’s are bounded
in H'. In particular, there exists u € H' such that, up to a subsequence, u, — u
in H, uy, — u a.e., and u, — u in LP for p < 6. Then ®(u,) — ®(u) in H>P
for p < 3, and we get that ®(u,) — ®(u) in C%? for some 0 < # < 1. Mimicking
the argument in Brézis and Nirenberg [4], it follows from (2.8) that u # 0, that
Uo — uwin HY, that w > 0 in M, and that U = (u, ®(u)) solves (0.2). In particular,
IG (u) = Cg. [l
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The mountain pass solution u we obtain in the critical case is such that Ig(u) =
cg. As is easily checked, (0.2) always possesses a constant solution Uy = (ug, vo)

. . .. . . 4
which, in the critical case, is given by vy = migu% and
1

4 _ dmq®

2
. 2.9
Ug m? Up + W (2.9)
Then
1 1/2 1
Is(ug) = 3 (w? + quo) / EM <w2 + %’Uo - g(wz + qv0)>
1 2
= 5 (w2 + Q’Uo) 1/2 ‘Sg‘ <3w2 + Z’Uo)
and we get that
1
Is(uo) > E|53|(qvo)3/2 . (2.10)

2
Let e = <m—§) . Then evZ = ud and by (2.9) we get that 2evy = q + \/¢? + dew?.

4mq
In particular, coming back to (2.10),

(4m)315% [ a \°
1 >t | =
6(uo) = 12 ™
and by (2.8) the mountain pass solution we obtain is nonconstant when m; < q.
Let N, be the Nehari manifold associated to (0.2). By definition
No={ueH u#0, st. I)(u).u=0} . (2.11)
Following an idea due to Rabinowitz, see Willem [28] for a presentation in book
form, there holds that
cp = ule%p Ip(u) (2.12)
for all p € (4,6], where NV, is as in (2.11), and ¢, is as in (2.3) and (2.7). In
particular, the solutions we obtain are ground states in the sense of Willem [28].

We get (2.12) by noting that for any « € H', u* # 0, there is one and only one
t = to(u), where t > 0, such that I (tu).(tu) = 0.

3. STABILITY IN THE SUBCRITICAL CASE

Stability of the phases in the subcritical case follows from (and can actually
be reformulated into) the general theorem below, where we prove the existence of
uniform bounds for arbitrary solutions of (0.2). Let S,(w) be the set of all positive
solutions U = (u,v), u,v > 0, of (0.2). Given 6§ € (0,1) we define [|U]||gz0 =
lw]|c2.0 + [[v]|c20 for all U = (u,v). The following theorem holds true.

Theorem 3.1. Let (S3,g) be the unit 3-sphere, h,mo,m; > 0, and q¢ > 0. Let
p € (4,6). For any 60 € (0,1), and any A > 0, there exists C > 0 such that
lUllcze < C for allUd € Sp(w) and all |w| < A.

Let p € (4,6) and let (wq)a be a sequence of phases such that w, — w as
a — 400 for some w € R, and let U, = (uq,v,) be positive solutions of

n? 2 _ .p—1
{WAgua + Wilg + qUa U = UE (3.1)

Agvg +miv, = dmqu?, .
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Up to a subsequence we can assume that w, — w as a — +oo for some w € R.
The proof of the existence of a priori bounds in Theorem 3.1 reduces to proving
that the u,’s and v,’s are automatically bounded in C*9(S%), 0 < 6 < 1.

Proof of Theorem 3.1 - Existence of a priori bounds. We divide the first equation
in (3.1) by u, and integrate over S3. Then

12 |Vue|?
VodVy = —= dv +/ wP 2 dy, — w2|S3
q/ga artg 2m% /53 ua g g3 «@ g a| |

2/ ul™2dv, — w2|S%| .
S3

(3.2)

Integrating the second equation in (3.1) there also holds that m? [v, = 4mq [ uZ.
By (3.2) and Holder’s inequality we then get that

2/(p—2)
/ Ug_QdUg <Ci+0Cy (/ ug_deg>
S3 S3

for all o, where C1,C5 < 0 are independent of «. Then the u,’s are bounded in
LP=2(S3), and by the second equation in (3.1), the v,’s turn out to be bounded
in H(=2)/2 (S?). By the Sobolev embedding’s theorem we then get that the v,’s
are bounded in L4(S?) when p € (4,5), where q = gg:ig, and in C%?(S3) for some
6 € (0,1) when p € (5,6). In particular, they are bounded in L?(S®). From now
on we assume by contradiction that we can choose (uq,vs) such that

max e — 400 (3.3)
M
as o — +o00. Let o, € M and pq > 0 be such that uq(zq) = ||ua| Lo = ugz/(”‘”.
By (3.3), ta — 0 as @ — +00. Let @, be given by
2

o () = & 2 ua (exp,, (o))

for z € R3. Let also go(2) = (expk_ g) (Haz) and 0 (2) = va (exp,, (ftaz)). There

holds
2

ﬁAéaaa + W?x#iﬂa + Wliﬁaaa = ﬂgil (3.4)
my

and there also holds that 0 < @, < 1, @, (0) = 1, and g, — £ in CF_(R3), where &
is the Euclidean metric. Then there exists C' > 0 such that for any compact subset

K C R3,
/ (uaﬁada)g de < C
K

for all & > 1 since the v,’s are bounded in L3. By elliptic theory it follows that

o — 4 in C’loo’f(R3) as a — oo, where @ satisfies 0 < @ < 1 and @(0) = 1.

Moreover, by (3.4), we have that %Aﬂ = P71, a contradiction with the Liouville
0

result of Gidas and Spruck [13]. Hence, (3.3) cannot happen, and for any (wq)a
such that w, — w as a — 400, and any (uq, V) solutions of (4.1), there exists
C > 0 such that ||ua|r= < C. By the second equation in (3.1) it follows that
lluallze + [[vallze < C for all a, and by standard elliptic theory, a C??-bound
holds as well. This proves the existence of a priori bounds in Theorem 0.2. (]
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As an interesting remark it is necessary in the above proof to assume that p > 4.
Indeed, let p = 4, w, = 0 for all a, and 47¢*> = m?. Then u, = a and v, = a?/q
solve (3.1) and, obiously, ||ug||Le — +00, |[vallLe — +00 as @ — +oo. It is
independently necessary to assume a bound on the w,’s since if not we get counter
examples by the constant solutions which satisfy u, > wi/ =2 As a remark,

Theorem 3.1 is true on arbitrary compact Riemannian 3-manifolds.

4. STABILITY IN THE CRITICAL CASE

Stability in the critical case is a consequence of, and is actually equivalent to,
the following theorem where the existence of uniform bounds is obtained for phases
in compact subsets of (—A(myg), +A(mg)).

Theorem 4.1. Let (S2,g) be the unit 3-sphere, h,mg,m; > 0, and ¢ > 0. Let
p=06. Forany 0 € (0,1), and any € > 0, there exists C' > 0 such that |U]|g2.0 < C
for allU € Sg(w) and all |w| < A(mg) —e.

By the analysis in Druet and Hebey [9], we refer also to Druet and Laurain
[12] for a related reference, Theorem 4.1 can be extended to the case of arbitrary
compact 3-dimensional manifolds. The result holds true as long as A(mp) < min A,
where A is such that A, + A has a nonnegative mass. By the positive mass theorem,
assuming the Yamabe invariant of g is positive, A > %Sg, where S, is the scalar
curvature of g. In both cases we recover (0.3) when the manifold is the 3-sphere.
The proof we present is a shortcut with respect to the analysis in Druet and Hebey
[9]. We mix in our analysis ideas from Li and Zhang [19], Druet and Hebey [§],
Hebey and Robert [16], and Hebey, Robert and Wen [17]. The proof extends almost
as it is to compact conformally flat manifolds of positive scalar curvature. The 4-
dimensional analogue of Theorem 4.1 for the Klein-Gordon equation is established
in Hebey and Truong [18].

In what follows we let (w,)a be a sequence of phases such that w, — w as
a — +oo for some w € R, and let U, = (uq,vq) be positive solutions of

2
{2hmgA9u@ + W2y + qUaU, = U, (41)

Ayvo + miv, = drqu? .

Dividing the first equation in (4.1) by u, and integrating over S® we get as in

Section 3 that
1/2
/ updvy < Cp + Co </ uidvg>
53 53

for all o, where Cq, Cy < 0 are independent of . Then the u,’s are bounded in L?,
and by the second equation in (4.1), the v,’s are in turn bounded in H2. By the
Sobolev embedding theorem we thus get that there exists v € C%9(S%), 0 < 6 < 1,
such that, up to a subsequence,

Ve — v in C%(S3) (4.2)

as @ — +o0o. By standard elliptic theory, an L®-bound on the u,’s implies the
C?%-bound we are looking for in the theorem. We define

ha = wi + quq , (4'3)
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and assume by contradiction that we can choose (uq,v,) such that

Max tg — +o0 (4.4)

as a — +o00. By (4.2) the hy’s converge in C%?. The following lemma directly
follows from the analysis in Li and Zhang [19].

Lemma 4.1 (Li-Zhang [19]). Let i, > 0 be a smooth positive solution of

h? ~

—— Al + halla = 0 (4.5)
2m(2) « ala o

in R3, where A is the Euclidean Laplacian and (iLa)a is a converging sequence of
functions in CP _(R3). There exist C,d > 0 such that, up to a subsequence,

loc

sup te X inf a4 < ¢ (4.6)
Bo(e) By (4¢) 19
for all 0 < & < 8, and all o, where By(e) and By(4e) are the Euclidean balls of
center 0 and radii € and 4e.

Proof of Lemma 4.1. We very briefly sketch the proof and refer to Li-Zhang [19]
for more details. By contradiction we assume there exists (€4 ) and (Ay)a, o >0
for all o, e, — 0 and A, — +00 as & — 400, such that
Ac
max U, X min G, > — (4.7
Bo(ea) Bo(4eq) €a

for all @. Let Z,, € By(gs) be a point where i, attains its maximum in By(e,).
There exist z, € Bz, (ca/2) and o, € (0,e4/4) such that 4,(xzq) > Ga(Ty) for
all a, (1) < Clg(z4) for all @ and all x € B, (04), and G (74)%06 — +00 as
a — +00. Let g = 1o (74) 72, and define 4, by

0o () = N}xmﬁa(xa + Hat) - (4.8)
There holds o, u, ' — +00 by (4.7). By standard elliptic theory,
Vo — 0 in C}(R3), (4.9)

where v > 0 satisfies %A’D = 9° and is given by the Caffarelli-Gidas-Spruck [5]
0
classification. Given A > 0 and z € R?, we let
: A A (y — x))
ANT ~
0%(y) = ——0q |2+ ——~ 4.10
=52 (e 10

and )% = By (eaus')\Bz(\), where 9, is as in (4.8). Let w)® = 9, — 9%, and
for C' > 0 let

hacy) = =CNig (ly = 2l = ) - (4.11)
For any A; > 1 and any z, there exists C' > 0 such that w}® + hg% > 0in X, for
all 0 < A < Aq and all «, where hi‘g is as in (4.11). Letting @ — 400 it follows
that © > 9™ for all |y — 2| > A > 0, where 9 is as in (4.9) and ¢ is built on ©

as in (4.10). This implies that © is constant, and we get a contradiction with the
equation for ©. This ends the proof of the lemma. O

Thanks to the estimates in Lemma 4.1, as noticed by Chen and Lin [6], the
following holds true.
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Lemma 4.2. There exists C > 0 such that ||u| g < C for all o, where u, is as
in (4.1).

Proof of Lemma 4.2. Let € S? be any point in S3. By the stereographic projec-
tion of pole —z, there exists ¢ > 0 smooth and positive such that § = ¢?g is flat in
S3\{—z}, the set S3\{—x} can be assimilated with R® x with 0, and § with the
Euclidean metric, and such that

h? 5
WA‘{]’IALO( + haﬂa - ’LALz 5 (412)
0

2m

where @y = ¢ ug, ¢rhe = ﬁQg ha — %, and h, = W2 + qus. By (4.2), he — h in
C™0. Given § > 0, let A > 0 be such that & < A in By(R), R > 6. Let G be the

loc*

Green’s function of %Ag + A with zero Dirichlet boundary condition in By(50).
0
Let also 9, solve

%Ag@a + A = @5, in By(56)
B0 = 0 on 9Bo(56) .

By the maximum principle, 9, < @, in Bo(58) for a > 1. Let y, € Bo(45) be such

that tq(ya) = inf g, (45) lia- By standard estimates on G, see Robert [23], following

Chen and Lin [6], we can write thanks to (4.23) and the estimates in Lemma 4.1

that

[ b, < o iy
B, (5) Bo(4)
< Cs6 | sup g / G(yavy)ﬁ’g(y)dy
By (9) Bo(9)
<

h2
056 (Sup ﬁ'ot) / G(yony) <22Aﬁo¢ + A’&a) (y)dy
Bo(9) Bo(59) mg

< Cs6 sup lig x inf 4, < Cs
Bo(5) Bo(45)

for all @ > 1 and § > 0 sufficiently small, where Cs5 > 0 does not depend on «
and change values from line to line in the above inequalities. In particular, since
x is arbitrary, there exists C' > 0 such that [g, uSdvy, < C for all a. By (4.1) this
proves Lemma 4.2. (Il

By Lemma 4.2 the u,’s have bounded energy and Struwe’s decomposition [26]
can be applied. In particular, up to a subsequence,

k
U =tloo + P _ Bio+Ra, (4.13)

i=1
where Ry — 0in H' as o — +00, k € N, 1y — Us a.e., and

1/2
2mg\ i,
Bio(z) = ( h20> e (4.14)
i 3

i,
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for some converging sequence (7; o) in S® and a sequence (p; o )q of positive real
numbers such that p; , — 0 as o — +00. Moreover, there holds that

3 om2\/* 1
I ol (expzi,a(ui,ax)) — <h;’> T EE (4.15)

(R3\S;) for all i, where S; consists of the limits of the f exp,! (Zja)’s

as a — 4oo for j € I;, and I; stands for the set ofA the j’s Wthh are such that
dy(Tia,Tja) = O(ftia) and pij.a = 0(fia). Let Dy, Dy : S? — RT be defined by
D, (z) = I{un dg(Zi,a,x) and ,

,,,,,

. ) (4.16)
D,(x) = r{unlC (dg(zi,a,2) + fia) -

in C?

loc

There holds that D, < D, and by the analysis in Druet and Hebey [8], since (4.2)
holds true, we can write that
k
— Uso — Z Bi .o
i=1
as a — 4o0o. In particular, if S stands for the set consisting of the limits of the
Tia’S as a — +00, then uy, — uo in L2, (S3\S).

Lemma 4.3. Let G, : S® x S3\D — R be the Green’s function of %Ag + ha,
0

where he, is given by (4.3), and D is the diagonal in S* x S3. Suppose w = 0 and
v =0, where v is as in (4.2). Then infgsygs\pGa — +00 as a — +o0.

Qo=

D — 0 in L>®(5%) (4.17)

Proof of Lemma 4.3. Let 4 = ||ha|lr~ and k, € R be such that ko — 400 and
faka — 0 as o — +00. Let G4 be the Green’s function of 5 A + €. By the

maximum principle, G, > G in $3 x S3\D and we can use the specific form of
G, in 83 or use the following more general S3-free argument. We let G > 0 be
a Green’s function of h—zA . For any x € S3, if G, = G(x,-), there holds that
2
;‘—mgAgGw =J, — ISdl Let z € 83 and V,, solve
52
2m3
There holds [V, = [ G, so that, by Poincaré’s inequality and standard estimates
on G, V, is bounded in H'! uniformly with respect to z. By standard elliptic
properties and standard estimates on G, it follows that ||V,|L~ < C for all o with

a bound which is uniform with respect to z. Let ®, = éa(x, )= Gy — ko + Va.
Then

AgVo +eaVa =Gy

ﬁ2
A D, d, >
om3 9Pt S \SS\

f9r all «, and by the maximum principle and the above estimates it follows that
Guo(z,:) > ko — C for all a and all z, where C is independent of o and x. This
proves the lemma. O

— ke

The following key estimate is established in Druet and Hebey [8] (see also Druet,
Hebey and Robert [10]). A slight difference here is that we need to handle the
noncoercive case where w = 0 and v = 0. We handle this case thanks to Lemma
4.3.
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Lemma 4.4 (Step 5.2 in Druet and Hebey [8]). There exists C > 0 such that, up
to a subsequence,

o < C (@D;l + ||uoo|\Lm) (4.18)
in S3, for all o, where o = Max; ;o

Proof of Lemma 4.4. We briefly sketch the proof and refer to Druet and Hebey [8]
for more details. Given § > 0 we define

o (0) = ma. Ug - 4.19

OB e 19

Let G be the Green’s function of thAg +1. Givene € (0,1), we let ¥, . be given
0

by

1

2(1-2
\Pa,e(x):,uozc E)ZG xzaax 1 6"’77(1 ZG TiasT)
=1

and let Q, = M\ Ule By, . (Rptio). We define y, € Q, be such that uLa\I/;,ls
is maximum in Q, at y,. Up to choosing § > 0 sufficiently small, and R > 1
sufficiently large, yo € 0Q4 or Dy(ys) > 0 for @ > 1. By (4.15) and standard
properties of the Green’s function it follows that for any € € (0, 2) there exist
R.>1,0< . <1, and C. > 0 such that, up to a subsequence,

3(1-2¢ —n)(l—e —n)e
ta(@) < Ce (13" Da @) 4 (32) Da (@) ) (4.20)

for all o and all x € M\ Ule Bz, , (Reptio). Now we claim that there exists § > 0
small such that for any sequence (y,)q of points in S2,

lim sup 73 ta(Ya)

o=+ i " Do (Ya) ™t + 1a(0)
By the definition of 7,(d) and (4.17) we can assume that D, (y,) < ¢ and that
palDo(ya) — 400 as a — +oo. Let 0 < A < 1 be such that \ ¢ Sp(%Ag),

(4.21)

where Sp(%Ag) is the spectrum of %Ag, and let GG be the Green’s function of

2, Ay — A. There exist C; > 1, Cy, C3 > 0 such that
0

1
adg(%y)’l — Co < G(a,y) < Cady(z,y)~"

and |VG(z,y)| < Csdy(z,y)~2 for all z,y € S®, x # y. We choose § > 0 small such
that dg(x,y) > 46 for all z,y € S, x # y, and such that 46C1Cy < 1. Let 29 € S
be such that dy(zo, ya) < d + 0(1). By the Green’s representation formula and the
above estimates on G, there exists C' > 0 such that

52
Ua(Ya) = / (26) Gy, <2m Agg — AUa) dvg + O (Ma(9))

< 0 [ o) )y (@) + 0 (1 (3)

for all a > 1, since G, > 0 in B, (29) for a large by our choice of §. By (4.20),
letting € > 0 be small, we get that

[ o) @)y ) = O (12 Dalua) ) + O ()
S3
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Choosing § € (0,0:), § < 1, we get that (4.21) holds true. Now it remains to
prove that if us, = 0, then 1,(d) = O(/J,(ll/2). As a consequence of (4.21), assuming
by contradiction that 7, (5)/@1/2 — 400 as a — +00, we get by standard elliptic
theory that 14(8) 'us — H in C?(S3\S) as o — +o0, where AgH +hH = 0 and
|H| < C'in $3\S, H 20, and h = w+qv. Then H is in the kernel of A, + h and we
get a contradiction if A > 0. In case h = 0, and thus in case w = 0 and v = 0, we get
thanks to Lemma 4.1, that we apply around a point where u, is maximum, that
maxps U X minys uy, < C for some C' > 0 and all a. Independently, by Lemma 4.3,
if ¥, is a point where u,, is minimum, and G, is the Green function of %Ag +ha,

then
3
maxu, X minu, > maxug Go(Zq, ~)ugdvg
M M M g

> GolZo, Juldv, > Aa/ ubdv,
53 53

where A, — 400 as @ — +00. Then [ ubdv, — 0 as @ — +oo and we get

a contradiction with (4.4) since if ¥ = 0, then u, — uy uniformly in S%. In

other words, 7,(0) = O(u})/Q) holds true, and by (4.21), this ends the proof of the

lemma. g

Up to now we did not use the assumption that |w| < A(mg) neither |wy| < A(mo).
The conclusion of the proof does use this assumption.

Proof of Theorem 4.1 - Ezxistence of a priori bounds. We can assume that, up to a
subsequence, ft, = pt1,o for all a, where i, is as in Lemma 4.4. In what follows
we let x, = 1 o for all a. First we claim that u, = 0. In order to prove this we
proceed by contradiction and assume that 1., #Z 0. Then v > 0 in S®, where v is
as in (4.2), since

Agv +miv = drqul, (4.22)
in §%. In particular, since h, = w2 + qu, by (4.3), there holds that A > 0 in S3,
where h is the limit of the h,’s. Let § > 1 be given, and let Gy be the Green’s
function of %Ag + 0h. By the maximum principle, G, > Gy for a > 1, where

0

G, is as in Lemma 4.3. Let S = {z1,...,2,,} be the set consisting of the limits
of the z; o’s and a € S3\S. Let 6 > 0 be such that B,(§) C M\S. Then, for any
xr e S3,

Ga(,y)ug (y)dvg(y)
S3

/ Gol, ), (y)dvg (1)
By (9)

“a($>

Y

Y%

/ Golx, y)ul. (y)dvy (y) + o(1)
B, (9)

since uq — Uso in L2 (S?\S). In particular, there exists g9 > 0 such that u, > e
in S3 for all a. Let y,, € S3, given by (4.4), be such that uq (y) — +00 as a — +o0.
Up to a subsequence, y, — y as o — +o00. Coming back to the beginning of the
proof of Lemma 4.2, by the stereographic projection of pole —y, there exists ¢ > 0



14 EMMANUEL HEBEY AND JUNCHENG WEI

smooth and positive such that § = ¢*g is flat in S3\{—y}, the set S3\{—y} can be
assimilated with R3, y with 0, and § with the Euclidean metric, and such that

2

h . s .
mAqu + hotiy = 2 (4.23)

in R?, where @o = ¢ 'uq, and ¢4ﬁa = 2238 ha — %. By construction we have that
SUP B, (c) o — +oo for all e > 0 as @ — +oo. Since, according to the above,
infp,(4e) e > €0 > 0 as long as u # 0, we get a contradiction with Lemma 4.1.
This proves that u,, = 0. In particular, by (4.22), there holds that v = 0. We
assume in what follows that |w| < A, where A is as in (0.3). By Lemma 4.4, for any
K cc S3\S, there exists Cx > 0 such that ,u;1/2ua < Ok in K for all «. There
holds

52

ﬁAg(/‘gl/Qua) + ha (Mc_yl/2ua> = MZ (/‘;1/271&)5 )

my
where h, = w? + qv,. By standard elliptic theory it follows that jiq 1 2ua - U
in CL_(S®\S) as @ — +oo. Splitting S* into the two subsets {D, < Ru,} and
{Ds > Ruy}, using (4.15) around z,, thanks to Lemma 4.4 and since u. = 0,
there exists A > 0 such that

/ ulddv, = (A+o(1)) pt/? . (4.24)
SS

By the Green’s representation formula we then get that

ua(x)2< inf Ga>/ uddv,
53x 53\ D 53

and since v = 0, it follows from the bound ,u;1/2ua < Ck, from (4.24), and from

Lemma 4.3, that w # 0. In particular %Ag +w? is coercive. Let G be its Green’s
0

function. Then, as in Hebey and Robert [16], we can write that

V3h2wy i

1/2
om? w;' "Gz, x)

Ux) = i
i=1
for all z € S3\S, and U satisfies that
h2
5 AU +wU =
2m3 g

3h%ws
f w2 Z 1 /2 S
2m2 ¢ !
0 =1
in the sense of distributions, where y; > 0 for all 4, and 3 > 0 by (4.15). Sharper
estimates would give that p;pe = (14 0(1)) b« There holds that

n(z,y)
G(z,y) = ————
( y) w2d9<$,y)
where R : S% x §2 — R is continuous, and 1 : S® x $2 — R is smooth such
that 0 < n <1, n(z,y) = 1if dy(z,y) < 6, and n(z,y) = 0 if dy(x,y) > 26 for
§ > 0 sufficiently small. Moreover, dy(z,y)|VR,(y)| < C for all y € S*\{z}, where
Rx(y) = R(l’,y), and

+ R(z,y) ,

Oa VR, =o(1), 4.25
yeng%a)\ (y)| = o(1) (4.25)

where 0, — 0 as a — +o0o. At last, since |w| < A, it follows from the maximum
principle that R(x,z) > 0 for all 2 € S3. Let z; be the limit of the z,’s. Let also
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® > 0 smooth be such that ¢*¢ = g in a neighbourhood Q of z1, and ¢(z1) = 1,
where £ is the Euclidean metric. Define 4, = ¢u,. There holds

dg(O,CC) = |.7;‘| (1 + (VQS(O)?‘T) + 0(|1‘|2)) )
where we assimilate x; with 0 and (+,-) stands for the Euclidean scalar product.

Assume QNS = {21}. Then pa*iia — H in CL_(2\{0}) as a — +o0, where

loc

H(z) = V3w, (“1 +K(:z:)> : (4.26)

2m3 wax|

K € C°Q), and K(0) = u}/zR(xl,acl) + 24 u;/2G(x1,xj). Given 6 > 0 suffi-
ciently small, let

1 1
As = —/ (%0, H)0, Hdo + 7/ (z,v)|VH|*do — 7/ HO,Hdo ,
9B (6) 2 JaBo(s) 2 JaBo(s)

where v is the outward unit normal. By (4.25) and (4.26), we get that
. 3/ 1\ 2 1/2
By the Pohozaev identity applied to i, in Bg(d), there also holds that

k ~ lﬁ, Godr = o . .
/Bo(é) <(x Oktia) + 5 “) Atigdz = (As + 0(1)) pa (4.28)

It remains to handle the left hand side in (4.28), the difficulty here being that we
only have a C%?-convergence for the h,’s and not a C'-convergence. We claim that
there exists C' > 0 such that

|Vva| < Cpia D, (4.29)

in S3, for all a. In order to prove (4.29), let G be the Green’s function of A, +m3.
Then

—47rq/Ga:y y)dug(y)

for all z € S and all a, and by standard properties of the Green’s functions, see
Druet, Hebey and Robert [10], by Lemma 4.4, and since us = 0, we get that

Voo (2 \<cuaz/ dvg Y)

xl,om y)2

In particular, (4.29) follows from Giraud’s lemma, and this ends the proof of (4.29).
There holds that

for all o, where
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By (4.29), and since |Vv,| is bounded in H':3, we can write with Lemma 4.4 that

[ 9alizde, < ol + | Voaudv,
Bo(6) Bo<6>\u? \Bu o (o)

1
< o(pa) + Cul / gz
Z Bo(O\Ba, . (#a) 4 (Tiar 1)°
1
< o(pa) + Cpil / S gdr
2 Bu, o 26)\Ba, . (1a) Ui 0, 2)°
ZGI i, e
1
— ol +0 (121 )
Ha
where I is the subset of {1,...,k} consisting of the ¢’s which are such that z; o — x1

as a — +00, d is the Euclidean metric, and § > 0 is sufficiently small. Integrating
by parts the left hand side in (4.28), we then get that

1 1
lim lim — / ((x’fakaa) + aa) Adigdz =0 . (4.30)
d—0a=+o0 o J o (s) 2

Combining (4.27), (4.28), and (4.30), the contradiction follows since G > 0 and
R(x1,21) > 0 when |w| < A. As a consequence, |[uq||re + Vo]~ < C for some
C > 0. By standard elliptic theory a C??-bound holds as well. Up to a subsequence
we can pass to a C2-limit . This proves the existence of a priori bounds in Theorem
4.1. ([

5. UNSTABLE PHASES AND RESONANT FREQUENCIES - AFFINE ESTIMATES

The goal in this section and in the following one is to prove the second part
of Theorem 0.2 by constructing multi-spikes solutions to (0.2) when w is close to
resonant frequencies wy. To each wy is associated a sequence of ny-spikes solutions
with ngy — 400 as k — +oo. This can be considered as bifurcation from infinity
(see Bahri [2]). More precisely we use here the so-called localized energy method
(see Del Pino, Felmer and Musso [7], Rey and Wei [22], and Wei [27]) which goes
through the choice of suitable approximate solutions (this is done in this section)
and the use of finite-dimensional reduction (carried over in the following section).

Let P = (1,0,0,0) in S3 and k € N, k > 1. We define the P;’s, i = 1,...,k,
by P, = (ewi,O) € 83 C R? x R?, where §; = w Let GG, be the maximal
isometry group of (S3,g) which leaves globally invariant the set {Py,..., P.}. Let
also 5 C S be the slice

Ek:{(rew,z)7r>0,z€(C,r2+|z|2: <0< } : (5.1)

Mﬂ
=13

We consider the nonlinear critical equation
2

Q—m(%Agu + A(mo)*u = u®

in S3, with u > 0. Its solutions are all known and given, see (2.4), by

1 i)
7 2T g J2(5 — cosr)
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where 8 > 1 is arbitrary, r = dy(xo,-), and zo € S® is also arbitrary. These
solutions can be rewritten as

1/2
31/4\/ﬁ €
2

Us:v =
084 /mg \ €2 cos? L +sin

where € € (0,1). There holds that U, 5, = Up, 4, by letting 8. = Lt Also we do

T 1—e2"

have an explicit expression for the Green’s function G, of %Ag + w?. Namely,
0

Gl y) = m3 sinh (p,, (7 — 7)) (5.3)

~ 2rh2 sinh(p,, ) sinr

2
2mg

for all z,y € S x # y, where r = dy(z,y) and p, = #tw? — 1. When

w? = A(mg)? we recover the Green’s function of the conformal Laplacian. We
write G instead of G,, when w? = A(mg)? and there holds that

2 r
mg COS 5

2wh2sinr
for all z,y € S, x # y, where r = dy(z,y). At this point we let R, be given by
G, = Gy + R, and we define

k
k(W) = Ry(Pr, P) + Y Gu(Py, P) (5.5)
=2
where the second term in the right hand side of (5.5) is zero if kK = 1. There holds

mg
R, (P, Py) = ~ gz coth(pe,m)

so that m1(w) = 0 if and only if w = £A(my), while ] (A(mg)) < 0. It is easily
checked that ny,(w) — —o0 as w — Foo, while ny, (i/v/2mg) > 0 for k > 2. There
also holds that %(u coth(um) > 0 while, by the maximum principle, G,, < G, if
w > wp. Hence there exists a unique wy > A(mg) such that ng(wg) = 0. We define

wi = inf {w > A(myg) s.t. ng(w) =0},

= sup {w > A(mg) s.t. nx(w) = 0} , (5.6)

where 7 (w) is given by (5.5). Then nx(w) > 0 if w < wi and N (w) < 0 if w > w.
When k& =1, wy = A(my). Since sinh(tz)/sin(xz) > t for x € (—m,w), there holds
that wy — +00 as k — +00. Independently, we can check
h? pocoth(p,m) 1 (2md 5 3 9
L Rp =R Z (2022 03, 5.7
2m3 s\ m Y 1)rtor) (5.7)
where r = dy(P1,-) and R, p, = Gu(P1,-) — Go(P1,-). The R, p’'s satisfy the
equation
h? 2 2_ 2
Tn’LQAng’Pl +w RUJ,Pl = (A(mo) —w )GO . (58)
0

In what follows we define the projections U p,, i = 1,...,k, by

12 )
om2 AgUe p, + wUe p, = o P (5.9)
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and we define ¢, p, to be given by
Ue,p, = Ue P, + ¢c.p; (5.10)

where U, p, is given by (5.2). There holds that
2

WA.(J@E:PL' +w2905,Pz‘ = (A(m0)2 - WQ) Ue,p; - (5'11)

0

Independently we let ¢» € H'(R3) be the solution of

P A= ! (5.12)

2mg VAt el '
in R3. By the Green’s representation formula we get that |¢(x)| < ClnﬁTgLTD and
V()] < C’l(nliﬂip as x| — 4o00. The first lemma we prove is the following where

we obtain the asymptotic expansion of the ¢. p,’s, and thus of the approximate
solutions U p,’s.

Lemma 5.1. There holds that

e.p, = AVER, py + Bue¥ ) (f) to (53/2) (5.13)
g
in X, where
o\ 31/42/h
_ ql/4 _ 22
A=3 Mﬁ(ﬁmo) and By = ¢ = (A(mo)? —w?) ,  (5.14)

Yk is as in (5.1), e p, s as in (5.10), R, p, = Gu(P1,) — Go(P1,+), ¥ is as in
(5.12), and r = dy(P,-).

Proof of Lemma 5.1. Thanks to the equations (5.8) and (5.11) satisfied by R, p,
and ¢ p,,

h2
Z—m%Ag (¢e.p, — AVER, p,) + W (9e.p, — AVER, p,) = CK. |
/ 1/2
where C = Sgii‘;i/\{nio (A(m0)2 _w2) and Kg = (W) — Sl\r{gg Let

Ve = Pe, Py — A\/ERUJ,Plﬁ Ue, ge be given by
66(x) = 573/2”5 (epr (El’)) )

and g.(z) = (expp, g) (ex), where z € R3. There holds g. — £ in CZ_(R?), where
¢ is the Euclidean metric, and we have that

2 ~
mAgEﬂg + 2?0, = CeK, ,
| EA 2 3
where K. = (5 cos? El +sin? < Tl) — (sm = ) . The functions $eK. con-
verge in CP (R3?) to the right hand side of (5.12), in the sense that the difference

converges to 0 in C) . while by the Green’s representation formula, e =3/2v, (z.) — 0

if 1dy(Py,z.) — +oo. In particular, we do have (5.13) and this proves Lemma
o.1. O
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At this point we define . to be the sum of the U, p,’s. Then

k
We = Zus,Pi . (515)
i=1

In particular W, is Gg-invariant. As a direct consequence of Lemma 5.1 we get
that the following expansion of the W, ’s holds true. Namely

W, = U..p, + Ay (Rw,Pl + Ek: Gw,pi> + Be¥%y (g) +o (53/2) (5.16)
=2

in Xy, where A, B, are as in (5.14), ) is as in (5.1), U, p, is as in (5.2), the
Gu.p, = Gy(P;,-)’s are as in (5.3), R, p, = Gu(P1,-) — Go(P1,+), ¥ is as in (5.12),
and r = dy (P, ). We define Uy : R* — R to be given by

) 1/2
I+ 5
and let Ky be the constant
31/4\/ﬁ
0= ———. (5.18)
81/4,/7710

Also we let @4 (w) : S* — R be the solution of

k 2
APy (w) + midp(w) = K, <Z Gw7pi> , (5.19)
i=1

5
where Gy p, = Gu(P, ), Gy, is as in (5.3), and K = 128y/373 ( . 0) . The right

hand side in (5.19) is in L? for all p < 3. Thus, (5.19) makes sense. Now, thanks
to (5.16), we get that the following asymptotics for the energy hold true.
Lemma 5.2. There holds that

Is We) = Aok + A geni(w) + Az i (w)g?e?

5.20
+ Ag’k(W)E‘:z +0 (nk(w)262) +o0 (62) , ( )
where
KS K5 A
AOk:u/ Ugdx> Alk:_k ! / Ugdl',
’ 3 R3 ’ 2 R3
1
Ag p(w) = 7/ (IVEL(w)* + mi®r(w)?) duy , (5.21)
167'(' S3
128764k KS 1moN\3/2 . oy [T _dr
Al = = () T @t aemo) [

I is the functional given by (2.2), A is as in (5.14), W, is as in (5.15), Uy is as
in (5.17), Ko is as in (5.18), and ® is as in (5.19).

Proof of Lemma 5.2. There holds that
ﬁ2
—/ VW, |2dv, + wQ/ W2dv, = k/ U2 p Wedvg + O (55/2) :
S3 S3 Xk

2
2mg
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Then, by (5.16), and thus by Lemma 5.1,

h2
— VW, |%d 2/ W2d
2mg/sg| |“dvg +w . “dvg
_ 5 3/2, (T 3/2 (5.22)
k s U? p, (Ua,pl + AVEY + Be¥ 2 (8) Yo (s )) dv,
+0(e?) ,
where
k
\Il == Rw,Pl + Z Gw,P,; . (5.23)
i=2

Let 6. > 0 be such that §. — 0 as ¢ — 0 and 6-%3 = o (52). There holds

/ US pdvg = / Ulp, +0(e%) .
P Bp, (0)

‘We have

£ € - 72 N e2r? +o(r?)
= —+ ——-+o(r
e2cos? 5 +sin’y 24+ 7 12 6(e2+2)

in Bp, (0.), while dvy = (Si”)2 dx in geodesic normal coordinates. It follows that

/ U pdvg =K{ | USdx +o(c%) (5.24)
Sk RS

where Kj is as in (5.18). By (5.7),
U = np(w) + Cur + Cla; + O(r?)

where ¥ is as in (5.23), C,, is given by C,, = 2’:24 (w? — A(mp)?), and the sum
Clz; is given by Clz; = E?:z E?Zl 86;:’,_1’]' (Py)x;. Splitting ¥y, into Bp, (6:) and

Yt \Bp, (d:), we obtain that

/ U2 p, dv, :Kg\@nk(w)/ Uosdx—FK(;’C'wsg/Q/ Ug’rdx+o(63/2> , (5.25)
Yk R3 R3

where r = |z|. In a similar way, thanks to the bounds at infinity we have on 1,
there holds that

/Ek UZp 0 (%) dvy = /BPI o U2 p 0 (Z) dvg +0(=*72)

(5.26)
= Kgﬁ/ Ugy(rydz + o (53/2) .
R3
Plugging (5.24)—(5.26) into (5.22) we get that
h? 2 2 2
— VW, |7d Wed
2m%/53| 6| vg"—w /53 e Vg
=kKS [ Ulde + kKSAsnk(w)/ Ugdx (5.27)
R3 R3

+kKJACe® | Ugrde +kK§B,e* | Uivdz +o(e%) .
R3 R3
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Independently, still by (5.16), there holds that

WSdv, = k / U? p,dvg + 6k /E k U2 p, (A\/?:\I/ + B,e3/?y (g))

S3 2k

+15Azkze/2 Ul p, WPdvg + 0 (%) .
k

Noting that
/ UZ p, Vdvg = / UZ p, Udvg + o(e)
2k Bp, (d¢)

=np(w)?Kje | Ujdx + o(e)
R3

we get as above that
/ WSdv, = kK§ / USdx + 6kK§ Acn (w) / Ugdx

S3 R3 R3
+ 6kKJAC,€* /

R3
+ 0 (2 (w)?) + 0 (%) .

USrdz + 6kK3 B, e’ / Ubyda (5.28)
R3

At last, by noting that 1®(W.) — ¢®x(w) in H', where @) (w) is as in (5.19), we
get that

1
q/ W IW2dv, = 7/ (IVOOWV:) |2 + mi®(W.)?) du,
S3 471' S3

£2¢2 (5.29)
— S (190 (@) + mIDs(w)?) dvy + ofe?)
47 S3
Combining (5.27), (5.28) and (5.29) we get (5.20) where Az ,(w) is given by
kK
Azp(w) = ——2 (Acw / Ugrds + B, / Ugwdx>
2 s -
3/2
6V EKEmy

273/2 (w2 _ A(mo)2) /RS US (r —bo(z)) do

and gy solves

1 1 1
SAYy = ———— —
2 VA+z]2 |zl

in R3. Noting that AUy = %Ué’, integrating by parts, we get the expression of
As (w) stated in the lemma. This ends the proof of Lemma 5.2. O

An additional result we prove is the following.

Lemma 5.3. There holds that

lim

‘A?”’“(w’“) =400, (5.30)
k—+o00

Ag g (wy)

where the wy’s are as in (5.6), and As, As p(w) are as in (5.21).
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Proof of Lemma 5.3. By the uniqueness of @ (w) in (5.19) it is Gy-invariant. There
holds that @4 (w) > 0, and we can thus write by Holder’s inequalities that

/53 (IVk(w)]* + miPr(w)?) dug

k
< CZ/S3 G2 p, Pr(w)dvg
i=1

< Ck/ G37P1¢k(w)dvg
S3
< CKl|Go,py [l 125 [|@r (@)l s -

By the maximum principle, Gy, p, < Gy, p, for all w > wy. Since wy, — 400, it
follows that As j(wy) < Ck?, where C > 0 is independent of k. On the other hand,
by the definition of wy, g coth(upm) > CG,,, p, (P2), where pp < Cwy, and we thus
get that wy, > Ck, where C' > 0 is independent of k. Then | A3z (wi)| > CkAg i (wk),
where C > 0 is independent of k. This proves the lemma. O

6. EQUIVARIANT FINITE-DIMENSIONAL REDUCTION

We develop in this section the finite-dimensional reduction argument we need in
order to prove the second part of Theorem 0.2, following in large parts previous
arguments by Rey and Wei [22] and Del Pino, Felmer and Musso [7], and we prove
the second part of Theorem 0.2 (for the finite dimensional reduction method in
the subcritical case, we refer to the book by Ambrosetti and Malchiodi [1] and the
survey paper by Wei [27]). We let O be given by

As i (wr)
Ag p(wr)

Then we let ¢ = A€, where % <A< C for C > 1, and we define & = ng(w) for w €
(wi — 6, wy) with ¢ > 0 small in case O > 0, and € = —n;(w) for w € (wg,wi + 9)
with § > 0 small in case O < 0. Since Ajs;(wi) = 0 we have that ©; > 0. On
the other hand, by Lemma 5.3, there holds that ©; < 0 for £ > 1. In the above
constructions, € > 0 and € — 0 as w — wg. We let

1
fé' . jS3_)S3
9

be the map given by fz(x) = éx. If gs is the standard metric on 15%, induced
from the Euclidean metric, then ffg = £2gz. Given u : S — R, we define the
~-procedure which, to u, associate « : %S?’ — R, where

@=Veuo f:.

We let YV = ag;\\;g , where W. is obtained from W. in (5.15) by the ~-procedure, and
we define

Z = —=A,Y + 84127 . (6.2)
m

There holds that (Y,Z) = 4o + o(1), where 79 > 0 and (-,-) is the L?-scalar
product with respect to gs. We say in what follows that a function @ in %53 is
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Gp-invariant if v is Gj-invariant in S3. In particular Y and Z are G-invariant. By
the ~-procedure, the equation

2

h
ngAgu +wu 4 q®(u)u = u®

in S2 is equivalent to

h? —
—— Ay i+ 200+ ¢E2(u)a = TP
2m2
in 153, where ®(u) = ®(u) o fz. Now we define the norms | - ||l and || - [[sx.0 by
fullo = sup (min, (145, (Po) ") uto)]
relgs \i=Lo.
i oo (6.3)
Jllowo = sup ( min (14dg.(P2) ) fu(@)]
T selss \isles

for u € L™ (éSg), where 0 < 0 < 1 and fc:(pl) =PF;,i=1,..., k. Given a function
he L™ (%S?’) we consider the problem

%Agy + 8202 — 5WA¢ = h + ¢ Z
fl_SS Zd)dvgé =0,

where ¢y € R, and Z is as in (6.2). A key point in the equivariant finite-dimensional
reduction argument we develop here is given by the following lemma.

(6.4)

Lemma 6.1. Let (hs)z be a family in L™ (é53) of Gi-invariant functions such
that ||hellsx,c — 0 as € — 0, and (¢z)s be a family of Gi-invariant solutions of
(6.4) with h = hs. There holds ||¢z|lx,c — 0 as € — 0.

Proof of lemma 6.1. Let 0/ < 0. We prove by contradiction that ||¢s||«,. — 0 as
€ — 0. We can assume that ||¢z||«,.» = 1. In what follows we let G be the Green’s
function of Ay, + £2w?. Then

<—,
B dgé ((E, y)
where fz(Z) = z, fz(§) = y, and G is the Green’s function of A, 4+ w?. Thanks
to the Gi-symmetries, using the Green’s representation formula and (6.5), we get
that ||¢z||L~ < C and that

1 ag
()| <C| ———— 6.6
|¢€( )| - (mlnldgg(PZ,:Ic)> ( )
forall # # P, i =1,...,k. There also holds that

co = O ([|hellsx,0) + 0 (9214 .07)

=o(1) . (6.7)

Let gﬁgﬂ- =¢soexpp, i =1,..., k. Then exp} gz — { in C3? .(R3) as & — 0, where

loc
¢ is the Euclidean metric, and by standard elliptic theory, édi — ¢ in C? . (R3) as
& — 0, where
I Ni = 5U2 o
ng ¢l - A,O¢l ’
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6| < C, |2[7]¢:] < C for all 7, and
Upo = KoAY2 (A2 + [a]2/4) /%

By Bianchi-Egnell [3] this implies that b = oy ag;\\,o since by the Gy-invariance, ¢,

is even. Still by the Gj-invariance, a; = -+ = . Let a be the common value to
the a;’s. By (6.6) and since ||@z|/+,0- = 1, there exist R > 0 and ¢ > 0 such that
P&l Lo (Bo(r) > 0 - (6.8)

There holds [, g Z¢zdv,, = 0 and we have that

- OUp 0\ OUp 0
/éssZ@dng. — ka/Rs (A A ) B dx

> da,

where 6 > 0. Hence av = 0 and we get a contradiction with (6.8). This proves that
|@zlx,0r — 0 as € — 0. Noting that

I$ellso < C (lgellor + llellax,o + Icol)

we then get with (6.7) that ||¢s]/+c — 0 as &€ — 0. This ends the proof of the
lemma. g

At this point we define Ry s, Rs ¢, and Rz by

- h2 - -
e 5 A 22
Rizs=W, om? g We —weEWN, (6.9)
R27g = *(]52 (Ws)WE R and Rg = Rlﬁg + ngg .

Thanks to the asymptotic expansion in Lemma 5.1, noting that |[®(W.)| = O (¢7)
for any 0 < o < 1, we get that ||R; ¢|lix,0 < CE and |[|[DAR; ¢lwx,0 < C€ for all
i = 1,2. Following almost word by word the arguments in Rey and Wei [22], see
also Del Pino, Felmer and Musso [7], we get with Lemma 6.1 that there exist &y > 0
and C' > 0 such that

(R1) for any & € (0,&) and any Gj-invariant function € L> (153), (6.4) has
a unique Gj-invariant solution ¢ = Lz(h) with ||¢|,,c < C||h|/«,o. Moreover, the

map Lz is O wrt. A and [|[DaLz(h)]|x.0 < C|lAllwx,0-

_(R2) for any ¢ € (0,&p), (6.10) has a unique Gj-invariant solution ¢ = ¢z with
lpzllx.oc < CE and || Dads|lx,o < CE, where (6.10) is the problem

s D, (W + ) + E22 (W, + 9)
+q220W. + K. + o) (We + @) = (W + §) + o Z (6.10)
fés?’ Z&dvgé =0,
WE = WE + Eé’(Ré), co € R,

(I)(W6+Ke+¢):¢(W5+Ks+¢)oféa

and K. = Lz(R:).

We get (R1) by an application of the Fredholm theorem, and (R2) by an ap-
plication of the fixed point theorem (and we assume o is not to small). Now we
let

U. =W, + ﬁg(Rg) + ¢z . (6.11)
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There holds by (R1) that ||£z(Rz)|lx.0 < C&. Thus U > 0. We define p : Rt — R
by

K2 ) 222 )
plA) = W/l VU P dvg. + w; / Uzdv,,
0Jis3 1g3
o ) : (6.12)
+ e mafdvg~ - = L?fdng ,
4 %Sa N 6 %SS c

where U, is such that U, = LA{E, namely such that L?s is obtained from U, by the
~-procedure. The following proposition holds true.

Proposition 6.1. The function U. > 0 is a solution of

72 - . —
ﬁAgE.u + 220U + 2o (UNU = UP (6.13)
0

mn %53 if and only if A is a critical point of p.

Proof of Proposition 6.1. We define Iz by

~ ﬁ2 ~ w2&:2 ~ qé:Z ~
Ig = —_— 2 — 2 ~ / P 2 )
- [ <4mg|VU| + 50 )dvge—k T [ 300,

Then I:(U) = Is(U) and there holds that U is a solution of (6.13) if and only if
U = W. + K. + ¢: is a solution of
h? 2 5

— AU +wU+q2U)U=0U".

2m2 ¢
This is in turn equivalent to ¢ = 0, where ¢g is as in (6.10), which is again equivalent
to IL(U.).(Y) = O since IL(U.).(Y) = co(Y, Z) and (Y, Z) = ~yp+o0(1), where 5 > 0.
Independently, there holds that p’(A) = 0 if and only if

Ié(b?g).<f/+%ia> —0,

where U, = K, + ¢z, while if we let yo = 8(9\11/\57 then [|yol/«,c < Ce. We write that

Yo = yh + aY, where (y),Y)s = 0 and (-,-)¢ is the scalar product associated to
%Agf + &2w?. Then p/(A) = 0 if and only if
0

(1+ a)IL(U)-(V) = 0

since (yy,Z) = (y4,Y)s. There holds that (yo,Y)s = o(1) and this implies that
a = o(1). This ends the proof of the proposition. (]

Now, thanks to Proposition 6.1, we are in position to prove point (ii) in Theorem
0.2. This is the subject of what follows.
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Proof of the second part of Theorem 0.2. Given o € (0, 1) sufficiently close to 1, we
compute

/ D (UNUZdv,. :/ W )W2dv,. +o(1) ,
iso Lss

Z;{sﬁ dvg.

1g3 1lgs
ls ls

Wodu,, + 6 / Woidu,,
b0
+15 Wﬁl/??dvga. +o (52) ,
Lo

Uzdv,. = / Wo4zdv,. + 5 / . Widv,. + 0 (£2)

153 13

/ q)(us)z;{ezzjédvgg = / ¢(W5>d51;gd’vg§ + 0(1) s
bse bse

where U, = W, + ¢z and s = K. + ¢z. Then

1 - 1 ~ ~
p(A) = Is(W.) — 3 Ry zpzdv,. + = Ry sbzdvg, + 0 (€7) |
163 2 183

where Ry and Ry s are as in (6.9). By our choices of ¢, €, and since % <ALZC

for C' > 1 fixed, we then get by direct computations that p(A) = Is(W.) + o (€2
Assume now that O > 0, where Oy is as in (6.1). Then, by Lemma 5.2,

p(A) = Aop+ ALpE A+ Ao (w)?E2 A + Az (w)E°A* + 0 (8%) A?
= Agg+ A1kE° A+ As i (wyy)OrEZA% + 0 (€2) A?

and since A;; < 0 and ©, > 0, p has an absolute minimum A, in (%,C) for
C > 1 when w € (wg —d,wy) and 0 < § < 1. Pick any sequence (wg ), of phases
in (wg — d,wy) such that w, — wg as a — +o0o. By Proposition 6.1 we then get
that there is an associated sequence (U, (U, )) of solutions of (0.2) with w = wy,
where U, = U, and g4 = Ay, Mk (wa), such that (U, ), is a k-spikes type solution
of the first equation in (0.2). In particular, |[Uy||L~ — +00 as @ — +o0. Similarly,
if we assume that ©; < 0, then by Lemma 5.2,

p(A) = Aop — ALpE A+ Ao (w)@*E* A + Az (w)E°A* + 0 (8%) A?
= Aok — ALpE’ A+ As i (wyy)OREZA + 0 (€%) A?

and p has an absolute maximum in (%,C) for C > 1 when w € (wg,wy + 0)
and 0 < § < 1. Pick any sequence (wq)o of phases in (wg,wr + 6) such that
wq — Wi as o — +00. By Proposition 6.1 we then get that there is an associated
sequence (Uy, P(Uy)) of solutions of (0.2) with w = w,, where U, = U, and
€a = =Ny, Mk(wa), such that (Uy,),, is a k-spikes type solution of the first equation
in (0.2). In particular, |Uy||f= — 400 as & — +oo. We know that ©; > 0 for
k =1 and, by Lemma 5.3, that ©; < 0 for £ > 1. This ends the proof of the
second part of Theorem 0.2. O

As a remark it can be noted that we obtain the existence of solutions to (0.2)
for w sufficiently close to the wy’s with w < wy, if O > 0 and w > wy, if O > 0.
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