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Abstract. We investigate nonlinear Schrödinger-Poisson systems in the 3-
sphere. We prove existence results for these systems and discuss the question

of the stability of the systems with respect to their phases. While, in the
subcritical case, we prove that all phases are stable, we prove in the critical case

that there exists a sharp explicit threshold below which all phases are stable

and above which resonant frequencies and multi-spikes blowing-up solutions
can be constructed. Solutions of the Schrödinger-Poisson systems are standing

waves solutions of the electrostatic Maxwell-Schrödinger system. Stable phases

imply the existence of a priori bounds on the amplitudes of standing waves
solutions. Unstable phases give rise to resonant states.

We investigate in this paper nonlinear Schrödinger-Poisson systems in the 3-
sphere. These are electrostatic versions of the Maxwell-Schrödinger system which
describes the evolution of a charged nonrelativistic quantum mechanical particle
interacting with the electromagnetic field it generates. We adopt here the Proca
formalism. Then the particle interacts via the minimum coupling rule

∂t → ∂t + i
q

}
ϕ , ∇ → ∇− i q

}
A

with an external massive vector field (ϕ,A) which is governed by the Maxwell-
Proca Lagrangian. In particular, we recover as part of the full system the massive
modified Maxwell equations in SI units, which are hereafter explicitly written down:

∇.E = ρ/ε0 − µ2ϕ ,

∇×H = µ0

(
J + ε0

∂E

∂t

)
− µ2A ,

∇× E +
∂H

∂t
= 0 and ∇.H = 0 .

(0.1)

These massive Maxwell equations, as modified to Proca form, appear to have been
first written in modern format by Schrödinger [25]. The Proca formalism a priori
breaks Gauge invariance. Gauge invariance can be restored by the Stueckelberg
trick, as pointed out by Pauli [21], and then by the Higgs mechanism. We refer to
Goldhaber and Nieto [14, 15], Luo, Gillies and Tu [20], and Ruegg and Ruiz-Altaba
[24] for very complete references on the Proca approach. In the electrostatic case
of the Maxwell-Schrödinger system, looking for standing waves solutions, we are
led to the nonlinear Schrödinger-Poisson system we investigate in this paper. It is
stated as follows: {

}2

2m2
0
∆gu+ ω2u+ qvu = up−1

∆gv +m2
1v = 4πqu2 ,

(0.2)
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where ω ∈ R, p ∈ (4, 6], ∆g = −divg∇ is the Laplace-Beltrami operator, the
constants }, m0, m1 and q are positive, and u, v ≥ 0 in S3. Solutions of (0.2) are
standing wave solutions ψ(x, t) = u(x)eiω

2t/}, with purely electrostatic field v, of
the Maxwell-Schrödinger system in Proca form we mentioned above. The system
(0.2) is energy critical when p = 6. We refer to the temporal frequency ω as the
phase and investigate both the question of the existence of one or more solutions to
(0.2), and the question of the stability of phases in (0.2). Stability of a phase implies
compactness of the set of associated solutions of (0.2). We define the stability of a
phase as follows.

Definition 0.1. Let (S3, g) be the unit 3-sphere, and p ∈ (4, 6]. A phase ω ∈ R
is stable if for any sequence ψα(x, t) = uα(x)eiω

2
αt/} of standing waves, with purely

electrostatic field vα, solutions of{
}2

2m2
0
∆guα + ω2

αuα + qvαuα = up−1
α

∆gvα +m2
1vα = 4πqu2

α

for all α ∈ N, the convergence ωα → ω in R as α → +∞ implies that, up to a
subsequence, the uα’s and vα’s converge in C2(S3) to solutions u and v of (0.2) as
α→ +∞.

In particular, if ω is stable then we get an upper bound on the L∞-norm of the
amplitude of arbitray standing waves with phases close to ω. The first result we
prove addresses the subcritical case p ∈ (4, 6) in (0.2). The mountain pass solutions
we obtain in our theorems are precisely defined in Section 2. These are variational
solutions which inherit an additional ground state structure in the Nehari setting.

Theorem 0.1 (Subcritical case). Let (S3, g) be the unit 3-sphere, },m0,m1 > 0,
and q > 0. Let p ∈ (4, 6). For any ω there exists a mountain pass solution of (0.2).
Moreover, all phases ω ∈ R are stable.

As an interesting remark it can be noted that both the bounds 4 and 6 on the
nonlinearity are sharp with respect to the stability issue in the theorem. Stability
as in Theorem 0.1 is indeed false in general when p = 4 (see Section 3). As shown
in Theorem 0.2, it is also false when p = 6 and ω takes specific (sufficiently) large
values. When p = 6, a critical threshold for ω appears. In the case of S3 that we
consider in this paper this can be made very explicit. We let Λ(m0) be given by

Λ(m0) =
√

3}
2
√

2m0

. (0.3)

The theorem we prove in the critical case answers positively the question of existence
of special solutions and of stability of phases in the range (−Λ(m0),+Λ(m0)), and
asserts that resonant frequencies appear in the complementary range.

Theorem 0.2 (Critical case). Let (S3, g) be the unit 3-sphere, },m0,m1 > 0, and
q > 0. Let p = 6. For any ω ∈ (−Λ(m0),+Λ(m0)) there exists a mountain pass
solution of (0.2) and the solution is nonconstant when m1 � q. Moreover:

(i) all phases ω ∈ (−Λ(m0),+Λ(m0)) are stable,
(ii) there exists an increasing sequence (ωk)k≥1 of phases such that ω1 = Λ(m0),

ωk → +∞ as k → +∞, and both all the −ωk’s and ωk’s are unstable.
In particular, resonant frequencies appear outside (−Λ(m0),+Λ(m0)), starting with
±Λ(m0), and the threshold Λ(m0) is critical.
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The mountain pass solution we obtain in Theorem 0.2 comes in addition to
the constant solution when m1 � q and we thus get two solutions in that case.
As already mentioned, the stability of phases implies the existence of an upper
bound for the amplitude of standing waves ψ(x, t) = u(x)eiω

2t/} when ω is in
compact subsets of (−Λ(m0),+Λ(m0)). The resonant frequencies ωk break this
upper bound. As we will see when proving the second part of Theorem 0.2, they
come with blowing-up sequences of multi-spike solutions.

1. Coupling NLS with a massive field

The nonlinear focusing Schrödinger equation (NLS) is written as

i}
∂ψ

∂t
=

}2

2m2
0

∆gψ − |ψ|p−2ψ .

By coupling (NLS) with a gauge vector field (ϕ,A) governed by the Maxwell-Proca
theory, the coupling being made via the minimum substitution rule,

∂t → ∂t + i
q

}
ϕ , ∇ → ∇− i q

}
A ,

we get a system of particle-electromagnetic field describing the interactions of a
matter scalar field ψ with its electromagnetic field (ϕ,A). Here, } is the reduced
Planck’s constant, m0 > 0 represents the mass of ψ, q its charge, and m1 > 0
represents the mass of (ϕ,A) in the Maxwell-Proca theory. To be more precise, let

LNLS =
1
2

(
i}
∂ψ

∂t
ψ − qϕ|ψ|2 − }2

2m2
0

|∇ψ − i q
}
Aψ|2

)
+

1
p
|ψ|p , and

LMP (ϕ,A) =
1

8π

∣∣∣∣∂A∂t +∇ϕ
∣∣∣∣2 − 1

8π
|∇ ×A|2 +

m2
1

8π
|ϕ|2 − m2

1

8π
|A|2 ,

where ∇× is the curl operator, and define S =
∫ ∫

(LNLS + LMP ) dvgdt to be the
total action functional. Writing ψ = ue

iS
} in polar form, u ≥ 0, and taking the

variation of S with respect to u, S, ϕ, and A, we get that

}2

2m2
0
∆gu+

(
∂S
∂t + qϕ+ 1

2m2
0
|∇S − qA|2

)
u = up−1

∂u2

∂t + 1
m2

0
∇.
(
(∇S − qA)u2

)
= 0

− 1
4π∇.

(
∂A
∂t +∇ϕ

)
+ m2

1
4π ϕ = qu2

1
4π

(
∇× (∇×A) + ∂

∂t

(
∂A
∂t +∇ϕ

))
+ m2

1
4π A = q

m2
0

(∇S − qA)u2 .

(1.1)

Letting E = − 1
4π

(
∂A
∂t +∇ϕ

)
, H = 1

4π∇× A, ρ = qu2, and J = q
m2

0
(∇S − qA)u2,

we recover the Maxwell-Proca equations (0.1) with the two last equations in (1.1),
where µ2 = m2

1/(4π) and we normalize such that ε0 = 1 and µ0 = 1 (the last two
equations in (0.1) are automaticaly satisfied due to the choice of E and H). The
second equation in (1.1) then reads as the charge continuity equation ∂ρ

∂t +∇.J = 0.
We assume in what follows that A and ϕ depend on the sole spatial variables, thus
we restrict our attention to the static case of (1.1), and look for standing waves
solutions of (1.1), namely

ψ(x, t) = u(x)e
iω2t

} .

The fourth equation in (1.1) then implies that A ≡ 0, while the second equation in
(1.1) is automatically satisfied since S = ω2t. The first and third equations in (1.1)
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are rewritten as {
}2

2m2
0
∆gu+ ω2u+ qvu = up−1

∆gϕ+m2
1ϕ = 4πqu2 .

(1.2)

Letting ϕ = v, the system (1.2) is precisely the system (0.2) we investigate in this
paper. Solutions of (0.2) are standing wave solutions of (1.1) in the static (or purely
electrostatic) case.

2. Functional setting and existence of mountain pass solutions

Let m0,m1 > 0, ω ∈ R, and q > 0. We aim in getting mountain pass solutions
for (0.2). For this purpose we define an auxiliary functional Φ : H1 → H1 by letting
Φ(u) be the unique solution of

∆gΦ(u) +m2
1Φ(u) = 4πqu2 (2.1)

for u ∈ H1. Then Φ is C1 and its differential Φu at u, when computed over ϕ ∈ H1,
solves an equation like (2.1) with a right hand side like 8πquϕ. In particular,
H(u) =

∫
u2Φ(u) is C1 with Hu(ϕ) = 4

∫
uΦ(u)ϕ for ϕ ∈ H1. For p ∈ (4, 6], we

define Ip : H1 → R by

Ip(u) =
}2

4m2
0

∫
S3
|∇u|2dvg +

ω2

2

∫
S3
u2dvg

+
q

4

∫
S3
u2Φ(u)dvg −

1
p

∫
S3

(u+)pdvg ,
(2.2)

where u+ = max(u, 0). If u ≥ 0 is a critical point of Ip, then (u,Φ(u)) solves (0.2).
As is easily seen, Φ(tu) = t2Φ(u) for all t and all u, and Φ(u) ≥ 0 for all u. We
prove the existence part of Theorem 0.2 in what follows. We say that

(
u,Φ(u)

)
is

a mountain pass solution of (0.2) when u is obtained from Ip by the mountain pass
lemma from 0 to an endpoint u1 such that Ip(u1) < 0. Existence in the subcritical
case somehow follows from a direct application of the mountain pass lemma.

Proof of Theorem 0.1 - Existence part. Let p ∈ (4, 6) and u0 ∈ H1 be such that
u+

0 6≡ 0. There holds Ip(0) = 0, and there exists T0 = T (u0) such that Ip(T0u0) < 0.
For any 0 < δ � 1, there exists εδ > 0 such that Φ(u) ≥ εδ for all u ∈ H1 satisfying
that ‖u‖H1 = 1 and ‖u‖L2 ≥ δ. It follows that there exists ε0 > 0 such that∫
S3

(
|∇u|2 + Φ(u)u2

)
dvg ≥ ε0 for all u ∈ H1 satisfying that ‖u‖H1 = 1. Since

Φ(tu) = t2Φ(u), we then get that there exist C1, C2 > 0 such that

Ip(u) ≥ C1‖u‖4H1 − C2‖u‖pH1

for all u such that ‖u‖H1 ≤ 1. In particular the mountain pass lemma can be
applied since p > 4. Let

cp = inf
P∈P

max
u∈P

Ip(u) , (2.3)

where P is the set of continuous paths from 0 to T0u0. Since
∫
u2Φ(u) ≤ C‖u‖4H1 ,

mountain pass sequences associated to cp are bounded in H1. Standard arguments
then give the existence of up ≥ 0 such that Ip(up) = cp, and such that up and
vp = Φ(up) solve (0.2). Then up, vp are smooth and by the maximum principle
up, vp > 0 in S3. This ends the proof of the existence part in Theorem 0.1. �
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From now on we assume p = 6. Let x0 ∈ S3, (βα)α be a sequence such that
βα > 1 for all α and βα → 1 as α→ +∞, and define

ϕα(x) =

(
3(β2

α − 1)
)1/4√

2(βα − cos r)
, (2.4)

where r = dg(x0, x). The ϕα’s are 1-spike solutions of

∆gϕα +
3
4
ϕα = ϕ5

α (2.5)

and they satisfy the energy estimates∫
S3
|∇ϕα|2dvg =

1
K3

3

+ o(1) ,

∫
S3
ϕ6
αdvg =

1
K3

3

, (2.6)

where K3 = 2√
3|S3|1/3 is the sharp constant for the Euclidean Sobolev inequality

‖u‖L6 ≤ K3‖∇u‖L2 . The proof of the existence part in Theorem 0.2 is as follows.

Proof of Theorem 0.2 - Existence part. There holds ϕα → 0 in Lp for p < 6. Hence
Φ(ϕα) → 0 in H2,p for p < 3, and we get that ‖Φ(ϕα)‖L∞ → 0 as α → +∞. By
(2.6) there exists T � 1 such that I6(Tϕα) < 0 for all α� 1. Let

Hε(u) =
∫
S3
|∇u|2dvg + (

3
4
− ε)

∫
S3
u2dvg −

2m2
0

3}2

∫
S3
|u|6dvg .

Since |ω| < Λ(m0) and ‖Φ(ϕα)‖L∞ → 0 as α→ +∞ we get that there exists ε0 > 0
such that

max
0≤t≤T

I6(tϕα) ≤ }2

4m2
0

max
0≤t≤T

Hε0(tϕα)

≤
√

2}3

12m3
0

(∫
S3 |∇ϕα|2dvg + ( 3

4 − ε0)
∫
S3 ϕ

2
αdvg(∫

S3 ϕ6
αdvg

)1/3
)3/2

for all α� 1. There also exist C1, C2 > 0 such that

I6(u) ≥ C1‖u‖4H1 − C2‖u‖6H1

for all u such that ‖u‖H1 ≤ 1. We let u0 = ϕα for α� 1 sufficiently large, T0 = T ,
and we define

c6 = inf
P∈P

max
u∈P

I6(u) , (2.7)

where P is the set of continuous paths from 0 to T0u0. According to the above and
by (2.5), there exist δ0 > 0 and ε1 > 0 such that

δ0 ≤ c6 ≤
1

3K3
3

(
}√
2m0

)3

− ε1 , (2.8)

where c6 is as in (2.7). Since I6(0) = 0, the mountain pass lemma can be applied.
We obtain the existence of a Palais-Smale sequence (uα)α such that I6(uα)→ c6 and
I ′6(uα) → 0 as α → +∞. Noting that

∫
u2Φ(u) ≤ C‖u‖4L6 , the uα’s are bounded

in H1. In particular, there exists u ∈ H1 such that, up to a subsequence, uα ⇀ u
in H1, uα → u a.e., and uα → u in Lp for p < 6. Then Φ(uα) → Φ(u) in H2,p

for p < 3, and we get that Φ(uα) → Φ(u) in C0,θ for some 0 < θ � 1. Mimicking
the argument in Brézis and Nirenberg [4], it follows from (2.8) that u 6≡ 0, that
uα → u in H1, that u > 0 in M , and that U = (u,Φ(u)) solves (0.2). In particular,
I6(u) = c6. �
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The mountain pass solution u we obtain in the critical case is such that I6(u) =
c6. As is easily checked, (0.2) always possesses a constant solution U0 = (u0, v0)
which, in the critical case, is given by v0 = 4πq

m2
1
u2

0 and

u4
0 =

4πq2

m2
1

u2
0 + ω2 . (2.9)

Then

I6(u0) =
1
2
(
ω2 + qv0

)1/2 |S3|
(
ω2 +

q

2
v0 −

1
3

(ω2 + qv0)
)

=
1
2
(
ω2 + qv0

)1/2 |S3|
(

2
3
ω2 +

q

6
v0

)
and we get that

I6(u0) ≥ 1
12
|S3|(qv0)3/2 . (2.10)

Let ε =
(
m2

1
4πq

)2

. Then εv2
0 = u4

0 and by (2.9) we get that 2εv0 = q +
√
q2 + 4εω2.

In particular, coming back to (2.10),

I6(u0) ≥ (4π)3|S3|
12

(
q

m1

)6

and by (2.8) the mountain pass solution we obtain is nonconstant when m1 � q.

Let Np be the Nehari manifold associated to (0.2). By definition

Np =
{
u ∈ H1, u 6≡ 0, s.t. I ′p(u).u = 0

}
. (2.11)

Following an idea due to Rabinowitz, see Willem [28] for a presentation in book
form, there holds that

cp = inf
u∈Np

Ip(u) (2.12)

for all p ∈ (4, 6], where Np is as in (2.11), and cp is as in (2.3) and (2.7). In
particular, the solutions we obtain are ground states in the sense of Willem [28].
We get (2.12) by noting that for any u ∈ H1, u+ 6≡ 0, there is one and only one
t = t0(u), where t > 0, such that I ′p(tu).(tu) = 0.

3. Stability in the subcritical case

Stability of the phases in the subcritical case follows from (and can actually
be reformulated into) the general theorem below, where we prove the existence of
uniform bounds for arbitrary solutions of (0.2). Let Sp(ω) be the set of all positive
solutions U = (u, v), u, v > 0, of (0.2). Given θ ∈ (0, 1) we define ‖U‖C2,θ =
‖u‖C2,θ + ‖v‖C2,θ for all U = (u, v). The following theorem holds true.

Theorem 3.1. Let (S3, g) be the unit 3-sphere, },m0,m1 > 0, and q > 0. Let
p ∈ (4, 6). For any θ ∈ (0, 1), and any Λ > 0, there exists C > 0 such that
‖U‖C2,θ ≤ C for all U ∈ Sp(ω) and all |ω| ≤ Λ.

Let p ∈ (4, 6) and let (ωα)α be a sequence of phases such that ωα → ω as
α→ +∞ for some ω ∈ R, and let Uα = (uα, vα) be positive solutions of{

}2

2m2
0
∆guα + ω2

αuα + qvαuα = up−1
α

∆gvα +m2
1vα = 4πqu2

α .
(3.1)
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Up to a subsequence we can assume that ωα → ω as α → +∞ for some ω ∈ R.
The proof of the existence of a priori bounds in Theorem 3.1 reduces to proving
that the uα’s and vα’s are automatically bounded in C2,θ(S3), 0 < θ < 1.

Proof of Theorem 3.1 - Existence of a priori bounds. We divide the first equation
in (3.1) by uα and integrate over S3. Then

q

∫
S3
vαdvg =

}2

2m2
0

∫
S3

|∇uα|2

u2
α

dvg +
∫
S3
up−2
α dvg − ω2

α|S3|

≥
∫
S3
up−2
α dvg − ω2

α|S3| .
(3.2)

Integrating the second equation in (3.1) there also holds that m2
1

∫
vα = 4πq

∫
u2
α.

By (3.2) and Hölder’s inequality we then get that∫
S3
up−2
α dvg ≤ C1 + C2

(∫
S3
up−2
α dvg

)2/(p−2)

for all α, where C1, C2 < 0 are independent of α. Then the uα’s are bounded in
Lp−2(S3), and by the second equation in (3.1), the vα’s turn out to be bounded
in H2,(p−2)/2(S3). By the Sobolev embedding’s theorem we then get that the vα’s
are bounded in Lq(S3) when p ∈ (4, 5), where q = 3(p−2)

2(5−p) , and in C0,θ(S3) for some
θ ∈ (0, 1) when p ∈ (5, 6). In particular, they are bounded in L3(S3). From now
on we assume by contradiction that we can choose (uα, vα) such that

max
M

uα → +∞ (3.3)

as α→ +∞. Let xα ∈M and µα > 0 be such that uα(xα) = ‖uα‖L∞ = µ
−2/(p−2)
α .

By (3.3), µα → 0 as α→ +∞. Let ũα be given by

ũα(x) = µ
2
p−2
α uα

(
expxα(µαx)

)
for x ∈ R3. Let also g̃α(x) =

(
exp?xα g

)
(µαx) and v̂α(x) = vα

(
expxα(µαx)

)
. There

holds
}2

2m2
0

∆g̃α ũα + ω2
αµ

2
αũα + qµ2

αv̂αũα = ũp−1
α (3.4)

and there also holds that 0 ≤ ũα ≤ 1, ũα(0) = 1, and g̃α → ξ in C2
loc(R3), where ξ

is the Euclidean metric. Then there exists C > 0 such that for any compact subset
K ⊂ R3, ∫

K

(µαv̂αũα)3
dx ≤ C

for all α � 1 since the vα’s are bounded in L3. By elliptic theory it follows that
ũα → ũ in C0,θ

loc (R3) as α → +∞, where ũ satisfies 0 ≤ ũ ≤ 1 and ũ(0) = 1.
Moreover, by (3.4), we have that }2

2m2
0
∆ũ = ũp−1, a contradiction with the Liouville

result of Gidas and Spruck [13]. Hence, (3.3) cannot happen, and for any (ωα)α
such that ωα → ω as α → +∞, and any (uα, vα) solutions of (4.1), there exists
C > 0 such that ‖uα‖L∞ ≤ C. By the second equation in (3.1) it follows that
‖uα‖L∞ + ‖vα‖L∞ ≤ C for all α, and by standard elliptic theory, a C2,θ-bound
holds as well. This proves the existence of a priori bounds in Theorem 0.2. �
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As an interesting remark it is necessary in the above proof to assume that p > 4.
Indeed, let p = 4, ωα = 0 for all α, and 4πq2 = m2

1. Then uα = α and vα = α2/q
solve (3.1) and, obiously, ‖uα‖L∞ → +∞, ‖vα‖L∞ → +∞ as α → +∞. It is
independently necessary to assume a bound on the ωα’s since if not we get counter
examples by the constant solutions which satisfy uα ≥ ω

2/(p−2)
α . As a remark,

Theorem 3.1 is true on arbitrary compact Riemannian 3-manifolds.

4. Stability in the critical case

Stability in the critical case is a consequence of, and is actually equivalent to,
the following theorem where the existence of uniform bounds is obtained for phases
in compact subsets of (−Λ(m0),+Λ(m0)).

Theorem 4.1. Let (S3, g) be the unit 3-sphere, },m0,m1 > 0, and q > 0. Let
p = 6. For any θ ∈ (0, 1), and any ε > 0, there exists C > 0 such that ‖U‖C2,θ ≤ C
for all U ∈ S6(ω) and all |ω| ≤ Λ(m0)− ε.

By the analysis in Druet and Hebey [9], we refer also to Druet and Laurain
[12] for a related reference, Theorem 4.1 can be extended to the case of arbitrary
compact 3-dimensional manifolds. The result holds true as long as Λ(m0) ≤ min Λ,
where Λ is such that ∆g+Λ has a nonnegative mass. By the positive mass theorem,
assuming the Yamabe invariant of g is positive, Λ ≥ 1

8Sg, where Sg is the scalar
curvature of g. In both cases we recover (0.3) when the manifold is the 3-sphere.
The proof we present is a shortcut with respect to the analysis in Druet and Hebey
[9]. We mix in our analysis ideas from Li and Zhang [19], Druet and Hebey [8],
Hebey and Robert [16], and Hebey, Robert and Wen [17]. The proof extends almost
as it is to compact conformally flat manifolds of positive scalar curvature. The 4-
dimensional analogue of Theorem 4.1 for the Klein-Gordon equation is established
in Hebey and Truong [18].

In what follows we let (ωα)α be a sequence of phases such that ωα → ω as
α→ +∞ for some ω ∈ R, and let Uα = (uα, vα) be positive solutions of{

}2

2m2
0
∆guα + ω2

αuα + qvαuα = u5
α

∆gvα +m2
1vα = 4πqu2

α .
(4.1)

Dividing the first equation in (4.1) by uα and integrating over S3 we get as in
Section 3 that ∫

S3
u4
αdvg ≤ C1 + C2

(∫
S3
u4
αdvg

)1/2

for all α, where C1, C2 < 0 are independent of α. Then the uα’s are bounded in L4,
and by the second equation in (4.1), the vα’s are in turn bounded in H2. By the
Sobolev embedding theorem we thus get that there exists v ∈ C0,θ(S3), 0 < θ < 1,
such that, up to a subsequence,

vα → v in C0,θ(S3) (4.2)

as α → +∞. By standard elliptic theory, an L∞-bound on the uα’s implies the
C2,θ-bound we are looking for in the theorem. We define

hα = ω2
α + qvα , (4.3)
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and assume by contradiction that we can choose (uα, vα) such that

max
S3

uα → +∞ (4.4)

as α → +∞. By (4.2) the hα’s converge in C0,θ. The following lemma directly
follows from the analysis in Li and Zhang [19].

Lemma 4.1 (Li-Zhang [19]). Let ûα > 0 be a smooth positive solution of

}2

2m2
0

∆ûα + ĥαûα = û5
α (4.5)

in R3, where ∆ is the Euclidean Laplacian and (ĥα)α is a converging sequence of
functions in C0

loc(R3). There exist C, δ > 0 such that, up to a subsequence,

sup
B0(ε)

ûα × inf
B0(4ε)

ûα ≤
C

ε
(4.6)

for all 0 < ε < δ, and all α, where B0(ε) and B0(4ε) are the Euclidean balls of
center 0 and radii ε and 4ε.

Proof of Lemma 4.1. We very briefly sketch the proof and refer to Li-Zhang [19]
for more details. By contradiction we assume there exists (εα)α and (Λα)α, εα > 0
for all α, εα → 0 and Λα → +∞ as α→ +∞, such that

max
B0(εα)

ûα × min
B0(4εα)

ûα ≥
Λε
εα

(4.7)

for all α. Let xα ∈ B0(εα) be a point where ûα attains its maximum in B0(εα).
There exist xα ∈ Bxα(εα/2) and σα ∈ (0, εα/4) such that ûα(xα) ≥ ûα(xα) for
all α, ûα(x) ≤ Cûα(xα) for all α and all x ∈ Bxα(σα), and ûα(xα)2σα → +∞ as
α→ +∞. Let µα = ûα(xα)−2, and define v̂α by

v̂α(x) = µ1/2
α ûα(xα + µαx) . (4.8)

There holds σαµ−1
α → +∞ by (4.7). By standard elliptic theory,

v̂α → v̂ in C2
loc(R3) , (4.9)

where v̂ > 0 satisfies }2

2m2
0
∆v̂ = v̂5 and is given by the Caffarelli-Gidas-Spruck [5]

classification. Given λ > 0 and x ∈ R3, we let

v̂λ,xα (y) =
λ

|y − x|
v̂α

(
x+

λ2(y − x)
|y − x|2

)
(4.10)

and Σλ,xα = Bx(εαµ−1
α )\Bx(λ), where v̂α is as in (4.8). Let wλ,xα = v̂α − v̂λ,xα , and

for C > 0 let
hλ,xα,C(y) = −Cλµ2

α (|y − x| − λ) . (4.11)

For any λ1 � 1 and any x, there exists C > 0 such that wλ,xα + hλ,xα,C ≥ 0 in Σλ for
all 0 < λ ≤ λ1 and all α, where hλ,xα,C is as in (4.11). Letting α → +∞ it follows
that v̂ ≥ v̂λ,x for all |y − x| ≥ λ > 0, where v̂ is as in (4.9) and v̂λ,x is built on v̂
as in (4.10). This implies that v̂ is constant, and we get a contradiction with the
equation for v̂. This ends the proof of the lemma. �

Thanks to the estimates in Lemma 4.1, as noticed by Chen and Lin [6], the
following holds true.
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Lemma 4.2. There exists C > 0 such that ‖uα‖H1 ≤ C for all α, where uα is as
in (4.1).

Proof of Lemma 4.2. Let x ∈ S3 be any point in S3. By the stereographic projec-
tion of pole −x, there exists φ > 0 smooth and positive such that ĝ = φ4g is flat in
S3\{−x}, the set S3\{−x} can be assimilated with R3, x with 0, and ĝ with the
Euclidean metric, and such that

}2

2m2
0

∆ĝûα + ĥαûα = û5
α , (4.12)

where ûα = φ−1uα, φ4ĥα = 2m2
0

}2 hα − 3
4 , and hα = ω2

α + qvα. By (4.2), ĥα → ĥ in
C0,θ
loc . Given δ > 0, let λ > 0 be such that ĥ < λ in B0(R), R � δ. Let Ĝ be the

Green’s function of }2

2m2
0
∆ĝ + λ with zero Dirichlet boundary condition in B0(5δ).

Let also v̂α solve {
}2

2m2
0
∆ĝ v̂α + λv̂α = û5

α in B0(5δ)

v̂α = 0 on ∂B0(5δ) .

By the maximum principle, v̂α ≤ ûα in B0(5δ) for α� 1. Let yα ∈ B0(4δ) be such
that ûα(yα) = infB0(4δ) ûα. By standard estimates on G, see Robert [23], following
Chen and Lin [6], we can write thanks to (4.23) and the estimates in Lemma 4.1
that∫

Bx(δ)

u6
αdvg ≤ Cδ

∫
B0(δ)

û6
α(y)dy

≤ Cδδ

(
sup
B0(δ)

ûα

)∫
B0(δ)

G(yα, y)û5
α(y)dy

≤ Cδδ

(
sup
B0(δ)

ûα

)∫
B0(5δ)

G(yα, y)
(

}2

2m2
0

∆v̂α + λv̂α

)
(y)dy

≤ Cδδ sup
B0(δ)

ûα × inf
B0(4δ)

ûα ≤ Cδ

for all α � 1 and δ > 0 sufficiently small, where Cδ > 0 does not depend on α
and change values from line to line in the above inequalities. In particular, since
x is arbitrary, there exists C > 0 such that

∫
S3 u

6
αdvg ≤ C for all α. By (4.1) this

proves Lemma 4.2. �

By Lemma 4.2 the uα’s have bounded energy and Struwe’s decomposition [26]
can be applied. In particular, up to a subsequence,

uα = u∞ +
k∑
i=1

Bi,α +Rα , (4.13)

where Rα → 0 in H1 as α→ +∞, k ∈ N, uα → u∞ a.e., and

Bi,α(x) =
(

2m2
0

}2

)1/4
(

µi,α

µ2
i,α + dg(xi,α,x)2

3

)1/2

(4.14)
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for some converging sequence (xi,α)α in S3 and a sequence (µi,α)α of positive real
numbers such that µi,α → 0 as α→ +∞. Moreover, there holds that

µ
1
2
i,αuα

(
expxi,α(µi,αx)

)
→
(

2m2
0

}2

)1/4√ 1

1 + |x|2
3

(4.15)

in C2
loc(R3\Si) for all i, where Si consists of the limits of the 1

µi,α
exp−1

xi,α(xj,α)’s
as α → +∞ for j ∈ Ii, and Ii stands for the set of the j’s which are such that
dg(xi,α, xj,α) = O(µi,α) and µj,α = o(µi,α). Let Dα, D̂α : S3 → R+ be defined by

Dα(x) = min
i=1,...,k

dg(xi,α, x) and ,

D̂α(x) = min
i=1,...,k

(dg(xi,α, x) + µi,α) .
(4.16)

There holds that Dα ≤ D̂α and by the analysis in Druet and Hebey [8], since (4.2)
holds true, we can write that

D̂
1
2
α

∣∣∣∣∣uα − u∞ −
k∑
i=1

Bi,α

∣∣∣∣∣→ 0 in L∞(S3) (4.17)

as α → +∞. In particular, if S stands for the set consisting of the limits of the
xi,α’s as α→ +∞, then uα → u∞ in L∞loc(S

3\S).

Lemma 4.3. Let Gα : S3 × S3\D → R be the Green’s function of }2

2m2
0
∆g + hα,

where hα is given by (4.3), and D is the diagonal in S3 × S3. Suppose ω = 0 and
v = 0, where v is as in (4.2). Then infS3×S3\DGα → +∞ as α→ +∞.

Proof of Lemma 4.3. Let εα = ‖hα‖L∞ and kα ∈ R be such that kα → +∞ and
εαkα → 0 as α → +∞. Let Ĝα be the Green’s function of }2

2m2
0
∆g + εα. By the

maximum principle, Gα ≥ Ĝα in S3 × S3\D and we can use the specific form of
Ĝα in S3 or use the following more general S3-free argument. We let G ≥ 0 be
a Green’s function of }2

2m2
0
∆g. For any x ∈ S3, if Gx = G(x, ·), there holds that

}2

2m2
0
∆gGx = δx − 1

|S3| . Let x ∈ S3 and Vα solve

}2

2m2
0

∆gVα + εαVα = εαGx .

There holds
∫
Vα =

∫
Gx so that, by Poincaré’s inequality and standard estimates

on G, Vα is bounded in H1 uniformly with respect to x. By standard elliptic
properties and standard estimates on G, it follows that ‖Vα‖L∞ ≤ C for all α with
a bound which is uniform with respect to x. Let Φα = Ĝα(x, ·) − Gx − kα + Vα.
Then

}2

2m2
0

∆gΦα + εαΦα ≥
1
|S3|

− εαkα

for all α, and by the maximum principle and the above estimates it follows that
Ĝα(x, ·) ≥ kα − C for all α and all x, where C is independent of α and x. This
proves the lemma. �

The following key estimate is established in Druet and Hebey [8] (see also Druet,
Hebey and Robert [10]). A slight difference here is that we need to handle the
noncoercive case where ω = 0 and v = 0. We handle this case thanks to Lemma
4.3.
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Lemma 4.4 (Step 5.2 in Druet and Hebey [8]). There exists C > 0 such that, up
to a subsequence,

uα ≤ C
(
µ

1
2
αD
−1
α + ‖u∞‖L∞

)
(4.18)

in S3, for all α, where µα = maxi µi,α.

Proof of Lemma 4.4. We briefly sketch the proof and refer to Druet and Hebey [8]
for more details. Given δ > 0 we define

ηα(δ) = max
M\∪ki=1Bxi,α (δ)

uα . (4.19)

Let G be the Green’s function of }2

2m2
0
∆g + 1. Given ε ∈ (0, 1

2 ), we let Ψα,ε be given
by

Ψα,ε(x) = µ
1
2 (1−2ε)
α

N∑
i=1

G (xi,α, x)1−ε + ηα (δ)
k∑
i=1

G (xi,α, x)ε ,

and let Ωα = M\
⋃k
i=1Bxi,α (Rµi,α). We define yα ∈ Ωα be such that ui,αΨ−1

α,ε

is maximum in Ωα at yα. Up to choosing δ > 0 sufficiently small, and R � 1
sufficiently large, yα ∈ ∂Ωα or Dα(yα) > δ for α � 1. By (4.15) and standard
properties of the Green’s function it follows that for any ε ∈ (0, 1

2 ), there exist
Rε � 1, 0 < δε � 1, and Cε > 0 such that, up to a subsequence,

uα(x) ≤ Cε
(
µ

1
2 (1−2ε)
α Dα(x)(2−n)(1−ε) + ηα(δε)Dα(x)(2−n)ε

)
(4.20)

for all α and all x ∈M\
⋃k
i=1Bxi,α (Rεµi,α). Now we claim that there exists δ > 0

small such that for any sequence (yα)α of points in S3,

lim sup
α→+∞

uα(yα)

µ
1/2
α Dα(yα)−1 + ηα(δ)

< +∞ . (4.21)

By the definition of ηα(δ) and (4.17) we can assume that Dα(yα) ≤ δ and that
µ−1
α Dα(yα) → +∞ as α → +∞. Let 0 < λ � 1 be such that λ 6∈ Sp( }2

2m2
0
∆g),

where Sp( }2

2m2
0
∆g) is the spectrum of }2

2m2
0
∆g, and let G be the Green’s function of

}2

2m2
0
∆g − λ. There exist C1 > 1, C2, C3 > 0 such that

1
C1
dg(x, y)−1 − C2 ≤ G(x, y) ≤ C3dg(x, y)−1

and |∇G(x, y)| ≤ C3dg(x, y)−2 for all x, y ∈ S3, x 6= y. We choose δ > 0 small such
that dg(x, y) ≥ 4δ for all x, y ∈ S, x 6= y, and such that 4δC1C2 ≤ 1. Let x0 ∈ S
be such that dg(x0, yα) ≤ δ + o(1). By the Green’s representation formula and the
above estimates on G, there exists C > 0 such that

uα(yα) =
∫
Bx0 (2δ)

Gyα

(
}2

2m2
0

∆guα − λuα
)
dvg +O (ηα(δ))

≤ C

∫
S3
dg(yα, x)−1u5

α(x)dvg(x) +O (ηα(δ))

for all α � 1, since Gyα ≥ 0 in Byα(2δ) for α large by our choice of δ. By (4.20),
letting ε > 0 be small, we get that∫

S3
dg(yα, x)−1u5

α(x)dvg(x) = O
(
µ1/2
α Dα(yα)−1

)
+O (ηα(δε)) .
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Choosing δ ∈ (0, δε), δ � 1, we get that (4.21) holds true. Now it remains to
prove that if u∞ ≡ 0, then ηα(δ) = O(µ1/2

α ). As a consequence of (4.21), assuming
by contradiction that ηα(δ)µ−1/2

α → +∞ as α → +∞, we get by standard elliptic
theory that ηα(δ)−1uα → H in C2

loc(S
3\S) as α→ +∞, where ∆gH +hH = 0 and

|H| ≤ C in S3\S, H 6≡ 0, and h = ω+qv. Then H is in the kernel of ∆g+h and we
get a contradiction if h > 0. In case h = 0, and thus in case ω = 0 and v ≡ 0, we get
thanks to Lemma 4.1, that we apply around a point where uα is maximum, that
maxM uα×minM uα ≤ C for some C > 0 and all α. Independently, by Lemma 4.3,
if x̃α is a point where uα is minimum, and Gα is the Green function of }2

2m2
0
∆g+hα,

then

max
M

uα ×min
M

uα ≥ max
M

uα

∫ 3

S

Gα(x̃α, ·)u5
αdvg

≥
∫
S3
Gα(x̃α, ·)u6

αdvg ≥ Λα
∫
S3
u6
αdvg ,

where Λα → +∞ as α → +∞. Then
∫
S3 u

6
αdvg → 0 as α → +∞ and we get

a contradiction with (4.4) since if k = 0, then uα → u∞ uniformly in S3. In
other words, ηα(δ) = O(µ1/2

α ) holds true, and by (4.21), this ends the proof of the
lemma. �

Up to now we did not use the assumption that |ω| < Λ(m0) neither |ωα| < Λ(m0).
The conclusion of the proof does use this assumption.

Proof of Theorem 4.1 - Existence of a priori bounds. We can assume that, up to a
subsequence, µα = µ1,α for all α, where µα is as in Lemma 4.4. In what follows
we let xα = x1,α for all α. First we claim that u∞ ≡ 0. In order to prove this we
proceed by contradiction and assume that u∞ 6≡ 0. Then v > 0 in S3, where v is
as in (4.2), since

∆gv +m2
1v = 4πqu2

∞ (4.22)

in S3. In particular, since hα = ω2
α + qvα by (4.3), there holds that h > 0 in S3,

where h is the limit of the hα’s. Let θ > 1 be given, and let Gθ be the Green’s
function of }2

2m2
0
∆g + θh. By the maximum principle, Gα ≥ Gθ for α � 1, where

Gα is as in Lemma 4.3. Let S = {x1, . . . , xm} be the set consisting of the limits
of the xi,α’s and a ∈ S3\S. Let δ > 0 be such that Ba(δ) ⊂ M\S. Then, for any
x ∈ S3,

uα(x) =
∫
S3
Gα(x, y)u5

α(y)dvg(y)

≥
∫
Ba(δ)

Gθ(x, y)u5
α(y)dvg(y)

≥
∫
Ba(δ)

Gθ(x, y)u5
∞(y)dvg(y) + o(1)

since uα → u∞ in L∞loc(S
2\S). In particular, there exists ε0 > 0 such that uα ≥ ε0

in S3 for all α. Let yα ∈ S3, given by (4.4), be such that uα(yα)→ +∞ as α→ +∞.
Up to a subsequence, yα → y as α → +∞. Coming back to the beginning of the
proof of Lemma 4.2, by the stereographic projection of pole −y, there exists φ > 0
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smooth and positive such that ĝ = φ4g is flat in S3\{−y}, the set S3\{−y} can be
assimilated with R3, y with 0, and ĝ with the Euclidean metric, and such that

}2

2m2
0

∆ĝûα + ĥαûα = û5
α (4.23)

in R3, where ûα = φ−1uα, and φ4ĥα = 2m2
0

}2 hα − 3
4 . By construction we have that

supB0(ε) ûα → +∞ for all ε > 0 as α → +∞. Since, according to the above,
infB0(4ε) ûα ≥ ε̃0 > 0 as long as u∞ 6≡ 0, we get a contradiction with Lemma 4.1.
This proves that u∞ ≡ 0. In particular, by (4.22), there holds that v ≡ 0. We
assume in what follows that |ω| < Λ, where Λ is as in (0.3). By Lemma 4.4, for any
K ⊂⊂ S3\S, there exists CK > 0 such that µ−1/2

α uα ≤ CK in K for all α. There
holds

}2

2m2
0

∆g(µ−1/2
α uα) + hα(µ−1/2

α uα) = µ2
α(µ−1/2

α uα)5 ,

where hα = ω2
α + qvα. By standard elliptic theory it follows that µ−1/2

α uα → U
in C1

loc(S
3\S) as α → +∞. Splitting S3 into the two subsets {Dα ≤ Rµα} and

{Dα ≥ Rµα}, using (4.15) around xα, thanks to Lemma 4.4 and since u∞ ≡ 0,
there exists A > 0 such that∫

S3
u5
αdvg = (A+ o(1))µ1/2

α . (4.24)

By the Green’s representation formula we then get that

uα(x) ≥
(

inf
S3×S3\D

Gα

)∫
S3
u5
αdvg ,

and since v ≡ 0, it follows from the bound µ
−1/2
α uα ≤ CK , from (4.24), and from

Lemma 4.3, that ω 6= 0. In particular }2

2m2
0
∆g +ω2 is coercive. Let G be its Green’s

function. Then, as in Hebey and Robert [16], we can write that

U(x) =
√

3}2ω2

2m2
0

m∑
i=1

µ
1/2
i G(xi, x)

for all x ∈ S3\S, and U satisfies that

}2

2m2
0

∆gU + ω2U =
√

3}2ω2

2m2
0

m∑
i=1

µ
1/2
i δxi

in the sense of distributions, where µi ≥ 0 for all i, and µ1 > 0 by (4.15). Sharper
estimates would give that µiµα = (1 + o(1))µi,α. There holds that

G(x, y) =
η(x, y)

ω2dg(x, y)
+R(x, y) ,

where R : S3 × S3 → R is continuous, and η : S3 × S3 → R is smooth such
that 0 ≤ η ≤ 1, η(x, y) = 1 if dg(x, y) ≤ δ, and η(x, y) = 0 if dg(x, y) ≥ 2δ for
δ > 0 sufficiently small. Moreover, dg(x, y)|∇Rx(y)| ≤ C for all y ∈ S3\{x}, where
Rx(y) = R(x, y), and

δα max
y∈∂Bx(δα)

|∇Rx(y)| = o(1) , (4.25)

where δα → 0 as α → +∞. At last, since |ω| < Λ, it follows from the maximum
principle that R(x, x) > 0 for all x ∈ S3. Let x1 be the limit of the xα’s. Let also
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φ > 0 smooth be such that φ4ξ = g in a neighbourhood Ω of x1, and φ(x1) = 1,
where ξ is the Euclidean metric. Define ûα = φuα. There holds

dg(0, x) = |x|
(
1 + (∇φ(0), x) + o(|x|2)

)
,

where we assimilate x1 with 0 and (·, ·) stands for the Euclidean scalar product.
Assume Ω ∩ S = {x1}. Then µ

−1/2
α ûα → H in C1

loc(Ω\{0}) as α→ +∞, where

H(x) =
√

3}2ω2

2m2
0

(
µ

1/2
1

ω2|x|
+K(x)

)
, (4.26)

K ∈ C0(Ω), and K(0) = µ
1/2
1 R(x1, x1) +

∑
j 6=1 µ

1/2
j G(x1, xj). Given δ > 0 suffi-

ciently small, let

Aδ = −
∫
∂B0(δ)

(xk∂kH)∂νHdσ +
1
2

∫
∂B0(δ)

(x, ν)|∇H|2dσ − 1
2

∫
∂B0(δ)

H∂νHdσ ,

where ν is the outward unit normal. By (4.25) and (4.26), we get that

lim
δ→0

Aδ =
3
2

(
}2

2m2
0

)2

ω2
2µ

1/2
1 K(0) . (4.27)

By the Pohozaev identity applied to ûα in B0(δ), there also holds that∫
B0(δ)

(
(xk∂kûα) +

1
2
ûα

)
∆ûαdx = (Aδ + o(1))µα . (4.28)

It remains to handle the left hand side in (4.28), the difficulty here being that we
only have a C0,θ-convergence for the hα’s and not a C1-convergence. We claim that
there exists C > 0 such that

|∇vα| ≤ CµαD−1
α (4.29)

in S3, for all α. In order to prove (4.29), let G be the Green’s function of ∆g +m2
1.

Then

vα(x) = 4πq
∫
S3
G(x, y)u2

α(y)dvg(y)

for all x ∈ S3 and all α, and by standard properties of the Green’s functions, see
Druet, Hebey and Robert [10], by Lemma 4.4, and since u∞ ≡ 0, we get that

|∇vα(x)| ≤ Cµα
k∑
i=1

∫
S3

dvg(y)
dg(x, y)2dg(xi,α, y)2

.

In particular, (4.29) follows from Giraud’s lemma, and this ends the proof of (4.29).
There holds that

}2

2m2
0

∆ûα + ĥαûα = û5
α

for all α, where

ĥα =
(

2m2
0

}2
hα −

3
4

)
φ4 .



16 EMMANUEL HEBEY AND JUNCHENG WEI

By (4.29), and since |∇vα| is bounded in H1,3, we can write with Lemma 4.4 that∫
B0(δ)

|∇vα|u2
αdvg ≤ o(µα) +

∫
B0(δ)\∪ki=1Bxi,α (µα)

|∇vα|u2
αdvg

≤ o(µα) + Cµ2
α

k∑
i=1

∫
B0(δ)\Bxi,α (µα)

1
d(xi,α, x)3

dx

≤ o(µα) + Cµ2
α

∑
i∈Ĩ

∫
Bxi,α (2δ)\Bxi,α (µα)

1
d(xi,α, x)3

dx

= o(µα) +O

(
µ2
α ln

1
µα

)
,

where Ĩ is the subset of {1, . . . , k} consisting of the i’s which are such that xi,α → x1

as α→ +∞, d is the Euclidean metric, and δ > 0 is sufficiently small. Integrating
by parts the left hand side in (4.28), we then get that

lim
δ→0

lim
α→+∞

1
µα

∫
B0(δ)

(
(xk∂kûα) +

1
2
ûα

)
∆ûαdx = 0 . (4.30)

Combining (4.27), (4.28), and (4.30), the contradiction follows since G ≥ 0 and
R(x1, x1) > 0 when |ω| < Λ. As a consequence, ‖uα‖L∞ + ‖vα‖L∞ ≤ C for some
C > 0. By standard elliptic theory a C2,θ-bound holds as well. Up to a subsequence
we can pass to a C2-limit . This proves the existence of a priori bounds in Theorem
4.1. �

5. Unstable phases and resonant frequencies - Affine estimates

The goal in this section and in the following one is to prove the second part
of Theorem 0.2 by constructing multi-spikes solutions to (0.2) when ω is close to
resonant frequencies ωk. To each ωk is associated a sequence of nk-spikes solutions
with nk → +∞ as k → +∞. This can be considered as bifurcation from infinity
(see Bahri [2]). More precisely we use here the so-called localized energy method
(see Del Pino, Felmer and Musso [7], Rey and Wei [22], and Wei [27]) which goes
through the choice of suitable approximate solutions (this is done in this section)
and the use of finite-dimensional reduction (carried over in the following section).

Let P1 = (1, 0, 0, 0) in S3 and k ∈ N, k ≥ 1. We define the Pi’s, i = 1, . . . , k,
by Pi =

(
eiθi , 0

)
∈ S3 ⊂ R2 × R2, where θi = 2π(i−1)

k . Let Gk be the maximal
isometry group of (S3, g) which leaves globally invariant the set {P1, . . . , Pk}. Let
also Σk ⊂ S3 be the slice

Σk =
{(
reiθ, z

)
, r > 0, z ∈ C, r2 + |z|2 = 1,−π

k
≤ θ ≤ π

k

}
. (5.1)

We consider the nonlinear critical equation

}2

2m2
0

∆gu+ Λ(m0)2u = u5

in S3, with u > 0. Its solutions are all known and given, see (2.4), by

Uβ,x0 =

√
}
(
3(β2 − 1)

)1/4
21/4
√
m0

√
2(β − cos r)

,
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where β > 1 is arbitrary, r = dg(x0, ·), and x0 ∈ S3 is also arbitrary. These
solutions can be rewritten as

Uε,x0 =
31/4
√

}
81/4
√
m0

(
ε

ε2 cos2 r
2 + sin2 r

2

)1/2

, (5.2)

where ε ∈ (0, 1). There holds that Uε,x0 = Uβε,x0 by letting βε = 1+ε2

1−ε2 . Also we do

have an explicit expression for the Green’s function Gω of }2

2m2
0
∆g + ω2. Namely,

Gω(x, y) =
m2

0 sinh (µω(π − r))
2π}2 sinh(µωπ) sin r

(5.3)

for all x, y ∈ S3, x 6= y, where r = dg(x, y) and µω =
√

2m2
0

}2 ω2 − 1. When
ω2 = Λ(m0)2 we recover the Green’s function of the conformal Laplacian. We
write G0 instead of Gω when ω2 = Λ(m0)2 and there holds that

G0(x, y) =
m2

0 cos r2
2π}2 sin r

(5.4)

for all x, y ∈ S3, x 6= y, where r = dg(x, y). At this point we let Rω be given by
Gω = G0 +Rω, and we define

ηk(ω) = Rω(P1, P1) +
k∑
i=2

Gω(P1, Pi) , (5.5)

where the second term in the right hand side of (5.5) is zero if k = 1. There holds

Rω(P1, P1) = − m2
0

2π}2
µω coth(µωπ)

so that η1(ω) = 0 if and only if ω = ±Λ(m0), while η′1 (Λ(m0)) < 0. It is easily
checked that ηk(ω) → −∞ as ω → ±∞, while ηk

(
}/
√

2m0

)
> 0 for k ≥ 2. There

also holds that d
dµ (µ coth(µπ) > 0 while, by the maximum principle, Gω ≤ Gω0 if

ω ≥ ω0. Hence there exists a unique ωk ≥ Λ(m0) such that ηk(ωk) = 0. We define

ωk = inf {ω ≥ Λ(m0) s.t. ηk(ω) = 0} ,
= sup {ω ≥ Λ(m0) s.t. ηk(ω) = 0} ,

(5.6)

where ηk(ω) is given by (5.5). Then ηk(ω) > 0 if ω < ωk and ηk(ω) < 0 if ω > ωk.
When k = 1, ω1 = Λ(m0). Since sinh(tx)/ sin(x) > t for x ∈ (−π, π), there holds
that ωk → +∞ as k → +∞. Independently, we can check

}2

2m2
0

Rω,P1 = −µω coth(µωπ)
4π

+
1

8π

(
2m2

0

}2
ω2 − 3

4

)
r +O(r2) , (5.7)

where r = dg(P1, ·) and Rω,P1 = Gω(P1, ·) − G0(P1, ·). The Rω,P1 ’s satisfy the
equation

}2

2m2
0

∆gRω,P1 + ω2Rω,P1 =
(
Λ(m0)2 − ω2

)
G0 . (5.8)

In what follows we define the projections Uε,Pi , i = 1, . . . , k, by

}2

2m2
0

∆gUε,Pi + ω2Uε,Pi = U5
ε,Pi (5.9)



18 EMMANUEL HEBEY AND JUNCHENG WEI

and we define ϕε,Pi to be given by

Uε,Pi = Uε,Pi + ϕε,Pi , (5.10)

where Uε,Pi is given by (5.2). There holds that

}2

2m2
0

∆gϕε,Pi + ω2ϕε,Pi =
(
Λ(m0)2 − ω2

)
Uε,Pi . (5.11)

Independently we let ψ ∈ Ḣ1(R3) be the solution of

}2

2m2
0

∆ψ =
1√

4 + |x|2
− 1
|x|

(5.12)

in R3. By the Green’s representation formula we get that |ψ(x)| ≤ C ln(2+|x|)
1+|x| and

|∇ψ(x)| ≤ C ln(2+|x|)
(1+|x|)2 as |x| → +∞. The first lemma we prove is the following where

we obtain the asymptotic expansion of the ϕε,Pi ’s, and thus of the approximate
solutions Uε,Pi ’s.

Lemma 5.1. There holds that

ϕε,P1 = A
√
εRω,P1 +Bωε

3/2ψ
(r
ε

)
+ o

(
ε3/2

)
(5.13)

in Σk, where

A = 31/4π4
√

2
(

}√
2m0

)5/2

and Bω =
31/42

√
}

81/4
√
m0

(
Λ(m0)2 − ω2

)
, (5.14)

Σk is as in (5.1), ϕε,P1 is as in (5.10), Rω,P1 = Gω(P1, ·) − G0(P1, ·), ψ is as in
(5.12), and r = dg(P1, ·).

Proof of Lemma 5.1. Thanks to the equations (5.8) and (5.11) satisfied by Rω,P1

and ϕε,P1 ,

}2

2m2
0

∆g

(
ϕε,P1 −A

√
εRω,P1

)
+ ω2

(
ϕε,P1 −A

√
εRω,P1

)
= CKε ,

where C = 31/4√}
81/4√m0

(
Λ(m0)2 − ω2

)
and Kε =

(
ε

ε2 cos2 r
2 +sin2 r

2

)1/2

−
√
ε

sin r
2

. Let

vε = ϕε,P1 −A
√
εRω,P1 , ṽε, gε be given by

ṽε(x) = ε−3/2vε
(
expP1

(εx)
)
,

and gε(x) =
(
exp?P1

g
)

(εx), where x ∈ R3. There holds gε → ξ in C2
loc(R3), where

ξ is the Euclidean metric, and we have that

}2

2m2
0

∆gε ṽε + ε2ω2ṽε = CεK̃ε ,

where K̃ε =
(
ε2 cos2 ε|x|

2 + sin2 ε|x|
2

)−1/2

−
(

sin ε|x|
2

)−1

. The functions 1
2εK̃ε con-

verge in C0
loc(R3) to the right hand side of (5.12), in the sense that the difference

converges to 0 in C0
loc, while by the Green’s representation formula, ε−3/2vε(xε)→ 0

if 1
εdg(P1, xε) → +∞. In particular, we do have (5.13) and this proves Lemma

5.1. �
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At this point we define Wε to be the sum of the Uε,Pi ’s. Then

Wε =
k∑
i=1

Uε,Pi . (5.15)

In particular Wε is Gk-invariant. As a direct consequence of Lemma 5.1 we get
that the following expansion of the Wε’s holds true. Namely

Wε = Uε,P1 +A
√
ε

(
Rω,P1 +

k∑
i=2

Gω,Pi

)
+Bωε

3/2ψ
(r
ε

)
+ o

(
ε3/2

)
(5.16)

in Σk, where A,Bω are as in (5.14), Σk is as in (5.1), Uε,P1 is as in (5.2), the
Gω,Pi = Gω(Pi, ·)’s are as in (5.3), Rω,P1 = Gω(P1, ·)−G0(P1, ·), ψ is as in (5.12),
and r = dg(P1, ·). We define U0 : R3 → R to be given by

U0(x) =

(
1

1 + |x|2
4

)1/2

, (5.17)

and let K0 be the constant

K0 =
31/4
√

}
81/4
√
m0

. (5.18)

Also we let Φk(ω) : S3 → R be the solution of

∆gΦk(ω) +m2
1Φk(ω) = K1

(
k∑
i=1

Gω,Pi

)2

, (5.19)

where Gω,P1 = Gω(P1, ·), Gω is as in (5.3), and K1 = 128
√

3π3
(

}√
2m0

)5

. The right

hand side in (5.19) is in Lp for all p < 3
2 . Thus, (5.19) makes sense. Now, thanks

to (5.16), we get that the following asymptotics for the energy hold true.

Lemma 5.2. There holds that

I6 (Wε) = A0,k +A1,kεηk(ω) +A2,k(ω)q2ε2

+A3,k(ω)ε2 +O
(
ηk(ω)2ε2

)
+ o

(
ε2
)
,

(5.20)

where

A0,k =
kK6

0

3

∫
R3
U6

0 dx , A1,k = −kK
5
0A

2

∫
R3
U5

0 dx ,

A2,k(ω) =
1

16π

∫
S3

(
|∇Φk(ω)|2 +m2

1Φk(ω)2
)
dvg ,

A3,k(ω) = −128π61/4kK5
0

3

(m0

}

)3/2 (
ω2 − Λ(m0)2

) ∫ +∞

0

dr

4 + r2
,

(5.21)

I6 is the functional given by (2.2), A is as in (5.14), Wε is as in (5.15), U0 is as
in (5.17), K0 is as in (5.18), and Φ is as in (5.19).

Proof of Lemma 5.2. There holds that

}2

2m2
0

∫
S3
|∇Wε|2dvg + ω2

∫
S3
W2
εdvg = k

∫
Σk

U5
ε,P1
Wεdvg +O

(
ε5/2

)
.
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Then, by (5.16), and thus by Lemma 5.1,

}2

2m2
0

∫
S3
|∇Wε|2dvg + ω2

∫
S3
W2
εdvg

= k

∫
Σk

U5
ε,P1

(
Uε,P1 +A

√
εΨ +Bωε

3/2ψ
(r
ε

)
+ o

(
ε3/2

))
dvg

+ o
(
ε2
)
,

(5.22)

where

Ψ = Rω,P1 +
k∑
i=2

Gω,Pi . (5.23)

Let δε > 0 be such that δε → 0 as ε→ 0 and δ−6
ε ε3 = o

(
ε2
)
. There holds∫

Σk

U6
ε,P1

dvg =
∫
BP1 (δε)

U5
ε,P1

+ o
(
ε2
)
.

We have

ε

ε2 cos2 r
2 + sin2 r

2

=
ε

ε2 + r2

4

(
1 +

r2

12
+

ε2r2

6(ε2 + r2

4 )
+ o(r2)

)

in BP1(δε), while dvg =
(

sin r
r

)2
dx in geodesic normal coordinates. It follows that∫

Σk

U6
ε,P1

dvg = K6
0

∫
R3
U6

0 dx+ o(ε2) , (5.24)

where K0 is as in (5.18). By (5.7),

Ψ = ηk(ω) + Cωr + Cixi +O(r2) ,

where Ψ is as in (5.23), Cω is given by Cω = m4
0

2π}4

(
ω2 − Λ(m0)2

)
, and the sum

Cixi is given by Cixi =
∑k
j=2

∑3
i=1

∂Gω,Pj
∂xi

(P1)xi. Splitting Σk into BP1(δε) and
Σk\BP1(δε), we obtain that∫

Σk

U5
ε,P1

Ψdvg = K5
0

√
εηk(ω)

∫
R3
U5

0 dx+K5
0Cωε

3/2

∫
R3
U5

0 rdx+ o
(
ε3/2

)
, (5.25)

where r = |x|. In a similar way, thanks to the bounds at infinity we have on ψ,
there holds that∫

Σk

U5
ε,P1

ψ
(r
ε

)
dvg =

∫
BP1 (δε)

U5
ε,P1

ψ
(r
ε

)
dvg + o

(
ε3/2

)
= K5

0

√
ε

∫
R3
U5

0ψ(r)dx+ o
(
ε3/2

)
.

(5.26)

Plugging (5.24)–(5.26) into (5.22) we get that

}2

2m2
0

∫
S3
|∇Wε|2dvg + ω2

∫
S3
W2
εdvg

= kK6
0

∫
R3
U6

0 dx+ kK5
0Aεηk(ω)

∫
R3
U5

0 dx

+ kK5
0ACωε

2

∫
R3
U5

0 rdx+ kK5
0Bωε

2

∫
R3
U5

0ψdx+ o
(
ε2
)
.

(5.27)



SCHRÖDINGER-POISSON SYSTEMS 21

Independently, still by (5.16), there holds that∫
S3
W6
εdvg = k

∫
Σk

U6
ε,P1

dvg + 6k
∫

Σk

U5
ε,P1

(
A
√
εΨ +Bωε

3/2ψ
(r
ε

))
+ 15A2kε

∫
Σk

U4
ε,P1

Ψ2dvg + o
(
ε2
)
.

Noting that ∫
Σk

U4
ε,P1

Ψ2dvg =
∫
BP1 (δε)

U4
ε,P1

Ψ2dvg + o(ε)

= ηk(ω)2K4
0ε

∫
R3
U4

0 dx+ o(ε)

we get as above that∫
S3
W6
εdvg = kK6

0

∫
R3
U6

0 dx+ 6kK5
0Aεηk(ω)

∫
R3
U5

0 dx

+ 6kK5
0ACωε

2

∫
R3
U5

0 rdx+ 6kK5
0Bωε

2

∫
R3
U5

0ψdx

+O
(
ε2ηk(ω)2

)
+ o

(
ε2
)
.

(5.28)

At last, by noting that 1
εΦ(Wε) → qΦk(ω) in H1, where Φk(ω) is as in (5.19), we

get that

q

∫
S3

Φ(Wε)W2
εdvg =

1
4π

∫
S3

(
|∇Φ(Wε)|2 +m2

1Φ(Wε)2
)
dvg

=
ε2q2

4π

∫
S3

(
|∇Φk(ω)|2 +m2

1Φk(ω)2
)
dvg + o(ε2)

(5.29)

Combining (5.27), (5.28) and (5.29) we get (5.20) where A3,k(ω) is given by

A3,k(ω) = −kK
5
0

2

(
ACω

∫
R3
U5

0 rdx+Bω

∫
R3
U5

0ψdx

)
= −61/4kK5

0m
3/2
0

2}3/2

(
ω2 − Λ(m0)2

) ∫
R3
U5

0 (r − ψ0(x)) dx ,

and ψ0 solves
1
2

∆ψ0 =
1√

4 + |x|2
− 1
|x|

in R3. Noting that ∆U0 = 3
4U

5
0 , integrating by parts, we get the expression of

A3,k(ω) stated in the lemma. This ends the proof of Lemma 5.2. �

An additional result we prove is the following.

Lemma 5.3. There holds that

lim
k→+∞

∣∣∣∣A3,k(ωk)
A2,k(ωk)

∣∣∣∣ = +∞ , (5.30)

where the ωk’s are as in (5.6), and A2,k, A3,k(ω) are as in (5.21).
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Proof of Lemma 5.3. By the uniqueness of Φk(ω) in (5.19) it is Gk-invariant. There
holds that Φk(ω) ≥ 0, and we can thus write by Hölder’s inequalities that∫

S3

(
|∇Φk(ω)|2 +m2

1Φk(ω)2
)
dvg

≤ C
k∑
i=1

∫
S3
G2
ω,PiΦk(ω)dvg

≤ Ck
∫
S3
G2
ω,P1

Φk(ω)dvg

≤ Ck‖Gω,P1‖L12/5‖Φk(ω)‖L6 .

By the maximum principle, Gω,P1 ≤ Gω0,P1 for all ω ≥ ω0. Since ωk → +∞, it
follows that A2,k(ωk) ≤ Ck2, where C > 0 is independent of k. On the other hand,
by the definition of ωk, µk coth(µkπ) ≥ CGωk,P1(P2), where µk ≤ Cωk, and we thus
get that ωk ≥ Ck, where C > 0 is independent of k. Then |A3,k(ωk)| ≥ CkA2,k(ωk),
where C > 0 is independent of k. This proves the lemma. �

6. Equivariant finite-dimensional reduction

We develop in this section the finite-dimensional reduction argument we need in
order to prove the second part of Theorem 0.2, following in large parts previous
arguments by Rey and Wei [22] and Del Pino, Felmer and Musso [7], and we prove
the second part of Theorem 0.2 (for the finite dimensional reduction method in
the subcritical case, we refer to the book by Ambrosetti and Malchiodi [1] and the
survey paper by Wei [27]). We let Θk be given by

Θk = q2 +
A3,k(ωk)
A2,k(ωk)

. (6.1)

Then we let ε = Λε̃, where 1
C ≤ Λ ≤ C for C � 1, and we define ε̃ = ηk(ω) for ω ∈

(ωk − δ, ωk) with δ > 0 small in case Θk > 0, and ε̃ = −ηk(ω) for ω ∈ (ωk, ωk + δ)
with δ > 0 small in case Θk < 0. Since A3,k(ω1) = 0 we have that Θ1 > 0. On
the other hand, by Lemma 5.3, there holds that Θk < 0 for k � 1. In the above
constructions, ε̃ > 0 and ε̃→ 0 as ω → ωk. We let

fε̃ :
1
ε̃
S3 → S3

be the map given by fε̃(x) = ε̃x. If gε̃ is the standard metric on 1
ε̃S

3, induced
from the Euclidean metric, then f?ε̃ g = ε̃2gε̃. Given u : S3 → R, we define the
∼-procedure which, to u, associate ũ : 1

ε̃S
3 → R, where

ũ =
√
ε̃u ◦ fε̃ .

We let Ỹ = ∂W̃ε

∂Λ , where W̃ε is obtained from Wε in (5.15) by the ∼-procedure, and
we define

Z̃ =
}2

2m2
0

∆gε̃ Ỹ + ε̃2ω2Ỹ . (6.2)

There holds that 〈Ỹ , Z̃〉 = γ0 + o(1), where γ0 > 0 and 〈·, ·〉 is the L2-scalar
product with respect to gε̃. We say in what follows that a function ũ in 1

ε̃S
3 is
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Gk-invariant if u is Gk-invariant in S3. In particular Ỹ and Z̃ are Gk-invariant. By
the ∼-procedure, the equation

}2

2m2
0

∆gu+ ω2u+ qΦ(u)u = u5

in S3 is equivalent to

}2

2m2
0

∆gε̃ ũ+ ε̃2ω2ũ+ qε̃2Φ(u)ũ = ũ5

in 1
ε̃S

3, where Φ(u) = Φ(u) ◦ fε̃. Now we define the norms ‖ · ‖?,σ and ‖ · ‖??,σ by

‖u‖?,σ = sup
x∈ 1

ε̃S
3

(
min

i=1,...,k

(
1 + dgε̃(P̃i, x)

)σ)
|u(x)| ,

‖u‖??,σ = sup
x∈ 1

ε̃S
3

(
min

i=1,...,k

(
1 + dgε̃(P̃i, x)

)2+σ
)
|u(x)|

(6.3)

for u ∈ L∞
(

1
ε̃S

3
)
, where 0 < σ < 1 and fε̃(P̃i) = Pi, i = 1, . . . , k. Given a function

h ∈ L∞
(

1
ε̃S

3
)

we consider the problem{ }2

2m2
0
∆gε̃φ+ ε̃2ω2φ− 5W̃ 4

ε φ = h+ c0Z̃∫
1
ε̃S

3 Z̃φdvgε̃ = 0 ,
(6.4)

where c0 ∈ R, and Z̃ is as in (6.2). A key point in the equivariant finite-dimensional
reduction argument we develop here is given by the following lemma.

Lemma 6.1. Let (hε̃)ε̃ be a family in L∞
(

1
ε̃S

3
)

of Gk-invariant functions such
that ‖hε̃‖??,σ → 0 as ε̃ → 0, and (φε̃)ε̃ be a family of Gk-invariant solutions of
(6.4) with h = hε̃. There holds ‖φε̃‖?,σ → 0 as ε̃→ 0.

Proof of lemma 6.1. Let σ′ < σ. We prove by contradiction that ‖φε̃‖?,σ′ → 0 as
ε̃→ 0. We can assume that ‖φε̃‖?,σ′ = 1. In what follows we let Gε̃ be the Green’s
function of ∆gε̃ + ε̃2ω2. Then

Gε̃(x̃, ỹ) ≤ ε̃G(x, y) ≤ C

dgε̃(x̃, ỹ)
, (6.5)

where fε̃(x̃) = x, fε̃(ỹ) = y, and G is the Green’s function of ∆g + ω2. Thanks
to the Gk-symmetries, using the Green’s representation formula and (6.5), we get
that ‖φε̃‖L∞ ≤ C and that

|φε̃(x̃)| ≤ C

(
1

mini dgε̃(P̃i, x̃)

)σ
(6.6)

for all x̃ 6= P̃i, i = 1, . . . , k. There also holds that
c0 = O (‖hε̃‖??,σ) + o (‖φε̃‖?,σ′)

= o(1) .
(6.7)

Let φ̂ε̃,i = φε̃ ◦ expP̃i , i = 1, . . . , k. Then exp?
P̃i
gε̃ → ξ in C2

loc(R3) as ε̃→ 0, where

ξ is the Euclidean metric, and by standard elliptic theory, φ̂ε̃,i → φ̂ in C2
loc(R3) as

ε̃→ 0, where
}2

2m2
0

∆φ̂i = 5U4
Λ,0φ̂i ,
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|φ̂i| ≤ C, |x|σ|φ̂i| ≤ C for all x, and

UΛ,0 = K0Λ1/2
(
Λ2 + |x|2/4

)−1/2
.

By Bianchi-Egnell [3] this implies that φ̂i = αi
∂UΛ,0
∂Λ since by the Gk-invariance, φ̂i

is even. Still by the Gk-invariance, α1 = · · · = αk. Let α be the common value to
the αi’s. By (6.6) and since ‖φε̃‖?,σ′ = 1, there exist R > 0 and δ > 0 such that

‖φε̃‖L∞(B0(R) ≥ δ . (6.8)

There holds
∫

1
ε̃S

3 Z̃φε̃dvgε̃ = 0 and we have that∫
1
ε̃S

3
Z̃φε̃dvgε̃ → kα

∫
R3

(
∆
∂UΛ,0

∂Λ

)
∂UΛ,0

∂Λ
dx

≥ δα ,

where δ > 0. Hence α = 0 and we get a contradiction with (6.8). This proves that
‖φε̃‖?,σ′ → 0 as ε̃→ 0. Noting that

‖φε̃‖?,σ ≤ C (‖φε̃‖?,σ′ + ‖hε̃‖??,σ + |c0|) ,
we then get with (6.7) that ‖φε̃‖?,σ → 0 as ε̃ → 0. This ends the proof of the
lemma. �

At this point we define R1,ε̃, R2,ε̃, and Rε̃ by

R1,ε̃ = W̃5
ε −

}2

2m2
0

∆gε̃W̃ε − ω2ε̃2W̃ε ,

R2,ε̃ = −qε̃2Φ(Wε)W̃ε , and Rε̃ = R1,ε̃ +R2,ε̃ .

(6.9)

Thanks to the asymptotic expansion in Lemma 5.1, noting that |Φ(Wε)| = O (εσ)
for any 0 < σ < 1, we get that ‖Ri,ε̃‖??,σ ≤ Cε̃ and ‖DΛRi,ε̃‖??,σ ≤ Cε̃ for all
i = 1, 2. Following almost word by word the arguments in Rey and Wei [22], see
also Del Pino, Felmer and Musso [7], we get with Lemma 6.1 that there exist ε̃0 > 0
and C > 0 such that

(R1) for any ε̃ ∈ (0, ε̃0) and any Gk-invariant function h ∈ L∞
(

1
ε̃S

3
)
, (6.4) has

a unique Gk-invariant solution φ = Lε̃(h) with ‖φ‖?,σ ≤ C‖h‖??,σ. Moreover, the
map Lε̃ is C1 w.r.t. Λ and ‖DΛLε̃(h)‖?,σ ≤ C‖h‖??,σ.

(R2) for any ε̃ ∈ (0, ε̃0), (6.10) has a unique Gk-invariant solution φ̃ = φ̃ε̃ with
‖φ̃ε̃‖?,σ ≤ Cε̃ and ‖DΛφ̃ε̃‖?,σ ≤ Cε̃, where (6.10) is the problem

}2

2m2
0
∆gε̃(Ŵε + φ̃) + ε̃2ω2(Ŵε + φ̃)

+qε̃2Φ(Wε +Kε + φ)(Ŵε + φ̃) = (Ŵε + φ̃)5 + c0Z̃∫
1
ε̃S

3 Z̃φ̃dvgε̃ = 0 ,
(6.10)

Ŵε = W̃ε + Lε̃(Rε̃), c0 ∈ R,

Φ(Wε +Kε + φ) = Φ(Wε +Kε + φ) ◦ fε̃ ,
and K̃ε = Lε̃(Rε̃).

We get (R1) by an application of the Fredholm theorem, and (R2) by an ap-
plication of the fixed point theorem (and we assume σ is not to small). Now we
let

Ûε = W̃ε + Lε̃(Rε̃) + φ̃ε̃ . (6.11)
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There holds by (R1) that ‖Lε̃(Rε̃)‖?,σ ≤ Cε̃. Thus Ûε > 0. We define ρ : R+ → R
by

ρ(Λ) =
}2

4m2
0

∫
1
ε̃S

3
|∇Ûε|2dvgε̃ +

ω2ε̃2

2

∫
1
ε̃S

3
Û2
ε dvgε̃

+
qε̃2

4

∫
1
ε̃S

3
Φ(Uε)Û2

ε dvgε̃ −
1
6

∫
1
ε̃S

3
Û6
ε dvgε̃ ,

(6.12)

where Uε is such that Ũε = Ûε, namely such that Ûε is obtained from Uε by the
∼-procedure. The following proposition holds true.

Proposition 6.1. The function Ûε > 0 is a solution of

}2

2m2
0

∆gε̃ Ũ + ε̃2ω2Ũ + qε̃2Φ(U)Ũ = Ũ5 (6.13)

in 1
ε̃S

3 if and only if Λ is a critical point of ρ.

Proof of Proposition 6.1. We define Iε̃ by

Iε̃(Ũ) =
∫

1
ε̃S

3

(
}2

4m2
0

|∇Ũ |2 +
ω2ε̃2

2
Ũ2

)
dvgε̃ +

qε̃2

4

∫
1
ε̃S

3
Φ(U)Ũ2dvgε̃

− 1
6

∫
1
ε̃S

3
(Ũ+)6dvgε̃ .

Then Iε̃(Ũ) = I6(U) and there holds that Ûε is a solution of (6.13) if and only if
Uε =Wε +Kε + φε̃ is a solution of

}2

2m2
0

∆gU + ω2U + qΦ(U)U = U5 .

This is in turn equivalent to c0 = 0, where c0 is as in (6.10), which is again equivalent
to I ′ε̃(Ûε).(Ỹ ) = 0 since I ′ε̃(Ûε).(Ỹ ) = c0〈Ỹ , Z̃〉 and 〈Ỹ , Z̃〉 = γ0+o(1), where γ0 > 0.
Independently, there holds that ρ′(Λ) = 0 if and only if

I ′ε̃

(
Ûε
)
.

(
Ỹ +

∂Ψε

∂Λ

)
= 0 ,

where Ψε = K̃ε + φ̃ε̃, while if we let y0 = ∂Ψε
∂Λ , then ‖y0‖?,σ ≤ Cε. We write that

y0 = y′0 + aỸ , where (y′0, Ỹ )ε̃ = 0 and (·, ·)ε̃ is the scalar product associated to
}2

2m2
0
∆gε̃ + ε̃2ω2. Then ρ′(Λ) = 0 if and only if

(1 + a)I ′ε̃(Ûε).(Ỹ ) = 0

since 〈y′0, Z̃〉 = (y′0, Ỹ )ε̃. There holds that (y0, Ỹ )ε̃ = o(1) and this implies that
a = o(1). This ends the proof of the proposition. �

Now, thanks to Proposition 6.1, we are in position to prove point (ii) in Theorem
0.2. This is the subject of what follows.



26 EMMANUEL HEBEY AND JUNCHENG WEI

Proof of the second part of Theorem 0.2. Given σ ∈ (0, 1) sufficiently close to 1, we
compute∫

1
ε̃S

3
Φ(Uε)Ũ2

ε dvgε̃ =
∫

1
ε̃S

3
Φ(Wε)W̃2

εdvgε̃ + o(1) ,∫
1
ε̃S

3
Ũ6
ε dvgε̃ =

∫
1
ε̃S

3
W̃6
εdvgε̃ + 6

∫
1
ε̃S

3
W̃5
ε ψ̃ε̃dvgε̃

+15
∫

1
ε̃S

3
W̃4
ε ψ̃

2
ε̃dvgε̃ + o

(
ε̃2
)
,∫

1
ε̃S

3
Ũ5
ε ψ̃ε̃dvgε̃ =

∫
1
ε̃S

3
W̃5
ε ψ̃ε̃dvgε̃ + 5

∫
1
ε̃S

3
W̃4
ε ψ̃

2
ε̃dvgε̃ + o

(
ε̃2
)
,∫

1
ε̃S

3
Φ(Uε)Ũεψ̃ε̃dvgε̃ =

∫
1
ε̃S

3
Φ(Wε)Ũεψ̃ε̃dvgε̃ + o(1) ,

where Uε =Wε + ψε̃ and ψε̃ = Kε + φε̃. Then

ρ(Λ) = I6(Wε)−
1
2

∫
1
ε̃S

3
R1,ε̃ψ̃ε̃dvgε̃ +

1
2

∫
1
ε̃S

3
R2,ε̃ψ̃ε̃dvgε̃ + o

(
ε̃2
)
,

where R1,ε̃ and R2,ε̃ are as in (6.9). By our choices of ε, ε̃, and since 1
C ≤ Λ ≤ C

for C > 1 fixed, we then get by direct computations that ρ(Λ) = I6(Wε) + o
(
ε2
)
.

Assume now that Θk > 0, where Θk is as in (6.1). Then, by Lemma 5.2,

ρ(Λ) = A0,k +A1,kε̃
2Λ +A2,k(ω)q2ε̃2Λ2 +A3,k(ω)ε̃2Λ2 + o

(
ε̃2
)

Λ2

= A0,k +A1,kε̃
2Λ +A2,k(ωk)Θkε̃

2Λ2 + o
(
ε̃2
)

Λ2

and since A1,k < 0 and Θk > 0, ρ has an absolute minimum Λω in
(

1
C , C

)
for

C � 1 when ω ∈ (ωk − δ, ωk) and 0 < δ � 1. Pick any sequence (ωα)α of phases
in (ωk − δ, ωk) such that ωα → ωk as α → +∞. By Proposition 6.1 we then get
that there is an associated sequence (Uα,Φ(Uα)) of solutions of (0.2) with ω = ωα,
where Uα = Uεα and εα = Λωαηk(ωα), such that (Uα)α is a k-spikes type solution
of the first equation in (0.2). In particular, ‖Uα‖L∞ → +∞ as α→ +∞. Similarly,
if we assume that Θk < 0, then by Lemma 5.2,

ρ(Λ) = A0,k −A1,kε̃
2Λ +A2,k(ω)q2ε̃2Λ2 +A3,k(ω)ε̃2Λ2 + o

(
ε̃2
)

Λ2

= A0,k −A1,kε̃
2Λ +A2,k(ωk)Θkε̃

2Λ2 + o
(
ε̃2
)

Λ2

and ρ has an absolute maximum in
(

1
C , C

)
for C � 1 when ω ∈ (ωk, ωk + δ)

and 0 < δ � 1. Pick any sequence (ωα)α of phases in (ωk, ωk + δ) such that
ωα → ωk as α → +∞. By Proposition 6.1 we then get that there is an associated
sequence (Uα,Φ(Uα)) of solutions of (0.2) with ω = ωα, where Uα = Uεα and
εα = −Λωαηk(ωα), such that (Uα)α is a k-spikes type solution of the first equation
in (0.2). In particular, ‖Uα‖L∞ → +∞ as α → +∞. We know that Θk > 0 for
k = 1 and, by Lemma 5.3, that Θk < 0 for k � 1. This ends the proof of the
second part of Theorem 0.2. �

As a remark it can be noted that we obtain the existence of solutions to (0.2)
for ω sufficiently close to the ωk’s with ω < ωk if Θk > 0 and ω > ωk if Θk > 0.
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