HAUSDORFF DIMENSION OF RUPTURES FOR SOLUTIONS OF
A SEMILINEAR ELLIPTIC EQUATION WITH SINGULAR
NONLINEARITY
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ABSTRACT. We consider the following semilinear elliptic equation with singular
nonlinearity:

1
Ayu— — +h(z) =0in Q
ua
where a > 1, h(z) € C*(Q) and Q is an open subset in R*,n > 2. Let u be a non-
negative finite energy stationary solution and ¥ = {w € 0 lim,_o+ IB:W Is @) ]
exists, and is equal to 0} be the rupture set of u. We show that the Hausdorff

dimension of ¥ is less than or equal to %

1. INTRODUCTION

Let 2 be an open subset in R” (n > 2). In this paper we consider partial regularity

for nonnegative solutions of the following equation
1 .
(1.1) Au—ﬁ—kh(x) =0 in Q

where a > 1, h € C'(Q) such that ||h||z=@) < a and |Vh|fe@) < b for some
constants a,b > 0. In particular, we are concerned with the Hausdorff dimension of

the zero set:

(1.2) Y= {x € Q: lim,_ o+ m fBT(x) |u| exists, and is equal to 0 }
Problem (1.1) arises in the study of steady states of thin films. Equations of the

type

(1.3) u = -V - (f(u)VAu) = V - (g(u)Vu)

have been used to model the dynamics of thin films of viscous fluids, where z =

u(z,t) is the height of the air/liquid interface. The zero set ¥ defined in (1.2) is the

liquid/solid interface and is sometimes called set of ruptures. The coefficient f(u)

reflects surface tension effects- a typical choice is f(u) = u®. The coefficient of the
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second-order term can reflect additional forces such as gravity g(u) = u3, van der
Waals interactions g(u) = u™, m < 0. For backgrounds on (1.3), we refer to [BP1,
BP2, LP1, LP2, LP3, WB] and the references therein.

In general, let us assume that f(u) = u?, g(u) = u™, where p,m € R. Then a

steady-state equation for (1.3) with Neumann boundary condition becomes

q

(1.4) Au+%—C’:0inQ, %:0 on 012,

ov
where ¢ = m — p+ 1 and C is some constant. (Here we have assumed that ¢ # 0.
If ¢ = 0, we have to replace % by logu.) For thin films under van der Waals forces,
we have f(u) = w3, g(u) = u™, ¢ = m — 2 < —2. The one-dimensional steady-
state problem of (1.3) has been studied thoroughly in [LP1, LP3] and the references
therein. Numerical work on two-dimensional van der Waals driven rupture in (1.3)
suggested that the rupture can occur in points [BBD, HLU] or rings [WB, YD, YH].
The main result of our paper is to give an estimate on the Hausdorff dimension
of the rupture set ¥. Roughly speaking, we prove that the Hausdorftf dimension of
¥ is less than or equal to ((n — 2)a+ (n+2))/(a+ 1).
We begin with some definitions. We call u a nonnegative finite energy solution
of (1.1) in Q if w > 0 in Q, u satisfies (1.1) pointwisely in 2\, and the energy of u

1 1
E(u):§/Q|Vu\2dx+E/ﬂul_adaz—/gh(x)udx

is finite.
We also say that such a finite energy solution u is stationary if, in addition, it
satisfies
ou Ou ¢/ 1 ¢’ 1 _, 08 oh ¢’
1.5 — — | Vul? e —' h dr =0
(1.5) /Q [&ci O0z; Oz, 2| u or; 1 —a" Oz; +u6xi¢ T Oz; v

for all regular vector field ¢ with compact supports in © (summation over i and j

is understood).

For finite energy solutions u € H'(Q) and [, u'~*(z)dz < oo the identity (1.5) is
obtained by assuming that the functional F(u) is stationary with respect to domain
variations, that is,

d

t=0

where u;(z) = u(z+td(x)), ¢(z) = (¢'(x), ¢*(x),- .., ¢"(z)). (The identity (1.5) can
also be obtained by multiplying (1.1) by ¢ - Vu and integrating it by parts in Q (if

it can be integrated by parts)). Examples of stationary solution include minimizers
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of the energy functional E(u) (if they exist). The concept of stationary solutions
was introduced in [Ev].
Let us define

Eo={ue H(Q): u>0 inQ, [,u'"%(z)dz < oo}.

Let u € &, be a finite energy solution of (1.1). We easily see that away from X,
the classical regularity theory ensures that u is regular. Therefore ¥ is the set of
singularities of u~!. Moreover, by the definition, 3 is a relatively closed subset of ).

Our partial regularity result is the following theorem.

Theorem 1.1. Let o > 1 be given. If u € &, is a finite energy solution of (1.1),

which is stationary, then u is smooth outside a closed rupture set of u with locally
(n—2)a+(n+2) .

(et 1) In other words,

finite Hausdorff p-dimensional measure, where y =

the Hausdorff dimension of X is less than or equal to yu.

In a recent paper [JL], Jiang and Lin studied the weak solution of (1.1) in the
sense that u € H. (Q), u € L'(Q2) and v~ € L'(Q). Using an important Poincaré
type inequality, they found that H*(X) = 0, where s =n —2 + ai—I—Q' On the other
hand, here we assume that u'~® € L'(Q) which is weaker than v=* € L'(2). But
the Hausdorff dimension of ¥ obtained in this paper is larger than that obtained in
[JL].

We will first establish a monotonicity inequality for the nonnegative finite energy
stationary solutions u € &, of (1.1). Then, using such monotonicity of the energy

of u, we obtain the measure estimate of the singular set ¥ of v~

This estimate
on ¥ may have potential applications on the estimates for ruptures of thin films.
For example, if n = 2, « > 3, Theorem 1.1 implies that there are no finite energy
stationary solutions with ring ruptures.

We don’t know if p = ((n — 2)a+ (n +2))/(a+ 1) is the optimal.

About the applicability of Theorem 1.1, we see that under the flow (1.3) and
the fact that the pressure is constant (i.e., ‘lﬁ' Jo u(z,t) = constant), the energy of
u(z,t) is decreasing with respect to ¢. Thus, if we start with a finite energy initial
data, then the limit of u(z,t) as t — +oo (if exists) is also of finite energy. We also
believe only local minimizers of E(u) are stable with respect to the flow (1.3). Our
theorem gives estimates on Hausdorff dimension of ruptures of stable attractors.

A different kind of problem
(1.6) Au+k(:r)i—0 in Q, u=0on 099

ue
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was studied in [CR, De, GHW, Go, GL| and the references therein, where k(z) > 0.
The regularity of Vu is obtained. Problem (1.6) is fundamentally different from
(1.1): the sign of nonlinearity makes the Maximum Principle applicable to (1.6)
which allow the use of e.g. a super-sub solutions scheme. In fact the following

problem
1 ) ou
Au+ — —h(z) =0in Q, — =0 on 09,
u® ov
possesses a (unique) positive solution in case that h is, for example, positive.
An interesting problem is to construct solutions with ruptures to (1.4). In this
regard, we remark that when €2 is the unit ball B of R", the problem

1 _ ou
(1.7) Au—@—l—h(a:)—(] in B, 5—0 on 0B

has been studied for h(z) = h(|z|) in [DH]. They showed that (1.7) has a nonnegative
radial solution u € C°(B) satisfying

cyr?/etl) < u(r) < ep, c1,00 > 0.

It is unknown if the solution constructed in [DH| has ruptures. It appears that it
is a quite difficult problem in constructing rupture solutions in higher dimension.
Partial progress has been done in [GW].

Our results here are in the same spirit of those in [Ev, Scn, Pa] where the Hausdorff
dimensions of the blow up set of harmonic maps or some nonlinear elliptic problems
are studied. The proof of Theorem 1.1 is divided into three steps:

Step 1. We show that if u € &,, then u € L2 (Q).

Step 2. Fix xy € Q such that B(zo,2r9) C 2. We show that there exists a

constant C' = C(a, b, ||u|| e (B(zo,2r0)), ) such that the following functional

a+l / - ldrg _ / 9
E,(xg,7) = ————1r ¥ u adx+——[r“ uds]
( ’ ) 2(a - 1) B(zo,r) 4dr 8B(zo,r)

—17“_“_1/ u?ds + C/T grTlge
4 0B(zo,r) 0
is an increasing function of r € (0, 7).
These are done in Section 2.
Step 3. Using the monotonicity formula, we show that there exists ¢* > 0 such
that for zy € X,

li_mr_)ow_“/ [|Vu|2 +ul™dz > €,
B(zo,r)

which concludes the proof of Theorem 1.1.

This is done in Section 3.



Finally, we remark the negative power u~* can be considered as negative su-
percritical in R",n > 2. In fact, it is known ([ACW]) that u~* is subcritical if

a < 3 and supercritical if & > 3. (A naive reason is as follows: the critical Sobolev

n+2
n—2

n > 2. Our results give estimates on the singular set for negative supercritical

exponent is which equals —3 if n = 1.) Thus formally 4~ is supercritical for

problem, which is new.
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2. A MONOTONICITY INEQUALITY

In this section we shall obtain a key monotonicity inequality for finite energy

stationary solutions u € &, of (1.1). To do this, we first recall the following result.

Lemma 2.1. Let f > 0 in Q and g € LYUQ) for some q > n/2. Let u be a

nonnegative solution of the equation
Au=f+g 1in .

Then for any Bor C Q, and ||u||g1(B,,) < o0, we have

Bar

supu < e(n, q)(R™%|[ull 2(zan) + B4 19 ) o(san)-

Br
Proof. Similar to the proof of Lemma 4.1 of [JL]. O
Lemma 2.1 (with f = 4™, g = h) implies that if u € &, is a nonnegative solution
of (1.1), then u € L2.(Q2).
Now we establish the key monotonicity inequality for finite energy stationary
solutions u € &, of (1.1). We follow the notation in [Ev, Pa].
Fix 2y € Q such that B(zg, 2r¢) C 2, where 0 < 7y < R and R is given in Lemma

2.1. Let r,m > 0 be such that r +m < ro. Set ¢(z) = £(|x — xo|)(z — o), where

1 for |z — x| <,
E(lz —xo|) = 1+% for r < |z —xo| <7 +m,
0 for |z —xo| > 1+ m.



We derive from (1.5), letting m — 07, that the following identity holds

—2
n / ul=ody — = \Vul*dz + i/ \Vul*ds
a—1 B(zo,r) 2 B(zo,r) 2 OB(zo,r)
—I—n/ hudx — 7’/ huds — ! / ul s
B(zo,r) 0B(zo,r) a—1 0B(zo,r)

(2.1) +/ u <z — o, Vh >= 7“/ (ur)ds,
B(zo,r) 0B(xo,r)

where u, = %%. (Another equivalent derivation of (2.1) is by multiplying (1.1) with

(x — xo) - Vu and integrating over B(xo,r).)
On the other hand, multiplying (1.1) by u and integrating over B(z,r) we find,

for almost every 0 < r < rg

(2.2) / \Vul*dz :/ uu,ds —/ uladx—i—/ h(z)udz.
B(zo,r) 8B(xo,r) B(zo,r) B(zo,r)

Taking the derivative of (2.2) with respect to r, we get

d
(2.3) / |Vul?ds = —[/ uurds} —/ ul_ads+/ huds.
OB(xo,r) dr 8B(zo,r) 0B(zo,r) 8B(zo,r)

Substituting [y, o [Vul’dz of (2.2) and [y5. . |Vul’ds of (2.3) into (2.1), we
finally obtain

-2 1 1
( no4n ) / ut~%dx — (— + )r/ ul~%ds
a—1 2 B(zo,r) 2 a—1 9B(zo,7)

—9 rd
+(n _z ) / hudx — 1/ huds + —— [/ uurds]
2 B(zo,r) 2 8B(zo,r) 2dr 0B(zo,r)

-2
_(n )/ uurds—l—/ u<zx—x9,Vh >
2 8B(zo,r) B(zo,r)

(2.4) = r/ (u,)*ds.
dB(zo,r)

Rewriting (2.4), we have

_72((.;+_11));«[T /( ., ut” adm} + ;r “CZ“[/(?B . uurds]

2
(n + —(u+1) hudzx — —7' “/ huds
B(zo,r) OB(zo,r)
““/ u <z — T, Vh > dx
(m01
-2
(2.5) = 7“_”/ [(ur)2 + MT_luu,a] ds,
8B(zo,r) 2
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(n—2)a+(n+2)
a+1

may vary from line to line.

Since u € H*(Q), it follows from Lemma 2.1 that there exists C' > 0 such that
||u|| Loo (B(zo,m0)) < C. This and the facts that [Vh| < band | < x—x9, VA > | < r|Vh]|
imply that

where p = . In the following, we denote C' for positive constants which

(2.6) )

/ u<x—m0,Vh>dm‘ < Cr™h,
B(zo,r)

where C' = C(b, ||u|| oo (B(zo,re))» ). On the other hand, we also know that

2
(2.7) ‘LH_ )T'_(“+1)/ hudx‘ < Crvht
2 B(zo,r)
and
[ n—u—1
(2.8) ‘—7‘ o huds‘ < Cr*E
2 dB(zo,r)

where C' = C(a, ||u|| Loo(B(zo,ro))» )-
Substituting (2.6), (2.7) and (2.8) into (2.5), we obtain

1 d 1 d
et @ [7“_“/ ul_adx] + or Tt — [/ uurds] + Crht
2((1/ - 1) dr B(zo,r) 2 dr OB(xzo,r)

-2
(2.9) > 7"_“/ [\ur|2 + (n )T_luur} ds,
9B(wo.r) 2
where C' = C(a, b, ||u|| Lo (B(zo,r0))» 7)-
Using the identity
d
(2.10) — [/ u2ds] = 2/ uu,ds + (n — 1)/ u?r tds
dr 9B(zo,r) 0B (zo,r) dB(zo,r)
we have that
1 d? d
——2[7“_“/ u2ds] - —[T_“/ uurds}
2dr 8B(xo,r) dr 8B(zo,r)
_9_
2.11 =(n—pu—1)r* ur‘%ﬂ +rtuu, |ds
(2.11) (n—p—1) :
0B(z0.r) 2

Note that

d d
(2.12) r‘“—[/ uu,.ds] = —[r‘“/ uurds] +,ur_“_1/ uu,ds
dr 0B(xo,r) dr 9B(xo,r) 0B(zo,r)
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Substituting (2.12) and (2.11) into (2.9), we obtain that

1
_atl d [W / ukadx}
2(0! — 1) dr B(zo,r)

+-— r“/ u2ds} + et
4 dr? 0B(zo,r)
2n —2u —3
Z T-_H/ [(UT)Q —+ ur_luur
0B(zo,r) 2

+Z(n —p—=1(n—p-— 2)7“_2u2} ds

which yields that

1 d 1 d?
(2.13) —L—[F“/ ul_adx} + ——2[7“_“/ u2ds]
2(0{ - 1) dr B(zo,r) 4.dr 8B(zo,r)
1
——i[r_“_l/ uzds} + et
4dr 9B(zo,r)

1
> 7““/ [(ur)2 + = p—2)r uu, + = (n—p— 2)2r_2u2} ds
OB(zo,r) 4

— -9 2
= r_“/ (u,« + Mr_lqo ds > 0.
8B(zo,r) 2

Since n — pu—1= 223 > —1 for & > 1, we conclude from (2.13) that

a+1
a+1 1d
E,(zg,r) = —77‘“/ u' %dr + —— [7‘“/ u2d5]
2(0{ - 1) B(zo,r) 4 dr dB(zo,r)
| 2 P
(2.14) ——rH u'ds+C | E7FdE
4 8B(zo,r) 0

is an increasing function of r for r € (0,79). (Note that C' = C(a, b, ||| 1o (B(zo,r0))» 7)-)

Next we obtain another formulation of E,(zq, 7). First we have

d
(2.15) —[T_“/ u2ds] = (n—,u—l)r_“_l/ u2ds+2r_“/ uu,ds.
dr 0B(zo,r) 0B(zo,r) 0B(zo,r)

Then by (2.2)

(2.16) / ut,ds :/ \Vu|2dx+/ u'%dx —/ h(z)udz.
0B(zo,r) B(zo,r) B(zo,r) B(zo,r)

Substituting (2.15) and (2.16) into (2.14), we obtain an equivalent formulation of
E,(xq,r):

1
Ey(zo,7) = — 7“_“/ u'"dz + —7“_“/ \Vu|*dx
(Of - 1) B(zo,r) 2 B(zo,r)
8




1 1 "
r“l/ u?ds — —r“/ hudx + C’/ EnrTlge
(O! + 1) 0B(zo,r) 2 B(zo,r) 0

All the derivatives in the above expressions are to be understood in the sense of

217) -

distributions. Now we obtain the following lemmas.

Lemma 2.2. If u € &, is a nonnegative finite energy stationary solution of
(1.1), then E,(xq,7), defined at (2.14), is an increasing function of r for r € (0,79),
where B(xy,2ry) C S.

Lemma 2.3. E,(zo,7) is a continuous function of xy € Q and r > 0.

Proof. The proof is similar to that of Lemma 2 of [Pa). O

3. HAUSDORFF DIMENSION ESTIMATE

In this section we will prove Theorem 1.1. For any fixed € > 0 sufficiently small
and u € &, being a finite energy stationary solution of (1.1), by Lemma 2.2, one
easily sees that if zq € X, there are two cases for zg:

(4) lim, o+ Ey(w0,7) > —¢,

(1) lim, o+ Ey(z0,7) < —e€.

For the first case, we have the following lemma.

Lemma 3.1. There exists € > 0 such that if lim,_,o+ Ey(zo,7) > —€*, then
(3.1) li_m,_)ow“_“/ (Vul’dx > €.
B(zo,r)

Proof. The monotonicity of F,(zq,7) on r implies that, if lim, o+ Fy(zo,7) > —e,

for some € > 0, there exists 0 < ry < R such that for 0 < r < 7,
E,(xg,7) > —e.

It follows from the second formulation (2.17) of E, (g, r) that

1 1
- r“/ u'"dz + —r“/ \Vul*dz
(Of - 1) B(zo,r) 2 B(zo,r)
1 1 "
— 1 r_“_l/ u?ds — 57"“/ hudx + C/ Errlde
(O,/ + ) 0B(zo,r) B(zo,r) 0
> —€

9



Suppose that lim, i7" [y, ) [Vul?dz < e. Then

1
—ﬁlimr_,m [7"“/ ul_adx}
(Oé_ ) B(:Eo,?‘)
1
gl g [ [ [Vupds]
2 B(zo.)
1

——lim,_,o [r‘“_l / u2d5]
(a + 1) - 0B(zo,r)
> —€

which implies that

1 ——
lim, o+ [T“/ ul_o‘dx}
a-1 B(zor)
1 — 3e
+ lim 0[7‘_“_1/ u2d8] < —.
a+1 " dB(zo,r) 2

This shows that there exists 0 < r; < rg such that for 0 < r < rq,

(3.2) 7'_“/ ur %z < 2(a — 1)e,
B("EO’T)

(3.3) r—“—l/ u?ds < 2(a+ 1)e.
OB(zo,r)
It follows from (3.3) that for 0 < r < ry,
(3.4) / udz < Cert*?,
B(zo,r)

where C' = C(a,n). Thus, we derive from (3.2), (3.4) and the Hélder inequality
that

ot — / y-2a—1)/(a+1), 2Aa-1)/(a+1) g,
B(l‘o,'f‘)

o \2/(@F]) 5.\ (e=D/(a+D)
< U dx) ( U d:c)
B(zo,r) B(zo,r)

2p+(p+2)(a—1)
a+1

IN

< C(Cer

= (Cer",

which is a contradiction if we choose ¢ > 0 sufficiently small. Thus, we conclude

that the ¢ > 0 as mentioned in the lemma exists and
li_m,._)0+r“/ Vul’dz > €,
B(IO/")

which finishes the proof of the lemma. O
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To study the second case, we need the following Poincaré type inequality from
[JL]. (See Theorem 2.1 of [JL]. Note that n — 2 < p < n.)

Lemma 3.2. Let By be any ball in R™ with radius £, and T C By be a H*-measurable
set, such that

(3.5) HHT) > 0,0+,
and that for any v € R*, and r > 0,
(3.6) HM(T N By(z)) < Oor*

holds. Then for any u € H'(By) such that T C X, where 3 is defined in (1.2), we

have
2

7
(3.7) / 2 < clmp)2e [ 1vup.
By 01 By
The following lemma plays an important role.
Lemma 3.3. Let T C X be as in Lemma 3.2 and (3.5), (3.6) hold. Let u € &,
be a finite energy stationary solution of (1.1) and xy € T. Then, for 0 < 2r <
d(xg,00) sufficiently small,

(3.8) r_"_l/ u’ds < Cr_“/ [|Vu|2 +u'™* — hu|dx
aB(]:Oyr) B(J:O:T)
where C = C(n,a) > 0.

Proof. Without loss of generality, we assume that zo = 0. Define F(r) =
fB(O " u?dr. Then F(r) — 0 as r — 0. We use polar coordinates (¢,0) on B(0,r).
Let G(t) = [yp(0,1) ¥’ (t,0)d6 for 0 <t <r. Then

9y = 9 / u(t, 0)us(t, 0)d8
dt 8B(0,1)

= 2ttn / uuds
8B(0,1)

= 2t1"/ [|Vu|2 +u(u® — h)] dx
B(0,t)

> 0,

where we are using (2.2) and the fact that

(3.9) / [~ — huldz > 0,
B(0,t)
11



for ¢t > 0 sufficiently small. To obtain (3.9), we use the Young’s inequality to see
that

(3.10) |B(0,1)| < dl/ udx + dg/ u' *dr,
B(0,t) B(0,t)

fB(O,t) udz

where d; = dl(a) > 0, dy = d2(a) > 0. Since lim;_,q+ B

D<e< ﬁ, there is 1y = to(€) > 0 such that for 0 < t < ¢,

= 0, for any

(3.11) / udz < €| B(0,1)|.
B(O,t)
This and (3.10) imply that
1
u' "%z > —|B(0,1)].
[ e 2 5 BOD)

This and (3.11) imply (3.9) (noting that ||h||z~@) < a). Note that the derivative
u; in the computations is to be understood in the sense of distribution. Since
S0 [Vul?dz, [, u'dz and [, h(z)u(z)dz are continuous functions of 0 <
t < r (see Lemma 2.3), we have that 4*(t) is a continuous function of 0 < ¢ < 7.
Thus, G € C*(0,r) is an increasing function. This also implies that %F (t) is a
continuous function for 0 < ¢ < r.

Now we consider the function F(r). By making a Taylor expansion of F(r) at r,

we obtain that

1
0 = / udr — (/ u2ds)r~|— [/ n((n— 1)5,72/ u?(&,,0)do
B(0,r) dB(0,r) 0 8B(0,1)
+2/ uugnds>d77} r?
aB(07§ﬂ)

= S 205~ (L o=t

+2/ (VP + u(u™ — h))dz) dn)+?,
B(0,£n) "



where &, =nr and 0 < 7 < 1. Since G(t) is an increasing function, we obtain that

1
r[/ qus} < / u2d:r—|—7“2[/ n((n—l)nn_zrn_2G(r)
9B(0,r) B(0,r) 0
+2/ (1Vul? + u(u™ — ))dz ) dn]
B(0,r)

1
< / wtdg 4 =Y / u*(r, 0)df
B(0,r) n dB(0,1)

+7"2/ (|Vu]* + u(u™® — h))dz
B(0,r)

-1
= / u?dr + (n )7“/ uds
B(O,'r) n 8B(0,r)

+r2/ (IVu* + u(u™ — h))dx,
B(0,r)

where we use the fact that for r sufficiently small,

(3.12) / [u'~® — hu]dz > / [u'™® — hu]dz.
B(0,r) B(O,ﬁn)

We explain a little on the proof of (3.12). It follows from (3.9) that for r sufficiently
small, J(r) = [pq,[u'™ — huldz > 0. This, the continuity of [, u'~*dz;
fB(O ny hudz and lim, o+ J(r) = 0 imply that J(r) is increasing. Therefore, (3.12)

holds. Thus, we see

1
—r[/ qus] < / u’dx + 7“2/ (|Vu|2 +utm — hu) dz.
n dB(0,r) B(0,r) B(0,r)

This and Lemma 3.2 imply that

(3.13) T_’“‘_l/ u?ds < CT‘_“/ [\Vu\Q +ulT — hu] dz,
0B(0,r) B(0,r)
where C' = C(n). This completes the proof. O
Now we consider the second case:
lim E,(xg,7) < —€*
g Bulro7) < =€

for € > 0 being given in Lemma 3.1.

Lemma 3.4. If g € X and lim, o+ Ey(zq,7) < —€*, then

1 1
(3.14) lim, ¢ [77‘_“/ u'"%dx + rhl / u2d8] > €"/2.
-0 (a - 1) B(zo,r) (O! + 1) OB(zo,r)

Proof. This follows from the second formulation (2.17) of E,(x,r). O

Finally we are in the position to prove Theorem 1.1.
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We shall show H*(X) = 0. We prove it by contradiction. Suppose H*(X) > 0
(possibly with infinite measure). Then since ¥ is a Souslin set, Theorem 5.6 and its
proof in [Fa] say that, there is a closed subset 7" C X, with 0 < H*(T) < oo, and
for some constant € > 0,

HMY(T N By(x)) < Or*

holds for any z € R*, » > 0.
Let € > 0 be given in Lemma 3.1 and xy € T. Then either

lim Ey(zg,7) > —¢€"

r—0t+

or

. *
7-1_1)1’(%- Ey(zo,7) < —€".

In the first case, we have by Lemma 3.1
li_m,_)ow“_“/ (Vul’dz > €.
B(zo,r)
In the second case, we have (3.14). By Lemma 3.3 we have
li_mr_>0+r“/ [|Vu|2 + ulfa] dz > Ce”
B(zo,r)
for some constant C' = C'(n, «) > 0, since
|7'_“/ hudz| < Cr™™#
B(zo,r)

and n —p > 0.
In conclusion, we have proved that there exists ¢* > 0 such that if o € T, then

(3.15) li_mr_)0+7““/ [|Vu|2 + ulfa] dz > Ce*,
B(zo,r)

for some C' = C(n,a) > 0. This implies that there exists dy > 0 sufficiently small
such that for 0 < r < &g,

C
(3.16) r‘“/ [|Vu|2 + ul_"‘} dr > —€".
B(zo,r) 2
Then for any 0 < 6 < ‘15—8 and for any U open, such that 7" C U,

1
{B,«(x) xeT 0<r< 55, B,.(z) C U and 7'_“/ [|Vu\2 +u1—a] dx > %e*}

B(z,r)
is a finite covering of 7. Hence, by Vitali covering lemma, there is a pairwise

disjoint subcollection {B,, (xx)}72,, such that T C U2, Bs,, (z5). Hence, it follows
14



from (3.16) that

His(T)

IN

C ()2, (5re)*

S C(TL, M, 0)21311 /

[|Vu|2 + ul_a] dx
Brk (wk)

IN

C(n,u,H)/U [\Vu\2+u1_a}dx.

Since H*(T') < oo, we can choose U with arbitrary small #"-measure so that the

right hand side of the inequality can be arbitrarily small. Thus we have H:;(T) = 0.

Letting § — 0, we conclude H*(T') = 0, which gives the contradiction and completes
the proof of Theorem 1.1. O
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