INFINITELY MANY TURNING POINTS FOR AN ELLIPTIC
PROBLEM WITH A SINGULAR NONLINEARITY

ZONGMING GUO AND JUNCHENG WEI

ABSTRACT. We consider the following problem

A «
—Au = 21 inB, u=0 ondB, 0<u<l1linB
(1—w)r
where @ > 0,p > 1 and B is the unit ball in RN (N > 2). We show that there
exists A, > 0 such that for A < A, the minimizer is the only positive radial
solution. Furthermore, if 2 < N < 2+ 2(5110‘ )(p+ /p% + p), the branch of positive
radial solutions must undergo infinitely many turning points as the maximums of
the radial solutions on the branch go to 1. This solves Conjecture B in [10]. The

key ingredient is the use of monotonicity formula.

1. INTRODUCTION

We consider the structure of positive radial solutions of the problem
Alz|®
(1 —w)?

where A > 0, B C RY is the unit ball.
(S)) models a simple electrostatic Micro-Electromechanical System (MEMS) de-

—Au = inB, 0<u<1inB, u=0 ondB (S»)

vice consisting of a thin dielectric elastic membrane with boundary supported at 0
below a rigid plate located at +1. When a voltage-represented here by A-is applied,
the membrane deflects towards the ceiling plate and a snap-through may occur when
it exceeds a certain critical value A* (pull-in voltage). This creates a so-called “pull-
in instability” which greatly affects the design of many devices (see [7], [16], [9], [21],
[22] for a detailed discussion on MEMS devices). Note that only two-dimensional
domains are of real physical relevance.

In recent papers [10]-[12] and [8], the authors studied the problem

—Au:% in €2
(P) O<u<l1in®Q

u =0 on 0N
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where Q C RY is a bounded smooth domain and g € C(Q) is a nonnegative function.
They gave a detailed study on the minimal solutions of the problem (P,) with
different forms of g(z). The following theorem was obtained.

Theorem 1.1. (Theorem 1.1-1.8 in [10]): Suppose g € C(Q) is a nonnegative
function on 2. Then, there exists a finite \* > 0 such that

1. If 0 < X < X, there exists a unique minimal solution u, of (Py) such that
paa(uy) > 0. Moreover, uy — 0 as A — 0.

2. If A > X*, there is no solution for (Py).

3. If 1 < N <7, then-by means of energy estimates-one has

sup |luyllo <1
A€(0,A%)

and consequently u* = limymy« uy is a solution of (Py«) such that

p-(u®) = 0.

4. If g(z) = |z|* and Q is the unit ball, then u*(z) = 1 — |z|* and \* =

(2+a)(3N+a—4) . __ 3N-14-4/6
e, provided N > 8 and 0 < a < ay = S

Issues of uniqueness, multiplicity and other qualitative properties of the solutions
for (P,) are still far from being well understood, even in the radially symmetric case.
In their paper [10], Ghoussoub and Guo present some numerical evidence for various
conjectures relating the case g(x) = |z|*. (See Figure 4 of [10].) In particular, they

conjectured if

3N — 14 — 46
4426

then there exists an infinite number of branches of solutions. The purpose of this

(¥) 2<N<T7,a>0and N >8,a>

paper is to prove this conjecture, at least in the radially symmetric case.

More precisely, we shall consider a more general form of (S)):

)\ (6]
—Au:%inB, 0O<u<l,u=wu(r) in B, u=0 on 0B (Sxp)
—u
where p > 1. Note that when p = 1, (S, ,) arises in the study of singular minimal
hypersurfaces with symmetry. See [19], [23] and the references therein. For general
p >0, (Si,) also arises in relation to chemical catalyst kinetics (see [2] and [7]).
By a minimal solution u, of the equation (S, ,), we mean that u, € C?(B) satisfies

uy < u in B for any solution u of (Sy,). Throughout this paper, unless otherwise
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specified, solutions for (S),) are considered to be in the classical sense. Now for any
solution u of (S ), one can introduce the linearized operator at u defined by:

a

PAT
_ P g
(]_ — u)P-H ’
where G(h) = r1"N(rN 1K/ (r)) with A'(0) = 0, (1) = 0 and its corresponding

eigenvalues {u,» : k = 1,2,...}. Note that the first eigenvalue is simple and is

Lu,)\ =—-G -

given by:
N—-14a

st = int{ [ [P s 0R - BT ar

6= 0,0 =0, [ " or)Par =1}

0
with the infimum being attained at a first eigenfunction ¢, while the second eigen-

value is given by the formula:

N2,/\(U) = inf{ /01 [TN_1|¢,(7‘)|2 o p)\r

[

N—-14a«

(ﬁQ(T)} dr:

6= 0100 =0, [ P lp)ar=1, [ o000 =0},

This construction can then be iterated to obtain the k-th eigenvalue py »(u) with
the convention that eigenvalues are repeated according to their multiplicities.

In this paper, we shall give the exact shape of the branch of positive radial solu-
tions of (SA,p). We show that there exists A, > 0 such that for A < \,, the minimizer
is the only radial solution. Moreover, the branch of positive radial solutions of (S, )
must undergo infinitely many turning points (the points where the branch changes
direction, i.e. the points where the branch locally “bends back” ). This agrees with
the numerical evidence on the radial solutions of the problem on B (see Figure 4 of
[10]). Note that in our case here, the maximum of the solution of (S),) may close
to 1 and this makes the problem more difficult to deal with.

Let D denote the component of {(u(r), ) € C([0,1]) xR* : —rI=N(rN=1y/(r))" =
%, 0<wu<1lin (0,1), u(l) = 0}. We see from Theorem 1.1 that D contains
(0,0) in its closure, since the minimal solutions u, of (S, ,) are radially symmetric
(see [10]). As mentioned in [10], the main conclusions of Theorem 1.1 are still true
for p > 1. Note that we can talk about the component since it is a simple curve
near the end point. It is convenient to add (0,0) to D.

Our main result of this paper is the following theorem.

Theorem 1.2. (1) A\, =inf{\A > 0: (u,\) € D for some non-minimal u} > 0.
3



(2) If N lies in the range
224+«
(1.1) 2§N<2+%(p+ VD?+Dp),
then D has infinitely many turning points.

Remark 1.3. It is easy to see that when p = 2, condition (1.1) is equivalent to
condition (*). So we have given a rigorous proof of the Conjecture B of [10], in the

radially symmetric case.

There already exist in the literature many interesting results concerning the prop-
erties of the branch of solutions for Dirichlet boundary value problems of the form
—Au = MAh(u) where h is a regular nonlinearity (for example of the form e* or
(1 +u)? for p > 1). See, for example, [3], [4], [17], [18] and the references therein.
The singular situation was considered in a very general context in [20].

The key ingredient of our proof is the critical use of the monotonicity formula
derived in Section 2.

The organization of the paper is as follows: in Section 2, we derive the key
estimate-monotonicity formula. In Section 3, we use the monotonicity formula to
prove the uniqueness of minimizers for small . Finally, we adopt Dancer’s idea in
[6] to prove (2) of Theorem 1.2 in Section 4.
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thank the Department for its hospitality. We would like to thank the referee for
carefully reading the paper and many critical suggestions. The research of the first
author is supported by a grant of NSFC (10571022). The research of the second
author is partially supported by Earmarked Grants from RGC of Hong Kong.

2. A MONOTONICITY INEQUALITY

In this section we will obtain a monotonicity inequality similar to that in [14] for

nonnegative finite energy stationary solutions v € H'(Q2) and |z|*u"? € L}, (Q2) of

the equation
(2.1) Ay = Nz|*u™? in Q

where p > 1 and  is a bounded smooth domain in RY (N > 2) and 0 € Q. From

now on, we will assume that p > 1. The case of p = 1 can be modified by changing

1 o 1-p
U P to log u.



We call u a nonnegative finite energy solution to (2.1) in Q if u > 0 in  and
u € HY(Q) with [, u'"Pdz < co. We also say such a finite energy solution u is
stationary if, in addition, it satisfies

Ou Ou 047 1 ,00" X | 0Olz|*
2.2 it 77 _ P
(2:2) /Q [8:@- Ox; 0x; 2\Vu| ox; 1 —pu 0x;

—1 ipulpmag—i: dx =0

for all regular vector field ¢ with compact support in © (summation over 7 and j is
understood.) The identity (2.2) can be obtained by multiplying (2.1) by ¢- Vu and
integrating it by parts in € (if it can be integrated by parts). Note that if u > 0 in

Q and u € C?(), then u is stationary.

¢i

Theorem 2.1. For any ro > 0 with B(0,7¢) C Q, if u is a nonnegative finite energy
stationary solution of (2.1), then

(2.3)
(p+1)/\_/ 1— 1d —/ 2 1——1/ 2
Er)= ——-Lr7H r|%u "Pdr+-—|r # udS|—-r—# u“dS
) 2(p—1) B(0,r) = 4d7“[ dB(0,r) ] 4 dB(0,r)

4142

is an increasing function of r for r € (0,ry), where uy =N — 2 + .

Proof. Fix ro > 0 such that B(0,79) C Q. Let 7, m > 0 be such that r +m < rq.
Set ¢(x) = &(|x|)x, where

1 for |z| <,
Elzh) =S 1+7=2  forr<|z|<r+m,
0 for |z| > r+m.

We derive from (2.2), letting m — 07, that the following identity holds for 0 < r <

To:
N N-2
— |z|*u' Pdr — ——— \Vu|*dz + f/ \Vul>dS
P—1 /o 2 Jsowy 2 Jap(or)

(2.4) —i—L (z-V|z|*)u'"Pdx— AT

z|*ut"PdS = 7'/ (u,)?dS.
P—1 /B0 p—1 /8B(0,r) aB(0,r)

Since
z - Vi]z|* = alz|*
we see from (2.4) that

N A N -2
BLR [ e = 222 [ wupan+ [ vapas
p—1 Jeom 2 Jaon 2 Jos(o,m)

Ar

/ |z|*u'"PdS = 7‘/ (u,)?dS.
p—1 JaBos 8B(0,r)
5
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On the other hand, multiplying (2.1) by u and integrating over B(0,r) we find,

for almost every 0 < r < ry,

(2.6) / Vulde = / wndS — A / z|out P da.
B(0,r) 0B(0,r) B(0,r)
Taking the derivative of (2.6) with respect to 7, we obtain
d
@2.7) / Vu2ds = 2 wndS — A / |l 7dS.
0B(0,r) dr 0B(0,r) 0B(0,r)

Substituting fB(O " |Vu|?dz of (2.6) and faB(o " |Vu|2dS of (2.7) into (2.5), we finally

obtain

N N —2 1 1
( Ta + ))\/ |z|*ut"Pdx — (— + —))\7‘/ |z|*u'PdS
p—1 2 B(0,r) 2 p-1 8B(0,r)

d N-—-2
(2.8) TR u,dS — —— uu,dS =71 (u,)?dS.
2dr 2
0B(0,r) 0B(0,r) 9B(0,r)

Rewriting (2.8), we have
P+ d _N/ - 1 _d /
- —|r x| "Pdx| + =r *— u,dS
2(p — ].) dr [ B(0,r) | ‘ :| 2 dr [ dB(0,r) i|

(2.9) =rH /63(0 ] [(uT)Q L2

where y =N — 2 + 4+2"‘ Using the identity

d
[/ 2dS] = 2/ uu,dS + (N — 1)/ r~'u*dS
dr dB(0,r) 8B(0,r) dB(0,r)

we have that
1 d? d
——2[7“_“/ 2dS] [7‘_“/ uquS}
2dr 2B(0,r) dr 2B(0,r)

(2.10) =(N-p— 1)7““/ [wr_QuQ +r uur} ds.
2B(0,r) 2

r_luuT} ds,

Note that

d d
(2.11) r H*— [/ uurdS} = —[r"/ uu,dS] +m’“1/ uu,dS.
dr dB(0,r) dr dB(0,r) 8B(0,r)

Substituting (2.11) and (2.10) into (2.9), we obtain that

p+1)A d “/ @ 1-p 1 d? u/ 9
2(p—1)dr [T BO.r) o dm} T iare [T 9B(0) “ dS}




which yields that

DA d
—L—'_ ))\—[r_“/ |$|au1_pdx]
2(p—1)dr B(0,r)

1 d? 1d
s / utds| - 5o et / u?ds|
4 dr 2B(0;7) 4 dr 2B(0,r)
N—pu—2 2
(2.12) - r—“/ (u + 7M7’_1u) ds > 0.
aB(0,r) 2
We conclude from (2.12) that
1A 1d
Eu(r) = —MF“/ z|*u' Pdz + - [ “/ u2dS}
2(p—1) B(0,r) ddr dB(0,r)
—17”“’1 / u?dS
4 aB(0,r)
is an increasing function of r for r € (0,79). This completes the proof. O

3. UNIQUENESS OF SOLUTIONS FOR SMALL A

In the following we focus on the uniqueness of solutions of (S ,) when A is small
enough, thereby proving (1) of Theorem 1.2. It is known from Theorem 1.1 that
there exists a unique minimal solution u, of (Sy,) for 0 < A < A*. By arguments
similar to those in the proof of Theorem 5.5 of [10], we can show that for every
M > 0 there exists 0 < Aj(M) < A* such that for A € (0, Aj(M)), (S»p) has a
unique solution u) satisfying

1

||W”Ll+e )SM, fOI‘NZQ

and
||LN/2(Q) S M, fOI' N Z 3

I
where 0 < € < 1 is a small number.

In this section, we shall show that there exists 0 < A, < A* such that for A €
(0,Ay), (Sxp) has only the minimal solution u,.

Theorem 3.1. There exists 0 < A, < A* such that for A € (0,\.), (Sxp) has a

unique radial solution, i.e. the minimal solution u,.

We prove this theorem by a contradiction argument. On the contrary, we see that
there are sequences {\;} and {u;} = {u,,} with \; = 0 as i — oo such that u; is a

non-minimal solution of (Sy, ;). A solution u(r) is said to be a non-minimal solution
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of (Sxp), if 0 <u < 1in B and there exists another solution 0 < v < 1 of (S, ,) and
a point r € B such that u(r) > v(r).

We consider two cases here:

(i) there is a 0 < p < 1 such that ||ui]|lcc < 1 — p for all i (we can choose
subsequences if necessary).

(ii) ||us]loo — 1 as @ — oo (we can choose subsequences if necessary).

By arguments similar to those in the proof of Theorem 5.5 of [10] we easily see
that the first case does not occur since for this case (S),,) has only the minimal
solution, but u; is a non-minimal solution by our assumption. Note that there exists
M > 0 such that

1
HWHLHE(B) <M for N=2
and
1
”m”LN/Z(B) < M for N > 3.

We only need to consider the second case. Defining z;(r) = 1 — u;(r), we see that
ming z; — 0 as ¢ — oco. Note that z; satisfies the problem

N—-1, o,
(3.1) 2 Z2="0"in[0,1], #0)=0, z(1)=1
T 2

Lemma 3.2. For each i, z[(r) > 0 for r € (0,1].

Proof. We can write (3.1) in the form

~N—14a
(3.2) (rV12l) = AT

1

7 for r € (0, 1).

Then integrating (3.2) from 0 to 7, we see from (3.2) that
rN=12i(r) > 0 for r € (0,1].

This completes the proof. 0
We define ¢; = ming 2; (:= 2;(0)) and

(1+p)/(2+0)
Zi\€; Y a
(33 U= - L yeBi={y: SOy € 1))
Then
N=1_, y® . _ o
U + =——Ul = o i (0,6 PR pi0) =0, Ti0) = 1.
Yy i

We shall show that such U; does not exist. In the following, O(1) means |O(1)| < C
for some C' > 0.



Lemma 3.3. For any 8 € (0,1), there is k := k(B) € (0,1) independent of i such
that for i sufficiently large,

(3.4) zi(r) >k, 2i(r)=0(1) forre€|[B,1]

7

Proof. By the well-known Pohozaev identity,

o)

N1 N, , N+«
(3.5) = (1= 50 +

integrating (3.5) from 0 to 1, we see that there is C' > 0 independent of ¢ such that

P )\irazilfp}

1
22(1) < C)\i/o rN_Hazil_pdr.

On the other hand, it follows from the equation of z; that

1 rN—l—l—a
y=x [ T —ar
4(l) / 7Y

Thus,
1 N-l+a |2 L pN-1ta LpN-lta \(p-1)/p ' Y
i —_— <O\ dr < C\ —d Noired :
O f Ty ) <] =, ) () )

] i 7

=3

This implies

1
(3.6) / PNl P (Y dr < OAP/PTY,
0
Since zi(r) > 0, we see that
(3.7) Air®z P (r) < O\ NI P (6)dE for 1 € [B,1].
B/2

Thus, it follows from (3.6) and (3.7) that
1
Air®z P (r) < C)\Z-/ PN P (Y dr < O/ for 1 e [8, 1)
0

Let k;(r) be the solution of the problem
N -1
K+ =k = ON/®Y i (8,1), k(1) =1, k(f) =0
T
The maximum principle implies that

zi(r) > ki(r) for r € [5,1].

Since k; = ko + CAY Pk, where
N-1

9



and
N -1

we see that
2 > ko + CA/P Vg,

Note that the maximum principle implies that ko > 0 in (3,1) and |k (r)| < C for
r € (8,1). We see that

zi > C for r € (73,1] and i sufficiently large

where 7 > 1 is close to 1. The arbitrary of § implies the first inequality of (3.4)
holds. The second identity in (3.4) can be obtained from the regularity of A or
direct calculations. This completes the proof. 0
Proof of Theorem 3.1

Let U; be defined at (3.3). We see that U;(0) =1, U/(0) = 0 and

N ,nyl—I—a
")) = )\iT
which implies that U/ > 0 and
Y tN—1+a \:
N—-17171 )
Ul(y) = \ >
U0 =X [ a2

which implies that

N+a

(3.8) Ui(y) > CX\y@+o/ e+ for all y > 0.
By the Emden-Fowler transformation:
vi(s) =y CTNEI(y), y=¢

we see that v; satisfies the equation
4+ 2 2 2
i a)vg(s)—k +O[(]\7—24— +a)vi:/\iv;p
p+1 p+1 p+1
and it follows from (3.8) that v;(s) > C)\;. Define w;(s) = v?(s). In the following,

we omit the subscript ¢ from v; and w; for convenience.

(3.9)  '(s)+ (N .

Let R; = Ine; (14p)/(2+2) g gee that R; — 0o as i — oo. Moreover, we see from
Ul!(y) > 0 that

, 2+«
(3.10) v'(s) + oy 11)(3) >0 for s € (—o0, R)]
Moreover,
(3.11) o(R) =1, () =0(1), C™*<v(0)<C, (0)=0(1),



and for any 0 < 3 < 1/2

(3.12) C~ ' <w(s) < C, v'(s)=0(1) for s €[0,[]

(3.13) Cl<u(s)<C, v'(s)=0() for s € [R; +In G, Ry].

The above identities can be obtained from simple calculations, the fact that U;(y) —
1in C}

loc

(0,00) as i — 0o and Lemma 3.3. From (3.9) we see that
4+2a> " 2+a( 2+ay , —(pt1
V(s N—-2+ )vs:—)\iv(p“L)sv’s
20 (s)+ 28 291 (s) = —pa I 5) (o
and using (3.10), we obtain

44 2 2+« 2+« 2+a)p, _
z N—2 )” (N—2 )' < BTOPy p
v(s)+< +p+1 v(s)+p+1 + 1 v'(s) < v7P(s)

v"(s) + (N —2+

=B (N -2+ 4p+ SN )+ S (N =2+ 2 o)

p+1 1 p+1 P+ 1
Setting ¢(s) = v'(s) — ?T‘fv(s), we see that
4+ 2a 2+« 2+«
”8+<N—2+ )’8 (N—Q ) 5) <0
/') 20 () + 228 Ok
ie.,
a 2 !
(3.14) [e%s (q'(s) + (N -2+ p:?)q(s))} <0 for s € (—o0, R;].
Note that
24a
erti®p(s) = 1 as s & —0o0
and )
erii® (U'(S) L av(s)) — 0 as s » —oo.
p+1
We see that
2+a 22+ «)
1 e _aerd — 0.
(3.15) erti®g(s) — P as s — —0oo
This implies that
(3.16) (ei%sq(s))' — 0 as s & —o0.

(3.15) and (3.16) imply that

ems(q’(s) + (N -2+ i:?)q(s))




Then (3.14) implies that

(3.17)
e%s(q’(s) + <N -2+ %>q(8)) < AN _p?(l? +) <0 for s € (—oo, Ry
On the other hand, we see from (3.17) that
0 > ¢'(s)+ (N -2+ %)q(s)
= () + (V- 2p(s) - B (v 2 2E )
22+« 22+« 24«
= Ao ?(s) (p+ : )i (s) — (p+1 )( —24 0 1)1}(8).
Then
(3.18) Aiv7P(s) < C[|v'(s)] + v(s)] for s € (—o0, Ry
On the other hand, if we define
J(s) = %v'z(s) + 2(2p_:—al) (N -2+ i:?)qﬁ(s) + p)j 11)1—:0(3),
we see that Lo
+ 2a
J'(s) = —(N— 24 )(v')2( ) <0
This implies that
(3.19) J(R;) < J(s) < J(0) for s € [0, Ry
We see from (3.12) and (3.19) that
(3.20) [W'(s)| < C, w(s)<C forsel0,R.
This and (3.18) imply that
(3.21) AivP(s) < C for s € [0, R;].
This also implies that
(3.22) A P (s) < CAYP for s € [0, Ry).

Now we use the monotonicity formula in Theorem 2.1: since U; € C?(B;), we
easily see that U; is stationary, where B; = {z : e§p /@), ¢ B}. By Theorem 2.1,

the function

5Ui(r):_(p+1))\ 1d

1
77“_“/ |2|°U} Pdz+~ — [T_“/ deS] ——r_"_l/ U?dS
2(p—1) B(0,r) 4dr 2B(0;1) 4 2B(0,r)
12



is a nondecreasing function of r € (0, ¢, 1)/ (2+a)). Moreover, a simple calculation
implies that under the changes:
vi(s) = |2|"CHV Y| = ¢

the function &y, (r) is just a positive multiple of

Euls) = w'(s) - 225D

hZ(S)

(N=2)(p+D+4+2a . : :
where h;(s) =X [*_e i (7=9)y1=P(7)dr. Note that U is a radial function.

Hence &,,(s) is a nondecreasing function of s for s € [0, R;). We see from (3.22) that

(3.23) hi(s) < CAYP for s € [0, Ry].
Now we claim that
~24a 24+«
24 "(R;) < OB+ +o(1) —2(N =2 ).
(3.24) w(R) < OB +o(1) ~2(N ~2+ 27
Note v(R;) = 1 implies w(R;) = 1. Indeed, it follows from the equation of v that

o(R)+ (N =2+ ii?)v(m)

Ri .
:)\i/ e%(T_Ri)v_p(T)dT

o0

R; Ri+Inj
240, _ p. 24, _ p.
< C)\z’/ erii (T R’)dT+)\i/ ept1 (T—ERi)y—p g,
Ri+Inj —00

. N 0 . R;+In B Y
<CMN(1— emlnﬂ) + e%R"Ai/ e Ty Pdr 4 )\i/ et (T Ri)y—p g
—00 0

< CB?’% +o(1)+ Ce 51 % for i sufficiently large
Here we have used (3.13) and (3.21) and the fact that &,,(0) is bounded. Thus, we
see that
w'(R;) = 20'(Ry)

= 2[v(R)+ (N -2+ ;:‘f)] —2(N -2+ i:‘f)

~24a
< OB +0(1) — 2(N— 2+ ?)i‘f)
This is our claim. By choosing 3 sufficiently small, we see from (3.24) that
w'(R;) < —C
and
&y () < —C.

13



The monotonicity of &, (s) of s implies

w!(s) — 2§f’_+11)hi(s) < —C for s € [0, R)
Then
(3.25) hi(s) > C(1+w/(s)) for s € [0, Ri.

Integrating (3.25) from 0 to R; and using (3.11) and (3.23), we see that
AR, > CR; + C
and
AP >0 >0
This is a contradiction. This completes the proof of Theorem 3.1. 0

4. PROOF OF THEOREM 1.2

In this section we complete the proof of Theorem 1.2. The main ideas of the proof
are similar to those in [6]. To prove (2) of Theorem 1.2, we first show the following

lemma.

Lemma 4.1. For any k € (0,1), there is at most one A := A(k) € (0, \*] with
(A, u3) € D and uz(0) = k.

Proof. Suppose there are A;, Ay € (0, A*] with A; # Ay and (A1, uy,), (A2, un,) € D
such that uy, (0) = uy,(0) = k. If we set u; = uy,, ug = uy, and z;(r) =1 — u;(r)
for j =1, 2, then

-1
(4.1) Zj + 2y =Nz P, 2j(0) =1 -5, 25(0) =0, z(1)=1.
2 (1—g) 1P/ (24a) y 71/ (24e) . .
Let Z;(y) = (1) — A Y We see that Z; (j = 1,2) satisfies
N -1 _
(4.2) v"(y) + v'(y) = y*v"(y), v(0)=1, v'(0)=0.

The standard ODE theory implies that (4.2) has a unique solution v(y). Thus,
Zi(y) = v(y) for j = 1,2. On the other hand, since

1 1
Z((1— Kl)—(1+p)/(2+a)/\1/(2+a)) =, Z((1 — K/)—(l—|—p)/(2—|—a)Aé/(2+a)) _

— kK 1—-«k
we see that

a 1 _ a 1

(4.3) v((l—n)‘(1+P)/(2+a))\}/(2+ )) = v((1—k) (1+;D)/(2+a))\;/(2+ )) =— —
We easily see from (4.2) that v'(y) > 0. Then (4.3) implies that A\; = Ay and a
contradiction. This completes the proof. O
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We first note that, by the implicit function theorem, for A € (0, \*), the operator
I + \A'(u,) is invertible. Here A(u) = G_l(( o) and G(h) =i~ N(rN=1h!(r))" on
(0,1) with A'(0) = 0, A(1) = 0. Thus, (A, u,) for 0 < A < A* is a simple curve of
D. We can argue as in section 2.1 of Buffoni, Dancer and Toland [1] and [3]-[4] in
the space C'[0,1] x R, to find a analytic curve A\ = A(t), u = @(t) for t > 0 such
that ||@(t)]|c — 1 as t — oo, (4(t),\(t)) € D for t > 0, (@(0),\(0)) = (0,0) and
I —X(t)A'(a(t)) is invertible except at isolated points. We see from Lemma 4.1 that
the curve has no intersection. Let us denote this curve by 7" and parameterize it by
((t), A(t)) for t > 0. Let 14; 3 (@(t)) be the ith eigenvalue counting multiplicity of
preX(t)
(- a)#D
on (0,1) with the Dirichlet boundary condition. (The definition of y; 5., ((2)) is

given in Section 1.) By our comments above, y; 5, (i(t)) are continuous, piecewise

(4.4) —G -

analytic and have only isolated zeroes. We will show that 1, 5, (@(?)) < 0 for large
t. This means that for any ¢ > 0, (4.4) has at least { negative eigenvalues for ¢
large. Hence we see that there is a sequence {t;} with ¢; — oo as i — oo such
that the number of negative eigenvalues of (4.4) (counting multiplicity) changes at
ti. (Recall that p, 5 (4(0)) = pi(—G) — 400 as i — oo). Each (@(t;), M1;))
must be a bifurcation point. Otherwise the solutions near (u(t;), A(¢;)) are a curve
parametrized by A, the critical groups of these solutions must be locally independent
of A by homotopy invariance of the critical groups (where critical groups are defined
in Chang [5]). By the formula for the critical groups at a non-degenerate point (see
[5], p-33), this implies that the number of negative eigenvalues of the linearization
counting multiplicity must be constant in a deleted neighborhood of (@(t;), M(;))
which contradicts our choice of ¢;. (There is a minor technical point here. We need
to work in the space Hl(B). We choose ||u(t )||oo < 7 < 1 and then smoothly

truncate the function =g such that it equals — for 1 > s > 7 so the equation

1— )P
makes sense on H}(B). Note that the truncatlon Wlll not affect the solutions close

to (i(t;), A(t;)) in H}(B) x R.) We also see that each (@(t;), A(;)) is either a turning
point, i.e. the point where T changes direction (the branch T locally “bends back”)
or a point of secondary bifurcation. Our Lemma 4.1 implies that it is not a secondary
bifurcation point. Thus, it must be a turning point.

To prove our claim on p, 5, (%(t)) for large ¢, we need to consider positive solutions
(uiy Ai) of (Syp) such that A\; — x € (0,00) as i — 0o and ||ulc — 1 as i — oc.

(Note that Theorem 3.1 implies that )\; /4 0 as i — 00). Thus, we see that there is
15



t; with t; — oo such that X(tz) = \; and 4(t;) = u;. We use a blowing up argument.
If we define ¢; = 1 — ||u4||oo and

1— Ui(€§p+1)/(2+a))\i_l/(2+a) )

Ui(y) — - , yE€B; = {y : €§p+1)/(2+a))\;1/(2+a)y e (0’ 1)}’

then U;(0) = ming, U; = 1. A rather standard limiting argument shows that a
subsequence of the U; converges uniformly on compact set to a positive solution U
of y"=N(yN'U') = £ on RN such that U(0) = 1, U'(0) = 0 and U(y) > 1. It
follows easily from the equation that U(y) > 1 for all y, since U'(y) > 0 for y > 0.

Moreover, by a similar argument as in (3.8) and (3.20) of Theorem 3.1, we have

1
4.5 — @)/t < U (y) < Oyt /(e+1)
(4.5) oY <U(y) <Cy
and hence
(4.6) lim y~ /ey (y) = [2 + o (N Ly 27 a)] —1/(p+1)-

The proof of (4.6) is a little variant of the proof of Theorem 1.1 of [13]. See also
Theorem 1.2 of [15].

We now claim that the solution ¢ of

N -1 py*
" ! R
has infinitely many positive zeroes provided 2 < N < 24 22t (5 4 /521 5} Note

pt1
that

h(y), h(0)=1

p(2+a)(N 2+«

pyeU~ P () ~ b1 -2+ m)y_z as y — 00.

On the other hand, by explicitly solving the equation (it is an Euler equation), one

finds that any non-trivial solution of

N -1
_k”_ Tkl_ (M/yQ)kZO

has infinitely many (and unbounded) positive zeroes if y > (N — 2)% A simple

calculation implies that

2 2 1
M(N_Q +a)>_(N_2)2
p+1 p+1) 4
provided 2 < N < 2 + 2(;%“)(17 + +/p?> +p). Thus, we can easily deduce that ¢ has

infinitely many positive zeroes. Our claim holds.
We now in the position to complete the proof of (2) of Theorem 1.2. If M > 0

and o is small and negative, we see by continuous dependence that the solution ¢ of

(@5) ) = S ) = k) + oty h(0) =1
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has at least M positive zeroes. Note that the solution of (4.7) is unique. Let h; be
the function defined to be ¢(y) for y between the ith and (i+1)th the zeroes of § and
to be zero otherwise. Then h; € H'(RY), h; are orthogonal (in L2(RY) or H(RY))
and by multiplying (4.8) by h; and integrating between these zeroes we see that

1 plz|*
= [5IVhF - 2o
Q( ) /RN 2|V | 2Up_|_1
is strictly negative at each h;,. Hence the span of h; is an (M — 1)-dimensional
subspace of C$°(RY) such that Q(h) < i < 0 if A is in the unit sphere of E, where

E is the span of h; in H'(RY). Since h; has compact support it follows easily that
there is an (M — 1)-dimensional subspace of Hj(B;) such that

_ pla* (1 = flalt) )™

[Vh(2)[? h*(z) <0

B, (1 —a(ts) ()P
where 7; = (1—||@(t;)||s) @Y/ @t [\(2;)] 71/ 2+ for large ¢; if k is in the unit sphere
in E. (Note that B;, which is B rescaled has the property that each function in F
is supported in B; for large i.)

Hence returning to the original scaling we see that there is an (M —1)-dimensional
subspace E; of H}(B) such that

A(t)|z|*
B

for h is in the unit sphere of E; and t large. By the variational characterization of

eigenvalues, this implies that p, 5, (4(t)) < 0for 1 <7 < M —1if ¢ is large. Since

M is arbitrary, this proves our claim and completes the proof of Theorem 1.2.
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