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Abstract We consider the following problem

—Au:# inQ, u=0o0nd, 0<u<linQ
(1 —u)?

where Q is a rather symmetric domain in R2. We prove that there exists a A« > 0 such that
for A € (0,A«) the minimal solution is unique. Then we analyze the asymptotic behavior of
touch-down solutions, i.e., solutions with maxqu;(0) — 1. We show that after a rescaling, the
solution will be asymptotically symmetric. As a consequence, we show that the branch of positive
solutions must undergo infinitely many bifurcations as the maximums of the solutions on the
branch go to 1 (possibly only changes of direction). This gives a positive answer to some open
problems in [12]. Our result is new even in the radially symmetric case. Central to our analysis is
the monotonicity formula, one-dimensional Sobloev inequality, and classification of solutions to a
supercritical problem

1 .
AU = — inR?, U(0)=1,U(z) > 1.

U2 -
1. Introduction. We consider the structure of positive solutions to the following problem
A
(Sa) —Au=—"——inQ, 0<u<1linQ, u=0 on N
(1-u)?

where A\ > 0, Q@ C R? is very well behaved (see [7]). More precisely, we consider domain Q in R?
which is Lipschitz, 0 € €2, Q is invariant under the 2 reflections in the coordinate planes and such
that if 0 < t < s < #;, (I — P;)D;,s C (I — P;)D;,;. Here P; is the orthogonal projection onto span
e, Dis ={x € Q: z; =s}, t; = sup{z; : = € Q} and {e;} is the usual basis for R2. Examples
of the domains include balls, ellipses, rectangles, etc.

S models a simple electrostatic Micro-Electromechanical System (MEMS) device consisting
of a thin dielectric elastic membrane with boundary supported at 0 below a rigid plate located at
+1. When a voltage-represented here by A-is applied, the membrane deflects towards the ceiling
plate and a snap-through may occur when it exceeds a certain critical value A* (pull-in voltage).
This creates a so-called “pull-in instability” which greatly affects the design of many devices (see
[11] and [26] for a detailed discussion on MEMS devices). Note that two-dimensional domains are
of real physical relevance.

In recent papers [12]-[14] and [10], the authors studied the problem

—Au = —2—(’1\{(5)) in Q
(Py) 0<u<1inQ
u =0 on 9N
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where @ C RY is a bounded smooth domain and g € C(Q) is a nonnegative function. They gave
a detailed study on the minimal solutions of the problem (Py) with different forms of g(z). The
following theorem was obtained.

Theorem 1.1. (Theorem 1.1-1.8 in [12]): Suppose g € C(Q) is a nonnegative function on Q.
Then, there exists a finite A* > 0 such that

1. If 0 < X < X*, there exists a unique minimal solution uy of (Py) such that py x(uy) > 0.
(See (1.1) below.) Moreover, uy — 0 as A — 0.

2. If A > X*, there is no solution for (Py).

3. If 1 < N <7, then-by means of energy estimates-one has

sup |luy]leo < 1
AE(0,A*)

and consequently u* = limyqx= uy is a solution of (Py») such that
#I,A* (u*) =0.

4. If g(z) = |z|* and Q is the unit ball, then u*(z) =1 — \I\HTQ and \* = W,

provided N > 8 andOSaSaN:%ﬂ—/%\/g_

Issues such as uniqueness, multiplicity and other qualitative properties of the solutions for (Py)
are still far from being well understood, even in the radially symmetric case. In their paper [12],
Ghoussoub and Guo present some numerical evidence for various conjectures relating the case
g(z) = |z|*. They conjectured that for 2 < N < 7 and a > 0, there exists an infinite number of
branches of solutions to (Py). In a more recent paper [10], Esposito, Ghoussoub and Guo found
a second solution of (Py) for A € (A* — §, \*) and showed that this second solution is a mountain
pass solution. To establish these results, the authors need some special forms of g(x) to guarantee
that the solutions uy of (Py) possess the property ||uy||oo < 1.

There already exist in the literature many interesting results concerning the properties of the
branch of solutions for Dirichlet boundary value problems of the form —Awu = Ah(u) where h is a
regular nonlinearity (for example of the form e* or (1 4+ w)? for p > 1). See, for example, [4], [5],
[21], [22] and the references therein. The singular situation was first considered in a very general
context in [24].

A solution u, of the equation (S)) is called minimal if u, € C?(Q) satisfies uy < wuin Q for
any solution u of (Sy). Throughout this paper, unless otherwise specified, solutions for (S, ) are
considered to be in the classical sense. Now for any solution u of (Sy), one can introduce the
linearized operator at u defined by:

2\
d—w?®
and its corresponding eigenvalues {ux,» : k = 1,2,...}. Note that the first eigenvalue is simple
and is given by:

p1,x(u) = inf {<Lu,)\¢7 ¢>

Ly = A

L peCE(Q 2dz = 1} 1.1
i ¢ €CE@, [ 6@ s (1)
with the infimum being attained at a first eigenfunction ¢;, while the second eigenvalue is given
by the formula:

pon (@) =int {(Lun,8) |, s seC@), [ o@Nda =1, [ s@)or(a)de =0}

HE(Q)
This construction can then be iterated to obtain the k-th eigenvalue ug, (u) with the convention
that eigenvalues are repeated according to their multiplicities.

In this paper, we shall give a positive answer to the conjecture B in [12] in two dimensional
case. We show that for our well-behaved domain  C R?, there exists A« > 0 such that for A < Ax,
the minimal solution is the only solution to (S,). Furthermore, (S,) has an infinite number of
branches of solutions. Note that in our case here, the maximum of the solution of (Sy) will be
close to 1 and this makes the problem more difficult to deal with. From now on, we assume 2 to
be the symmetric domain as defined at the beginning of introduction.

Let D denote the component of {(u,\) € C(Q) x Rt : —Au = ﬁg, 0<u<1linQ,u=0
on 90} containing (0,0) in its closure. Note that we can talk about the component since it is a
simple curve near the end point. We will show that inf{A > 0: (u,\) € D for some u} > 0 so
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that the only solution for each small positive X is the unique minimal solution near 0 in C(Q). It
is convenient to add (0,0) to D.

We first have the following theorem which gives exact asymptotic behavior for the touch-down
solutions.

Theorem 1.2. Let (A\;,u;) be a sequence of solutions of (Sy) such that

Ai = Ao # 0, maxu;(x) = u;(0) — 1. (1.2)
TeQ
Then the rescaled function
3/2,—1/2
1—ui(e;’ "N, " 7y) —
Ui(y) = l(l%, yeQ ={y: e?ﬂ)\i 1/2y € Q}, (1.3)
?

where €¢; = 1 — u;(0), approaches to U in C2 _(R2) as i — oo, where U = U(z) is the unique

loc
radially symmetric solution to

1
AU = e inR?, U(0) =1,U(z) > 1. (1.4)

Using Theorem 1.2, we derive the following theorem on bifurcation of solutions

Theorem 1.3. (1) A« =inf{A > 0: (u,A) € D for some u} > 0.
(2) D has infinitely many bifurcation points.

Remark 1.4. We actually prove somewhat more. We prove that D contains a piecewise analytic
continuous curve T such that the implicit function theorem applies (to solve for u as a function of
A) except at isolated points of T and there exists a sequence (u;,A;) € T such that ||u;||cc — 1 as
i — oo and each (u;, ;) is either a point where T' changes direction (i.e. the branch T locally “bends
back” or (ui,A;) is a point of secondary bifurcation. This holds for any choice of T. For generic
symmetric 2, we see that the former holds (that is the points (u;, A;) are points where the branch
changes direction.)

Remark 1.5. Theorem 1.2 and 1.3 can be extended to the following more general elliptic equation
of the form

(Sx,p) —Au inQ 0<u<1lin®Q, u=0 ondN

_ A
(-
where 1 < p < 3. The critical observation is that we need to use the Sobolev inequality (2.2). We
leave the details to interested readers. Note that when p = 1, S, , arises in the study of singular
minimal hypersurfaces with symmetry. See [23], [27] and the references therein. For general p > 0,
S,p also arises in relation to chemical catalyst kinetics (see [2] and [8]).

The main difficulty in proving Theorem 1.2 is the classification of solutions to the following
problem (after blowing up):

L.
AU = 5 in R2?, U(0) =1,U(z) > 1. (1.5)

Problem (1.5) can be considered as a supercritical problem in R2. To show radial symmetry of
all solutions to (1.5), we make critical use of the one-dimensional Sobolev inequality (Lemma 2.1)
and the monotonicity formula (Lemma 2.2).

The organization of the paper is as follows: in Section 2, we collect several important estimates,
including Sobolev inequality, monotonicity formula, classification theorem and regularity theorems.
In Section 3, we prove the critical theorem on the radial symmetry of solutions to (1.5) and
therefore prove Theorem 1.2. In Section 4, we prove (1) of Theorem 1.3. Here again we need to
use monotonicity formula and Sobolev inequality. Finally, we adopt Dancer’s idea in [7] to prove
(2) of Theorem 1.3 in Section 5.

After the paper was finished, we were informed by the referee a paper of P. Esposito [9], where
he proved that the Morse index of the touch-down solutions must approach +o0o by energy method.
His results hold true for general convex domains and for higher dimensions (2 < N < 7). However
the exact asymptotic behavior of the solutions is not analyzed in [9] and in particular our Theorems
1.2 and 1.3 seem to be new.
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2. Some Preliminaries. We collect several important preliminaries in this section.
First, we have the following one-dimensional Sobolev inequality which plays a key role in our
estimate. The proof of it can be found in [1]:

Lemma 2.1. (a) (Proposition 1.3 of [1].) It holds

(/07r u?) (/OWW —uf)) <%, (2.1)

for all w such that u > 0,u(8 + 7) = u(6).
(b) (Proposition 1.4 of [1].) For any § € (%,1) and for u satisfying u > 0,u(f + 7) =
uw(m), [0 cos(26) _ Si“u(.j” =0, there exists Ag > 1 such that

0 w2 - Jo
([ o) ([ w = pu)) <. (22)

Next, we recall the following monotonicity formula from [16].

Lemma 2.2. ((2.14) of [16].) If z € H'(Q) with [,z 'dz < oo is a nonnegative stationary
solution of the equation

A
Az = — inQ, (2.3)
z

then the function

1 1
E(r) = —§r_4/3/ id:c—l— 1d [r_4/3/ z2dS] — —r_7/3/ 2%dS
2 B(0,r) % 4dr 9B(0,r) 4 9B(0,r)

is a nondecreasing function of r, where B(0,r) C  is the ball with center at 0 and radius r.
We are also in need of the following classification theorem.

Theorem 2.3. (Theorem 1.2 of [17].) The solutions to the following problem

1
AU = 7z inR2, U0)=1,U(2)>1, (2.4)
are radially symmetric if
2 4
li “5U(z) = (=) V3 2.5
im 7730 = () (2.5)

Finally, we state the following useful lemma.

Lemma 2.4. (Lemma 2.2 of [20].) Assume ¢ is a nonnegative smooth function on B, C R?
such that Ap + p2 > 0. Then there exists a universal constant no > 0 such that fBT pdz < no
implies p(z) < ;5 fB, @ for x € B, /3. Here c is an absolute constant.

3. A radial symmetry result in R?. In this section, we shall provide a crucial radial symmetry
result in R2. Let (u;,)\;) € D with ||[ui]loc — 1 and \; = @ > 0 as i — oo. If we define
€ =1 —||u;]|oo and

3/2,—1/2
1 —ui(ei/ A / Y)

Ui(y) = , yeQi={y: &\ yeq}, (3.1)

€
then U; satisfies the equation

1.
AU; = o7 n Q; (3.2)

2
i
and U; — U in C? (R?) as i — oo, where U = U(2) satisfies

1.
AU = gz in R2, U(0)=1, U(z)>1. (3-3)

The main result of this section is the following classification theorem, which proves Theorem
1.2.

Theorem 3.1. If U is defined as above, then U is radially symmetric in R2.
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To prove Theorem 3.1, we use Theorem 2.3. It is enough to verify (2.5). The rest of the section
is to prove (2.5). We will achieve this by a series of lemmas.
To this end, we first need to analyze the behavior of u; near the boundary of Q. Let z; = 1 —u;.
We see that z; satisfies the problem
A .
Azi:z—;inﬂ,0<zi<1inﬂ, z; =1 on 09Q. (3.4)
i
Moreover, ming 2; — 0 as ¢ — oo. It is clear that ¢; = ming 2; and
3/2,-1/2
zi(ei/ A / )

Ui(y) = for y € Q;. (3.5)

€
In the following, we consider the problem (3.4). By our symmetric assumptions on Q and a
standard Method of Moving Planes as in [15], we see that z; satisfies

xj (07 /0x;) > 0,5 =1,2, on Q. (3.6)

This implies that z; is even in x; for j = 1,2. Therefore, the minimum of z; attains at 0.
Choose a large ball B(0,79) CC Q with center at 0 and radius ro > 0 and dist(9B(0, ), 9%2) >
0. The following lemma analyzes the behavior of z; far from 0.

Lemma 3.2. For any 0 < 8 < 1, there exists 0 < k := k() < 1 independent of i such that for
all ¢ sufficiently large,
k < zi(z) <1 for z € Q\B(0,Bro). (3.7)

Proof. Let o1 and @1 > 0 in 2 be the first eigenvalue and eigenfunction of the problem
—Ap=0p inQ, =0 on IN.
Then multiplying @1 on both the sides of the equation (3.4) and integrating it on 2, we see that
01/(1 — zi)prde = )\i/ w—;dm. (3.8)
Q Q Zj
Since 0 < z; < 1, we see from (3.8) that
Pliz < c.
Q Zi

Here we have used the fact that \; - a > 0 as ¢ — oo. This implies that for any small 0 < § <
dist(8B(0,79), 0Q2)/10,

d
[ S=e
Q5 %
where Q5 = {z € Q : dist(z,00) > §} (note that B(0,79) CC Q). The Holder inequality implies
dz dx\1/2
[ <[ %) errsc (3.9)
Q5 Zi Q5 %5

By the standard moving plane argument, we see that for any =z € Q5\B(0, 8ro), there exists a
piece of cone I'; with vertex at z with (i) meas(I'z) > v > 0, where «y is independent of z, (ii)

Tz C Qs, (iii) ﬁ > Tlm) for any y € I';. Thus, it follows from (i)-(iii) and (3.9) that
1 1 d d
< Lot [ ce (3.10)
zi(z) — meas(T'z) Jr, zi(y) 5 2i(y)
This implies that
zi(z) > C for z € Q5\B(0, Bro). (3.11)
By (3.6), zi(z) > C for z € Q\Qs. Thus, the k exists and the proof is completed. a
Next, we consider the Emden-Fowler transformation of (3.4). Let R; := )\;/ 26;3/ %ro. We see
that
2/3 —2/3,—1/3
Ui(Ri) = R} *rg " *AT V2 2i(ro).
Therefore, if we define
vi(s,0) := |y|_2/3Ui(y)a lyl =€, R;i= eli (3.12)

we easily see that for (s,0) € [0,T;] x S1, v; := v;(s,0) satisfies the equation:

4 4 1
Uss + gvs + vgg + 511 = (3.13)
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Since z;(z) := z;(x1,x2) is even of z1 and x2 respectively, we see that for any fixed s, v;(s,-) is a
m-periodic function. Moreover, using the fact that U; — U as ¢ — oo and the definition of U;(R;)
we obtain that for ¢ sufficiently large,

v;(0,8) = O(1), v;(T;,0) = O(1) for § € St. (3.14)
Moreover, for any 0 < B < 1 independent of ¢
vi(s,0) = O(1) for (s,8) € [0,8] x S? (3.15)
and ~
v;(s,0) = O(1) for (s,8) € [BT;,T;] x St. (3.16)

(3.15) and (3.16) can be obtained from the fact U; — U as ¢ — oo and Lemma 3.2. Furthermore,
easy calculations imply that

(v3)s(s,8) = O(1) for (s,8) € [0, ] x ST, (3.17)
(vi)a(s,0) = O(1) for (s,0) € [0,5] x S*, (3.18)
(v3)s(s,8) = O(1) for (s,0) € [BT;,T;] x S! (3.19)
and
(vi)o(s,0) = O(1) for (s,0) € [BT;,T;] x S* (3.20)

We easily see that (3.17) and (3.18) hold by using the fact that U; — U in CL _(R?) as i — oo.
To obtain (3.19) and (3.20), we notice that, since z;(z) > & for z € Q\B(0, 87¢), the equation of
z; and the regularity of A imply that there exists C' > 0 independent of ¢ such that

|Vzi(z)] < C for z € Q\B(0, fro).
This implies (3.19) and (3.20).

Denoting w;(s) = [q1v2(s,0)d8, vi(s) = [g1vi(s,0)df and for convenience, omitting the
subscript ¢ from w;, 7; and v; in the following, we see that

4 8 ds
Wss + W + —w = 2/ -+ 2/ (vg + v2)ds (3.21)
3 9 Sl v g1
4 4 dé
Vss t+ gﬁs + §ﬁ = Ll 1}72 (3.22)

Moreover, it follows from (3.6) that
2
vs(s,0) + gv(s, 6) >0 for (s,0) € (—o00,T;] x St. (3.23)

The next lemma gives L2-control of vg.
Lemma 3.3.
/OS /Sl vg(€,0)dfdg < C for s € [0, T3],
where C > 0 is independent of .

Proof. Multiplying vs(s,8) on both the sides of (3.13) and integrating it on [0,7;] x S*, using
the facts in (3.14), (3.17), (3.18), (3.19), (3.20), we see that

T;
/ / v2(s,0)dsdd < C
0 st
where C is independent of 7. Thus,

/s/ v2(€,0)dode < C for s € [0, T;]- (3.24)
o Jst

This completes the proof. O
The following lemma, is the most important estimate we need.

Lemma 3.4. There ezists C > 0 independent of © such that

vl <C 3.25
B, 70 < @29
and &0
— < C. 3.26
sen[loa,%-]/sl v2(s,0) — ( )
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Proof. We prove (3.25) and (3.26) by the following steps.
Step 1: We show that

do
—_ fi —00,T;].
/51 2(5,0) SC’/SIv(s,H)dB or s € (—o0,T;]

In fact, from (3.22) and (3.23) we see that

_ 4 4 Vg
Usss + gvss + §7]s = _2/;1 ’U_3
4 dé
3 /51 v2
= Loeet 20, + 20].
3 3 9

Setting ¢(s) = vs — %ﬁ, we see that

4 4
QSS+*¢18+§QSO,

3
i.e.
(e%sq(s))ss <0 for s € (—o0,T;].
Note that
eés(ﬁs(s) —+ %ﬁ(s)) — 0, egsi(s) — 27 as s — —oo.
‘We see that

e%sq(s) — —4w < 0 as s — —o0.
This implies that
(e%sq(s))s — 0 as s — —oo.
It follows from (3.29) and (3.31) that

(e3%¢(s))s <0 for s € (—o00,T]
and hence 2

e3®q(s) < —4n for s € (—o0,Tj).
Thus,

vs < - in (—o0,T;].

Wl >

(3.33) together with the fact 75 + 27 > 0 implies
4
[7s(s)| < Ei(s) for s € (—o0, T3].
On the other hand, we see from (3.32) that
2
gs(s) + gq(s) <0 for s € (—o0,T;]

and

2 U 25 85 = - — 2vU4(s —éis
0(5)+ 20(s) = Taas) = 27a(0) = g7(s) = [ 0720 ~23,0) = T,

9
Then, (3.35), (3.36) and (3.34) imply that

df B 4 B
/sl v2(s, 0) < 2us(s) + gv(s) < Co(s) for s € (—o0, T;].

This finishes the proof of Step 1.

df
—_<c1 2).
/51 v2(s,0) — C( +/51 vs)

To prove (3.38), we consider the function

Step 2: We prove that

Multiplying (3.13) by vs and integrating on S', we obtain that

4

J'(s) = 3 /Sl vZ(s,0)df > 0.

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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Then
J(0) < J(s) < J(T3) for s € [0,T;].
It follows from (3.15)-(3.20) that
|J(s)| < C for s €[0,T;]

and hence

‘/Sl vg(s,Q)dG—g/Sl v?(s,0)d0| < C(1+/Sl ug(s,ev)ul(wr/s1 v(‘fa)). (3.41)

On the other hand, it follows from the Young’s inequality and (3.37) that

/51 u(j?a) < c(/s1 —112;120) +1) < C(E(s) +1).

Then we see from (3.41) and the Young’s inequality that for any 0 < € < 1/10,

~/51 v (s,0)d0 — %/Sl v2(s,0)do
< 0(1 + /51 v3(s, 0)do +v(s))

< C(l +/ vi(s,a)da) + ce/ v2(s,0)d6 + C().
s1 51
Choosing € such that % + C& < 1 and using the Sobolev’s inequality (2.1), we obtain that
1
/ v%(s,0)d < 0(1 +/ v2(s,0)df + 71) (3.42)
St st fsl o2 (s,g)de

(Note that we can use the Sobolev’s inequality (2.1) here since for each s, v(s,-) is a m-periodic
function.) Since the convexity of the function p(s) = s? and (3.37) imply that

do N2
2 7 — A
/Slv(s,H)dHZC’v Zc(/s1 v2(s,0)) (3.43)
we see from (3.42) that
do \3 do
< 2 de C. 3.44
(L stten) seC+ [Loteom) ([ uiq)* (.44)
Therefore,
do )
. A
/51 069 S c(1+/51 w2 (s, 0)db) (3.45)

This finishes the proof of Step 2.

Step 3: We prove (3.25) and (3.26).
Going back to (3.22), we see that

- 4 4 dé 2
ot g9+ 59 [ gy <01+ [, o20000).

This implies
[e%s (ﬁs(s) + %ﬁ(s))]’ < Ce’® (1 + /Sl v?(s,@)d&)

and (integrating from 0 to s)
8
Ta(s) + 20(s) < C(l +/ / e§<§—s)u§(§,9)d0d§) < C for s € [0,T;] (3.46)
3 0 S1

where we use Lemma 3.3 and (3.14) and (3.17). Let s; be the point satisfies ¥(s;) = max,co, 1,1 9(s)-
We have three cases here: (i) s; = 0, (ii) s; = T3, (iii) s; € (0,73). For the first two cases, we see
from (3.14) that v(s;) < C and C is independent of i. For the third case, we see that v/(s;) =0
and (3.46) implies that

o(s) = v(s;) < C.
Seff[loa”:,‘,i]v(s) o(s;) <

Moreover, it can be easily seen from (3.37) that

max / d—eg max v(s) < C.
s€f0,Ti) Js1 v2(s,0) ~ s€lo,Ti]

This completes the proof. O



ASYMPTOTIC BEHAVIOR OF SOLUTIONS 9

Lemma 3.5. There ezists C > 0 independent of © such that
v(s,8) > C >0 for (s,0) €[0,T;] x SL. (3.47)

Proof. The main idea is to consider ;15 and then use Lemma 2.4 and Lemma 3.4.

Let (s%,0°) be the point where v(s,8) attains its minimum v, 1= min, gyejo,7;]x 51 V(S 9)-
Then we have three cases here again: (i) s* = 0, (ii) s = Ty, (iii) s* € (0,T}). For the first two
cases, we see from (3.14) that v;,in > C > 0. We only need to consider the last case. Note that
we can also assume that s* > B and st < BT; for some 0 < 3 < 1/2 and ¢ sufficiently large.
Otherwise, we see from (3.15) and (3.16) that v, > C > 0.

Let m(s,0) = Wls,o)‘ Then m satisfies the equation
12 Vg 41 3
Am = Z|VoP4+4—- - -
v3 Vol vt 3wd b

A%

4 3m? + 4
——ms —3m* + —m.
3" 3
Therefore, m satisfies
4
Am + 3™ +3m? >0 for (s,0) € [0,T;] x St

and

oy B 0 0) = s = (s 0

Define (s, 8) = e%("’*si)m(s, #). An easy calculation implies that 7 satisfies
Arn 43¢ 36505 > 0.
We can choose § > 0 and C = e%‘s independent of ¢ such that
A4+ Cm® >0 for (s,0) € [s* —6,s" + 9] x St (3.48)

We need to show that such § exists, that is, [s* — 8, s* + 6] C [0,T;]. Since s > § and s < 3T}
for 0 < B < 1/2, we can choose 0 < § < 3/10. We see that s* + & < BT; 4+ 6 < T; for i sufficiently
large (note that T; — oo as i — co). Moreover, s — & > s — 3 > 0. Setting (s, 0) = Crn(s, 9),
we see
A +m2 >0 for (s,0) € [s — 8,s" + 6] x ST

By Lemma 2.4, we see that there exists 79 > 0 independent of % such that for any r > 0 if
fBT mdx < no, then

C

m(z) < —2/ m(z)dz for x € B,y

T Bp
where B, = {z = (5,0) : |z —2¢| <7, ¥ = (s°,0%)} C [s* — §,s" + 6] x S'. Now we choose
0 <7 =C" nvmin, where C = 208%60, ¢ > 0 is the constant such that Js1 v=2(s,0)df < C.
We can assume 4r < § such that B, C (s° — 6, 5" 4+8) x S'. Otherwise, 7 > /4, vymin > %C’no >0
and this is our conclusion. We obtain that

3(s—s")

/ﬁz(a:)dm / Cesisda:
™ Br v

s;+r

< [

8;—1 st

/Si+r(ce%<8ﬂ"))/ dods
8;—1 Umin st v2(s,8)

< Cv;énr =no.

2 i
5(s—s")
CesT 7 s
v3

IN

Thus,
; C
cv? =m(zt) < —2/ m(z)dr = Cv_ 2
By

min r min®
This implies that
Vmin 2 C > 0.
This completes the proof. O
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Lemma 3.6. There ezists C > 0 independent of © such that

v(s,0) < C for (s,0) € [0,T;] x S? (3.49)
and
lvs(s,8)| < C for (s,0) € [0,T;] x SL. (3.50)
Proof. We first show that
max / v2(s,0)do < C. (3.51)
s€[0,T;]J 51

Then we apply regularity theory.
It follows from (3.21) that

[t = o s o] - [ i

Thus,

/Sl 2(s,0)d6 — g/sl (v — %v)%w - %[wss(s) + %ws(s)]

do 4 2
- 2 - — Tdf — —T(s). 3.52
/Sl vs (s, 0)do 1 9(s,0) + e /S1 vudf on? (s) (3.52)

Using the inequality
1
(v— —70)%do < / v2(s,0)dd
s1 27 s1

we see from (3.52) that

2 <C(1+72 / 2 . 3.53
/51 v3(s,0)d0 < € (1 +7%(s) + ot L v2(s,0)d0) (3.53)
By the embedding theorem, we see that
do
(s, 0) <c/ 2d0 < C(14+9°(s) + +/ v2(s, 0)d0). (3.54)
S1 ’U(S, 0) S1
On the other hand, multiplying vs (s, #) on both the sides of (3.13) and integrating it on (0, s) x S!,
we obtain
5 N 4 5 do
vy (s,0)df = vg(s,0)do + — v=(s,0)d0 + 2 ) (3.55)
S1 S1 9 S1 S1 ’U(S,H)
where

fs) = _2/51u09+/ v0(00d6——/ 2(0,0)d6

—/S (0,6)d6 + - //vgf, YdOde.

We easily see from (3.14), (3.17), (3.18) and Lemma 3.3 that |f(s)| < C for s € [0,7;]. Thus,
combining (3.21) and (3.55), we see that

4 9 do
—ws =4 0)do + 6 2 . 3.56
woo -+ gus =4 [ 2e0)d0 46 [ —E 4 2(s) (3.56)
Integrating (3.54) on S! and using Lemmas 3.4 and 3.5, we see that
w(s) < o1 +/ v2(s,0)d6). (3.57)
S1

(3.57), (3.56) and the facts that |f(s)| < C, v(s,8) > C imply that
4
w(s) < 0(1 T wes(s) + 7ws(s)). (3.58)
If w(s) attains its maximum maxc[o 1;]w(s) at s}, then there are three cases for s7: (i) s; =0,
(ii) s7 = T3, (iii) s7 € (0,T;). For the ﬁrst two cases, we see from (3.14) that
w(s;) < C.
For the last case, we see that wss(s}) < 0 and ws(s}) = 0. Thus, it follows from (3.58) that
w(si) < C.
Thus,

max / v%(s,0)dd < C. (3.59)
s€[0,73] J 51
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Now we obtain (3.49). We see from (3.13) that

4 4 1
Av+ v+ (5 -5 )v=0. 3.60
vt gt (g~ 8)? (3.60)
It is known from Lemma 3.5 that the function l/vs_is bounded for (s,0) € [0,T;] X S}. Then if
maX, g)efo,T;]x 51 U(s,0) attains at the point (s},0}), we also have three cases: (i) si = 0, (ii)

st = Ty, (iii) si € (0,T;). For the first two cases, we see from (3.14) that
v(si,0%) < C.
We only need to consider the third case. Note that we can assume s’ > ﬁ and s < ,3Ti for some

0 < 3 < 1/2. On the contrary, we directly see from (3.15) and (3.16) that v(s%,6%) < C. This is
our conclusion. Thus, we can find 0 < d« < 3/10, 0 < 7« < 4J« independent of ¢ such that

By, (5%,01) C [s& — 0,88 +6.] x ST C [0,T3] x ST,
where By, (st,0%) is the ball with center at (si,0%) and radius r«. Then Theorem 8.17 of [18]
implies that
sup v(s, 8) < C(/ vidz + 1) <cC (3.61)
(s,6)€Br, (si,6%) By, (s4,6%)
here we have used (3.59). Therefore,
max v(s,8) = v(st,0%) < C. 3.62
B 0(0) = u(st,02) < (362
By arguments similar to those in the proof of (3.62), we can also obtain that
max vs(s,0)| < C.
(s,o)e[o,T,-]xsl| +(5:0)] <

Indeed, we see that vs satisfies the equation
4 4
Avs + e + [§ + 21;*3]1;3 —o0. (3.63)

If max(s gyeo,7;]x 51 [Vs(8,0)] = max, gyejo,1,]x 51 Vs($,0) and attains at the point (84,6%), we
also have three cases: (i) §* = 0, (ii) § = Tj, (iii) 8 € (0,T;). For the first two cases, we see from
(3.17), (3.19) that
vs(8%,0°) < C.
We only need to consider the third case. Similarly, we can also assume that 5 > 3 and §* < BT;
for some 0 < 3 < 1/2. Since the function v~2 is bounded, Theorem 8.17 of [GT] and the arguments
exactly same as those in the proof of (3.62) imply that
max vs(s,0) = vs (5%, 0°) < C.
eyl o (O = 0800 <
If maxs gyeqo,1;]x st [vs(s,0)] = max(, gye[o,1;1x 51 (—vs(s,0)), noticing that —wvs satisfies the
equation in (3.63), we can use the same arguments to obtain
max —vs(s,0)) < C.
e Es B <
This completes the proof. O
Finally, we can complete the proof of Theorem 3.1.
Proof of Theorem 3.1.
As we remarked earlier, we just need to verify (2.5) in Theorem 2.3.
It follows from Lemmas 3.5 and 3.6 that for all ¢ sufficiently large,

v;(s,8) < C for (s,0) € [0,T3] x S, (3.64)
(vi)s(s,0)| < C for (s,0) € [0, 3] x S, (3.65)
v;(5,8) > C >0 for (s,0) € [0,T;] x St. (3.66)

Therefore, it follows from the regularity of A that

v; =V in C}

L o([0,00) x §') as i — oo

and V satisfies the equation

4 4 1
Vas + 5 Ve + Vag + 5V = 5 for (,6) € [0,00) x S*.
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Meanwhile, we see from (3.66) that V(s,8) > C. It follows from Theorem 1.3 of [17] that

. L r4\-1ys
lim V(s,6) =F, k= (5) ) (3.67)
This proves (2.5) and completes the proof. O

4. Uniqueness of solutions for small voltage. In the following we focus on the uniqueness of
solutions of (Sy) when X is small enough. It is known from Theorem 1.1 that there exists a unique
minimal solution uy of (Sy) for 0 < A < A*. In Theorem 5.5 of [12], the authors showed that
for every M > 0 there exists 0 < AJ(M) < A* such that for A € (0, A](M)), (Sy) has a unique
solution u) satisfying ||m||L1+e(9) < M, where 0 < € < 1 is a small number.

In this section, we shall show that there exists 0 < A« < A* such that for X € (0, A«), (Sy) has
a unique solution, i.e., the minimal solution u .

Theorem 4.1. There exists 0 < A« < A* such that for A € (0,\), (Si) has a unique solution,
i.e. the minimal solution u, .

Note that Theorem 4.1 is not proven even in the ball case. Thus our result is new even in
radially symmetric case.

We prove this theorem by a contradiction argument. Our main idea is to use arguments in
Lemma 3.2-Lemma 3.4 and the monotonicity formula.

Suppose on the contrary. We see that there are sequences {\;} and {u;} = {uy;} with A; =0
as ¢ — oo such that u; is a non-minimal solution of (S;). A solution  is said to be a non-minimal
solution of (S), if 0 < u < 1 in © and there exists another solution 0 < v < 1 of (S,) and a point
z € Q such that u(z) > v(x).

We consider two cases here:

(i) there is a 0 < p < 1 such that ||uj|lcc < 1 — p for all ¢ (we can choose subsequences if
necessary).

(ii) ||ui|looc — 1 as ¢ — oo (we can choose subsequences if necessary).

We easily see from Theorem 5.5 of [12] that the first case does not occur since for this case
(Sx;) has a unique minimal solution, but w; is a non-minimal solution by our assumption. Note
that there exists M > 0 such that

Hm”LH’E(Q) <M

We only need to consider the second case. Defining z; = 1 — u;, we see that ming z; — 0 as

i — 00. We shall use the same notation as in Section 3. Note that z; satisfies the problem

A.
Az; = —; inQ, 2z; =1 on oQ. (4.1)
%
We define ¢; = ming z; and
- z(2%y) 3/2
Uly)= — " yeQi:={y: ¢ ycq} (42)
1
Then
AU; = \U72 inQ, U3(0) =1, Ui(z) > L. (4.3)

‘We shall show that such U,- does not exist.
First we use Pohozaev’s identity to show that Lemma 3.2 still holds in this case.

Lemma 4.2. For any 3 € (0,1), there is k := k(8) € (0,1) independent of i such that for ¢
sufficiently large,
zi(z) > k for x € Q\B(0, Bro), (4.4)

where ro is given in Lemma 3.2.

Proof. By the well-known Pohozaev identity, we have that
0zi\2 d
/ <an> () ds=on [ oy ST (4.5)
)] on Q % o %
where n is the unit outward normal vector of 9Q2. By the assumptions on €2, we see that < z,n >>
dist(0, 92) > C > 0 for € 9. Therefore, it follows from (4.5) that

N2
/ (%) as<on [ 2. (4.6)
a0 \on Q 2i
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On the other hand, it follows from the equation of z; that

9z; dx
—dS=XN | —-
,/39 on 7’/9 22

(/\i/ﬂ(zi)’2dcc)2 <cf (%)st < C,\i/Q(zi)—ldw < C’/\i(/n(zi)_zdw)lﬂ.

This implies

Thus,

/ () 2dz < AT/, (4.7)
Q

By the standard moving plane argument as that in the proof of Lemma 3.2, we see that for any
z € Q\B(0, Bro), there exists a piece of cone with vertex at xz: 'y with (i) meas(T'z) > v > 0,
where + is independent of z, (ii) I'z C Q, (iii) z:z(y) > z;Q(w) for any y € I'y. Thus, it follows
from (i)-(iii) and (4.7) that

1 _
-2 -2 -1 2/3
, <= ~2()dy < v~ 1OAT/3. 48
z; “(z) < meas(I‘m)/m z; “(y)dy < v i (4.8)
This implies that

Xz 2 () < CAY® for @ € Q\B(0, Bro). (4.9)

Let k; be the solution of the problem

Ak; = CAY® in Q\B(0, Bro),
ki=1 on 99
ki =0 on BB(O,ﬂT'()).

Then the maximum principle implies that
zi > ki in Q\B(0, Bro).
Since k; = ko + CA/ k1, where

A1‘50 =0 in Q\B(Ov /BTO)v
ko =1 on 9N
ki =0 on 8B(0, fro),

and

ko =0 on 00

Ak =1 in Q\B(0, Bro),
ki =0 on 9B(0, fro),

we see that

2 > ko + CAL %k
Note that the maximum principle implies kg > 0 in Q\B(0,87r) and |ki(z)|] < C for z €
Q\B(0, Bro). We see that

zi(z) > C for z € Q\B(0,70r¢) and i sufficiently large (4.10)

where 7 > 1 is close to 1. The arbitrary of 8 implies our conclusion. This completes the proof. [
Proof of Theorem 4.1
Let U; be defined at (4.2) and R; = 6,5_3/27"0. We see that

Ui(R:) = RY 35?3 2i(ro).
Therefore, if we define
vi(s,0) = |y *3Ui(y), |yl = e, (4.11)
we easily see that for s € [0,T;] (where e”i = R;), v; satisfies the equation:

4 4 .
Vss + Evs + vgg + §v = \v %, (4.12)

Moreover, by the definition of U;(R;) and the fact that U; — 1 in ClL .(R?) as i — oo, we obtain
that for 7 sufficiently large,
v;(0,08) = O(1), v;(T:,0) = O(1) for 8 € S*. (4.13)
We also see that for any 0 < B < 1 independent of ¢ such that
vi(s,0) = O(1) for (s,0) € [0,8] x S! (4.14)
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and

vi(s,0) = O(1) for (s,0) € [BT;,T;] x St. (4.15)
(4.14) and (4.15) are obtained from the fact that U; — 1 in C}_(R?) as ¢ — oo and Lemma 4.2.
Moreover, easy calculations show that

(v5)s(s,0) = O(1) for (s,8) € [0, 5] x S1 (4.16)
and
(v:)s(s,0) = O(1) for (s,0) € [Ty, T;] x St. (4.17)
Exactly the same arguments as those in the proof of Lemma 3.4 imply
- < 4.18
sen[loa,%] o vi(s,0)dd < C (4.18)
and &
A 4.19
B8 o < 9
Thus,
dé dé 1/2
Ai <CX — fi €[0,T;
ooy <[ teg) | reciom
and hence 0
/\i/ B N2 for 5 € [0,T). (4.20)
51 vi(s,0) ¢

Now we use the monotonicity formula in Lemma 2.2: since U; € C2(Q;), we easily see that U;
is stationary. By Lemma 2.2, the function

i 1 S 1 N
Ep.(r) = —§r*4/3/ ﬁdy—k td [r*4/3/ UizdS] - —r*7/3/ U2ds
i 2 B(0,7) U; 4dr 9B(0,r) 4 9B(0,r)

is a nondecreasing function of r. Moreover, a simple calculation implies that under the changes:
vi(s,0) = [y|"*/30i, |yl =e°

the function £ (r) is just a positive multiple of £y, (s) = (w;)'(s) — 6hi(s). Hence &, (s) is a
nondecreasing function of s for s € [0, T3], where

w;(s) = / v2(s,0)d0, hi(s) =X /s e5(E-9) l (4.21)
s1 ) S1 Y4
We see from (4.20) that
hi(s) < CAY? for s € [0,T;). (4.22)
Now we claim that
wi(T3) = o(1) — %wi(Ti) (4.23)
where w;(s) = [g1 v2(s,8)df. Indeed, it follows from the equation of T; that
v (Ti) + ;m(Ti) = /_7; e3(=T0) . :—éde

T; BT{ .
< C)\i/ e3(=Ti)gs +/ edo=m) [ Mg
BT; —o0 ECH
< oxn(1 - e%(B—l)Ti) + Ce%(B—l)Ti
= o(1) for i sufficiently large

Here we have used (4.15) and (4.19). Thus, we see that
wi(T) = 2/51 vi(T;, 0) (v3)s (T, 0)d0

- 2/51 vi(Ti,0)[(vi)s (T3, 0) + %vi(Ti,e)]da - gwi(Ti)
= OM[ET) + 35(Te)] — Jui(Ty)

= 0(1) — %wl(Tl)
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This is our claim. Thus, it follows from (4.23) that

wi(T;) < =C
and
& (T;) < —C.
The monotonicity of &£, (s) of s implies
wi(s) — 6h;(s) < —C for s € [0,T;]. (4.24)
Then
hi(s) > C(1 +wi(s)) for s € [0,T;]. (4.25)

Integrating (4.25) from 0 to 7; and using (4.13), (4.22), we see that
NPT > e+ C
and
AP >cC>0 (4.26)

This is a contradiction. This completes the proof of Theorem 4.1. O

5. Proof of Theorem 1.3. In this section we complete the proof of Theorem 1.3. (1) of Theorem
1.3 follows from Theorem 4.1. So we just need to prove (2). By using Theorem 3.1, the main ideas
of the proof of (2) are similar to those in [7].

We first note that, by the implicit theorem, for A € (0, A*), the operator I-AA'(u, ) is invertible.

Here A(u) = (—A)~! ﬁ Thus, (A,uy) for 0 < A < A* is a simple curve of D. We can argue

as in section 2.1 of Buffoni, Dancer and Toland [3] and [4]-[5] in the space C'(Q) x R, to find a
analytic curve A = A(t), u = @(t) for t > 0 such that ||@(t)||cc — 1 as t — oo, (@(t), A(t)) € D for
t >0, (@(0), A(0)) = (0,0) and I —A(t)A’(i(t)) is invertible except at isolated points. Note that we
allow the curve (@(t), A(t)) to have isolated intersections and || -||1,00 is the usual norm on C!(%2).
If we now use the usual trick of finding a minimal continuum in {(@(t), A(t)) : ¢ > 0} joining
(0,0) to “infinity”, we obtain a curve with no self intersections but is only piecewise analytic and
continuous and I — AA’(u) is invertible except at isolated points. To obtain a minimal irreducible
continuum as in Whyburn [28], we can use arguments as in [7]. Let us denote this curve by T
and parameterize it by (@(t), A(t)) for ¢ > 0. Let “i,i(t)(ﬁ(t)) be the ith eigenvalue counting
multiplicity of

a- 2O (5.1)

(1—a()?
on Q with Dirichlet boundary condition. (The definition of ,ui,;\(t)('a(t)) is given in Section 1.)
By our comments above, u; () (4(t)) are continuous, piecewise analytic and have only isolated
zeros. We will show blow that ,ui,X(t)(a(t)) < 0 for large t. This means that for any ¢ > 0, (5.1)
has at least ¢ negative eigenvalues for ¢ large. Hence we see that there is a sequence {¢;} with
t; — 0o as i — oo such that the number of negative eigenvalues of (5.1) (counting multiplicity)
changes at ¢;. (Recall that H; 5.0 (@(0)) = pi(—A) = 400 as i — oo). Each (a(t;), A(t;)) must
be a bifurcation point. Otherwise the solutions near (@(t;), A(t;)) are a curve parameterized by
A, the critical groups of these solutions must be locally independent of A by homotopy invariance
of the critical groups (where critical groups are defined in Chang [6]). By the formula for the
critical groups at a non-degenerate point (see [6], p.33), this implies that the number of negative
eigenvalues of the linearization counting multiplicity must be constant in a deleted neighborhood
of (@(t;), A(t;)) which contradicts our choice of t;. (There is a minor technical point here. We
need to work in the space H(£2). We choose [|@(t;)]|co < 7 < 1 and then smoothly truncate the
1

function [(=HE such that it equals ﬁ for 1 > s > 7 so the equation makes sense on H} ().

Note that the truncation will not affect the solutions close to (a(t;), A(t;)) in HA(Q) x R.)

To prove our claim on p; 5 t)(ﬁ(t)) for large t, we need to consider positive solutions (u;, A;)
of (Sy) such that A; = k € (0,00) as ¢ — oo and ||u;||ec — 1 as 2 = co. (Note that Theorem 4.1
implies that A; /# 0 as 4 — 00). Thus, we see that there is ¢; with ¢; — oo such that :\(tl) =\
and 4(t;) = u;. We use a blowing up argument as in Section 3. If we define ¢; = 1 — ||u;||cc and
1-— ui(e?ﬂ)\;lﬂy)

3/2y—1/2
€ , YEQ; = {y: 62-/ A7, / yEQ},
%

Ui(y) =
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then U; is defined on a “large” domain Q;, U;(0) = ming, U; = 1. A rather standard limiting
argument shows that a subsequence of the U; converges uniformly on compact set to a positive so-
lution U of AU = ﬁlg on R? such that U(0) = 1, U(z) > 1. Tt follows easily from the equation that
U(z) > 0 for all z. By the Gidas-Ni-Nirenberg theorem [15] and our assumptions, x;(du;/dx;) < 0
on Q (where no summation is intended). After the rescaling and the limit argument, we find that
z;(dU/dz;) > 0 on R? and U is even in z;. By Theorem 3.1, we conclude that U is radially
symmetric and hence unique.
We now claim that the solution g of

1 2
—h"(r) — =K' (r) = —h(r), R(0)=1 (5.2)

T Us
has infinitely many positive zeros. To prove this claim, we first notice that it follows from [17]
that r=2/3U(r) — (4/9)71/3 as r — co. Hence % ~ %r‘z as 7 — 0o. On the other hand, by
explicitly solving the equation (it is an Euler equation), one finds that any non-trivial solution of

7’6”*%’6’*(”/7‘2)]9:0 (53)

has infinitely many (and unbounded) positive zeros if ;1 > 0. (Note that under the changes: r = e®
and k(s) = k(r), we see that k(s) satisfies the equation

E"(s) + pk(s) = 0.

It is easily seen that k(s) has infinitely many positive zeroes for any g > 0.) Thus, we can easily
deduce that ¢ has infinitely many positive zeros. Our claim holds.

We now in the position to complete the proof of Theorem 1.3. If N > 0 and ¢ is small and
negative, we see by continuous dependence that the solution g of

1 2
—h"(r) — ;h'(r) = mh('r) +oh, h(0)=1 (5.4)
has at least N positive zeros. Note that the solution of (5.2) is unique. Let h; be the function
defined to be §(|z|) for |z| between the ith and (i + 1)th the zeros of § and to be zero otherwise.
Then h; € H'(R?), h; are orthogonal (in L?(R?) or H!(R?)) and by multiplying (5.4) by h; and
integrating between these zeros we see that

am = [ | [519h7 - 75r?]

is strictly negative at each h;. Hence the span of h; is an (N — 1)-dimensional subspace of C§° (R?)
such that Q(h) < i < 0 if h is in the unit sphere of T'. Since h; has compact support it follows
easily that there is an (IV — 1)-dimensional subspace of H}(f;) such that

R 3
Q (1 —a(t:)(my))®
where 7; = (1 — ||@(t;)|| 0o )3/2[A(t;)]~1/2 for large t; if h is in the unit sphere in T'. (Note that €,
which is Q rescaled has the property that each function in T is supported in ; for large 4.)
Hence returning to the original scaling we see that there is an (N — 1)-dimensional subspace
T; of H}(Q) such that
/ |Vh|? - L@hz <0
Q (1—(a())?
for h is in the unit sphere of T; and ¢ large. By the variational characterization of eigenvalues, this
implies that “i,ﬁ\(t)(ﬁ(t)) <0forl <4< N —1iftislarge. Since N is arbitrary, this proves our
claim and completes the proof of Theorem 1.3.
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