EXISTENCE, STABILITY AND METASTABILITY OF
POINT CONDENSATION PATTERNS GENERATED BY
GRAY-SCOTT SYSTEM

JUNCHENG WEI

ABSTRACT. Of concern are point condensation patterns in the general-
ized Gray-Scott model in higher dimensional case. We first establish the
existence of boundary condensation or interior condensation under some
assumptions on the geometry of the domain. Then we study the stability
of such patterns. It turns out the stability of point condensations de-
pends on three factors: the domain geometry, the boundary conditions
and the exponents in the reaction terms. We also classify the instability
and metastability of point condensations.

1. INTRODUCTION

Recently there is a great interest in the study of self-replicating patterns
observed in the irreversible Gray-Scott model which governs the chemical
reactions U + 2V — 3V and V — P in a gel reactor, where U and V are
two chemical species, V catalyzes its own reaction with ¢/ and P is an inert
product. See [8], [11], [12], [31], [30], [32], [33] for more details. Letting U =
U(z,t) and V = V(x,t) denote the concentrations of U and V), respectively,
the pair of coupled reaction-diffusion equations governing these reactions is:

V, = DyAV — BV +UV?, x € RY
{ U, = DyAU — UV + A(1 - U), z € RV (1.1)
where A denotes the rate at which ¢ is fed from the reservoir into the reactor,
the concentration of V in the reservoir is assumed to be zero, and B = A+k,
where k is the rate at which V is converted to an inert product. Here the
diffusivities, Dy and Dy, of U and V), respectively, can be any chemically

relevant positive numbers.
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A pulse may loosely be defined as a region of high V and low U (if the
region shrinks to a point, then it is called point-condensation). The numer-
ical simulations suggest that during a peak in V, it is observed that V' is
large while U becomes small. It was observed numerically that single pulse
may be stable. When N = 1, pulse spitting was observed for Dy = 1 and
Dy = 0.01. By contrast, in the two-dimensional numerical simulations, the
spot replication was observed with Dy = 2Dy = 2 x 107°. See Pearson [31]
for more numerical results.

In [8], by using Mel’'nikov method, Doelman, Kaper and Zegeling con-
structed single and multiple pulse solutions for (1.1) in the case N = 1, Dy =
1,Dy = 62 << 1. In their paper [8], an important assumption is that
A ~ 2B ~ §%/3 where a € [0,3). In this case, they showed that
U = 0(6%,V = O(6~%). On the other hand, Reynonds, Ponce-Dawson
and Pearson [32] gave a formal construction of single and multiple pulses in
the case N =1, Dy = 1, Dy = 6.

In this paper, we study the following generalized Gray-Scott model (first
discussed in [pp. 193, Section IV, [32]])

_ _ q\/p
{V;_DVAV BV + UVP, z€Q 12)

U, = DyAU — U*V" +a(1 —U), z € Q

wherep > 1,4 > 0,5 > 0,7 > 0,e > 1,s(p—1) < gr,b >a>0and Q C R" is
a smooth bounded domain. (The condition that s(p—1) < ¢r was introduced
in [32] and will be needed in the existence of point condensation solutions.
See (1.9) below.) In this paper, we take a = O(1) and b = O(1). We shall
study the existence, stability, instability, and metastability of the stationary
interior or boundary single-pulse solutions to the system (1.2) in the case
when Dy is very small and Dy is very large.

More precisely, we consider the following system of elliptic equations

(1.3)

EAV — bV + UWVP =0, z €9
DAU —U*V' +a(1-U) =0, 7 € Q

where Q0 ¢ RN (N < 3) is a smooth and bounded domain, a > 0,b > 0 are
fixed constants; € > 0, D > 0; A = Z;VZI % is the Laplace operator in RY.
J
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The exponents p, q,r, s are assumed to satisfy the condition

N+2
(A) 1<p<(Ni_2)+,q>0,r>0,s>O, and 0 < s(p—1) < gr
where (§22), = 22 if N > 3;= 400 if N = 1,2.

We assume that there is no flux of U through the boundary, i.e., we impose

the Neumann boundary condition for U:

g—lyj = 0 on OS2 (1.4)
For V', we can impose either Neumann boundary condition
(N) g—‘: = 0 on 052
or Dirichlet boundary condition
(D) V =0 on 09.

Problem (1.3) with (1.4) and (N) (or (D) ) is denoted by (1.3)y (or (1.3)p).
Note that the system (1.3) doesn’t have a variational structure. Generally
speaking the existence of solutions to (1.3) is very difficult. (The results
of [8] give the existence in R'. However it is hard to generalize to higher
dimension.) In this paper, we follow the idea of Turing [34]. Namely we

2

assume that Dy = €° is small and Dy = D is large. This implies that for

the quotient of the two diffusion coefficients

This is the situation described in the pioneering work of Turing [34]. His idea
is that if, in the absence of diffusion, both U and V tend to a linearly stable
uniform steady state, then, under certain conditions, spatially homogeneous
patterns can evolve by diffusion-driven instability if the diffusion coefficients
are different. Since diffusion is usually describing a stabilizing process this
is a novel concept. This idea has been used in other systems, see [29].

Now we let D — 400 first and assume that U — U,. Then U, satisfies

{AUOO=OinQ

a(g]—y"" =0 on 0. (1.5)
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Hence Uy, is a constant, say Uy, = U.. To find out the constant U., we
integrate the equation for U, we obtain the following system

EAV —bV + VPUL =0,V >0 in Q,
a(l =Ue) = Ul Jo V™ =0, (1.6)
6U|aQ —O or V‘aQ—O

(System (1.6) is called the shadow system of (1.3).)
Thus if we let

Ve(z) = Ue_q/(p_l)ve, (1.7)

where v.(z) is a solution of the following equation

eAv—bv+vP =0,v >0 in Q, (1.8)
%190 =0 or v[sn =0, '
and U, satisfies
s——4r - ]
a(l-U)—-Uc "V — / v =0, (1.9)
2 Jo

then (V¢, U,) is a solution of (1.6).
We note that if [, v? = o(1), then equation (1.9) has a unique solution of

Tar— S(P ) =
U= (1 o)y | 0777 = o).

From now on, we always refer U, as the unique small solution to (1.9). (Note

the form

that (1.9) may contain other solutions which are large. See [44] in the case
p=2,g=1,r=2,s=1.)

Equation (1.8) has been studied by many authors. It is known that equa-
tion (1.8) has both boundary spike solutions (in the Neumann boundary con-
dition case) and interior spike solutions (both in the Neumann and Dirich-
let case). For the boundary spike solutions, please see [4], [5], [13], [15],
[17], [22], [23], [24], [35], [37], [38], [39], and the references therein. (When
p= 22 N > 3, boundary spike solutions of (1.8) have been studied in [1],
[2], [3], [9], [10], [21], etc.) For the single interior spike solutions, please see
[27], [36], [40], [41].

In particular, in [37], the author proved the following theorem on the

existence of boundary spike solutions. (Let H(P) be the mean curvature
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function on 0Q. Set Gp(P) := (VZ,H(P)) where V,, are the tangential
derivatives of P € 09.)

Theorem A. Let Py € 002 be a nondegenerate critical point of the mean
curvature function H(P). Then for € sufficiently small, problem (1.8) with
Neumann boundary condition has a solution vE(z) such that vB(z) has only
one local mazimum point P, and P, € 02. Moreover P, — Py as € — 0
and vB(y) = vB(ey + P.) = w(y) as € — 0 uniformly for y € Q. p, :=
{yley + P. € Q}, where w is the unique solution of the following problem

Aw—bw+wP=0,w>0 in RN,
w(0) = max,ecpy w(y),w(y) = 0 as |y| — oo.

(1.10)
Remark: It is known that the solution w to (1.10) is radial, unique and
decays exponentially. (See [14], [18].)

In [40], the author constructed single interior spike solution to (1.8). We
first introduced the following definition: For each P, € €2, let

_ 2[z—Pp| d
. e € z
d:uPo(Z) = ll_r)% _ 2[z—Py| :
Joge = dz

(1.11)

Py € Q) is called a “nondegenerate peak point” if the following holds: there
exists a € R" such that

/ < P> (5 _ Py)dyupy (2) = 0 (H1)
oN

and

Gi(P) == (/ e<* (2 — By)i(z — By);dpp,(2)) is nonsingular.
o0 (HQ)

(Here (z — P); is the i—th component of (z — P,). The vector a in (H1)
and (H2) is unique. For a proof of the above facts, see [41].)

In [40], the author proved the following two theorems.
Theorem B. Let Py € ) be a nondegenerate peak point. Then for € suffi-
ciently small, problem (1.8) with Neumann boundary condition has a solution
v! n(x) such that v] y(x) has only one local mazimum point P, and P. — Py
as € = 0. Furthermore, v} y(y) := v! y(ey + P.) = w(y) as e = 0 uniformly
fory € Q. p., where w is the unique solution of (1.10).
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Theorem C. Let Py € €2 be a nondegenerate peak point. Then for e suffi-
ciently small, problem (1.8) with Dirichlet boundary condition has a solution
vl p(x) such that vl (x) has only one local mazimum point P, and P, — Py
as € = 0. Furthermore, v} (y) := v] p(ey + P.) = w(y) as € = 0 uniformly
for y € Q¢ p., where w is the unique solution of (1.10).

We now begin to study system (1.3). Set

Let v, v! y, v be the solutions constructed in Theorems A-C. We denote
the corresponding solutions to the shadow system (1.6) by (V.2,UF), (V/y, Ul ),
(VIp,Ulp) (defined by (1.7) and (1.9)). We shall construct the correspond-
ing solutions to (1.3) in the case 7 — 0.

We first consider the existence of boundary condensations for the system
(1.3)n-

Theorem 1.1. Assume that (p,q,r,s) satisfies assumption (A). Suppose

Py € 092 is a nondegenerate critical point of H(P). Then fore << 1,7 << 1,

problem (1.3)n has a solution (VE (), UE.(x)) with the following properties:
(a) V5 = ([US) 9Dl (2) + o(1)),

(b) U, =US(1+0(1)),

B

B(z) is the solution constructed in Theorem A and U is given by

where v
(1.9).

Our second theorem concerns the existence of interior spike solutions for
(1.3)n-

Theorem 1.2. Assume that (p,q,r,s) satisfies assumption (A). Suppose
Py, € Q is a nondegenerate peak point. Then for ¢ << 1,7 << 1, prob-
lem (1.3)n has a solution (V! y(x), UL y(x)) with the following properties:
(a) ‘/;{T,N = (UeI,N)_Q/(p_l) (UeIN(-T) +o0(1)),
(b) UGI,T,N = UEI,N(]' +o0(1)),

where véN(m) is the solution constructed in Theorem B and Ue{N 18 given

by (1.9).

Similarly we can construct interior spike solutions for (1.3)p.
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Theorem 1.3. Assume that (p,q,r,s) satisfies assumption (A). Suppose
Py, € Q is a nondegenerate peak point. Then for ¢ << 1,7 << 1, prob-
lem (1.3)p has a solution (V. p(x),Ul. p(x)) with the following properties:
(0) VE p=ULp) @D (] (x) + o(1)),
(b) UGI,T,D = UeI,D(l +0(1)),

where ’UGI,D(JS) is the solution constructed in Theorem C and UEI,D s given

by (1.9).

Next we study the stability and instability properties of the solutions con-
structed in Theorems 1.1-1.3. (Here we say a solution is linearly stable if all
the eigenvalues of the associated linearized operator have negative real part,
it is linearly unstable if the associated linearized operator has one eigenvalue
with positive real part, and it is metastable if the eigenvalues of associated
linearized operator either approach 0 or have strictly negative real parts.)

A remarkable fact is that although it is well-known that vZ,v! v, v{ , are all
linearly unstable with respect to the equation (1.8) (see e.g., Theorem 2.1 of
[19]), the corresponding solutions to the system (1.3) (V5, UZ), (VZ, x, UL, v),

(V& p, UL ) may be stable with respect to (1.3). The shifting of positive
eigenvalue in the single equation to negative eigenvalue in the system is an
interesting problem which is of independent interest and will be studied in
this paper.

It turns out that the stability and instability of single point condensation
solutions depend on three factors: the exponents p,q,r, s, the geometry of
the boundary and the domain, and the boundary conditions.

We say (p, q,, s) satisfies assumption (B) if

N+2)
N -2’

4
(B) eitherr:2,1<p§1+ﬁ,or r=p+1, 1<p<(

We say (p, g, T, s) satisfies assumption (C) if

N +2 qr
)+a __(p_1)<00

4
C =214+—<p<

N

where ¢g is a small number to be determined later.

We first consider the boundary spike solution (V.2

€,7)

UB).
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Theorem 1.4. Fore << 1,7 << 1, (VfT, UfT) is linearly unstable if either
Py € 09 is a nondegenerate critical point of H(P) such that Gg(Py) contains
one positive eigenvalue or (p, q,r,s) satisfies assumption (C).

(VfT, UfT) s linearly stable if Py € 0¥ is a nondegenerate critical point
of H(P) such that Gg(P,) contains no positive eigenvalue and (p,q,r,s)
satisfies assumption (B).

Ve

5,UE) is metastable if Py € 0 is a nondegenerate critical point

of H(P) such that Gg(P,) contains at least one positive eigenvalue and
(p,q,r,s) satisfies assumption (B).

- T T
We next consider (V. y,Ug, y)-

Theorem 1.5. Let Py be a nondegenerate peak point. Then fore << 1,7 <<
1, (VI UL y) is always linearly unstable.

(VI UL, w) is metastable if (p,q,7,s) satisfies assumption (B).

€

Finally we consider (V! 5, Ul p).

Theorem 1.6. Let Py be a nondegenerate peak point. Then fore << 1,7 <<
1, (VI p, UL, ) is linearly unstable if (p,q,r,s) satisfies assumption (C).

€

(V{T,D, UéT,D) is linearly stable if (p,q,r,s) satisfies assumption (B).

€

Remarks: (1) From Theorems 1.3-1.6, we see that in the case when r = 2
or r = p+ 1, we have a fairly good picture of the stability and instability
of single spike solutions in the case when (p, ¢, r, s) satisfies assumption (A)
and a = O(1),b=0O(1), Dy >> 1, Dy << 1. Theorems 1.4-1.6 are still true
if r is close to 2 or p+ 1. In other cases, it is unclear.

(2) We note that related stability result for the Gierer-Meinhardt system
were obtained in [25] and [28] in the one dimensional case. In [43], the
author studied the instability of interior spikes for the shadow system of
Gierer-Meinhardt system in higher-dimensional case.

(3) The results in this paper can certainly be generalized to a large class

of reaction-diffusion systems.



POINT CONDENSATIONS 9

In conclusion, by taking Dy = €2 << 1 and D = Dy >> 1, we obtain the
shadow system which can be reduced to a single equation. By studying the
shadow system, we obtain the existence and stability analysis of the original
system (1.3). Here we assume that a = O(1),b = O(1). The advantage
of this approach is that we can deal with higher dimensions and boundary
value problems while the disadvantage is that we can not deal with the strong
coupling case (i.e., D = O(1)). On the other hand, in [8], they studied the
strong coupling case in one dimension by dynamical system methods. But
it seems hard to apply their methods to higher dimensions.

After the paper was submitted, we were kindly informed by the referees
that some further results on the existence and stability of solutions to the
Gray-Scott model are obtained in [6], [7], [16], [20] and [26]. In these papers
system (1.1) has been studied on the unbounded domain Q = R! (or, in the
numerical simulations, the interval {2 was taken so large that Dy could not be
considered to be large). This implies that one cannot approximate U(z) by
the constant U.. U(z) varies on a long spatial scale. As a consequence, both
the existence problem and the stability problem have a significantly different
character (they cannot be studied by the shadow system approach of this
paper). Moreover, it has been found that on unbounded one-dimensional
domains the relative magnitudes of @ and b with respect to € play a decisive
role in the analysis.

In the rest of this section, we outline the proofs of Theorems 1.1-1.6. We
shall concentrate on the proofs of Theorems 1.2 and 1.5 for (V! y, U/ y).
The proofs of the other cases are similar and will be left to the last section
of this paper.

To avoid clumsy notations, we omit the indexes D, N, B, I for the moment.
Furthermore, by suitable scaling, without loss of generality, we may assume
that b = 1.

The proofs of Theorems 1.2 and 1.5 are based on perturbation arguments
from 7 = 0 to small 7’'s. Note that when 7 = 0, we obtain the shadow system

(1.6). For the purpose of perturbation, it is enough to obtain the eigenvalues
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Loo<f;>:/\<;§),)\ec, (1.12)

where L is the linearized operator of the system (1.6) at (V, Ue):
Loy = ( EA =1+ pV2lUs qUITVE )
” “Uem JorVEh = sU g VY (1.13)

L is defined in the space Y := H2 x R where H? := {u € H?*(Q) % =
0 on 00}.

Since

of the system

‘/; = Ue_q/(p_l)vea Ue - ( |Q| / ‘IT 1;(171) 1)
a

by some simple computations (see Section 4) it is easy to see that the eigen-
values of problem (1.12) in Y are the same as the eigenvalues of the following

eigenvalue problem

r—1¢

A¢p — Pl — = Jo v = \p, ¢ € H2.
€A =P Fpu ¢ s Jqur +a"ts7H1 = U)~U [, v ( a—i—)\) ¢;¢(1.12)
Let o, be an eigenvalue of (1.14). The following lemma will be proved in

Section 4.

Lemma A. (1) If ac — 0 as € — 0, then o = (1 + 0o(1))7¢ where 7€ is a
small eigenvalue of L in H? where L := A — 1+ pv? L.

(2) If o — ag # 0. Then oy is an eigenvalue of the following eigenvalue
problem

Ap—¢+puP~'o— EMU}” = agp, ¢ € H*(R"),
S " (1.15)
where w is the unique solution of (1.10).

By Lemma A, we just need to know the eigenvalues of problem (1.15) with
nonnegative real part and the small eigenvalues of L.. The small eigenvalues
of L. are studied in [42] and [43]. It remains to study problem (1.15). A
major contribution in this paper is to completely understand the eigenvalues

of problem (1.15) in the following two cases

r=2, orr=p+1.
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In fact we shall prove (see Theorems 2.1 and 2.2)

Key Theorem: (1) If (p,q,r,s) satisfies assumptions (A) and (B), then
Re(ag) < —¢1 < 0 for some ¢; > 0, where g # 0 is an eigenvalue of
problem (1.15).

(2) If (p,q,r,s) satisfies assumptions (A) and (C), then problem (1.15)
has an eigenvalue oy > 0.

The structure of the paper is the following:

In Section 2, we study the eigenvalues of problem (1.15) and prove the
Key Theorem.

In Section 3, we recall the small eigenvalues of L. obtained in [42] and
[43].

In Section 4, we analyze the eigenvalues of L.

In Section 5, we use perturbation arguments to prove Theorems 1.2 and
1.5.

In Section 6, we prove the other theorems.

Finally in appendix, we prove the reduction Lemma A.
Acknowledgments: This research is supported by an Earmarked Research
Grant from RGC of Hong Kong. The author would like to thank Professors

I. Takagi and E. Yanagida for useful discussions.

2. EIGENVALUES OF PROBLEM (1.15)

In this section, we study the eigenvalues of problem (1.15).

Set

— 9
TSy
(By the assumption (A), v > 1.)

Let w be the unique solution of (1.10) and set

r—1
L6 = Ab— 6+ pur=p — 4(p — I P s ¢ m2(RY).
S w
Note that L is not selfadjoint if r # p + 1.
Let

Lo=A—1+puwt™!,



12 JUNCHENG WEI

0
Xo := kernel(Ly) = span{%u =1,..,N}
J
It is well-known that Ly admits the following set of eigenvalues

MH1 > 0,/,1,2 = ... = UN4t1 = 0;,“}N+2 <0,... (21)

where the eigenfunction corresponding to u; is of constant sign. See, e.g.
Theorem 2.1 in [19] and Theorem 2.1 in [43].

We observe also that if L¢ = 0, then ¢ — yfRfN S Xp. So,

0= [ wo— BT Ry n ) [ wrs
RN fRN w” RN
which implies that [,y w"'¢ = 0 by assumption (A). Hence ¢ € Xj.
Note that

1 1

and

/RN(L(;%U)w = /RN w(}%w + 1wa) (Iﬁ - g) /RN w?, 23)

1 1
-1 y - D \v4
/ (Ly w)w —/ wP( 1w+2m w)

1 1
= /N(Lalw)p 1L0w = p—l w2- (2.4)
R _ _

In this section, we shall prove the following two theorems.

Theorem 2.1. Assume that r = 2.

(1) Suppose that 1 <p <1+ %. Let ag # 0 be an eigenvalue of L. Then
we have Re(ao) < —¢; for some ¢; > 0.

(2) If1+ 5 <p< (F2)+ and & — (p — 1) < ¢y for some co > 0, then L
has a posztwe ergenvalue aq.

Theorem 2.2. Assume that

N+2

N o)+

Let ag # 0 be an eigenvalue of L. Then we have Re(ag) < —cy for some
Co > 0.

r=p+1,1<p<(
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Proof of Theorem 2.1:
We divide the proof into three cases.
Case 1: 7=2,1<p<1l++.

Since L is not self-adjoint, we introduce a new operator as follows:

- o fRN “w? — fRNw¢w _ fRN 1fR wqbw
A ey e A | P ER

We have the following important lemma.
Lemma 2.3:

(1) Ly is selfadjoint.
(2) The kernel of Ly consists of w, ay w ji=1,..,N.

(8) There ezists a positive constant a; > 0 such that

L1(¢7¢)
2(p—1) [on P Pt
= [ (Vo rot—purtgyy DI e 00yl W [y

Jrw w (Jpw w?)?
2 aldi2(RN)(¢; X1)
for all ¢ € HY(RN), where X, := span{w, 2 oy, i =1,...,N} and dizgv

means the distance in L?-norm.
Proof: The first statement follows easily by direct verification.

For (2), it is easy to see that X; C kernel(L;). On the other hand, if
¢ € Kernel(Ly), then we have

Lop = c1(d)w + ca(p)w”

— () La(o 0+ 52V0) + ea()Lo(

)

where

0(6) = (p— i —(p—lfRN e 0d o) = (p - 1)dm

fRN w? fRN w?)? fRN w?’
Hence
1 1 1
¢ — Cl(¢)(jw + 233Vw) - C2(¢)Fw € kernel(Ly).
Note that
p(_1_ 1 p+1 L l
() = -Der (@A T ET TV gy gy e e 0z + 32V
fRN w fRN 2)2
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1 N wht!
=c1(¢) —a(d)(p - 1)(; - Z)ffRN

by (2.3) and (2.4).

This implies that ¢;(¢) =0, ¢ € X;.

It remains to prove (3). Suppose (3) is not true, then by (1) and (2) there
exists (a, ¢) such that

(i) « is real and positive,

(ii) ¢ L w, g{)J_g—;’;,j:l,... , N, and

(iii) L1¢ = .

We show that this is impossible. From (ii) and (iii), we have

(Lo —a)p=(p—1) fwa ¢ (2.6)
RN
We first show that
/ wPe # 0.
RN

Suppose this is not the case. Then o > 0 is an eigenvalue of Ly. By (2.1), ¢
has constant sign. This contradicts with the fact that ¢ | w.
Therefore o # py, 0, and hence Ly — « is invertible in X" So (2.6) implies

¢=(p— fﬁ;w ¢(L0 —a) " w.

Thus

Po = fRN — o) tw)wP
[ wre=0=0T0 [ (= o)t

| wt=0-1 /R N((Lo — ) wyu,

/RNw —/RN Lo — @) "w)((Lo — a)w + aw),
S T

0= /R (Lo =) w)w. (2.7)

Let hi(a) = [on (Lo—a) 'w)w, then hi(0) =[x (Ly'w)w = [ ( p11w+
L — ) [avw? > 0since 1 <p <1+ +. Moreover h)(a) =
fRN (Lo — ) *w)w = [pn((Lo—a) 'w)? > 0. This implies k(o) > 0 for all
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a € (0, u1). Clearly, also hy(a) < 0 for @ € (1, 00) (since limg— 100 by (@) =
0). A contradiction to (2.7)!
]
We now finish the proof of Theorem 2.1 in Case 1.
Suppose that Lo = ap¢ and oy # 0. Let ag = ag +ia; and ¢ = ¢pg +i¢;.
Since ag # 0, we can choose ¢ L kernel(Lg). Then we obtain two equations

Lopr— (p—1) ffN ¢Rw” = arPr — 191, (2.8)
RN

Logr— (p—1) ffN ¢pr = aprdr + Pr. (2.9)
RN

Multiplying (2.8) by ¢r and (2.9) by ¢; and adding them together, we

obtain
~an [ (St )
RN

= L1(¢r, ¢r) + L1(¢1, é1)

1)y — 9 dmy PR S ‘Z}ZNJwaZRN wor gy WP

o= DIl e ([ wer)

Multiplying (2.8) by w and (2. 9) by w we obtain

-1 [ won— o0 [t [ s [ v
RN N N N

(p—1) /RN wPér —y(p — ff;i}? /RN wP = ozR/RN w¢1+a1/RN wor

Hence we have

-0 [ won [ wonto-1) [ wor [ ule

~(ant 1= [ wonte ([ won)
o [ (@t o)

= Li1(¢r, or) + L1(é1, ¢1)

p+1 2
+(p - 1)(7—2)(I%a3+7f?’v wa ) Uny w‘/’Rf w?wa wer)
RN RN

Therefore we have
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IRN wpbtl

o= Dol won (o)
Set
$r = crw + ¢, o L X1,
ér = crw + ¢7, 07 L X1
Then

2 2
/ w(bR:CR/ w7/ w¢1201/ w-,
RN RN RN RN

ALy (Dr X1) = 195172, dL2(rry (61, X1) = o7 (17

By some simple computations we have

Ly(ér, or) + L1(é1, é1)

W+ (p—1) (1) () /

w (gl IO [7) = 0
R

+o-Dan(chr<) [
RN
By Lemma 2.3 (3)

(= Dar(@+ &) / w?
RN

+(p— (7 = 1)*(ck + ¢7) /RN w4 (o + a) ([6zllZ2 + o7 72) < 0

Since v > 1, we must have

ag < 0.
This proves (1) of Theorem 2.1 in Case 1.

Case 2: 7=2,1++<p<(F2).L—-(p-1) <c.

In this case, we consider the following function
ho() == a/ (Lo — ) twP)w — i/ w?.
RN qr Jry
Note that for a sufficiently small, we have

w(Ly — ) twP = wLy ' w? + « wLy 2w? + O(a?
0 0
RN RN RN

1 N
- [t Y [ v o
4 RN

p—1 Jgn p—1'p—1

ha(o) = (4= 2 [ wre O /RN w? + 0(a?).

p—1 qr’ Jgn p—1p—1
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Since (p—1)"' —4N"!' < 0and (p— 1)t — s(¢gr)~! > 0, it is easy to show
that there is an ay > 0 sufficiently small such that hy(c;) = 0, provided that

p—1 qir 11—yt
T (LN T W
p—1\p—1 4 p—1 4
is sufficiently small. Now we put

Since fRN dw = s(qr)” fRN , it is easy to check that

Loy = a1¢.

Hence L has an positive eigenvalue ;. Moreover the eigenfunction corre-
sponding to a; can be chosen to be radial

Case 3: r=2,p=1+ 1.
In this case we have

|t = [ wZqwt 5avu) =0

- (2.10)
Set

1 1
$o=——w+ wa (2.11)
p—1

We will follow the proof in Case 1. We first have the following lemma
which is similar to Lemma 2.3

Lemma 2.4:
(1) Ly is selfadjoint;
(2) The kernel of Ly consists of w, ¢y, 22, j

j=1,...,N.
(8) There ezists a positive constant ay > 0 such that

L1(¢7 ¢)

= [ (96 + 8 = pur 1)
2(p — 1) [ W [ WP (o S W 2
PR Ty AR

> a2d%2(RN)(¢a Xo)
for all ¢ € H*(RY), where X5 := span{w, ¢y, 3;” j=1

|l7=1,...,N}.
J
Proof: The proof is similar to that of Lemma 2.3
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Now we can finish the proof of Theorem 2.1 in Case 3. The proof is similar
to that of Case 1, here we need to deal with an extra kernel ¢q.
Suppose that Lo = ap¢ and oy # 0. Let ag = ag +ia; and ¢ = ¢pr +i¢y.

Since ag # 0, we can choose ¢ L kernel(Ly). Then we obtain two equations

Lo¢r — (p — 1)7%"“} = arPr — 191, (2.12)
RN

Logr — (p— 1)7%“)1) = ardr + Pr. (2.13)
RN

Set
br = CrRW + bro + ¢%, b5 L Xo,

¢r = crw + bido + o7, 67 L Xo.

Then similar to Case 1, we have

Ll (¢Ra ¢R) + Ll (¢Ia ¢I)

= Do) [+ (=00 -1 +d) [ wrt

vanth [ S48 [ G+ 6kl + 16} = 0
RN RN
By Lemma 2.4 (3)

(v Van(ch+ ) [
RN

o= =1 G+ [ ot

vonlth [ S48 [ )+ (ont a6kl + o) <0
If ar > 0, then necessarily we have
cr=c;=0,¢5=0,¢7 =0.
Hence
®r = broo, b1 = broo.
This implies that
brLody = (arbr — asbr)¢o, brLogo = (arbr + arbr)do,

which is impossible unless by = by = 0 or ag = ay = 0. A contradiction !

Combining Case 1, Case 2, and Case 3, we obtain Theorem 2.1. O
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Proof of Theorem 2.2:
Let r =p+ 1. L becomes
L=1Ls— KMUJP
S fRN wpPT1

We will follow the proof of Theorem 2.1. We first define a new operator.

p
Lo¢ = Lo — (p — 1)%% (2.14)
RN

We have the following lemma.

Lemma 2.5:
(1) L is selfadjoint.
(2) The kernel of Ly consists of w, g—;‘;,j =1,..,N.

(8) There ezists a positive constant ay > 0 such that

L2(¢7 ¢)
- /RN (V[ + 6* — pur-1g?) + LD Unv v70)

fRN wl’+1

> asdpapry (6, X1)
for all p € H(RN).
Proof: The proof of (1) and (2) is similar to that of Lemma 2.3. We omit
the details. It remains to prove (3).
Suppose (3) is not true, then by (1) and (2) there exists (a, ¢) such that
(i) « is real and positive,
(ii) ¢ L w, QSJ_g—;‘;,j:l,... , N, and
(iii) Loop = ag.
We show that this is impossible. From (ii) and (iii), we have
(r—1) fRN wp¢wp
fRN wp+t1 )

/RNw%#o.

Suppose this is not the case. Then « is an eigenvalue of Ly. By (2.1), ¢ has
constant sign. This contradict the fact that ¢ L w.

(Lo — )¢ = (2.15)

We first show that
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Therefore o # 1,0, and hence Ly — « is invertible in Xj. So (2.15)
implies
1) fRN wP¢

IRN e

(L() - a)_lwp.
Thus f
[ o= =0 [ (o= o)t

/RN wPtt = (p—1) /RN((L0 — o) twP)wP. (2.16)

Let hg(a) = (p — 1) [pn (Lo — @) 7 'wP)w? — [y wPt!, then h3(0) = (p —
1) [on (Lo 'wP)w? — [y wP™ = 0. Moreover hy(a) = (p — 1) fn (Lo —
@) ?wP)w? = (p — 1) [pv((Lo — @) 'w?)® > 0. This implies hg(a) > 0 for
all @ € (0, p1). Clearly, also hz(c) < 0 for @ € (p1,00). A contradiction to
(2.16)!

0

We now finish the proof of Theorem 2.2. We follow the proof of Case 1 of
Theorem 2.1.

Suppose that Lo = ap¢ and oy # 0. Let ag = ag + iy and ¢ = ¢pg+i¢;.

Since o # 0, we can choose ¢ L kernel(Lg). Then we obtain two equations

Lopr — (p — 1)y ——7w? = ardr — ar¢r, (2.17)

L()(b[ - ( f p+1w = &R¢[ =+ oz[(;SR. (218)

Multiplying (2.17) by ¢r and (2.18) by ¢; and adding them together, we

obtain
o / (6% + 62)
RN

= LQ(QSR, QSR) +L2(¢Ia (b[)
f pr¢ f pr(b
+p—1D(y-1)-F ?RN ety :

By Lemma 2.5 (3)

fRN wp¢R fRN wp¢l

f N wP-H. -

on [ | (@Gt randiao, X0 +o-1) (-
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Since v > 1, this implies
agr < 0.

Theorem 2.2 is thus proved.

3. EIGENVALUES OF L,

In this section, we recall the small eigenvalues obtained in [42] and [43].
For each u,v € H'(Q), we define

(u,v) =€V / (€2Vu - Vv + uv).
Q

We denote (u,u)e by ||ul|?.
Let w be the unique solution of (1.10). For P € €, we set wp to be the

unique solution in H!(Q) of

EAu—u+wP(2=E) =0in Q,
{ g—l’f = 0 on 0. (3-1)
For P € ), we let
pap(r) = w((@ = P)/€) — wip(z).
Remark: The functions w)p(z), pp(x) were introduced in [40].
Then we have
Theorem 3.1. (See Theorem 1.2 in [43].) The eigenvalue problem
EAG = ¢+ p(ul )0 =76 in O (32)
% = on 0S) )

admits the following set of eigenvalues
7—16 = H1 + 0(1)77-26 = 0(1)7 '-'77—16\/4—1 = 0(1)77-; = Uj + 0(1)7 .7 Z N + 2.

Moreover, we have

m

L S bA_1,j=2,..,N+1, (3.3)
QD?,TPO(PO) !

where Aj,j =1,...,N are the eigenvalues of G1(P,) and

fRN pwP~lw'u, (r)
fRN (%)Qdy

bo = 2d72(P0, 89) < 0,
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where u,(r) is the unique radial solution of the following problem
Au—u=0,u(0)=1,u=u(r) inR". (3.4)

Furthermore, the eigenfunction corresponding to 75,5 = 1,..., N is given

by the following:
N

. awé\fp
b5 = Z(gj,l +o(1))e P |p=P.,
=1
where §; = (gj1, - 9;.n)" is the eigenvector corresponding to \;, namely

G[(Po)gj == Ajgjaj == 1, ceey N
Remark: It was proved in [40] that
—elog[—¢Xp (Po)] — 2d(Po, 02) as e — 0

Therefore we have

75>0,j=2,..,N+1 (3.5)

4. EIGENVALUES OF L,
In this section, we study the shadow system at (V;,U,), where

Ve = (Uo) 7 Toe(w),

1
a(l-U,) — Ufs—q?/(p—l)_ / vl =0
2 Jo

and ve(z) is the solution constructed by Theorem B. We show that (V¢, U,)

is nondegenerate. Moreover, we obtain exact eigenvalue estimates.
Let Lo be defined by (1.13). The domain of L, is Y = H2 ® R.
Let (e, de, ) be a solution of (1.12). Then we have

1 1
a+ o+ SUCS_I—/ VI )ne = —rUf—/ VIl 4.1
( al Jo") 9 Jo )
and
€A — ¢ + pVP T Ulbe + neqUI ' VE = e, 6 € H.. (4.2)
Substituting (4.1) into (4.2) and using (1.7) and (1.9), we obtain that

Loo¢e = ae¢67 d)e € H3 (43)
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where

r—1
ar oY% - P

Lo :=¢A -1 Pl
€ + pue S fQ v 4+ a ts (1 = Ue) 1, fn v (a + ae)(vill)

in H2.

We have
Lemma A. (1) If ac — 0 as € — 0, then o = (1 + 0o(1))7¢ where 7€ is a
small eigenvalue of L. in H? where L, := A — 1 + pvP~L.

(2) If o — g # 0. Then oy is an eigenvalue of the following eigenvalue

problem

r—1
Aé— g+ purip— TR0 0 s e HARY).

s fpvw’ (4.5)

The proof of Lemma A is technical and is left to appendix.

Combining Theorems 2.1, 2.2 and Lemma A, we have

Theorem 4.1. Let of,j = 1,2, ..., be eigenvalues of L.
(1) Ifr=21<p<1l++ 0rr—p+1 1<p< (§£2)4, then we have

of = (1+0(1)7f1,5 =1, N, Re(a]) < —co < 0,5 > N.

(2)Ifr=2,1+ %+ <p< (32)+ and £ — (p — 1) < ¢ for some ¢y > 0,

then we have

Re(al) > ¢; > 0.

Proof:

HIfr=21<p< 1+% orr=p+1,1<p< (%+§)+, then by
Lemma A and Theorems 2.1 and 2.2, the first N eigenvalues of L., are
(1+0(1))75,4,7 = 1,..., N. The (N +1)—st eigenvalue has a strictly negative
real part.

(2)Ifr = 2,14+ < p < (§42),, then by Theorem 2.1, L has an eigenvalue
oy with positive real part. Moreover the eigenfunction corresponding to a;
is radial. Since a; # 0, a simple perturbation argument shows that L., has
an eigenvalue (1 + o(1))a.

]
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5. PROOFS OF THEOREMS 1.2 AND 1.5

In this section, we use perturbation arguments (similar to those in [24])
to construct solutions to (1.3) for 7 = + small and thus finish the proofs of
Theorems 1.2 and 1.5. Our main tool is the implicit function theorem.

We first decompose L%(2) into

L*(Q) =R @ Xy,
where
X, = {u € L2(Q) /Qu(ac)dx — 0

and the space of constant functions is identified with R. Let P : L?(Q) — X,

be the projection associated with this decomposition:

1
Pu:u——/uac dz.
a Jo "
Let
Z:=H*N X;.
In accordance with the decomposition above, we set
U(z) = € + (o), / (z)dz = 0.
Q
Define three operators

Fi(r,V,£,9) := EAV — V + VP(£ + )Y,

Folr, V,6,0) = —/QV’"(£+W a0 - aglql,
Folr, V,60) i= A+ 7 —ath — PV (€ + )°))

respectively.
Then for N < 3, since H? is compactly embedded into L>((2),

f:: (flanaffi)

is an analytic mapping from an open set R x {V € H2|V(z) > 0 on Q} x
(8, +00) x {¢p € Z|||Y||ro() < 6} into L*(Q) x R x X1, where § is a positive
number.

Let (V.,U) be a solution to the shadow system (1.6). Then we have

F(0,V,,U.,0) = 0. (5.1)
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If the matrix of partial derivatives with respect to (V,&,v) at (7,V,&,¢) =
0,V U,0), i.e.

Dven Flo.ve.0e.0) (5.2)
EA —+pVPIUL qUI'VE qUI—IVP
= U VI —sUET o Ve —alQf —sUST [ Ve
0 0 A

is boundedly invertible, then by the implicit function theorem, we have a

one parameter family of solutions (V. ., &cr, ¥er) € Y X Ry X Z such that

f(T, ‘/6,7'7 56,7’7 ¢€,T) =0 (53)

for |7] sufficiently small and

(‘/;,Oa 56,0, we,O) = (V;: Uea 0) (54)

Note that A under the homogeneous Neumann boundary condition is an iso-

morphism from Z onto X;. Thus, D¢ ) F|(0,v.,0.,0) is boundedly invertible

if and only if the linearized shadow operator

2A _ p—177¢ q—17/p
Eoo:<eA 1+ pVP~lUs qUI 'V ) (5.5)

=UZ JorVITh =sUSTH [V —alQ)
has a bounded inverse. By Lemma A and Theorem 3.1, we have that L
has a trivial kernel if restricted to L? x R, so L, has a bounded inverse (the
norm of the inverse operator is of the order Yy (P)|™").

Theorem 1.2 is thus proved.

Proof of Theorem 1.5: By Lemma A and Theorem 3.1, we have that L

has N eigenvalues

(I+o)r,j=2,...., N+1
where 75 = O(|¢Np, (By)]) = O(e™240:9/€) and Re(rf) > 0. Hence for
T << 1, (VI n, UL, y) is always linearly unstable.

The rest of the proof follows from Theorem 4.1.
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6. PROOFS OF THEOREMS 1.1, 1.3, 1.4 AND 1.6

In this section, we finish the proofs of other Theorems.
We first deal with the boundary spike case.
For P € 09, we set we p to be the unique solution in H*(2) of

{ EAu—u+wf(EE) =0in Q,

g—ﬁz()on@Q.

(6.1)

Remark: The properties of w, p was studied in [37].

Then we have

Theorem 6.1. (See Theorem 1.3 of [42].) The following eigenvalue problem

{8A¢—¢+pwfwl¢=r% in Q,

¢ on 052,

; (6.2)

admits the following set of eigenvalues
7 = 1+ 0(1), 75 = 0(1), s 7 = 0(1), 75 = 1 + (1), 5> N +1.

Moreover,

€

T
J; — doAj,j=1,...,N =1, (6.3)

where Aj are the eigenvalues of Gp(Pp) := (VgPOH(PO)) and

N-—-1 fRf (w’)zyNdy
N+1 [on(52)dy

Furthermore the eigenfunction corresponding to 7;,4,j = 1,..., N —1 is given

do > 0.

by the following:

N-1 ow, p
8= D (g +o(D)eg e

=1

where P, is the unique local mazimum of vB(x), A; = (Aj1,..., Ajn_1)" is

the eigenvector of Gg(Py) corresponding to Aj, namely
Gp(P)A; = NA;,j=1,..,N—1.

We can now prove Theorems 1.1 and 1.4.
Proofs of Theorems 1.1 and 1.4:
Let Py be a nondegenerate critical point of H(P).
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By using Theorem 6.1 and Lemma A, the existence follows from the same
proof of Section 4.

Now if
4 N+2  qr

=21+ — ——(p-1
r ) +N<p<(N—2)+’S (p )<607

by Theorem 2.2, L has an eigenvalue oy > 0. Moreover, the corresponding

eigenfunction is radial. By a simple perturbation argument, problem (1.14)
has an eigenvalue close to oy if 7 is sufficiently small. This proves Theorem
1.4 in this case.

The other cases follows from Lemma A, Theorem 6.1 and Theorems 2.1-
2.2.

O

We next consider the single interior spike case with the Dirichlet boundary

conditions.

For P € Q, we set w/p to be the unique solution in H* () of

EAu—u+w’ (L) =0in Q,
{ u =0 on 0f). (6-4)
Remark: The functions wfp was introduced and studied in [27].
Let
x— P
@gp(x) = w( c ) — wa
Then we have
Theorem 6.2. (See Theorem 1.2 in [43].) The eigenvalue problem
NG — ¢+ p(vl )P g =T inQ (65)
¢=0 on 0N ’

admits the following set of eigenvalues
= +0(1), 75 =0(1), ... 75 = 0(1), 7] = p; +o(1), >N +2.

Moreover, we have

7€
— S boAj1,j =2, .., N+ 1, (6.6)
SDED,PO(PO) !

where \;,j = 1,...,N are the eigenvalues of G1(Py) and by is defined in

Theorem 3.1.  Furthermore, the eigenfunction corresponding to 75,1, =
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1,..., N is given by the following:
N ow>p

¢ = _(9i1+ o(L)e—5p=lp=r.

=1

where §; = (g1, -, gjn)" is the eigenvector corresponding to \;, namely

GI(P())‘JJ == /\Jg’],j == 1, aeey N

We can now finish the proofs of Theorem 1.3 and 1.6.
Proofs of Theorems 1.3 and 1.6: By using Theorem 6.2, the proof is
almost identical to that of Theorems 1.2 and 1.5. Note that by Lemma 4.4
in [27]
—elog(¢Py, () — 2d(Py, %)

as € — 0.

Appendix: Proof of Lemma A
In this appendix, we prove Lemma A.
We first note that (2) of Lemma A follows easily by taking limit as € — 0.
We just need to prove Lemma A (1).
Let (e, ¢c) satisfy (4.3) where a. — 0 and ||@¢|l = 1.
Then we have

L€(¢€) - 77(¢e)vf = a€¢€,

where

— qr r—1 r
n(¢d) = s+a (1 —U) WU(a+ ) /Qve ¢€/(/Q ve)-

- 1
¢€ = ¢e - FT}(Q%)UP

Then by a simple computation we have

Set

L(3) = 0u(de + cv. / 18, (6.7)

Q

where
qr 1

(p—1D[s+at(1 - U)Uela+ )] — qr [yvr

Ce =
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Let ¢5 be the eigenfunction of 77, in Theorem 3.1. Set
Ce :=span{¢,j=1,..,N} C L*(Q),

K= span{¢},j =1,...,N} C HZ.

We decompose @, as
N
b= Y big5+ .,
j=1

where b5 — b2, and ¢, L K.
We first obtain that ¢ satisfies
N

Le(¢h) = 2:((%€ — Ti1) 0505 + aept + aevece/ VT + Qe Zbe /Q veqﬁ( ve).
j=1 6.8

Note that by Lemma 7.1 of [40],

/ v = O(" oap. (Pe)), Ce / v = O(0ap,(Pe)).
Q Q

Then by a similar argument as in the proof of Propositions 6.1 and 6.2 in
[40], we obtain that
L.: IC?‘ — CCJ‘

is an invertible map if € > 0 is small enough. Note that

¢ =0(V),c, / vt = 013 ]0).

e, / 0L = O(erl|BI2).
Q

Hence we have
16 ]le = O(p, (Pe) o] Z |b51).-

Next we multiply both sides of (6.8) by ¢, and integrate over {2, we obtain

N
S = 7500 | 6305 = O, (R el 32115
1 J=1

N

Jj=

Hence we have
N

(a€ J—i—l)b6 ((,06 PE ‘ae‘ + Z ‘ J+1 Z ‘be ' . ,N.
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Observe that (b5, ...,b%) # (0,...,0) and moreover b5 — b3 # 0 for some j
(along a sequence €, — 0). (Otherwise, ||¢Z]| = o(1),||¢c|lc = o(1).) This
shows that

Qe — Tjpq = o(1) ]|

for some j =1,...,N. By Theorem 3.1, this proves (1) of Lemma A.
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