THE GIERER-MEINHARDT SYSTEM ON A COMPACT TWO-DIMENSIONAL
RIEMANNIAN MANIFOLD: INTERACTION OF GAUSSIAN CURVATURE
AND GREEN’S FUNCTION

WANG HUNG TSE!, JUNCHENG WEI?, AND MATTHIAS WINTER?

ABSTRACT. In this paper, we rigorously prove the existence and stability of single-peaked patterns
for the singularly perturbed Gierer-Meinhardt system on a compact two-dimensional Riemannian
manifold without boundary which are far from spatial homogeneity. Throughout the paper we assume
that the activator diffusivity €2 is small enough.

We show that for the threshold ratio D ~ E% of the activator diffusivity €2 and the inhibitor
diffusivity D, the Gaussian curvature and the Green’s function interact.

A convex combination of the Gaussian curvature and the Green’s function together with their

derivatives are linked to the peak locations and the o(1) eigenvalues. A nonlocal eigenvalue problem
(NLEP) determines the O(1) eigenvalues which all have negative part in this case.
RESUME. Dans ce papier, nous rigoureusement étudions le singuliérement, préoccupé Systéme de
Gierer-Meinhardt sur une compacte variété de Riemann deux dimensionnelle. Nous prouvez qu’il
existe une solution stationnaire avec un pic d’activateur qui sont loin de homogénéité spatiale. Partout
dans le papier nous supposons que le diffusivity d’activateur €2 est assez petit.

Nous le montrons pour le rapport de seuil D ~ }2 pour le diffusivity de l'activateur, €, et le
diffusivity de I'inhibiteur, D, il y a une action réciproque de la courbure de Gauss et de la fonction
de Green.

Une combinaison convexe de la courbure de Gauss et de la fonction de Green avec leurs dérivés est
reliée aux position du maximum et le eigenvalues le o(1). Un probléme eigenvalue nonlocal (NLEP)
détermine le eigenvalues le O(1) que tous ayez la partie négative dans ce cas-la.

(Titre: Le systéme de Gierer-Meinhardt sur une compacte variété de Riemann deux dimensionnelle:
I’Action réciproque de la courbure de Gaussian et de la fonction de Green)

2

1. INTRODUCTION

1.1. The problem. We look for nontrivial steady states to the Gierer-Meinhardt system defined
on a compact two-dimensional Riemannian manifold (S, g) without boundary. The equation can be
stated as follows (|14, 28]):

Ay =dNA— A4 2 in S,

(1.1)
TH, = DA,H—-H+ A? inS,

where A = A(p,t), H = H(p,t) > 0 represent the activator and inhibitor concentrations, respectively,
at a point p € § and at time t > 0; their corresponding diffusivities are denoted by d, D > 0; 7 > is
the time-relaxation constant of the inhibitor; A, denotes the Laplace-Beltrami operator with respect

to the metric tensor g.
For convenience, we define ¢ and 3 by d = € and D = 5—12, and we will work with these new

parameters throughout the paper.
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We shall consider the weak coupling case (as in [50]), i.e. we consider pairs of parameters (¢, (3)

such that ¢, 5 — 0 (hence, d — 0 and D — o0). More specifically, we will always assume that
e is small enough. (1.2)

We further assume the asymptotic relation

62
lim — =k > 0. (1.3)
€

We will see that the relation (1.3) for the diffusion constants is essential for the rest of the paper.
In particular, under this assumption we will be able to introduce a function F(p), p € S, which
is a convex combination of the Gaussian curvature and the Green’s function and will be crucial in
deriving results on existence and stability. Here x indicates the relative strength in the coupling of

the Gaussian curvature and the Green’s function.

1.2. Motivation. This Gierer-Meinhardt system (1.1) is used to model morphogenesis.

Morphogenesis is the development of an organism from a single cell. This complex process can be
understood by dividing it into several elementary steps, such as the change of cell shapes, cell to cell
interaction, growth, and cell movement. One of the most important of these steps is the formation
of a spatial pattern of cell structure, starting from an almost homogeneous cell distribution.

Turing in his pioneering work in 1952 [40] proposed that a patterned distribution of two chemical
substances, called the morphogens, could trigger the emergence of such a cell structure. He also
gives the following explanation for the formation of the morphogenetic pattern: It is assumed that
one of the morphogens, in this case the activator, diffuses slowly and the other, in this case the
inhibitor, diffuses much faster. In the mathematical framework of a coupled system of reaction-
diffusion equations with hugely different diffusion coefficients he shows by linear stability analysis
that the homogeneous state may possess instabilities. In particular, a small perturbation of spatially
homogeneous initial data may evolve to a stable spatially complex pattern of the morphogens.

Since the work of Turing, lots of models have been proposed and analyzed to explore this phenom-
enon, which is now called Turing instability, and its implications for the understanding of various
patterns more fully. One of the most famous of these models is the Gierer-Meinhardt system ([14, 28]).

In domains with zero curvature (i.e. domains in R, in particular for space dimensions n = 1,2),
there are various results for this system some of which are given at the end of this introduction.
However, there are few results, if any, that deal with a curved manifold, and perhaps the biologically
most interesting domain is the two-dimensional Riemannian manifold. This may correspond to any
membrane structure, e.g. cell, in which the Gierer-Meinhardt system correctly models the biological
phenomena observed.

In previous works on two-dimensional flat domains, various authors showed that as ¢ — 0 there are
multi-peak patterns which exhibit a “point condensation phenomenon”. By this we mean that
the peaks become narrower and narrower and eventually shrink to the set of points itself. In fact,
their spatial extent is of order O(e). We also say that the spike solutions “concentrate” at the set of
points. Furthermore, we remark that the maximum values of activator and inhibitor both diverge to
+00.
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In this paper we consider a single-spike solution on a Riemannian manifold. We explicitly give a
rigorous construction of single-peaked stationary states by using the powerful method of Lyapunov-
Schmidt reduction. Locally, in a normal neighborhood of a point, this enables us to reduce the
infinite-dimensional problem of finding an equilibrium state to (1.1) to the finite-dimensional problem
of locating the point at which the spike concentrates.

We will give criteria for existence and stability explicitly in terms of a function on the manifold
defined as a convex combination of the Gaussian curvature function and the Green’s function. In
|50], it was found that the Green’s function plays such a role. However, in our case, the Green’s
function is replaced by the convex combination of the Gaussian curvature and the Green’s function
which indicates that they interact in an essential way.

We will rigorously answer the following questions: How can we construct these spiky solutions?
Where is the peak located? When are these solutions stable?

We give a sufficient condition for the location of this point in terms of a non-degenerate critical
point of the gradient of the convex combination of Gaussian curvature and Green’s function.

Concerning stability we study the eigenvalues of the order O(1) (called “large eigenvalues”) and
of the order o(1) (called “small eigenvalues”) separately. We show that the small eigenvalues are
linked to the spike locations by the Hessian of this convex combination of Gaussian curvature and
Green’s function. If the real parts of its eigenvalues are both negative, the spiky steady state for the

Gierer-Meinhardt system (1.1) is linearly stable.

1.3. The geometric setting. Before describing the main results of this paper in detail we introduce
some notations. Let § be a compact two-dimensional Riemannian manifold without boundary. Let
T,S be the tangent plane to S at p, and given an orthonormal basis {e;(p), ea(p)} of T,S, we can
obtain, via the exponential map exp, : 7,8 — S, a natural correspondence xe;(p) + z2e2(p) — ¢ =
exp,(z1e1(p) + T2e2(p)).

To give an explicit chart, let us denote by E, : R? — T,8 the map E,(x1,22) = z1e1(p) + z2e2(p).

Then there is a maximal J,, > 0 such that

E, ' oexp,': By(p,d,) — B(0,6,) C R?

is a diffeomorphism. Moreover, since S is compact, we actually have an injectivity radius i, > 0 so
that

X, :=E, " oexp,' : By(p,iy) — B(0,i,) (1.4)
is a diffeomorphism for every p € §. The values of this natural chart X, are called (geodesic) normal
coordinates about p.

We assume that the exponential map is smooth (C*°). Moreover, since the tangent bundle 'S
has a natural differentiable structure, we may choose the basis {e1(p),e2(p)} of T,S to be smooth.
Thus any smooth function f defined on & by means of the normal coordinates varies smoothly with
p as well as the coordinates (z1, x2).

We define cut-off functions as follows: let y : R — R be a smooth cut-off function which is equal
to 1 for |y| < 0.5 and equal to 0 for |y| > 0.75. For p € S we introduce

;mA®=x<%%®), q€Ss, (1.5)
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and we choose §y = i,. We set xs,(z) = x(2/do) for x € R?.

We denote the geodesic gradient of f by V,f. Written in normal coordinates, the partial deriva-
tives of f with respect to (z1,x2) are denoted by V f. We will frequently consider rescaled normal
coordinates y = x/e.

We now introduce function spaces. We define

L*(S) = {u measurable function defined on S s.t. /u2 (p)dvg(p) < oo},
S

where dv, denotes the Riemannian measure with respect to the metric g. We further set
HY(S) ={ue L*S) : Vyue L*S)}.

We use analogous definitions for other Sobolev spaces.
Let H!(S) be the Sobolev space H'(S) equipped with the inner product

1
<WUSEES= 5 <62/Svgu -Vgvdv, + /Su'u dvg> :

This induces the norm
2 ———1 e | Vou-Voodo, + | wvdv
Hl(S) 2 s g g g s g -

In the same way we define L?(S) and H*(S) and other Sobolev spaces.
Now we introduce a Green’s function Go which we need to formulate our main results. We set
Go : SxS\{(p,q) € S xS: p=¢q} — R uniquely defined by

NgGo(p, q) — ﬁ +0,(¢) =0 inS,

|

(1.6)
fS GO(p7 Q)dvg(Q) =0.
(For basic properties and a constructive proof of its existence, see [2]).
Next, we denote by
g (@) and Ro(pq) = oo log (@)~ Golpa) (17
2 dy(p,q) """ ’ 2 dy(p,q) """ ’

the singular and regular parts of Gy, respectively, where dy(p,q) is the geodesic distance between
peSand g€ S. We set

R(p) = Ro(p, p)- (1.8)
Note that Ry € C*°(S x §) and R € C*(S).

Now we proceed to define a function on the manifold that is essential for our existence and stability
results. Let F': & — R be the function defined by

F(p) == alK(p) + c2R(p), (1.9)

where K (p) denotes the Gauss curvature on S, R(p) denotes the diagonal of the regular part of the
Green’s function defined in (1.8),
0 S 2 o] 5]
1= %/0 (W) rPdr, cy = Sl Q‘Wf_?/o wrdr, w = a—t:
and w is the unique solution of the problem
{ Aw—w+w?=0, w>0 inR?

1.10
w(0) = maxyez wly), wly) — 0 as y| — oo. (110
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For existence and uniqueness of the solutions of (1.10) we refer to [15, 26]. We also recall that
w(y) ~ [y ¥as [y| — oo (1.11)

Note that F(p) € C*(S).

Let us write
M(p) = (V*F(p)), (1.12)

where V2F is the Hessian of the function F on S with respect to normal coordinates, so that M (p)

is a 2 X 2 matrix with components aféal;k (p), 4,k =1,2.
J

Likewise, the derivatives of the Green’s function in normal coordinates are denoted by

V.Ro(p,q) derivative of the first component,

V.Ro(p,q) derivative of the second component.

Using the relation R(p) = Ry(p,p), we have

VR(p) = (V. + V.)Ro(p, p),
V2R(p) = (V2 + 2V, V. + V2 Ry(p,p)

since Ro(p, q) is symmetric in its arguments p, q.

Remark. M(p) will be evaluated using a normal coordinate system, but the eigenvalues of
M(p) (and hence its negative-definiteness which we will assume) will be independent of the choice
of coordinates. Moreover, the entries of M(p) vary differentiably with p because the basis of the
tangent plane T,S, namely {e1(p), e2(p)}, is chosen to vary differentiably with p.

1.4. The main results. The stationary system for (1.1) is the following system of elliptic equations:

{EQAgA—A+%:O, A>0 inS, 1.13)

%AH—HJFA?:o, H>0 inS.
Our first theorem concerns the existence of single-peaked solutions whose position is determined

by an interaction of the local geometry and the Green’s function.

Theorem 1.1. Let p° € S be a non-degenerate critical point of F(p) (defined in (1.9)), i.e.
VEPY) =0, det(V*F(p°)) #0. (1.14)

Then, under the assumptions (1.2) and (1.3), problem (1.1) has a positive spiky steady state
(Ae, H) with the following properties:
(1) Ad(2) = E(w(EL) +0(€?)) uniformly for x € S, where w is the unique solution of (1.10) and

_ S| 1
el Y (log 6) ' (1.15)

Furthermore, p¢ — p° as € — 0.

(2) H.(z) = &(1 + O(€%)) uniformly for z € S.
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Next we study the stability and instability of the K-peaked solutions constructed in Theorem 1.1.

To this end, we need to study the following eigenvalue problem

¢e A _ A_z
L. = 62%?6 DA N R (1.16)
’17/) ;(@Agwe - we + 2A6¢6) ¢e

where (A, H,) is the solution constructed Theorem 1.1 and A, € C, the set of complex numbers.

We say that (A, H) is linearly stable if the spectrum o(L.) of L. lies in the left half plane
{A e C: Re (A\) < 0}. On the other hand, (A, H,) is called linearly unstable if there exists an
eigenvalue A, of £, with Re(A¢) > 0. (From now on, we use the notations linearly stable and linearly
unstable in this sense.)

Our second main result, which is on stability, is stated as follows.

Theorem 1.2. Let p° is a non-degenerate local mazimum point of F(p) (defined by (1.9)), i.e.
(x) VF@") =0, V*F(©°) is negative definite. (1.17)

Under the assumptions (1.2) and (1.83), let (Ac, He) be the single-peaked solution constructed in
Theorem 1.1 whose peak approaches pP.

Then there exists a unique 11 > 0 such that for T < 1, (A, He) is linearly stable, while for T > 11,
(Ae, H.) is linearly unstable.

Remark. The condition (*) on the locations p” arises in the study of small (o(1)) eigenvalues. For
any compact two-dimensional Riemannian manifold without boundary, the functional F'(p), defined
by (1.9), always admits a global maximum at some p° € S since it is a continuous function defined
on a compact set. We believe that for generic manifolds, this global maximum point p° is non-
degenerate.

We believe that for other types of critical points of F(p), such as saddle points, the solution
constructed in Theorem 1.1 should be linearly unstable. We are not able to prove this at the
moment, since the operator L. is not self-adjoint.

We now comment on some related work.

Generally speaking, system (1.13) is difficult to solve since it does neither have a variational
structure nor a priori estimates. One way to study (1.13) is to examine the so-called shadow
system. Namely, we let D — +o0 first. It is known (see [21, 30, 37]) that the study of the shadow

system amounts to the study of the following single equation for p = 2:

{GQAu—uMP:o, u>0 ing, (1.18)

% =0 on 0N.
Equation (1.18) has a variational structure and has been studied by numerous authors. It is known
that equation (1.18) has both boundary spike solutions and interior spike solutions. For existence
of boundary spike solutions, see [16, 31, 32, 33, 46, 47| and the references therein. For existence of
interior spike solutions, see |17, 35| and the references therein. For stability of spike solutions see
[34, 44, 45].
Next we review some results for bumps, spikes and related patterns in the Gierer-Meinhardt system.
Ground states on the real line are studied in [8, 10, 11, 54] and for the whole R? in [9]. Multiple
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spikes for an interval are studied in [18, 19, 25, 39, 43| and for bounded two-dimensional domains in
[23, 24, 33, 48, 49, 50, 51, 52]. Hopf bifurcation of spikes is investigated in [6, 41, 42|. For dynamics
we refer to [4, 5, 12, 20, 38|. Steady states with spherical layers have been constructed in [25, 36].
Stripes have been studied in [22]. Nonlocal eigenvalue problems related to the one in this paper have
been studied in [44, 45, 53|.

The existence of spikes for single semilinear elliptic PDEs on manifolds has been investigated in
13, 7, 29].

The structure of the paper is as follows:

2.1 Two Eigenvalue Problems

Section 2: Preliminaries ) )
2.2 Calculating the Height of the Peak
Section 3: Existence — Proof of Theorem 1.1

4.1 Study of Large Eigenvalues
Section 4: Stability — Proof of Theorem 1.2 4.2 Further Improvement of Solutions
4.3 Study of Small Eigenvalues

Appendix A: Expansion of the Laplace-Beltrami Operator
Appendix B: Some Technical Calculations
Throughout the paper C' > 0 is a generic constant which is independent of € and 3 and may change

from line. We always assume that p € As, where
As = SN By(p°,6) (1.19)

and 0 = € for some 0 < a < 1. To simplify our notation, we use e.s.t. to denote exponentially small
terms in the corresponding norms, more precisely, e.s.t. = O(e~%/¢) for some ¢ > 0. The notation

A(€) ~ B(e) means that lim._ % = ¢o > 0, for some positive number c.

Acknowledgments. JW is supported by RGC of Hong Kong. MW thanks the Department of
Mathematics at the Chinese University of Hong Kong for their kind hospitality.

2. PRELIMINARIES

2.1. Two eigenvalue problems. Let w be the unique solution of (1.10). In this subsection, we
study two eigenvalue problems.
Let

Lop = Ap — ¢ + 2w, ¢ € H*(R?). (2.1)

We first recall the following well-known result:

Lemma 2.1. The eigenvalue problem
Lop = po, ¢ € H*(R?), (2.2)
admits the following set of eigenvalues

w1 >0, po=pus =0, pug<0,.... (23)
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The eigenfunction ®q corresponding to py can be made positive and radially symmetric; the space of

etgenfunctions corresponding to the eigenvalue 0 is

Ky := span {g—;,j = 1,2} . (2.4)
Proof: This lemma follows from Theorem 2.1 of [27] and Lemma C of [32]. O
Next, we consider the following nonlocal eigenvalue problem
Jo2 w9

Lo :=A¢p— o+ 2wp —~ w® = \oo, ¢ € H*(R?), (2.5)

fR2 w?

where v = and >0, 7> 0.

1+ T)\()
Problem (2.5) plays the key role in the study of large eigenvalues (Subsection 4.1 below).

We have the following result:

Lemma 2.2. Let v = -5 where > 0,7 > 0 and let L be defined by (2.5).

(1) Suppose that > 1. Then there exists a unique T = 7 > 0 such that for 7 > 7 (2.5) admits

an eigenvalue with Re(\) > 0. Further, for T < 11, all nonzero eigenvalues of problem (2.5) satisfy
Re(\) < 0. At 7 =1, L has a Hopf bifurcation.
(2) Suppose that p < 1. Then L admits an eigenvalue Ny with Re(\g) > 0.

Proof: Lemma 2.2 has been proved as Theorem 2.2 in [50].
UJ

2.2. Calculating the height of the peak. In this subsection, we formally calculate the height of
the peak as needed in the sections below. In particular, we introduce the scale &, given in (2.17).
For the asymptotic regime ¢ — 0 and 8 — 0, it is found that the height does not depend on the
spike location in leading order, but only in higher order.

For 5 > 0, let G(p, q) be the Green’s function given by
NyGs(p,q) — B°Gp(p,q) + 6, =0 in S. (2.6)

From (2.6) we get
| Gotpa)duyp) = 572

Set g2
Golp,a) = 57 + Galpra). (2.7)
Then _ _
NyGs(p,q) — BGs(p,q) — 1 +0,=0 in S,
B (2.8)
/S G5(p, q) dug(p) = 0.
Let Go(p, q) be the Green’s function given by (1.6). Let Go1 be defined by
AyGo1(psq) — Goalp,q) =0, / Go1(p, q) dvg(p) = 0. (2.9)
S

Note that
Gos(p,q) = / Golp, 7)Go(r, )duv, (r)
S

1
= —dy(p, q)*log + O(dy(p, q)?).

1
8m dg(p, q)
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Next we rewrite the Green’s functions in terms of geodesic normal coordinates. Let us define explicitly
Gop(x,2) = Go(g,r), where x = X,(q) € B(0,6), 2= X,(r) € B(0, ). (2.10)

In the same way, we define Ry ,, Go1, and Gpg,p.
The equations (1.6), (2.8) and (2.9) imply that

Gop(r,2) = Gopl, 2) + B Goap(w, 2) + O(5Y)
= Gop(z,2) + 0O (ﬂQ\x — z|*log z i p + 54)

in the operator norm of L*(S) — H?*(S). (Note that the embedding of H?(S) into L>(S) is compact.)

Hence

—2

1
Gpp(z,2) = % + Gop(x,2) + O (52|az — z*log 7= 2] + 54> (2.11)

in the operator norm of L*(S) — H?*(S).
Now we introduce wy € H*(R?) to be the unique rotationally symmetric solution of the equation

1
Awg — wy — gK(p)e2rw6

+ i
1+ % [ log %w%(z) dz
where K (p) is the Gaussian curvature at p € S.

=0, ye€R? (2.12)

Existence and uniqueness of wy can be derived as follows:

Note that the operator
LO : HE(RQ) - LE(R2)7 Loﬁb = Aqb - ¢ + 2w¢7

where H?(R?) and L?(R?) are the spaces of radially symmetric functions in H?(R?) and L*(R?),
respectively, is invertible with a bounded inverse. Therefore it follows by the implicit function
theorem, applied at e = 0, that (2.12) at has a unique rotationally symmetric solution wy if € is small
enough. Further, the implicit function theorem implies that [|wy — w]| g2r2) = O(€?).

Let us assume that a single spike solution (A, H,) of (1.13) in leading order satisfies (this statement

will be proved rigorously):

Acp(q) ~ Eepwo (Xp()/€) Xo0.p(2),
He,p<p) = ge,pa

where w is the unique solution of (1.10), &, is the height of the peak and p € A is the location of

(2.13)

the peak, where the latter two are to be determined later.

Then from the equation for H.,
A H. — °H, + A =0,
we get, using (2.11) and (2.13),

6o = [ Golp )P, (10 (X,(0)/€) xl0) (o)
— /S <%_|2 + Go(p,q) + O (62 + 3t log% + 54))

¢, (o0 (242)) aoto
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= / <‘;| + 322G, (0,€2) + O (5264 +ﬁ4e410g + 3% 2))
5 (wo(2))* V/1]g(e2) dz
—/ (|; + 32€*Go,(0,€2) + O (e log 1))
(1 FEOIPE - TR - 2P = ETROIP + 1

6
&2, (wo(2))” d.

1 1 52 1 2 K (p) 2.2
6256,;3 <|S| log— — B*Ry(p, p)) (/R2 wy(z) dz — 5 g |z|wg (2) dz)

ﬂz/ logiwo( )dz + O(e"). (2.14)

27T ||
From (2.14) we get an expansion of & ,, where &, depends on p not in leading order but only in

KRl +0@))

Thus

higher order €.

Define .
EeplS|
p = S 2.1
5727 62 j‘R2 U}2 d ( 5)
Then from (2.14) we get
. 1
bep=1+0 <e2 log Z) : (2.16)

which is clearly equivalent to

8] b 1

In this subsection, we have calculated the height of the peak under the assumption that its shape

is given. In the next section, we provide a rigorous proof for the existence of equilibrium states.

3. EXISTENCE

3.1. Reduction to finite dimensions. Let us start to prove Theorem 1.1.

In this subsection, we use the Liapunov-Schmidt process to reduce the PDE problem to a finite
dimensional problem. In the next subsection, we will solve this reduced problem. Such a procedure
has been used in the study of the Gierer-Meinhardt system for Neumann problems in bounded
two-dimensional subdomains of R? [48, 49, 50].

We rescale the amplitudes

a(p) = 51 A(p), peS,
h(p) = 51 H(p), peS,
€,p

where &, is given in (2.17).
Then an equilibrium solution (a, k) has to solve the following rescaled Gierer-Meinhardt system:

ezAga—a%—%:O, a>0in S,
(3.1)
Agh— Bh+ 6,0 =0, h>0inS.

(This rescaling is introduced to achieve a = O(1), h = O(1) for the amplitudes.)
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For any function u € H*(S), let Ts[u] denote the unique solution to the second equation of (3.1):
Agh — Bh+ (2 u=0 in S.

Note that T : L*(S) — H?(S) is a linear operator and using (2.6), we can write down the solution
by the formula

%M@:ﬁaé%@mwwmm (3.2)

Therefore, to solve the rescaled system (3.1), it suffices to find a zero of the operator S, : H*(S) —
L?(S) defined by

2
= ENu— U .
Selu] eNu—u+ T (3.3)

Let us now define our approximate solution to (3.3) to be

aep(q) = wo(Xp(q)/€)Xsp(q) TforgeS (3.4)

and set he, = Tgla? |. Recall that wg has been defined in (2.12).
We now derive some key estimates for the existence proof. By (2.13), we already know h.,(p) = 1,
but we would also like to estimate h.,(q) for ¢ € By(p, dp). To this end, we calculate via the Green’s

function G defined in (2.6) and its expansion up to O(5?) given in (2.11),

he,p(q) = he,p(p> + he,p(q) - he,p<p)
=1+ﬁ@/@ﬁ%m—%@wm;mwmv
S

= 1+ /% o (Golg.) = Go(p, 1)) w5 (Xp(q)/€)dugy(r) + O(5%)
= 1+e0% /B(O e (Gopley, €2) — Gop(0, e2)) wi(2)V/ gl (e2)dz + O(B?)

2]

1
= 1+ 62ﬂ2§€/ (2— log + Ry p(ey, €z) — Ry (0, ez)) wi(2)dz 4+ O(e*)
B(0,00/¢) \ 4T ly — 2|

S| 2|
= 1 2 | / 1 2 2 v, 4
+ 27 TR e og \y—z]wO(Z)dZ+€ﬁ S|y - VaRo(p, p) + O(eh)

= 1+ Bho(y) + €8%S|y - V.Ro(p,p) + O(e),

changing variables by y = X,(q)/e, z = X,(r)/e and using the estimate of the volume element (5.2)

to obtain the last expression, where

|S| / z 5
h = log | —— dz. .

Thus we have the following estimate:

Lemma 3.1. Let p be fized. Then for q € By(p,do), we have the expansion

IS
2

hep(q) = 1+ B2ho(Xp(q)/€) + €82 (Xp(a)/€) - VaRo(p, p) + O(e"), (3.6)

where ho has been defined in (3.5).
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Next we estimate S[a.,]. Using the above expansion (3.6), the expansion of €2\, given in (5.3),

the equation of wy (2.12) and Lemma 6.1,
2

2 Qep
Selaep] = €Dgacy— acy+
Pep
1
= Awy— wy + wg — gK( p)rw)e
1S &

—B*ho(y)wi(y) — e6° 5= VR(p) - ywi(y)

——(VK( E )Tw063—|- 6R1[w0]e + O(*y)

_ fz |‘;’ R(p) - ywi(y)e® — éVK(p) ~yrwy(y)e’ + %fh{wo](y)e3
+O(" [yl

since wo(y) = wo(|y|).

Thus we have derived the following key estimate
Lemma 3.2. For q € By(p,d), let y = X, (q)/e. Then

Sacglly) = 2l

2 2

For 7 =1, 2, define

VRE) i) — VK Q) - yruhu)e + cRiluoln)e + Oyl (37)

ZMW:S%XMWMM&MD (3.9)

J

1 _ ow O _
So (Z¢,, 67P>Lz(3) = fB(o,&O/e bys oy, WY @88 = es.t
Further, we compute HZgijLz( =7 [ ( )? rdr+e.s.t.

Next, we define our approximate kernel and cokernel as
Ky :=span {Z! 72 } C H}(S),
Cep:=span {2}, Z2 } C LZ(9).
We then let Kl and C’L denote the orthogonal complement with respect to the scalar product L2(S)
in H(S) and LE(S), respectively.

Next we study several linear operators.
Let L, : H*(S) — L2(S) defined by

Ze,pqs D= Slacy) ¢

2a
— ZA €,p
o — o+ hep¢ hQ

2

where hej, = TplaZ, ], ¥ = Tp[2ac,¢).
Let 7, denote the projection in L?(S) onto C.,. We are going to show that the equation

Tep © Selaep + 0] =0 (3.9)

has the unique solution ¢, € K j’p, provided € is small enough.
Let
Lyt Kb = Chy Lo = (mepoley) 0 (3.10)
be the corresponding linearized operator.

As a preparation, we first give two propositions which show the invertibility of L .
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Proposition 3.3. There exist g > 0 and C > 0 such that for any p € S and € € (0, ¢),
||L6p¢||L2 =>C ||¢||H2(8)
for any ¢ € K-

Proof: We proceed by proving a contradiction. Assume there are sequences ¢, — 0, pr € S such
that pr. — p°, ¢ € K epk with ||¢k||Hg(5) =1, but

||L5k7pk¢k||[,g($) — 0. (3.11)

Let us decompose ¢y, = ¢p1 + ¢r2, where ¢p1 = (Xs, © Xp,) Pk-
At first (after rescaling) ¢y 1 is only defined for y € B(0,dy/€x). Then by a standard procedure we

extend ¢ to a function defined on R? such that

H¢k,1||H2(R2) < C”(bk,l”H?k(S)

Since ||¢k||H3k(3) =1, we have ||¢p1|| 2@ < C.

Thus we may also assume that ¢, ; has a weak limit in H, 2 (]R2) and therefore also a strong limit

loc
in L2 _(R?) and L2 (R?). Call this limit ¢;.

loc loc
Further, ¢, 2 — ¢2, where ¢, satisfies
A¢2—¢2:O in RQ.

Therefore, ¢ = 0 and ||¢k,2||H3k($) —0as k — oo.

Using the expansion of h., (3.6), we get h,, — 1 in H*(S). Next we calculate

Yy = Tﬁk[2a6k,1?k¢k]
= ﬁigﬁk/G/@k(p7 q)2a€kmk¢kdvg<q)
S

1
= 2626135% /(0 /o) <i’;—| + —1 m + R(eky, sz)) w(z)gbk’l(z)dz + 0(1)
fR2 2)dz +o(1).

Jeo w?

Hence, with the knowledge of the expansion of €24\, in (5.3), and taking k — oo, we obtain from
(3.11) the limiting problem

9 2)dz
Ay — ¢y + 2wy — 2fRfR2 o Z)dz w?* =0, (3.12)

where Cy := span {g—;‘;, 7 =1, 2}, and Cy, K; denote the orthogonal complement with respect to
the inner product of L?(IR?) in the spaces L?(R?) and H?(IR?), respectively.
Taking limits, ¢, satisfies
¢ € {gb € H*(R?) : gb%dy =0,j=1, 2} = Kj.
R2 Y
Since for Ly := /A — 1 + 2w, Low = w?, (3.12) can be rewritten as

Lo (¢1 _gle v )dzdz > — 0. (3.13)

fRZ w?(
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Now, by Lemma 2.1, we have that L is invertible from Kg to Cj-, so

- 2fR2 w(2)¢1(2)d2w _
Jge w?(2)dz

Multiplying by w and integrating, one sees that

$1

/ w(z)én(2)dz = 0

R2

so that ¢; = 0 which is a contradiction since our assumption ||¢x | ;25 = 1 implies [|¢1 ] g2y > 0.
Proposition 3.4. There exists €2 > 0 such that for all € € (0, €3), L., is surjective for any p € S.

Proof: The argument is similar to the proof of Proposition 4.3 in [50] and of Proposition 3.3 above.
It is therefore omitted. O]

By the two previous propositions we have that L., : K ép — Cip is invertible. Let us call the

inverse L;;. Now we are in a position to solve the equation (3.9) by a fixed point argument. Indeed,

we apply L1 to (3.9), and regrouping we can write
E’p

¢ = —(Lep 0 ep)(Selaep]) — (Lep 0 mep)(Nep(9)) = Mep(9), (3.14)

where

Nep(9) = Seclacy + ¢ — Selacy] — Sé[ae,p]¢

and the operator M., is defined by (3.14) for ¢ € H?*(S). We are going to show that the operator

M., is a contraction on

Bey={o€ HS) : ||9]

m2(s) < N} (3.15)

if n and € are small enough. We have by Lemma 3.2 and Propositions 3.3 and 3.4 that

1M p(9)]

HZ(S) < C(||7T6,poNs,p(¢>|
< 0(772+O(63)),

LE(S) + ||7T57p © Sﬁ[ae,p]HLg(s))

where C' > 0 is independent of n > 0 and € > 0. Similarly we can show

[Mep(6) = Mep(¢')]

n2s) < Cnllo — ¢'|

H2(S),

where C' > 0 is independent of n > 0 and € > 0. If we choose 1 and € small enough (more precisely,
if we choose (i) 1 small enough and (ii) € ~ 7), then M., is a contraction on B ,. The existence of
a unique fixed point ¢, € B, now follows from the Contraction Mapping Principle. Since ¢, is a

solution of (3.14), we have thus proved

Proposition 3.5. There is €g > 0 such that for all € € (0,€), and for arbitrary p € S, there exists
a unique ¢, € K2 satisfying Selacy + dep] € Cep and

[Gepllmzs) < Ce. (3.16)
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3.2. The reduced problem. By Proposition 3.5, for each p € S, we have
SE [a€,p + ¢€,p:| e Cé,p

for € small enough. Now, to solve the equation S¢[a., + ¢.,] = 0 exactly, we have to further choose

a p° such that

S€ [af’pé + ¢67p€] E Cj:pe.
This is a finite dimensional problem and we are looking for a point p° € S at which constructing
a single spike is possible. We will show that it is possible to construct a spike close to any given

non-degenerate critical point of /' = ¢ K + ¢ R.
To this end, let us define a vector field W, : S — R? by

— % /S Seltep + ¢ep)(9) ZL,(q)dvg(q)

ow
= o Slaea 00l ) g )+ O()

and W.(p) = (Wei(p), Wea(p)) with our approximate kernel defined in (3.8). Note that W, is
continuous on &, and we would like to find a zero to W..

We now calculate the asymptotic expansion of W, ;(p):

W) = —/W e )65 ) 5 )y
.l (Stocslér) (5 () G (5)dy + (e

B(O,(So/e)
= L+ 1+ 0(62),

where I; and I, are defined at the last equality in an obvious manner.

Using our key estimate (3.7), we calculate

32 |S|m ow

L = T2 9 RQVR(P)'ZJW%(Z/)a—yidy
5 [ (VK05 @ 2P) []0) + Rafu ) i+ O

Now

0
VR(p) - yw? d
/RQ (p) -y O(wayi Y

= o [ wtwg

(€%)
= —%gi(p) /2 w(y)dy + O(€%),

using Pohozaev identity which gives 3 [, w?(y)dy = 3 [ w*(y)dy. Next, by Lemma 6.2, we have

ow

d
Oy :

/0 T (VE®) -y (@ — 2P) [wol(y) + Raluwo) (1)

= —%g—g( )/ r3(w’)2dr+0(62).
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Together we have

32 |S|m OR / 2
=4 axi(p) L (y)dy

WaK &0 3 "2 9
+48xj(p)/0 r? (W) dr + O(€).

This is our main term. Next we compute:

_ 1 ! ow 2y 9
L= [ Slaslo G dy+ () = O

I

since
|Geplluzis) = O(€?)
and
0 0 0 en O af 0
Sg[ae,p]ﬂ _ Mﬂ _ W | 5%epIWo 2@& +O(e)
8yj 3yj 8y] he,p 8yj he,p ay]
a®. o
— 0(62) — 62,p ﬂ,
hgp 8yj
where

2
/R2 %’;g—g dy = /R2 wgg—l?:) dy + O(e*) = O(é?)
by our choice of approximate solution wy given in (2.12) and the expansions of A, given in (5.3) and
he, in (3.6).
In conclusion, we get
W.=VFE(p)+o(1) forallpe A, (3.17)
where o(1) is a continuous function of p which tends to 0 as € — 0 uniformly in As.

At p®, we have VF(p®) = 0, det(V2F(p°) # 0 by (1.14). (Recall that det(V*F(p")) is independent
of the choice of tangent plane basis, and the entries of VF(p) in local coordinates vary differentiably
with p.)

By (3.17), for € small enough W, has exactly one zero in A;. We compute the mapping degree of
W. for the set As and the value 0 as follows:

deg(W.,0, B,(p°,n)) = sign det(=V>*F(p")) = sign det(—M(p°)) # 0.

Therefore, standard degree theory implies that for € small enough, there exists a p¢ € As such that
W(p) = 0 and, by (3.17), we have p* — p°.

Thus we have proved the following proposition.

Proposition 3.6. For e sufficiently small there exist points p° € N with p° — p° such that W(p®) =
0.

Finally, we prove Theorem 1.1.

Proof: By Proposition 3.6, for ¢ — 0 there exist points p¢ — p° such that W,.(p¢) = 0. In other
words, Se[aepe + Gepe] = 0. We set & = & pe. Let Ac = Ec(aepe + Gepe) and He = Ec(hepe + Ve pe). It is
easy to see that H, = {T[acpe + ¢epe] > 0. Hence A, > 0. By applying the Maximum Principle on
sets of the type B,(p,do/€) which are a covering of S, we derive A, > 0. Therefore (A, H.) satisfies
Theorem 1.1. [
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4. STABILITY ANALYSIS

4.1. Study of Large Eigenvalues. We consider the stability of the one-spike steady state (A, H,)

constructed in Theorem 1.1.

Linearizing the system (1.1) around the equilibrium states (A, + ¢.e*', H. +1.e*<!), we obtain the

following eigenvalue problem

2
Ag,yﬁbe - Qbe + 2?[_z¢e - ]13_?¢e - )\6¢67

(4.1)
%Ag,mwe - ¢6 + 2A5¢e = T/\e’@bea
where A, is some complex number and
¢ € H2(S), . € H*(S). (4.2)
Let
ac =& A= acpe, he =& H = he e, (4.3)
where § = & .
Then (4.1) becomes
(l2
Ay¢e - ¢E =+ QZ_E(bE - h—éiﬂe = )\e(bea
‘ (4.4)

%Awe — Y + 28cache = TAYe.
In this subsection, we study the large eigenvalues, i.e., we assume that |\ > ¢ > 0 for e small.
1

Furthermore, we may assume that (1 + 7)c < 5. If Re(\) < —c, we are done since then A is a

stable large eigenvalue. Therefore we may assume that Re(\.) > —c and for a subsequence ¢ — 0,
Ae = Ag #£ 0.

We shall derive the limiting eigenvalue problem which is a NLEP. Then we will apply the key
reference is Lemma 2.2 to derive a stability result.

The second equation in (4.4) is equivalent to
A — B (14 TA)Ye + 26°6cach. = 0. (4.5)

We introduce the complex constant

ﬁ)\e = ﬁ V 1+ 7—/\67 (46)

where in /1 4+ 7. we take the principal part of the square root. This means that the real part of
V14 7\ is positive, which is possible since Re(1 +7A) > 1 —7¢ > %

Let us assume that
@]l m2(s) = 1. (4.7)

We cut off ¢, as follows: Introduce

Ge1(y) = be(y) Xo0.p (€V), (4.8)

where ey = X,c(q) and x5, was introduced in (1.5).
As in the proof of Proposition 3.3, we extend ¢.; to a function defined on R? such that

[Pl 22 ®2) < C|Pe]

Since Q|| r2(s) = 1, we have [|¢c 1| m2re) < C.

HZ(S)-
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By taking a subsequence of €, we may also assume that ¢.; has a limit in H? (R?) which we call

1.
We have by (4.5)

¢um=2ﬁa/k%¢n@%ﬂwx%mw@. (4.9)
S € €
For p = p®, we calculate

be(p) = 26° / G, (7, @)€ctio( Xpe (9) /€)X e (0) e

_ 9732 (B)? . )
=2 [ (g + Gu0'.0) + O ) 602X 0)/6cs (5 0/ ) 001

1
= 2¢2 /RQ (m + 52G0,p6<0a GZ) + O(|ﬁ>\e

1 2
= 2m§€€ /]R2 w(z)pe1(2) dz + o(1). (4.10)

Substituting (4.10) into the first equation (4.4), letting e — 0 and using (2.17), we arrive at the

Xpe (q)

) dvg(q) + o(1)

4)) Ew(2)pea(z)dz+ o(1)

following nonlocal eigenvalue problem (NLEP)

2 Jpwd

A%—wﬁ+mmq—1+TM &ﬂMUJZAmL (4.11)

By Lemma 2.2, problem (4.11) is stable if 7 < 71, which implies that the large eigenvalues of (4.4)
are stable.
If 7 > 71, by Theorem 2.2, problem (4.11) has an eigenvalue Ay with Re (A\g) > ¢ for some c¢q > 0.
By a compactness argument given in Section 2 of [6], it follows that problem (4.4) also admits an
eigenvalue A\, with A\ = A\g + o(1). This implies that problem (4.4) is unstable.
This finishes the proof of Theorem 1.2 in the large eigenvalue case.
0

4.2. Further improvement of solutions. In this subsection, we further improve our expansion to
the solutions derived in Section 3.

More precisely, we will show that
Ac(q) = & [(wo(%) + wh(%) + e'wi(F) + 'wi(E)) xs)(2) + O()]

(4.12)
He(p) = &(1+O(e),

where ¢ = X.'(z), the amplitude & is given by & = &, and wp, w9, w?, w) are suitably chosen
functions; wy = w + O(e?) has been defined in (2.12) and in this subsection we will introduce
wd, wl, ws.

First we know from the existence proof that
V(e K (p°) + e R(pf)) = O(€?), (4.13)

see (3.17).
By the non-degeneracy of the critical point p° for the function F' we derive p¢ = p® 4+ O(€?) so that

VK(p9) = VK(°) + O(e?),

VR(p%) = VR(®) + O(é%).
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We now expand the one-spike solution A.. First we define wy = 3w as follows: Let w) € H*(R?)

be the unique solution of the problem

2 [ wowy 1 1
ot - 20 4 ORGP )@= 2P ] + G
51 2 _
+SIZ 5 (VRG") - y)ws =0,
Owy .
R 414
W2 8y] J 5 & ( )

where
Lop = Ad — ¢ + 2w .
We recall that wy has been defined in (2.12). Note that ws is an odd function. The solution wg exists

and is unique because (4.13) implies that the following solvability condition holds:
1 1
S(VE(@°) - y) (Q — 2P) [wo] + 631 [wo]

6
21 Ow
H&@_WR() ywg L =, j=1,2.
dy;’
This follows by an argument as in the proof of Proposition 3.3, using the fact that by Lemma 2.1 we
have that L is invertible from Kj to Cj-.

Second we define w; = e¢'w?, where w{ € H?(R?) is the unique solution of the problem

f wow? 1 1
Lwﬁ—2jm%W%+§ﬁ¢V”ﬁﬁwﬂQ—2PWm}PERm%
H& @V%Mpphﬂgzﬁ

8w0
dy;’

The solution exists because the following solvability condition holds:

wd L —, j=1,2 (4.15)

%UW ()9)(@ — 2P)[wo] + o Rl
HSIZ S0 VARG P L 52, =1,

since this expression is even in y.

Third we set w3 = e*w§, where w§ € H*(R?) is the unique solution of the problem

0
Lowy — QI}UZ;}3 wp — %KQ( p%)eriuwl = 0,
0

0122 j=12 (4.16)

The solution exists because the following solvability condition holds:

%K%)emthf,j:LZ
since this expression rotationally symmetric.

We remark that it does not matter if we use wy or w in the definitions of ws, wy, w3 since the
difference is O(€®). Neither does it matter if we use p° or p© since the error caused is O(¢°), and for

simplicity we use pP.
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Now it easy to see that Sc[(wy + 3w + e*w + ¢*wl)xs,] = O(€®) since by the definition of wy

and w?, 1 = 1,2,3, all the terms up to order €*

Proposition 3.5, we finally have

3,0, 4 0, 4 0 L
ac = (wo + €"wy + € wy + € wy)Xs, + O,

cancel. Using Liapunov-Schmidt reduction as in

(4.17)

where ¢F € K and ||¢"||g2m2y = O(€°). Further, wo, w§ are radially symmetric, w is odd, w! is

even.

Let us derive from the defining equations for wy and w? identities to be used in the stability proof.

Applying aiyj in (2.12) gives:

9 Wo 8?1)0
1+ —622252 [log —‘y‘fldwg(z) dz Ow;

2¢ 32
+ 2¢ 32 3 (_6 géﬁ /aia()g |Z| )’U)(Q)(Z) dZ) — 0’ y € R2.
(1 + S [log ELwd () dz> T yi |y —=|

owY 0Owo 2 [wow? Owy
Loa—j+2 2aj_ I 2 an]
10K |, | 1 0 9 10
#5500 = 2P) o] + G (VE() - 9) 5-(@ = 2P) o] + g 5 ]
52 1 0R 0 2 62 1 0 (9?110 —
+S15 2(8% (D)5 + 1817 5 (VRE') - y)2wo 9y 0

Applying aiy]- in (4.15), we get

ouw? ow [ wow? owg 1,0
Lo—Lt +2u0==2 — 2 L9 —(=—VK(p") - — 2P

+%(ytV2K(P€)y)ai(Q = 2P)|wo] + —%RQ [wo

Yj
5?1 0
+|S’€—2§(ytviRo(pO;po)y)2w0f + 1S5 (5
Taking t%j in (4.16), we get

f’LUowg awo 1 9
Lo— + 2w -2 2w — —K*(0)e"—
"oy, ® Oy, Jwd "oy 45 N

These relations will be needed in the study of the small eigenvalues.

ow) 00w

(4.18)

(4.19)

(4.20)

(4.21)

4.3. Study of Small Eigenvalues. We now study (4.4) for small eigenvalues. Namely, we assume

that A\c — 0 as € — 0. We will show that the small eigenvalues are related to the matrix

M©@°) = V? (1K (") + c2R(p")) ,

0 2 S [e%}
= Z/ (w')?r*dr, cy= 5 1Sl |7T/ w?rdr,
4 Jo 2 Jo

€2

where

which has been introduced in (1.12)
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Let us assume that condition (*) holds true. That is, all eigenvalues of the matrix M(p°) are
negative. The main result which we derive in this subsection says that if Ac — 0, then

64

[ (G2 dy’
where og is an eigenvalue of M(p°). From (4.22), we see that all small eigenvalues of L. are stable,
provided that condition (*) holds.

Again let (A, H.) be the equilibrium state of (1.13) which has been rigorously constructed in

A\ ~ 00 (4.22)

Theorem 1.1 and (a, he) be the rescaled solution given by (4.3).

For the eigenfunction we set

2
Owy 0wy ,ouw) 0w ) N
¢ = a; +¢€ +e€ +€ (ey) + 4.23

where aj, are some constant complex coefficients and

¢t L K, :=span {g—;i)xgo k= 1,2} C H2(S). (4.24)

Our proof will consist of two steps. First we will show that [|¢- — €3¢9||n2(s) = O(€”), where
09| mzs) = O(1) and ¢9 is radially symmetric. Second we will derive algebraic equations for the
coefficients af, as.

. Hwo 30w 40w 40w}
As a preparation, we need to compute L, [<6y]- + € o + € By + € By, ) Xoo| where

2a.¢ a’?
L,p=A,p— — —=

o0 = 800 =0 ]~ T
for ¢ € H(S) and wp, w?, w), w have been defined in (2.12), (4.15), (4.14), (4.16), respectively. To

this end, we make some preparations.

7 T[2a.0)

Using the expansion of Ay given in (5.3) and the relations

1
T[a?] 1+ % flOg |y|i‘z‘
X 0 ﬁQ 63 0
—2eT [wowsy] + |S|E—2§(VR(P ) y)
52 64
=26 T [wo(w + wh)] + S| 5 5 (4 ViR (", 1)y) + O(€”),

Owy 0wy ,ouwd 0w ) }
T |2a, + € +€ + €
{ ( 9y; 9y; 9y; dy;

2 e ow
— 1815 St [(VRGY) - 202005 do( [ whdz)

Zj
2 0
—\S|f—264w§ / (' V. V. Ro(p", pO)z)zwog dz( / w2 dz)"" + O(),
J
we get (recall that a. = (wp + 3wl + e*w) + e*wd)xs, + O(€%)):
Owg 0wy ,ow) 0w ) }
L +e€ +e€ +e X
! K oy Oy Ay oy )
A, (8w0 +€3(9w(2) +648w? +648wg) B <8w0 +€38w8 N 646’w§) +648w§>
dy; 9y; 9y; dy; dy; dy; dy; 9y;

20, (Owy 0wy ,0wd 0w ) a? [ ( owy 0wy 0w 0w > ] 5
+ +€ +€ +€ - < T |2a,. +€ +€ + € +0(e
T[a?] ( dy; dy; dy; dy; ) (T[aZ])? dy; dy; dy; dy; (€)

€
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(9100 (911)0 1 0y 2 < [a’wo] [81001)
= AL 0 CK(p0)e gl _op
dy;  Oy; 3 RN Iy; Iy,
Wo (911)0

+2
L+ 952 [log tEL wp(2) dz Ow;

2
Wy

26 32
(— geﬂ /log 2] 2w0(z)%(z’) dz)
(1+ e éeﬁ flog L Z\wo( )dz) @ ly — 2| Z;
8%’ ay]
1 ow ow 1 ow
- K (A 3 _0 . 0 13 _0
+6(v #7) - v)e (Q[ayj] ZP{@@/J'DJrﬁE Rl[ayj

Lo 22 4 93900 _ ges,,, D0 ] 2wty

+

+A€E

oy oy Yoy, [l
62 3 awo
+|3| 22 Dy, (Vo Ro(p,0%) - )
2 3 ow
8155 /Wmmmwwmgfw/%ww
j
ow? ow?
+Ae — L
83/] Y,
1 - 0 4 a’LUO 6w0 1 4 0w0
e K — | — 2P _ 20
+20(y VK (p )y)e” | Q 9, R + 1€ R o
ow? 3wo Owy f 2uwow?
+2etwyg—= + 2¢tw 264’LU
’ ay] a 83/) fwo
Owy 1
+|5|—642woa 02( "V2Ro(p5,p%)y)
2
+|S|ﬁ_64wg/(ytvmszo(pe,pe)Z)Qwo% dz(/wg dz)_l
J
4A8 6w3
8.% &Uj
1 8w0 8w0
kot (se |52 -ar [5e])
FROWP (30|50 -
Ow) 0 Ow dwo Owy [ 2wow$
+2e¢twy—2 + 2¢*w) — 2ctwy=—=2"—2 4+ O(%). 4.25
’ y; U3 Dy y; 834] fwo ) ( )

We now consider the contributions in (4.25) coming from wg, w3, w?, w separately.
Using (4.18), we get

oo (o3 3]

dy; Oy Ay, dy;
Wo a’wo
+2
14 —E2gf2 [ log ﬁwg(z) dz Ow;
2 2¢ 122
wy ¢ 2| Owp
+ — 5 (— o /log = Z|2w0(z)a—zj(z) dz

(1 4 SseE g;ﬁ [ log %w%(z) dz)

- %K(p )(Q — 2P) BZ;] + 5 K(pe)a%(rwé)
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2

2¢ 22
+ — wy . (_6 geﬁ /(log |Z’ )2wo(z)8iwo(z) dz)
(1 + 52 [log \Jf|z|w3(z) dz) m ly — 2| Zj

2 2632
S < &S /a 3 _Z|) 2(2)d ) o).  (4.26)
(1 + S5 [log pELwd(2) dz L
We show that all terms in (4.26) Vanlsh, except for the error terms of order O(e%), by the following

identities: First we consider the coefficients of £ K (p°)e®

aw0:| 0 ,
_9p + 2 (rw
Q=27 52| + trui)
(9w0 62 871)0 0
— —P _ - -
[3%} "o (&w > * oy,
= —rwjy cos @ — wj cos + (rwy) cosf = 0. (4.27)

Second we compute

0 / |Z’ 2 / 0 ‘Z| 2
—_— lo wh(z)dz] = — —1lo wa(2) dz
ayj[ & |y—z| 0( ) ] (9zj & |y—z| 0( )

2| Jwy
_/logly— K o )8,2]- !
Using (4.19) we get
Aega—wg L
9y; dy;

1 8’&)0 a’wo 1 8w0
e o (oG] -2 [0« gom 5

Ow) ow Owy [ 2wow)
3, OWy 3, 00Wo 3 ~OWo 0Ws
+2€e wy oy, + 2¢ w20 - — 2€wg dy; [ u
0
41812 20, 20 (9, By 4. 1) )
Yj
2
8|5 [(oRale. 1) - 2120050 da [ i)
J
3 3
_< 0. _opy| QW] _ 2 o _ oK oo
= SOKE) 0 |©@-2P) | 2] - Sr@ - 2P| - 5 00Q - 2Pl
63 8w0 0
5 [ 5] -]
B%ed OR, o\ o
181 S G s
5_23 2 0,0y, % 2 7.\—1 5
—HS| sewy | (VoRo(p”,p”) - 2)2wo 5 dz( | widz)"" + O(e). (4.28)
J
We apply (4.27) and the identity
8’LUO 0
o G| = gt
3K( 0) 8w+ Ow +8_K<0) ow | Ow
Y 1/1a " Y27 s O p)\n 91 Y2 o

_ 0K,
N axl
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for j =1 (the case j = 2 is handled with minor change) the term in (4.28) simplifies to

e 0 3 OR
—_— — — 2 5 . .
S KOO rul) = 1815 S )i + () (4.29)
Using (4.20) we get
ow? ouw?
_6 —

0 Y ayj

L v e (o 2% ] —op |29 4 Leag, | 220
+20(y VK (py)e* | @ 0, 2P 8yj + 106 R, a0,
0 . Oy [ 2yt

owy 8w0
26wy —= + 2e*w? — 2wy
31/] oy, dy; [ wg

A4

0
181 VR G ")y)2ui 5
Yj

—HS\—E wg /(ytVIVZRO(pO,pO)z)QwOaa—I:] dz(/ wy dz) !
Owy 0 et 0
] | - TR 0@ - 2P)ud

4 0 0
ol -
—|3|€—2€4

2
+!S\B—e4w§ / (y'Va VR (0", p°>z>2woa—wf] dz( / wi dz)~! (4.30)

Using (4.27) and
8’LUO 0
RQ |:ay1:| — _R2 [U}()]

_ 82K(0)+ K °) 8_w+ ow
=\% B2 p Y2 07102 p (1 Em Y2 D0,

4 aK( )+ 0K (0) _ 0_w+ a_w
928 5 yla 07y p yl@yQ yl(‘?yl

- VR |@-2P)|

0
(%VzRo(P[), ¢) - y)wg
J

PK yl—?haw ow
+6—x%(p)( 5 81+y1y28_g/2>
K 0 ys — yi Ow ow
+ B, ( 2 a—mﬂ%—yl)
(0 1 PK N1 K /
= (e, 70 w) (o) 04 S 0w + 2wt
3( 0

=3 (VK6 ) o)

for j =1 (the case j = 2 is handled with minor change), the term in (4.30) simplifies to

et 0
Z(G—%VK( p°) - y) (rwp)
52 4 )
= 22(a VLRGY) -yl (431)

Using (4.21) and

cra-infiE] []
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Ow 0% (oOw 0
_ 2P 0 v - 3.7
{3,@ ] "o <3yj * o) )
= —rPw cos § + 3r*w) cos O + (r*w}) = 0, (4.32)

we get

ow) 8w3

8% ayj

1 ow, ow

o (30 [531] - [55])

Oyl Q 9, 9,
0

ow ow Owy [ 2wow)

964 3 1 9ety0 0o _ 94 0 3

+2e€ wy 8yj + Z2€ wg 6 ‘ € wo—ayj —fwg

1 ow (9w 1 0
= —K20)|yle (3Q | 5—| —4P |5+ K*(0 Swp) = 0. 4.33
FReOlPe (30| F2] —ap [Z0]) ¢ L0 S (4.33)
Putting together the contributions of wg, w3, w?, w) given in (4.26) (vanishing), (4.29), (4.31),

A2

(4.33) (vanishing), respectively, we get

ow owy ow) 0w ¢’ OK / ‘a0
L, {( 0 p 2 4L 4 ¢t 3) XéO] = (") (rwp) — ‘5|ﬁ_e3(—R(p0))wg

0y, 0y, 0y, 0y, 3 Ox; € 0z;
et 0
A (o z VEG) - y)(rui)
B e 0 2 5
—|3|6—2§(8—%VR(P ) - y)wy + O(€). (4.34)

Step 1.

Substituting the eigenfunction expansion given in (4.23) into the linear operator L,, we get

= 2
dwo owy ow) ow? Owy
L e e e Ll = e L 5).
g[E ak<ayk+eayk+eayk+eayk>><ao+¢ A (D ak@ykx60+¢ +O(e%)

k=1 k=1
(4.35)

Therefore ¢ satisfies the equation

0
Ly[¢*] = A = A, Zak “’“m
3 3 2
e € 9 0 / 5_3 9 0V, ;2
#3055 K00 + 1815 G R ) v

+Zak (- S TG )i + 15155 GV R - 0)u? ) o+ O,

Note that the operator L, — A, is invertible with uniformly bounded inverse for € small enough
if domain and codomain consist of those functions in H2(S) and L?(S) which are orthogonal to K,
and the analogously defined cokernel C., respectively.

Therefore Liapunov-Schmidt reduction can be applied as in Proposition 3.5.

The terms on the r.h.s. of order €® are rotationally symmetric and so they are orthogonal to the
cokernel. This implies

o7 =€+ O +|A\]) in HX(S),
where ¢9 is a rotationally symmetric function.

Step 2.
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We multiply (4.35) by %—Z?X(;O and integrate, using the fact that [ ¢L%—1;;’X50 dy = 0.
This gives
2

0 0 0
Za;/ Lg |:8'UJ(] +€38w2 +€43w1 +€48w3} 8"&)0 dy+/ |:¢J_:| 8"&)0
B/ LUk dy; dy; dy; | Oy B(0,80/) Ay

k=1
owo \ 2
= \af / (—0) dy + O(€°) (4.36)
B(0,80/€) oy

Using (4.34), we first compute for the first term on r.h.s. in (4.36)

/ L, {Gwo L ow) L ouw? L awg} Dwg a
B(0,50/¢) Oy y; y; dy; | Oy

0 0K dwy ’ 2¢t 0 0 0 Owy
= oy 3, 0 [ G e = 18135 g 5 R0 [ i + 0

_ew@@ o [ et 98 /3 i
= (6a:k8le(p ))/0 (wp)*r® dr + |S| 26(8:1; 5o, Ro(p°,p")) szody+0(€ ).

Note that the terms of order €3 vanish because of symmetry.
The Lh.s. in (4.36) gives

811)0 2 o
)xeae/ (—) dy = )\E(fﬂ/ w'r dr.
l R? ayl 1 0 ( )

The following error estimate for the second term on the r.h.s. of (4.36) is derived using the structure
of ¢
Integration by parts gives

811)0 n 8w0 fw()QbJ' (9w0 5
Lé —Xody:/ Lo¢*) 5 dy -2 dy + O
/B(o,ao/e) Ay R2( 09 Oy Jwd g ank ()

_ dwy _ J wop* 2% 5y _ 5
= [ zalGeiotdy 20 [ S ay s o) = o)

since 8“’0 belongs to the kernel of L.

It remains to estimate the difference between L,¢* and Lo

ow
/ (Lyo™ — Lo )—OX5O dy’
B(0,80/¢)

< C(]Ac = & Do llmzis) = O(E)(O(€) + O(A]) = O(€” + €*|A).

This implies the estimate [ L (0] 6“’0 dy = O(¢°) for the second term on the r.h.s. of (4.36).
Putting all the contributions for (4.36) together, we get

2 2 -1
0
Ae] = Z€4mkl (/ <8lylo) dy) + O(E| M| + €), (4.37)

T, PK X 28 B2l PR 3
m—ﬂmmynﬁwwwww@g%my»&ww

We summarize the result as follows: If A\c — 0, then A\ ~ AW
0

the matrix M. Further, a = (a$, a$) is a corresponding eigenvector of M(p°), i.e. the eigenfunction

where

09, where oy is an eigenvalue of

is given by

2
€ __ § € (9w0 38“)3 4aw? 48wg 1 5
v ak(ayk+€0yk+€0yk+€8yk X 07+ O().
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Completion of the proof of Theorem 1.2:

Theorem 1.2 now follows from the results in this section.

5. APPENDIX A: EXPANSION OF THE LAPLACE-BELTRAMI OPERATOR

In this appendix, we start from a well-known power series expansion of the metric tensor for
Riemannian manifolds in normal coordinates (see for e.g. [1]) and adapt it to our special case of
compact manifolds to finally obtain an expansion of the Laplace-Beltrami operator which will be
central to our analysis.

The expansion involves the Gaussian curvature and its derivatives in different terms and they
together capture essential geometrical information critical to the existence and stability of a single
spike solution.

We first derive a local expansion of the metric.

Let p € S be fixed. Then, in the normal neighborhood B, (p, dy), where dy is independent of € and
p, let us denote x = (x1,73) to be geodesic normal coordinates about p (i.e. z — ¢ = X, '(z) €
By(p,dp)). Then, instead of redeveloping a formula from scratch, we learn from [1] (Corollary 2.9),

that the metric tensor has the following local expansion up to the quartic term:

9:5(X, ! (2))

1 1 1
= 0; — 5;&@(0)%@ — EZRikﬂ,t(O)ﬂﬂkmll’t ~ 30 Z Risjt i (0)xpaix sy

kLt kst

+42_5 Z (ZRiklm(O)sttm(o)xkaJTsiUt) + O(|z|?). (5.1)

k,l,s,t m

For simplicity, we will subsequently write g;;(x) for g;;( X, 1(z)) and similarly for all other functions.

The sectional curvature, by definition, has a relation with the curvature tensor expressible by:

o 0
Rijij = K <8_ml’ 8—%> (9i955 — 95i9ij)-

Since we consider two-dimensional manifolds, the only two-dimensional subspace of T,S, trivially,
is itself, and so we have only one sectional curvature, which coincides with the classical Gaussian

curvature. Thus one can apply Bianchi identities to obtain
Rikji = K(9i590 — 9a9jk),

where K now denotes the Gaussian curvature on the manifold, which is independent of the choice of
basis of the tangent plane.

We now begin our computations.

First, note that by the compatibility equations, we always have V,,g;; = 0. Hence we can calculate

in turn:
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For order O(|x|?),

ZRz’kjl(O)xkxl = K(O)Z (gijgm — gugik)lo Tu1
ol ol

= K(O)Z(%&k — 0adjk) Ty
= K(O)ai]’,

2
T —T1T2
where (a;;) = 2 ) .
—X1T2 xq

For order O(|z|?),

ZRikﬂ,t(U)ﬂUkﬂflﬂ?t = Z Vi [K (990 — 9ugie)]l Teis

kLt kit
0K
= > {%(O) (9ij 9k — gagjr) 5Uk$z$t}
k.t t
0K
= (Zﬁ_xtm)xt) <Z (93916 — Gagjr)|o T
¢ k,l
= (VK(O) : LL’)CLZ']‘,
where VK = (g—fl, g—g).
For order O(|x|*), the first term is
Z Risjt k1 (0)xpxi 524
k,l,s,t
= Z ViV [K(9ij9ts — 9it95s)| ThTi1T57
k,l,s,t
K
= 0 i79ts — YitYjs s
klstamlamk( ) (9ij9ts — GitGjs)|o TrtrT s
O’°K
= 0 iiGts — YitYjs)Ls
{ a 8:618xk( )xkxz} {;(gggt 9itJjs)T :Bt}
= (xtVQK(O)m)aij,
K K
where V2K = aga%“ 63512‘2?2 . The second term is
Oxo0x1  Ox20x2
Z <ZRiklm(0)sttm(O)J%xlmsxt)
k,l,s,t m
= K*0) Z (Z (Gigmk = Gim9u)(gjtms — Gjm3es)|o $k$z$s$t>
k,l,s,t m

= KQ(O) Z (Z(5zl5mk - 5im5lk)(6jt5ms - 5jm5ts)xkxlxs$t>

k,l,s,t m

= K*0) Z (Z(@ﬁm - 5im5zk)$k$z> (Z(éjtéms — im0t )Ty

m k,l s,t

= K?*(0)|z*a;

)

)

28
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2
2
because (a;;)* = ?w 21;82 = |z[*(as;).
L4142 1

Therefore, (5.1) can be simplified as follows to give our desired local expansion of the metric

gij(x) = 0y — BK(O) + %(VK(O) cx) + %(ItVQK(O)x)

2
- ROl |y + O,

Second, we derive a local expansion of the Laplace-Beltrami operator.

The Laplace-Beltrami operator in local coordinates is given by

Ny = \/%@ ( Iglg“aj> ,

where |g| := det(g;;). We also write 91 = 5. and 0, = z-. Moreover, we indicate the variable, with
respect to which the differentials operators are defined, by a subscript.

By straightforward calculations we get

gl = 1-[af? [§K<0>+é<vxm0>-x>+%(xtVQKm)x)]
tolelt+ O(lap),
|=[* [1 1 2
Vil = 1= B8 LK)+ (9K ) + 5 (9K 0w)
P KOl + O(Ja]?), (52)
1 \ 1 1 oo
iR {gK VK( ) @)+ 55 (@'V K(O)x)}
o KOl + O(fa]?),
P {%K(O)Jré(VK(O)-x)Jr% («'V2K(0)2) + 115K2(O)]x|21 o
FO(Ja]?),

where (g%) := (gi;)™", 6% := 4;; and a" := a;.
Now, since A\, = ﬁai <1 /|g|giﬂ'8j> = §10,0; + \/ﬂ ( lg| g% ) 0;, we calculate in turn

70,0, = N+ EK(O) + é (VK(0)-z) + % ('V?K(0)x)

FE K0P (900) + Ol

_ 9
where A, = o2 + o7 and

Viglg? = 67+ EK(O) +é(VK(O). ) + 210 (¢! V2K (0)z )] (aij |$2|25U>

1 .
g IO — K

1 iy
—K2 2 1 5 )
= = O)lafa’ + O(la)

(O)]zfa” + 1
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Define (b7) = (aij i (5”) ( _xx_lwa ) Then differentiate and group terms to obtain
—X1X2 2
( \g\g”> 9;
= 1k + 2 (VE©0) - 2) + L @V K (0)2) | (0.a70, — 2:690),)
3 6 20
+910K2( )2 (0,07,)
10K 1 (0K PK .
- () S N\ pidg.
+310K2( a2t (2,690;) + 415K2(0) (2,a70,) + O([]*).

Now substitute 9;a”d; = —2;679; and x;a”d; = 0 and group the differentials to get

0; ( |g|g”> 0;

_ _QEKmy+%mmx> 0) 4 o (#VK(0) )}@ﬁwm

1 (OK y 1 [(0’°K 1 K g
- tj . iJ - | — b
+6 (8% (0)b a]) + = (a 2( ;b a) 0 (83718563 z(())mg,lb aj)

+— L K?(0)]x|? (3316”8]-) + O(]z]?).

Finally, focusing4§n the coefficient of K2(0), we find
ﬁ&- (Vida") 8, = —2 EK(O) + é (VE(0) - 2) + 2—10 (xtVZK(O)x)] (2,590,
+ée3 (gi (o>bw‘aj) + % %2;?((0)%6”6‘])
L (%(O)xg_ibijﬁj
LK)l (2:099;) + O(lalP)

45
We now write out the differentials explicitly

a’0,0; = 120? — 22,200,05 + 2202,

xidijﬁj = $181+ZL'282,

0K y 73— 8K 0K
(5~ 2 daiel

- (3_K<o>al +(00:).

(91'2 8951
02 x2 —2? K ’K
ij 9. _ 2 1 . hiiaiel

2K *K
—T1Zo ({L‘Q 81‘2 ( )61 + 1= 8:L’1 ( )82) )

82[( .. xQ — x2 82[( aQK
— Cpig. = 2T B
Ox;03-; (O)z2-b70; 2 (IQ 0x10x9 00 =z 0x201, (0)82)

PK PK
—X1To (231 axzaxl (0)81 + X9 . (0)82> .




GIERER-MEINHARDT SYSTEM 31

We switch to the rescaled coordinate y by setting # = ey, then -2 = 1 So, for a function u in

Ox; € By
rescaled coordinates y, the Laplace-Beltrami operator applied on u has the following expansion:

62Agu(x) = Ayu(y)

LK) | (QLu] - 2P[u))

1 1
+ | =K(0)e* + E(VK(O) )t + 50

3
+ K2 (0)]ye (3Q[u] — 4Plu)

45
+ée3R1 ] + 1%6432[ L (5.3)
where A, = gy + % and
Qi) = B5%— 2y s+ (5.4
Plul(y) : = yl%‘f‘fwg;i (5.5)
Ridw): = B0t - K02
(O + 505 (5.6)
mapd): = (2500 g ) (w5 O+ )
- (yg ; gi + yly2§;) (w(?; 5(0) + ylaijc{){xl (0)> : (5.7)
K _9PPK
Note that VK(0) = (25, 2£)(0) and V?K(0) = ( % % > (0) are not rescaled.

6. APPENDIX B: SOME TECHNICAL CALCULATIONS

In this appendix, we compute values of several integrals needed in the proofs of existence and

stability of a single spike steady state. We transform rectangular coordinates to polar coordinates

by v = (y1,92) = (rcosf,rsinf). Note that if w is radially symmetric, then Vw = (g—i,g—yi) =
(w' cos 0, w'sin ), where w' := %2,

Lemma 6.1. If w is a twice differentiable, radially symmetric function on R?. Then

in polar coordinates (r,0),

Proof. From the definitions, Plw] = Yy 2w 6y1 + vy Byg = r%;“ = rw', so Plw] = rw'.
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Then note that 8“’ = yg 8y1 — yl@ and consider

ol w0 Ow w0 ( dw O
o0z y28y y28y1 y18y2 yla (91/1 ylayQ

5 0%w Ow 0w Pw 0*w ow
= 2 Oy a2 Yoo 9y — YY1 5 D20 — Y1Y2 910y + 8y§ - ’y1a—y1
= 282w -9 0w 32_7“” — 8_w _ 8_w

Yo7 5 8y2 NY2r5—F— 9910 + U 8y§ Y1 Em Yo Em
= Q] = Plw].

Lemma 6.2. If w is a twice differentiable, radially symmetric function on R?. Then

/Rz(Q[w] - QP[w])ng_;Ujdy = -7 /Ooo(w/)Qrg dr,
[t = <3550 [Cwya
for j =1,2. Hence, [g ( w] — 2P[w])y]g£((0) + Ry ]) dy = g_;j(())

Proof.

We compute for j = 1. Using Lemma 6.1, and yl% = rw’ cos? 0,

21 o]
/(Q[w]—QP[ ])Z/la—wdy = / / (—rw)rw’ cos? Ordrdf
R2 oy 0 0
21 [e%¢}
= —/ COSQHdQ/ 3 (w')2dr
0 0

= —7r/ 3 (w')?dr,
0

Ow ys—y? OK, 0w 0K _ 0w Ow
Riuw] Xy = IR ()20 IR )y T
/R? 1[w]ay1 Y /RZ 2 (ayl( )ayl 892( >8y )ayl Y

oK, ow 0K, Ow, ow

- 0) 22 4 OB ()2 Ty
/y1y2<82< om * o Vo o™

oK Y3 —y3 (811))2 / dw dw
- 20 GO gy — Uy
ayl( ) [/R? 2 Iy Y R? e Y2 Oy Y
B 5 sin 9 —cos?l , ,o
= &El [/ / ———— (w')" cos® Ordr
2
/ / w')? sin? 6 cos? 07“(17’]

10K ® g
= _28561( )/0 Ccos 9d9/0 e (w") dr

_ _TOK o [T s
= 28171( )/0 re (w")” dr.

The same calculations work for 7 = 2 with minor change. UJ
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