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Abstract: We consider the following coupled elliptic system :

—Av = ugv% + BuT Iy in RN (S)
u,v >0, u,v€ DL2(RY),

where N = 3,4, uq, po are two positive constants and 3 < 0 is the coupling constant.

We prove the existence of infinitely many positive nonradial solutions.
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1 Introduction

We consider the following coupled elliptic system

A+ pyuP =t —|—6u2_1vg =0 inRV
Av + pgvP ! Builuf =0 inRY (P)
u>0,v>0 in RV,

where p = 2* = % is the Sobolev critical exponent, w1, o are two positive constants, and

8 # 0 is the coupling number. Physically, if 3 > 0, it means the attractive interaction of the
states u and v. On the other hand, if 3 < 0, it means the repulsive interaction. More precisely,
system (P) is closely related to the solitary wave solutions of the time-dependent m coupled

nonlinear Schrodinger equations:
D
2

p_
_\/j%q)j :A(I)j""zi;éjﬂij@ﬂ? 1‘1)j, y € RN ¢ >0,
q)j - (I)](y’t) = C’ J=1..,m, (11)
®;(y,t) — 0, as |y| — oo,t >0,



where p; = (;; > 0's are positive constants, ﬂgjs are coupling constants and the exponent
p > 2. The above system has applications in many physical problems, especially in nonlinear
optics (when p = 4). Physically, ®; denotes the 4t component of the beam in Kerr-like photo
refractive media; The positive constant p; is for self-focusing in the 4t component of the beam;
The coupling constant (3;; is the interaction between the 4t and i component of the beam.
As f3;; > 0, the interaction is attractive, and the interaction is repulsive if §;; < 0 (see [1]
and references therein ). In particular, when the spatial dimension is one, the system (1.1) is
integrable and there are many analytical and numerical results on solitary wave solutions of the

general m coupled nonlinear Schrédinger equations (see [6, 9, 10, 12]).

To obtain the solitary wave solutions of system (1.1), one set ®;(y,t) = eﬁ’\ftuj(y) and

transform the system (1.1) to a steady state m coupled nonlinear Schrédinger equations:

1 P pP_q
Auj — Njuj + uju§ + Z,L'#j Biju; uf =0, ye RN,
u;(y) >0, yeRN j=1,..,m, (1.2)

u;j(y) — 0, as |y| — oo.

Note that system (1.2) has a gradient structure with respect to the energy functional

1 - 1 p D
Elug, .oy ti] = 5 /RN Z[IVWP + Nu?] — ; /RN Z@j\uip Jujl?. (1.3)
i=1 i,j
2N

In the case of subcritical, i.e. p < the existence of ground state solutions for (1.2) may

N—2>
depend on coupling constant ijs . More precisely, when all Z(js are positive and the matrix
Y- = (|8i]) with Bj; = p; is positively definite, there exists a ground state solution which is
radially symmetry. However if all Z’»js are negative, or one of Z(js is negative and the matrix
> = (|Bijl) is positively definite, then there is no ground state solutions (see [13] and [2]).
For more related results for coupled nonlinear Schrodinger equations, we refer the reader to
[3, 4, 5, 14, 21] and references therein.

To study the a priori estimates of solutions to (1.2), we have to study the existence and
non-existence of the limiting elliptic system (P). In the case of p < % and B2 > — /112,
it has been proved that problem (P) has no classical solutions ([18]). On the other hand, if
P12 < —y/p1fi2, non trivial solutions exist ([22]).

The purpose of the present paper is to study the critical case. So from now on we assume
that N > 3 and p = % Observe that when 3 = 0, problem (P) decouples to the following
(up to multiplication) well-known Yamabe problem

“Au=uN? 4> 0in RV, (1.4)

It is well known that all solutions to Yamabe problem (1.4) can be classified

N—-2

U o) = (N(N — 2)) 7 () v

e2 + |y — xo|?



On the other hand, it is known that when the coupling constant (3 is positive (the cooperative
case), the only positive solutions to the system (P) are radially symmetric with the form (u,v) =
(c1U, coU), where U(y) = (N(N — 2))¥(ﬁ)¥ is the solution of the equation (1.4) and
c1, ¢ are some positive constants (see [8]). In this paper we consider the case of non-cooperative,
i.e. B < 0. We establish the following result, which seems to exhibit a new phenomena: V fixed
w1, 2 > 0,5 < 0, problem (P) admits infinitely many positive nonradial finite energy solutions,

whose energy can be arbitrarily large.

To explain the main ideas of the proof, we have to go back to equation (1.4). By remarks
before, positive solutions to (1.4) are well classified. It is natural to ask wether or not there are
finite energy non-radial sign changing solutions to (1.4). This was answered first by Ding [7].

His proof is variational: consider the functions of the form
u(z) = u(|z1], |22]), . = (21, 20) € SV C RV =RF x RN F | > 2. (1.5)

The critical Sobolev embedding becomes compact and hence infinitely many sign changing so-
lutions exist, thanks to the Ljusternik-Schnirelmann theory. See also [11]. Recently, del Pino,
Musso, Pacard and Pistoia [15]-[16] gave another proof of countably many sign changing non-
radial solutions. Their proof is more constructive: they built a sequence of solutions with one
negative bump at the origin and large number of positive bumps in a polygon. This gives more

precise information on such sign changing solutions.

It seems very difficult to apply variational method to obtain non-radial positive solutions
to (P). So we turn to perturbative method as in [15]-[16]. First we observe that problem (P)
is invariant under rotation, reflection and Kelvin’s transformation. As in [15]-[16], we build a
sequence of positive solutions with one positive bubble for u at the origin and large number of
positive bubbles for v around a polygon. Since our system is coupled each other, in order to
obtain a better control of the error terms, it is difficult to carry the reduction procedure by using
the same norm in [15]-[16] (see also [23], [17], [19], [20]). We have to modify the norms. Moreover
because of the coupling, the estimates in the reduction procedure is much more complicated
than in [15]-[16]. We hope the method that we have delivered in this paper can be applied
to general dimensions larger than 4. However, the difficulty of the proof of existence increases
as the dimension N is getting larger. If N > 5 | the powers of the nonlinear terms us ot
are sublinear in u, and the operator becomes singular when we consider the linearized operator
(however we think that this is only technical). Some new methods are needed. We will come
back to this question in a forthcoming paper. In this paper, we mainly focus on the problem of
dimension N = 3,4. Indeed, from the view point of physics, the case N = 3 is more significant.
Technically, the case of N = 3 is indeed more tricker than that of the case of N = 4. For reader’s
convenience, we first solve the problem of dimension 3, and leave the case of dimension 4 in the

last section 5.

Our main result can be presented as follows:



Theorem 1.1 Let N =3 or 4. There exists some sufficiently large ko € N, such that for any
k > ko, the system (P) has a finite energy solution (uk,vy) of the following form:

— Ux + 5 GRN,
{ ue(y) =u.(y) +or(y), v . wv)
up(y) =v(y) +erly), yeRY,
_N=-2 _N-2 k
where e, ~ k~*In"2k for N = 3, e, ~ k=3 for N = 4; (U, Vi) := (:“1 Y ULy YYD ngw].),
j=1

T = (, /1—e2 COS(LJZI)W), \/1—¢2 sin(Z(jZ,l)W), 0) eRZxRN=2 forj=1,2,-- .k, and

[¥k]l« = 0, lprlle = 0 as k — oo, where

]l == sup vy (y) - o(y)|-
yERN
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2 Approximation and Linearization

In this section and in the following sections 3 and 4, we deal with the case of N = 3. Note
that in our proofs the values of the constants  and 3 are not essential. Only the sign of them
matters. So without loss of generality, we may assume pu; = pus = 1 and § = —1. Namely we

consider the following elliptic system

—Au = u’ — u?v? in R3,
—Av =v° —v?u? in R3, (2.1)

u,v >0 in R3, u,v € DH2(R3).

An important observation is the following invariance: Let T; be one of the following three
maps, i = 1,2,3. Then if (u,v) is a solution of (2.1), (T;(u), T;(v)) is also a solution to (2.1).
Here maps T are given by

(Rotation Invariance Map): for n: R?® - R, (7,7') € R? x R,
T @y) =0 (eFYT5y), =123 k-1 (c1)
(Reflection Invariance Map): for : R — R, (y1,v2,y3) € R x R x R,
Toa(m) (1, y2,y3) = 1(Y1, —y2, Y3), (C2.1)

TQ,l(T/)(ylay27y3) = 77(917927 —3/3) (022)

(Kelvin Invariance Map): for n: R? — R, y € R?,

Tam)(w) = Iy~ (,j) | (©3)



where

Because of the three invariances, we can define a symmetry class as follows

H, = {(91,92) € [D"*(®*)]* [V(z,2') € R? x R, Ty(0:)(3,2') = gi(@,2/), ] = 1,2,3,1 = 1,2}
As in [15]-[16], the following approximation solution

where

k
(u*a U*) = Ul,Oa Z Usk,:vj
j=1

2(j—1 2(5—1
T = <\/1 —e? Cos(i(j k )ﬂ), \/1-— 6%sin(7(] ’ >7T),O) € R? x RN72,
for j =1,2,--- ,k, belong to the symmetry class H,. To simplify the notations, in the following
of the paper, we will use € instead of ¢.
Let

DL2(R3) x DV2(R3) = {(u,v) € L°(R?) x LO(R?)|Vu € L3(R?), Vv € L*(R?)},
with norm
1 1
(& mlp = lIEllp + lInllp = (£, &)p + (0,1,
where (-, )5 is defined by:

(€1,&2)p = /RS V& (y) - Véa(y)dy, Vé, & € DV(RY),

Linearizing the equations (2.1) around (u.,v.), we obtain the following two linear operators
Lg, Log, namely:

{ BT
(¥, ¢) € DVAR?) x DHA(R?).

Lo(¥, ) 1 = A+ 5ugyp — 2u0iy) — 3ufvip, V(i ¢) € DVA(R?) x DV2(R?),
We rewrite the system (2.1) in terms of this linear operator L = (Lo, Loo) as:

Loo(,0) 1 =Ap+ 5vteo — 2udv,p — 3uv2ey

{ Lo(,0) = —[N50(, ) + Na3(¥, )]
L00(¢, SD) = - [E + N075(¢) SD) + N3,2(¢7 QO)]

k
B=vl=) Ul
=1
Nos(¥,9) = (v + 9)° — vl — 5ule;
_ 3 2 3 2,2
N3z a(1h, ) = —(ux + 1) (v + ©)* + 2uivep + 3uivY;
Nso(1h, ) = (us +1)° — ul — buyr);

Nog(¥, ) = —(us +0)2(0s + ¢)* + 3uZvZ + 20,039,



In the following, we will focus on the solution to the following problem:
L, ) = h, (LN)

where (1, ¢) € Hs.

We first introduce the following weighted L°° norm and the weighted L? norm:

6]+ := sup |v;(y) - o(y)|,

yeRN

_2N
Pl = 1L+ [y1)° " A()l| o), N = 3,4,

It is well known that (see [15]-[16] and [23]) the set of bounded solutions of the decoupled
homogeneous system

Aty + 5ulp =0, Ap+ 5vip =0 (2.2)
is spanned by 8k functions (Z;, Z;s), where 1 =1,2,3,4,j =1,2,--- ,k;s = 1,2 and
1
Zy=0y,Uro(y),1 =1,2,3,y = (y1,y2,y3) €R® Zu(y) =y - VU10(y) + SULo(y).y € R?;

Zj l(y) = aTUE,l‘jv Zj,Q(y) = 8EUE,xj’
with r = |z;| = V1 —¢€2, j=1,2,--- k.

The following proposition solves (LN) with general orthogonal conditions.

Proposition 2.1 Let h = (h1, ha) be a vector function such that ||h|lw = ||h1||ss + [Pl < 00,
and satisfy the following orthogonal condition (Cp) :

/ Zl(y)hl(y)dy = 07 [ = 1>2>3>4
R3

st(y)hQ(y)dy = 0, ] = 1’27 NN ,k’ s = 172’

(Co)
R3

then the linear problem (LN) has a unique solution (v, ) = T(h1,he) such that ||(¥, p)|« =

1« + e« < oo, and

[ vt zwimdy =0, 1=1.2:3.4

(PHSI)

Proof. For fixed k, let us consider the subspace

H = {(w,cp)‘(w,go)satisﬁes (PHSI)}.

Then H is a Hilbert space under the induced inner product

(o) (o= [ Vir(o) - Veatwldu+ [ Vi) - Valo)iy.



The norm || - || on this space is defined by

1
By Holder’s inequality, we have
5.6 _6
[hall s <CN+ Iy e @y 1A+ [y)° ™ ki)l 2aqee)

<c [ [a+ ry\>-6dy] il
Ra

L8 (R3)

Sl

Wheref—i—f 6,@-1 2.
The following discussion is focused on the existence of the solution (¢, ) € H, namely the
solution satisfying the weak form of the system (P) in the space H, i.e., for any testing pair

(&1,&2) € H, it holds that:

/ Vi - V& —/ (5uttp — 2uvdh — 3uZvie) - & —i—/ hi-& =0

3 3 3

f V-V —f (5vkp — 2udv.p — 3uve) - & —|—/m hg - & = 0.
R3 R3 R3

Note that for any (h1, ha) € Ls (R3) x L3 (R3), by the uniqueness of Riesz’s theorem, we can

define an injective, linear and bounded operator A = (Aj, As) : Lg(R?’) X Lg(R3) — H, such
that (¢, ) = A(h1, h2) = (Ai(h1), A2(h2)) and

(2.3)

(A1(P1),61)p = — (M1, 61) 25 (A2(h2),&)p = — (ha, &2) 12

For convenience, we also define an operator 7 = (71, 72) : H — L%(R?’) X Lg(R?’) such that,
711, ) = —5uit) + 2u.viep + Bulvip;

T2 (1, ) = —5vip + 2uv,p + 3uvy.

Then the operator 7 is compact due to the fact that u?'(y) - v22(y) ~ ==z, for 0 < vy, <

(1+\ )
4,v1 + vy =4, and |y| > 2. Furthermore, by Holder’s inequality, we have

ol g g < Cllutol g - Il e

<Ck 4+ E72)In™ k- |lollp < Cll¢llp,

and

Jugt v -l o

<l g - 19122 ety

<O+ k)™ k- ¥l < Ol

L8 (R3)

For the details of the estimate of Hu”W”H we have used the result of (v — ext) and

2 (R3)’
(v — int), which will be explained in the proof of the following Proposition 2.2.
Now we define an operator B = Ao71: H — H, then B is also a compact operator and the

system (2.3) is simplified to the following form:

(I = B)(¥,¢) = A(h1, h2).



A direct computation shows that
<(¢’ ©), B, [5)>H = <(¢, ©), (A1 o 11(1h, §), Ag o T2 (1), (5)) >H
_ <¢7 Ar o (9, ¢)>D + <<p, Az o 3(¥, s5)>D
— (w,n(i, gE))L2 - (%Tg(% 5))L2
= [ v (et 0= 2udd - 3u2e) + [ oo (50df - 20005 - ke
R3 R3
:/ - (bult — 203 — 3uPv?p) + / 7+ (v — 2uivep = Buiviy)
R3 R?
== (nW.9).9) , = (n(.¢). &)z
- <A1 o1 (1, p), 1Z>D + (A2 0 2(¥, ), 9)p
= <(A1 ot (¢, ), Azom(i,)), <J7 95) >H

(B, (7))

where (-,-) denote the usual inner product in L?(R3), which shows that B is also self-adjoint.

Since the linear problem (LN) is equivalent to the equation of the operator:
(I = B)(¥,¢) = A(h1, ha).
By the injectivity of the operator A, for V(vi,v2) € ker(I — B),
(I = B)(v1,v2) = (0,0) = A(0,0),

which means that (vi,v92) is actually the solution to the homogeneous linear problem (LN).

Therefore, there exist some constants ap, bjs,p =1,2,3,4;5 =1,2,--- ,k;s = 1,2, such that
: 3
uily) = Zlap'Zp(y% y € R%,
p:
2 k 3
va(y) = Zl > bjs Zjs(y), yeR.
s=1j5=1

Putting this formula into the restriction system (PHSI), we obtain that a, = 0,b;s = 0, and
(v1,v2) = (0,0), hence ker(I — B) = {0}, so that

R(I — B) = (ker(I — B*))* = (ker(I — B))* = H.
This yields the uniqueness and existence of the solution for the system (LN). O

Proposition 2.2 Under the same assumption of Proposition 2.1, there exists a large kg € N,
and a constant C independent of k, such that for any k > ko, the solution (¢, i) to the linear
problem (LN) is equivalent to the equation (Vy,pr) = T ((hig, hor)), then

1T ((hak, how )l = [[(@r, er)llx = [9kll« + ll@rll < Ol + [hkllex) = Cll [,

which shows that T is a bounded linear operator.



Proof. We prove the results by contradiction. Suppose that the conclusion does not hold true,

then there exists a series of (g, px) and (hig, hoy) satisfying

1@k, )l = N[0kl + llonlle =15 Nhkllex = [[Paglles + [[Rok]lex — 0,88 &k — oc.

We rewrite the linear problem (LN) into the following form:

* N

* Pk

{ At (5ub = 2u, - v3) - Y= hyp+3u v
Pk

App+ (5vf —2u2 - v*) cop = hogp 4+ 3u?-v

* N

Then the standard elliptic theory yields that

||¢k:||Loo(BO(%)) < Cllhw + 3U3U3¢k”m(30( ) = c [thk;H** + HUEUESOk”Lq(BO(%)) .

%
Note that y € By(3), |y| < & and |z;| = V1 — €2 ~ 1, we have |y — x;| > C(1 +|y|) and

1 1

5 2 1
(1) < S — e - 2 Uy
U(y)_z<€2+|y—fvj\2> _Cl+|y\ Chezu

Jj=1

Thus
u - 0 - Prll La(Bo(1y) < Ck™?In~? kH‘PkH*HUiHLq(BO(%)) < CE I Kllgp)l« <Ck I k.

Hence, we obtain
”"pkHLoo(Bo(%)) <C (thku** 4+ k313 k) .

Let 5 denote the Kelvin transform of s, that is 5(y) = |y|~'s (ﬁ), then one can check that w,

and v, are invariant under this Kelvin transform, hence
Aty + (5ut — 20,02 )y, = hag + 3u0? Gy,

where Elk(y) = |y|huy (ﬁ) , and
1Pkl Loy = Iy1™ 7hak @)l Lagy) < Clibak e
For the sake of further estimate, we split the whole space R? into two parts: namely, the interior

region INT and the respective exterior region EXT.as

INT :— {a: c ]R3‘Elj € {1,2, -k}, st |z —a;] < %}

The exterior region EXT is defined as the complementary for INT, that is EXT = INT®.
For y € EXT, we observe that [y —x;| > },Vj=1,2,--- k.

(1) If y lies in the inner part EXT N By(2), we have two choices:

(i) 3 some ig € {1,2,---, k} such that y is closest to this point ig, but relatively far from all

the other 2’s(j # 49), namely, |y — z;| > %|xj — | ~ |7*kl°‘7 for all j # i, then,

1

1
ke2 ke2 1 _
v, (y) < C Z |j—¢0\+7 < Cklnk-e2 <Ck™ Y
0




(ii) y is far from all zfs,i = 1,2,--- , k, such that 3 some fixed constant ¢y > 0, |y — z;| >
co,1 <1<k, then
vi(y) < Cke2 < Ck'In'k < CkL.

(2) If y € EXT N B§(2), then |y| > 2 and |y — x;] > n/k, we obtain that |y — z;| ~ 1+ |y,

since |x;| ~1,i=1,2,--- ,k, and e ~ k~*In % k, we have
k 1 1
€2 Ckez
ve(y) < C < . v — ext
®) ;eﬂyml 1+ y| ( )

For y € INT, then 3j € {1,2,--- ,k} such that y € By, (n/k). In this way, we can bring them
all into the same concentration region around the origin, that is w € By (%) On the other hand,
observe the fact that
1+ 3+ |x;| <3, hence

xj—azz

~ = ”(] # i), which dominates |w| < 7L and 1 <1+ |ew + x4 <

ke_%
1+ |w|

Ve (25 + ew)| < C (v —int)

And

| = 3u2v2Pk || By (1))
1

q
<Clleell-| [, ) |z|3q—6dz]
LY Zola

<Cllgulls (/ >+</ ) Z/ (2) - 2%z
EXTNBo(2) EXT\By(2) 2; (n/k)

Q=

3q9—6
<Cllgell- (k790 [ Japr-oas k-t R
Bo(2) EXT\Bo(2) (1 +[2])%

3q—6 3qz
+Z/ L D) d]

1
q

<Ck=3 4+ ng Z/ (1+ |ew + ;v]-|)3q_6 (va(j + ew))gq dw
Bo(ks

<Ck™3 + Caq Z/B Nxj +ew)dw

3_3 = r2dr
<COk™3 4 Ckca2 / —
- o (L+r)3

3

<Ck™3 + Ck " ac?
<Ck'" a3k

Since % < g < 3, it yields that 1 — % < 0 and the norm of the remaining term vanishes as the



parameter k increases. Moreover, we get the estimate in the outer region Bg(%) as the following:

WkHLoo(Bg(i)) SH‘Z/|¢’£(3/)HL°°(BS(%)) = 1Vl oo (Bo(a))
~ _3 _
SCthk”Lq(Bo(él)) + Ckl aIn >k
<C (HhmH** + k'3 k) :

Combining this result with that in the inner part Bo(%), we obtain,

|9k Loo (m3)

<[9nll o (g(2y) + 1kl Lo (o2
<C (haglles + K703k B30~ )
_3
<C (lhapllen + K500
Similarly
_3 7
[0kl oo ray < C (Hh%u** +k"aln Sk) _

Therefore ||k oo ms) + ||kl Loo(ms) — 0, as k — oo.
However, noting that [|¢y ||« + ||¢k |« = 1, we can find some fixed constants 6y > 0, R > 0,
such that,

[kl Lo (Bo(r)) + 9k Lo (Bo(R)) > B0 > 0,

which is a contradiction with the fact that [[¢k||pec(rs) + [|@kllLoe(rs) — 0, as k — oc. O

Proposition 2.3 Let hyg, hor be such that
E(hlk) - h’lkaz“’j(th) - h2/€a j = 172)3)

where Tjs are the three invariance maps defined at the beginning of this section, then there
exrists a bounded linear operator T as that in Proposition 2.2, such that for any k > ko, the
problem (LN) admits a unique weak solution (Vy,pr) = T (hig, hor) such that ||(Yk, ok« =
[¥kll« + llerlls < oo, and

/3 Uil,O(y)Zp(y)d}k‘dy =0, p=1,2,3,4;

(PHSI)
e 0 ZpWeny)dy =0, G=12, ks =12

Proof. In the proof of Proposition 2.1, it is sufficient to check the condition (Cjy)

/[ Zp(y)hlk‘(y)dy = 0? b= 1727374;

3
. (Co)
s st(y)hgk(y)dy =0, 7=1,2,---,k s=1,2
R



By the oddness of Zs and the condition (C2.1) — (C2.2), it is easy to verify that

[, Zstwmtway =o.

__/ hmw,[m]@
B (L4 [y2)? | w2 |

For Zy, Z>, we consider the vector integral

Z1(y)

I= hi(y) Z)
2

R?)

then by the condition (C'1), we calculate that,

6213\/?1[_—/ hik(y) 36%\/: Y1 dy
R (14 [yf2)} "

2w/
hile & _1(2’1,2’2),23
= _/ ( ) [ . ] dz
R3

3

(1+|( ¥ T nm.m)[)

22
:]’

0
which yields that I = [ ol Hence we get that

/'a@mm@my:/'@@mﬁwwy:o
RS

RS

For Zy4, observe that Z(y) = 8>\‘>\71 |:)\%U1,()()\y)}, we define the function I(\) by

I(\) = A3 /RS Ur,0(Ay)hik(y)dy-

By changing variables y — ﬁ and the condition (C3), we have that I(A\) = I (5). Thus

1
I‘:——-SI :—I(,
ONI(N) . 2 0s1(s) —act ONI(N) -
and
AW, = [ 2wy =0,
A=1 R3
Hence
RS
Similarly

/ Zi(y) - ha(y)dy = 0, i=1,2,3,4.
R3

For the functions Zj;,, we define the unit vectors as e; = <cos (W) ,sin (2(];1)77) ,O) €
R3, j=1,2,--,k.. Then a direct computation shows that

/Z-h()d—/8 £ %h()d
- 5,112k\Y)ay = R3 or €2+‘y_$j‘2 2k\Y)ay

1 y-ej—r
=e? / 2 7 har(y)dy,
RS (e2 + |y — z4[?)

Njw



and
Zj2(y)hor(y)dy

/.
1

9 € 2
/]Rs Oe <€2+’y_$j|2> 2k (y)dy
1
2
1
2

2 2
1 Yy —xi|°—¢€
B (&2 + |y — )

1 2-1)h r
b [ By T ) bty
]R3 ) RS

3

N|w

(€ + 1y —=[?)
It follows from the condition (C3) that

1
? 7 (2 + |y — a2)

- / (1= [y*)hax(y)
R3 (

3
2t ly—ayl2)?

Therefore

Now it is sufficient to prove that
[, 2t hawlwdy =0, G =12,
Let I;(t) = [ps we(y —t - x5) - hop(y)dy with w.(y) = 5_%U1,0(5*1y), then
of 1= [ o] _wt=t-a) haldy=r- [ Z,a) - han(o)dy.

RS

By changing the variables y — ﬁ and the condition (C2.1) — (C2.2), we obtain

110= e (i) s () o ()
:@%Q%_uﬂ-w*m@@

1
€ 2 1
= -5 | - -h d
/Rs <52 + t27’2> ta; |2 2 2t (y)dy
Y=zl T (

N /IR{3 Weqry (y = 7(t) - 5) - har(y)dy,

dy

(2.4)



where e(t) = 75,2, 7(t) = 2. Noticing that (1) =&; r(1) =1, we have,

_l’_
ol 1t
e i(t)
= [ » DeyWery (y — 7()2) haw(y)dy - £'( / Or (¢ —r(t )xj)th(y)dy'r/(t)}
t=1
(2% [ Zahao)dy — (1 =2)- [ 2oty
—ert+ 2= 1) [ Za (e
(2.5)
Comparing the identities (2.4) and (2.5), we obtain
T /3 Zin()haw(y)dy = (2r° +2r* = 1) - /3 Zj1(y)hor(y)dy,V 0 <r <1,
R R
hence
r
[ Ziawhaidy ==~ [ 23) - bty = o
R3 g Jr3
and the condition (Cp) holds as desired. n

3 Estimates of the error terms

In this section, we go back to the system (LS). Note that the problem (LS) is closely related
to the problem (LN). However, these two problems are essentially different because the non-
linear data term hy in (LS) depends on the solution (¢, k) itself, while the one in (LN) is
independently given. We will present the precise asymptotic estimate for the nonlinear term hy.
Without loss of generality, we may assume that [|1y||«, ||¢kll+ << 1. Recall the problem (LS)

reads as:

{ Lo(Yr, ox) = — [N5,0(¥r, or) + Noa(Vr, 0x)] := har(Vr, o) in R?

LS
Loo(¥r, 06) = —[E+ Nos(¥r, o) + N3 2(Vk, or)] := horp(Vr, o) in R3, (55)

where the nonlinear data term hg (g, pr) = (h1k(Vk, ¢k), hor (Y, pr)) is decomposed into five
nonlinear error terms E, N5 o(Y, ¥k), N2.3(Vk, ¢1)s N3 2(Vk, €x)s Nos (Y, o)

We will give estimates of each part by the following lemmas.

1-3

Lemma 3.1 ||E|,« <Ck ¢In k.

Proof. Since the term E can be written into a form of a polynomial as the following:

k
— — 1
- E :US,ll?z' E : g,x; E : HUECCl7
i=1 i1+igttipg=5  I=1
11,82, ik EN
1,82, ik #D
which is a sum of (k° — k) terms, without loss of generality, we only consider the term Ue g, ul

g,T2"°
Recall that e ~ k™ In" 2k, 3 < ¢ < 3.



For y € EXT, we have that |y — x1| > 7, and hence

|Usa, (y) - Uz

£,X2

|

Q
7N
)

[N}
+
@| ™
8
_
T
N4

I

VR
()

[\]
+
<
|
8
N
T
~

no

-2
<C(k28)% ::/ —
2
1+ |2 - 2|
1
<Ck"In®k —
L+ |2 -2

Let w =¥ — 22 we have

Uz, - U2

€ xQH**(EXT)

<CNA+ ) e, (8) vy () | gy

1
) 1+ [w|%

1

oo 5q—6,.5q—4 q
<CK W3k - e / / et dr
o 1+ r4q 1+ ria

<CK 1%k cic™
<Ck?In"k.

»Q\w

The desired estimation for E in the exterior region is the sum of k®> — k such terms, hence

IE|| <Ck 4 In Pk,

**(EXT)

For y € INT, 35 € {1,2,--- , k} such that |y—x;| < n/k. Similarly as what we have done in the

previous section in INT, let w = ¥=", since x1 — 29 ~ ?, and for |w| < L with 0 < n << 1,



T1—=x2

6 } dominates |w|, hence the following estimates yields:

the term !

4
[te o1 ey lex iy, ()

<c / (1 + [y)™ 5 - ud () - ul, (y)dy
Ba, (n/k) ’

1
3 q
<Ceu / |u€,$1(x1+€w)~u§7x2(m1+€w)}qdw]
Bo(7%)
_ q 1
3.5 1 1 !
<Cea 2 . 7| dw
oy [LHTwl 14|z 4y

1

q q

i 4.4
<cei bl [
|/ Bo(zL) 1+ |w|

§Cl{:45%+% ) / diw
Bo(3%) 1+ ‘w’q

<Ck™5 4 .In"°k.

Q=

At last, we sum all k concentration balls together and obtain that

_4-3 _
[ty .u§7x2|y**(mﬂ <Ck *aln 0k,

and the estimation for F in the region INT is the sum of (k° — k) such terms such that

12| < CK il k.

**(INT)

Combining the results of exterior region and interior one together, we obtain the final estimate

of the first error term E as

1-3 . _
IE e < 1 E sy + | E sy < Ck' "0 In k.

The following lemma 3.2 is due to (Lemma 3.5 of [24]).
Lemma 3.2 We have for anyt > —1 and g > 1

Cmin{td,t?} if 1<q<2;

1+H)7—1—gqt| <
d+9) @ { C*+t9) if q¢>2.

Lemma 3.3

1—-3

“In T2 k| + k

1—-3

_3_ _
|N5.0 (%, 1) lon < C [k "I~ k2] < Ok I k2



Proof. By Lemma 3.2, we have
|N5,0(%k, px)| = ‘(U* + )’ —ul — 5u;11/}k’
5
:ui-‘<1+wk> _q_p¥
u

* U
7
<C 1l -l + [l

<C [ud- 2 l12 + o2l

2

Gl

U

e

U

<Cu® -

Hence
k

1V5.0(8ks i) llwx <IIN5.0(Wks Pkl ww ey + D ||N5,0(¢k,80k)||**(

st Ba;(n/k))

2

k
<C ||ui : UEH**(EXT) + Z Hui ) UEH**

= (Bxj(m/k))

k
+C |12 sy +ZHU§H**( lkll3.

= Ba (n/k))

Recall the interior estimate (v — int) and exterior estimate (v — ext) of v, in Proposition 2.2,

we have

k
3 .2 3.2
[ — Z} Ju? - v*ll**(%w))
‘7:

q 1

1 3 k 3 2 q
2

SC / < ) . £ . 1_|_ 5q—6d

EXT\Bo(2) | \1+ [y (1 + |yl (L+yl) Y

1
q
+Ck™2 {/ (1+ |y|)2q_6dy}
EXTNBy(2)
1

k q
+C 25% {/ v2(x; + Ew)dw}
=1 Bo(3L)

<C (k:—2 In2k+k 2+ % e ln2 k)

<CK'" a2k,



and

k
[CH - va!l**(

= Bz (n/k))

Q=

q

1 5
ke2
<C /ﬁ (14 [y)**Cdy
EXT\Bo(2) <1+ !y|) (1)

q
+Ck™ {/ (1+ |y|)5q_6dy}
EXTNBy(2)

1
q
+ Ches / v2(z; + ew)dw
Bo (%)
<C (lﬁ’ ISk + k5 + k0 In0 k)

<Ck'" a5 k.

Lemma 3.4 (1)||Nos (¥, 0r) |l < Ck' ™4 - I3 k;
_3 _
(2)|IN3 2 (g, on)l+x < Ck' "0 - In 2.

Proof. We we split the term Ny 3(tx, ¢x) into four parts so that Lemma 3.2 can be used,

more precisely,

Nog(Pr, or) = = (s + Pr)* - (00 4 01)° +3u2 - 02 - @ + 20 - 0] - Yy,
= [—(ue +0)? - (v 4+ 08)° + 3(us + k) - (v + 01)% - 0k + (s + Up)? - V7]
+ [=3(ue + 1) - (v + 1) - ok + 3ul - - ]
[+ ) 0+ 2w+ ) k- 0+ ul )]
+ [ 207 - 0} = ud 0]

=T+ 1T+ 111+ 1V.

Firstly, by Lemma 3.2, we have

3
Vx Pk
I| <C'luy + il - s + 3-( )+3 -1
1] | Vil | Ok —— ————

3
<Cluwtulfon -l | (14,725 ) =322y
Vs + Qk Vs + Pk

<C fus + Pl - [Jox + @nl - lonl* + |onl]
2
<O - (us + [Yp]ls - v)? - (1 + 2] rl) - lorll2



Hence, the estimates (v — int) and (v — ext) give that

k
1o <Illsscery + D M llenn,. o
j=1

1

ks \ 1 ked \ |

I (3

<C / L+ Jy)™°- : el = | dy| -lexl?
EXT\BO(2)( ) 1+ |yl 1+ |yl Il 1+ |yl el

q
/ (1+ |y|>5q—6dy] w2
EXTNBo(2)

1
1 3q 1 2q q
3 ke~ 2 1 ke™2
—I—C'k‘s‘l/ _— |+ o — dw . ,QF
o) Nl )\ T few gl 1P T o]
O(ka) J

<C [k 3k k8 4 KT k] -

<Ok In=3 kg |2

+ k™3

Similarly, as in the computation of I, we have
[TT] < |=3(us + ) - (v + 91)? - o1 + 3ul - 0 - @i
<lek| - [61&* 02 - k] 302 - [k [? + 6ud - vs - k] + 12 - v - k] - [9k] + 6vs - [or] - 07
+3ul - g+ Bus - of - k] + 307 - o
<Cll@gllx - vs - [u 0 [l o ol ud - o - llnlle + w0 - flonlls - 10l

0 pnlle - Il +ud - o - JonlZ 4w ol - lonl? - nlls +oZ vl - llorl2|

and
1]
k
< s gy + Z HII”**BIJ' (n/k)
j=1

3 3
<C [(,(4 =4k k4 e It k) Anlle - gl + (k;*3 3 k+k 34k a3 k> : H@kHﬂ

_3 _ _
<CK" sk - (lglls - (7 & - (rlls + llorll) -
[ITT] = |=(us 4+ P%)* - 03 + 2(us 4 P3) - g - 03 + 0l - 02|

¢\’ — Y
<Clva)® - (us + i)? - (1+u*+¢k) _2u*+1/1k_1‘

3 2
SCU* ! wk

<Cv; - [kl



and

k
20w ST fln gy + D I o, 0
j=1

<C (kff) I~k + k= + k' "¢ In~® k) T
e, N R T3
For the last term IV, a direct calculation shows that

(V] < C (07 lenlZ + uied)

hence

k
1V hew KUV sy + D2 MV s,
j=1

<C (k‘5 Ik + k= + k' ¢ In~® k:) w2+ C (k—3 =3k + k=3 4+ k' e In~? k:)
<CK'™0 (k- [[gl|2 + In 3 k).
Therefore

[ N2,3(Vk, k) ||+
S s A (L[l A (LT [l =+ [TV

3 3 3 3
<C K4 Kllrll? + K0 = Kl llgelle + B0 7k (o2 4+ 1) + K70 5 kg 2]

<Ck" i I3k,

By using the similar arguments, we obtain

_3 o
I N3.2 (g, o1) |l < Ck' "7 -In"2k

By Lemma 3.2 again, we have

| No 5 (%k, or)||
= |(vi + @r)° — v — 50 - x|

5
:vi’-‘(l—i—%) L
UV Vi

<C (v2 - |onl* + |oxl?)

5 2
Therefore, it is direct to obtain the following lemma without proof.

Lemma 3.5
_3 _
INo,5 (Vi o0) e < CE - In ™0k - [|opg]|2.



4 Proof of the Theorem 1.1
We reduce the problem (LS) into a fixed point form, namely

(Y, o) = T (hak (i, 1), hor Vi, 0x)) == MWk, k),

where T is a bounded linear operator defined in Proposition 2.1, X is a Banach space defined

as:

X = {(¥,p) € C(R?) x C(®%)| (%, 0)llx := [[(@, ¥)l[sl[9ll + lleoll« < p},

where p is a small positive number.

Since T is bounded, by the results of nonlinear data terms in the previous section, and the

assumption of % < q < 3, for k large enough, we have that

M (W, r) |+ <C |1k (Vrs k) |l + 1ok (ks 1) || 1s]
<C[[IN5,0(ks or)llex + [1IN2,3(k, 0&) |55 + | V32D 1) |5 + [[No,5 (ks @) ||
SCkzl_g In"?k < p( for k large).

This implies that the operator M maps X to X itself. In the following, we will show that
M is a contraction mapping in the || - ||« norm. Choose any two elements (11, ¢1) and (12, p2)

in X, we have

M(%, (;01) - M(Tﬁz, 902)
:T{ [— (s + ¥1)° + (us + 102)°]

+ [(5ut — 2usvd) - (1 — v2) — BuZvi (1 — 2)]
+ [(we 4+ 11)% - ((0x + 01)° = (e +92)°) + (Vs + 02)% - (s +91)* = (us +12)?)]

[— (v + ©1)° + (s + @2)5}
+ [=3udol (¥ — v2) + (505 — 2ufv.) (01 — p2)]

+ (w4 11)° - ((n + 901)% = (0 4 92)%) + (04 + 02)7 - (s +91)° = (s +12)*)] }
IZT{Nl (Y1, 1), (Y2, 02)) + No (Y1, 01), (Y2, 92)) + N3 (Y1, 01), (Y2, 92)),

Na (91, 01), (2, 92)) + N5 (11, p1), (Y2, p2)) + Ne ((¥1, 1), (Y2, p2)) }

For the first term Ny ((¢1, 1), (2, v2)), by the mean value theorem, 30 € (0,1) such that

[Ny (1, 01), (2, 02))] =5 s + 0 - 1 + (1= 0) - tha|* - [ty — 1o
<Cluy + ([1lls + I2lls) - val® - vs - 1 — 2l
<O lus + pvs|* - vy - 91 — 2.



By using the similar computation as in the Section 3, we have,

N1 (21, ¢1), (2, p2)) [l

k
SHNl ((le, 901)7 (d}?v 902» ”**(EXT) + Z HNl ((wla 901)7 (1/}27 902)) H**(sz(n/k))
j=1

<C (K T BT T ) [ )l
<CE'0 -t Rl — vl

In order to avoid the unnecessary repetitions, we briefly give the estimates of the rest of the

nonlinear variances.

IN6 ((¥1, ¢1), (2, 02)) |
= (e +91)% - ((vs + 01)* = (v +92)%) + (Vs + 92)% - ((ur +91)* = (us + 12)?)|
<O [+ 91 - (0 + 01)? = (ve 4+ 92)?] + (vx + 92)% | (s + 91)° = (s +102)|]
<C (e +p- 002 ot = @l (wn + pev) -3 - 61 = W]

it yields that

_3_ _ —
IN6 (41, 01), ($2,02)) hex < CE' "0 I k- (llor = palls + 07" k- by — wa]|)

For the term Ny ((v1, 1), (¢2, ¢2)), we use the mean value theorem again,

’N4 ((¢17901):(¢274P2))|
< |U* + (Hcle* + HQD2||*)'U*|4 : 'U*ngl - QDQH*
<Cv - [lo1 — @2l

and hence
-
ING (1, 1), (%2, 02)) e < CE T3 Ik - |01 — o] s

The estimate of N3 ((11, 1), (2, ¢2)) is similar to that of Ng ((¢1, 1), (Y2, v2)), we have
|N3 ((11[}15 @1)7 (wQ’ 902)) ‘
<+ 11)% - (v + 901)% = (0 4+ 92)° | + v + 02 ® - [(us + ¥1)? = (us +102)?|

<C [(us+p-v)? 07 - llpr = @2l + (we+ p- ) - 05 - o1 = 2]|]
and
1N (61, 01), (2. 92)) llew < CR' 8 07k (Jlr = il + I~ K[y — i)
For the last two terms Na ((¢1, v1), (¥2,92)) and N5 ((¢1,¢1), (2, p2)), the calculus is a little

bit easier, we have

[Na (41, 01), (2, 92)) |
<C [ugve - 91 = all + wdvd - o1 — all + wavi - [l9o1 = 9a]|]



and

_3 _ _
1N (1, 01)s (¥2, 92)) [l < CE ™7 I k(||epr — 2l + In "2 k]| 1 — al|1);

‘N5 ((¢1a@1)7(¢2>%02))‘
<C [vlllpr — @2ll« + udvZlor — wallx + uZvd vy — o] ,

and

3 _
IN5 (81, 01), (2, 92)) [l < CE' "0 In 2 k(In ™" kllghr = oo« + o1 — oal+)-
Combining all the six estimates together, we have

[M(W1, 1) = M(h2, 02|«
=[|T{(N1 + N2+ N3, Nag+ N5+ No) ((¢1,1), (Y2, 02))} ||«

SCUIN (%1, 1), (¥2,902)) llex + | N2 (1, 01), (2, ©2)) [lax + [ V3 (%1, 01), (2, 02)) |4+

+ [INa (1, 1), (P2, 02)) [lax + [|N5 (Y1, 01), (2, ©2)) [lex + N6 (41,01, (2, 02)) [l

_3 _ _

ng;l aln k- [”1/)1—1[)2”*4-111 1k'||901_902‘|*]
_3 _

<CK'"aIn V- || (91 — 2, 01 — 92|

3
Therefore, we can find kg € N large enough such that, for any k& > ko, Ck' aln 'k <1 , which
verifies that the operator M is indeed a contraction map, hence the unique existence has been

proved by the Banach fixed point theorem. O

5 The case of N =4

In this section, we consider the case of N = 4. The idea of the proof in this case is similar to
the case of N = 3. Hence, it is sufficient to give the sketch of the proof that mainly shows the
difference between them. Similar as in the case of N = 3, we reduce the problem to finding
a solution of the linear operator L' = (L}, Lj,) : DV?(R*) x DI2(RY) — DL2(RY) x DI2(RY).

Then the system (S) gets rewritten in terms of this linear operator L' = (Ly, Lj,) as:

{ Lo(Wr,on) = — [N o(tn, o) + N{ o (vn, 1) in R* (LS)
LE)O(wk’ Spk) = [E/ + N(I),B(wkn Spk) + Né,l(wka ka’)} in R47
where Lj), Lj), are defined as for any (1, ¢) € DL2(R3) x DM2(R3):
L0, ) = A+ 3ult) — 2uuv.p — v2p  in R @)
Ly, 0) = Ap+3v2p — 2uv,0p —ulp  in RY,



where E', Nj 3, Ny 1, N3 o, V] 5 are defined as:

k
/3 3 .
E _U*_E Ug ;5
=1

Nos(1h,9) = (v + ¢)* — v} = 3vi¢;

Ny 1 (1, 0) = — (s + 0)* (s + ©) + 2usv0) + ulep;
N3 (3, 0) = (us +4)° = 3udt) — u;

N1 o(1, ) = = (us + ) (v + ¢)? + 2usv.0 + 070,

Let T be one of the following three invariance maps, i = 1,2, 3:

(Rotation Invariance Map): for : R* - R, (7,7/) € R? x R?,
Tll(n)(g’ yl) =n <62JTW\/jlga yl) 9 ,] = 17 27 37 e 7k -1 (C/l)
(Reflection Invariance Map): for : R* = R, (y1,v2,¥3,714) € R x R x R x R,

T5(n) (Y1, Y2, 3, y4) = 0(y1, —Y2, Y3, y4) = 1(Y1, Y2, —Y3, Ya) = 1(Y1, Y2, Y3, —Ya)- (C'2)

(Kelvin Invariance Map): for n: R* — R, y € R*,
- Y
T3(n)(y) = [yl ~n (W) : (C'3).

Define the symmetric space
2 |- _ _ , .
.= { (g1, 92) € [D"2(RY)? W(@,2/) € R2 X R, Ty (0:) (3,2) = gi(@, @), i = 1,25 j=1,2,3}.

In the following it is sufficient to prove the invertibility problem of the linear operator L' =

(Ly, L), namely, to find the solution to the problem:
L,W, QD) =h, (LN/)a

for h = (hi, he) € H..

In this case, we note that the set of bounded solutions of the homogeneous system L'(1), p) =
0 which is spanned by 10k functions (Z,, Z} ), where p = 1,2,---,5, j = 1,2,--- ,k; s = 1,2.
More precisely, we have: Z] = 9,,Uio(y),l = 1,2,3,4,y = (y1,y2,y3,y4) € RY, ZL(y) = y -
VUio(y) + Uro(y),y € RY Z51(y) = 0vUzpays Zo(y) = 0:Usyay, where 7 = |2j] = (/1 —€f,

j=1,2,--- ke ~ k3. To simplify the notations, In the following, we will use € to denote e.

Proposition 5.1 Let h = (hy, ha) be a vector function such that ||h|lw = ||h1||s + [[R2]|w < 00,
and h satisfy the orthogonal condition (H) :
/R3 Zy(y)h(y)dy =0, p=1,2,3,4,5

- Zi(ha(y)dy =0, j=1,2,-- ks=1,2,

(H')



then the linear problem (LN') has the unique solution (1,¢) = T'(hy,he) with ||(¢, )|«
|0« + [|¢ll« < 0o, moreover it holds that

/R Ul () ZLy)bdy =0, p=1,2,3,4,5

(PHST')
/];4 axT( )Z,() (y)dy :07 j:1727"'ak;5:1a2-

Remark 5.2 By Proposition 5.1, it is sufficient to show the construction of the compact map
7= (r,1): H— L%(R‘l) X L%(R4), which is defined by:

(1, ) = —3uZy) + V2 + 2uvsp,  TH(Y, ) = =302 + UL + 2uLvs1.

Proof: Indeed, the operator 7’ is compact due to the fact that u¥!(y) - v¥2(y) ~ for

1
(1+[y)e>
0 <wvi,vy <3,v1 + 1y =3, and |y| > 2. Furthermore, by the Holder inequality, we have

a2

2 0l 4 gy < Ol 02 sy - 19l 2 oy < Cllel

and
it - v -] 4

Indeed, for fixed k, let us consider the subspace

Lhmy = < Ollud v |2y - [l p2r ey < CllYllp-

={(v,p) € H.|(¢, ) satisfies (PHSI')},

similar to the case of H, the subspace H' can be given induced inner product which makes it
Hilbert space.

For y € EXT N B§(2), then |y| > 2 and |y — x;| > n/k, we can obtain that |y — z;| ~ 1+ |y,

Ck—2

since |z;] ~ 1,i =1,2,--- ,k, and € ~ k=3, we can get direct result as |v.(y)| < Cl+|y|2 < TRE

For y € EXT N By(2), we have two cases:
(1) 3 some ip € {1,2,--- ,k}, such that y is closest to this point ig, but relatively far from

all the other x’s(j # io), namely, [y — z;| > Hlj — @ig| ~ |J—klo\7 for all j # ig, then

k2e k2e
U <C st — | < Cgk'Q < Ck_1§
) Z i —dol*  n?

(2) y is far from all x;s,4 = 1,2,--- |k, such that 3 some fixed constant ¢y > 0, |y — x;| >
co,1 < i <k, and then v,(y) < Cke < Ck™2.

In conclusion, for y € EXT N By(2), vi(y) is uniformly estimated by k1.

Now we turn to the interior region INT = U By, (3), which requires a scaling and transition
J_
2,7 =1,2,--- k. If y lies in one branch ball By, (i), observe

~ ] zl (7 # ) we have |w| < z£. Hence

transform of variables y — w =

the fact that

x] z;

-1 -1

c € Cke™1
vly) = vlew +2j) = WJFZ 1+ Jw + 272 = Tl




On the other hand, the L? estimate of the term u”'v%2(y) can be given as follows:
[uit o (y)l] 2

k
<o (W) L2 (exT) + Z [|ust vy (y)HL?(sz (n/k))
=

2

1 2v
+/ o (Uk(y) P dy
/EXTQBO(Z) EXT\Bo(2) (1 + ’y|2)2y1 ( ( ))

1 2v9 %
+Cz / () (1+ [y2)2~ (vi(y)) dy]

Zj k

1
1 1 ke v 2
T ()
/]30(2) (1+ |y|?)2n Be(2) (L+[y[*)2 \1+ [yl

+CZ

<C (k‘”2 + (ke)2 + k27 1e2) < C(k™h + k72).

<C

<C

=

/ (vi(ew + xj))Q”de et
Bo( kﬁ

Therefore, the bound of the operator 7/ is given by

I (s D) 4 2 <O +E) (W0

R4)XLE (RY) —
O

Proposition 5.3 Under the same assumption of Proposition 2.1, we can find a large kg € N,
and a constant C independent of k, such that for any k > ko, the solution (¢, vx) to the linear
problem (Lin') is equivalent to the equation (Y, pr) = T'(hy) with the data hy = (hyk, hok), we

have the estimate

1T (i)l = 11(ors i)l = kel + llsprlle < C (Nakllan + Nrzkllan) = Cll Pkl

which shows that T' is a bounded linear operator.

Remark 5.4 It is worthy to remind that the Kelvin transform here is of 4 dimensional, so the
explicit meanings of the Kelvin-type notations N\, ~ of solutions and data terms are different

from the 8 dimensional version in Proposition 2.2.

We define the Kelvin transform of the solution as

), By) = Iyl %e(—);

-2
P(y) =yl w(w ekl

respectively, and the Kelvin transform of the error term reads

ha(y) = ly|~Chi( 2

W), Z: 172



In the following, we need only to check the orthogonality restriction (PHSI') so that the
problem admits weak solutions. Under the following conditions, we can get the existence result

of our problem which is essentially similar to Proposition 2.3.

Proposition 5.5 Assume that the data term hyy, hop satisfies all the conditions (C'1), (C'2), (C'3),
then for any k > ko, the problem (Lin') admits a unique weak solution (Y, pr) = T'(hik, hok)
with [[(r, i)l = [Pl + [l@rlle < oo, and satisfies :

/ UL ) 2L bely)dy =0, p=1,2,3,4,5;

(PHST)
ul, N ZWerly)dy =0, j=1,2,--+ ks=12.

R4

We point out that, all the propositions above stem from the linearized version of (LS’)
and the condition that the data terms are given in advance, such that they are independent of
(Y, ox). If we look back to (LS"), we can not avoid the appearance of (¢, ) in nonlinear data
terms £, N3, Nj 1, N 5, Ng 3. So we need to estimate them in terms of the norms || - ||, and

|| - ||+ to induce the contraction map, which is what we should do in the rest of this paper.

Proposition 5.6
_4 _4
1B e < Ok 705 [[Nf gl < CR' |03

1—é 1_é 1_7
ING 1l < CR' 703 [IN] ol < CE' 705 NG sllee < Ok |2

Proof. Since we can decompose E’ into the sum of (k% — k) terms as the following,

k 3k
— 3
(Sun) - Y I
=1 =1 i1+ig+-+ip=3 [=1
11,82, i EN
i1,82,0 i #3
Without loss of generality, it is sufficient to estimate only one term among them. We choose
the term ue o, (y) - u2,,(y) as an example.

For y € EXT, we have that

2
|u£,x1(?/) 6(172( )| _52+|y—x1|2 <52—{—|y—$2|2)
Ck2 —1
e

(‘f)

<

S2 772 y 2
2+ ()" 1+[¢-

2|

Yy—x2

Then, with the scaling transform y — w =

(y) - uZ ., (y)
writes:

Hus,xl (y) : Ug,wg (y) ||**(EXT)

1

1 5q—8 q

§0k28*1 . |:/ ( + |Ew +$2|) d(sw +$2):| 4
R4

1+ |w|*

1
<Ck2€%71 ' : r3dr n 00 £5q—81.5q=5 gy |
- o 1+r% 1 1+ ria

4 4
<Ck%ca'. a0 <ok,



For y € INT, 3j € {1,2,--- ,k} such that |y — x| < n/k, just as what we have done in Section

3, change the variables by w = Y=, since 1 — x5 ~ l, and for |w| < 7L, where 0 < 7 << 1,

then the term |£=22| dominates |w|, hence

ey - ., [T

g{/ u+wﬂgemwemuwy
Baq (n/k)

Q=

<Ceu / |u5m1(x1—I—sw)-ugm(a:l%-sw)}qdw
Bo (%)
1
4_3 1 ! ?
<Cex« / 5 1| dw
Bo(L 1+|W| 14| 8222 4 gy
1
i Eled |4 g
<(Ceg1 3/ — dw
Bo(2) | 1+ |w]

1
§0k45%+1 . / _dw |7
Bo(z) 1+ [w]*

<CkS 1.3 < ok 3 u,

For the estimate on the whole region INT, we sum all k concentration balls together and
<ck
Therefore, the energy term E’ can be estimated by the following:

obtain that, [lucg, - ugymH**(mT)

k
”E,H** S||‘E/||"<*(EXT) + Z ”E,H**sz(n/k)
j=1
3 2
SCk ’ HuE,ﬂﬁl (y) Ue xz **(EXT) + Z HuE m1 5 ) (y)”**ij (n/k)

<Ok (k: + k*2") < Ck'a.

Since the calculus of nonlinear data terms N3 o, Ny 1, Ny 5, V() 3 are so similar that it is reasonable
to give the detail of N’(3,0) explicitly and show the other results briefly.
For N'(3,0), recall the important Lemma 3.2, by the assumption ||9g||«, ||ok|l« << 1, we can

give the coarse estimate as follows:

N3 0 (ks )| = | (e + 90)° — BuZeop — ul

— (14 Dy 3%—usammeWMSOWﬁ+®wwz



and the norm of N3, can be calculated as:

IN30(%k, @) |

=

<C

q
/ T / (1+ )™ (ul(y) - v29(y) +viq<y>>dy] el
EXTNBo(2) JEXT\Bo(2)

1

q
/B (n/k >(1 +lew + 2] )20 (ew + ap) + (14 |ew + 5 )* P 0 (ew + a)dw |- (|
o\n/ ke

k
+ 0253
j=1

q
SC/ (14 ()P (k~20 4 k=3 dy | - [l
By (2)

f—4q L.—64
_|_
(L+Jy2)3e (1 + [y[?

1
kel >2q ( ko1 >3q q )
—_— + | —F dw| ||kl
/BO<,;;) (i) + (i Il

_4
<Ck'" 4 ||y

+C [/]R4(1 + |y)P=8( >3q)dyr Il

+ C’k:zs%

We finish our proof by the following remark.

Remark 5.7 Now problem (LS’) can be reduced into a fixed point form if we define another

new operator M’ | namely, the fized point result we desire is the following:

(x> o) = T" (haw (Vi 0k), hor (Y, r)) 7= M’ (r, or),

where the operator M’ : X' — X', the Banach space X' is defined as a small ball in a product

space as following:

X' ={(,9) € ORY) x CRY| [[9[lx + el < p},

where p is a small positive number, and T' is the bounded linear operator defined in Proposition
5.5.

From the result of Proposition 5.6, and the bound of T for (¢, ¢x) € X', that M' maps X'
to itself is direct. The proof of the contraction mapping M’ is standard, and the difference from
the proof of M is only technical, but not essential.
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