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Abstract: In this paper, we consider the following Yamabe type problem of poly-

harmonic operator : {
Dmu = |u| 4m

N−2m u on SN

u ∈ Hm(SN ),
(P )

where N ≥ 2m + 1,m ∈ N+, SN is the unit sphere with the induced Riemannian

metric g = gSN , and Dm is the elliptic differential operator of 2m order given by

Dm =
m∏

k=1

(−∆g +
1
4
(N − 2k)(N + 2k − 2))

where ∆g is the Laplace-Beltrami operator on SN . We will show that the problem

(P) has infinitely many non-radial sign changing solutions.
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1 Introduction

We consider the following Yamabe type problem for polyharmonic operator:
{

Dmu = |u|m∗−2u on SN

u ∈ Hm(SN ),
(P )

where m∗ = 2N
N−2m , N ≥ 2m + 1,m ∈ N+, SN is the unit sphere with the induced Riemannian

metric g = gSN , and Dm is the elliptic differential operator of 2m order given by

Dm =
m∏

k=1

(−∆g +
1
4
(N − 2k)(N + 2k − 2))
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where ∆g is the Laplace-Beltrami operator on SN (see [7]).

The well known Yamabe problem, which stems from the conformal geometry, is the problem

of finding some scalar curvature K in a compact Riemann manifold (M, g0) of dimension n ≥ 2.

More precisely, for a given smooth function K defined on this manifold, we want to find a new

metric g which is conformal to the original metric g0 such that K is actually the scalar curvature

under this new g. In the case of m = 1, the Yamabe problem read as:

{
−∆SN u + N(N−2)

2 u− u
N+2
N−2 = 0 on SN

u > 0.
(1.1)

see ([3], [4], [31], [10]).

By using the stereo-graphic projection, the problem (1.1) can be reduced to:




−∆u = u
N+2
N−2 in RN

u > 0 in RN

u ∈ D1,2(RN ),

(1.2)

where D1,2(RN ) is the completion of C∞
0 (RN ) under the norm

∫
RN |∇u|2. It is known that the

only finite energy positive solution to (1.2) are given by the family of the functions ( see [21] ):

µ−
N−2

2 U(µ−1(x− ξ)), U(x) = (
2

1 + |x|2 )
N−2

2 , ξ ∈ RN , µ > 0. (1.3)

Moreover these functions are corresponding to the extremals for the critical Sobolev embedding

(see [29]). And these functions are indeed all positive solutions of (1.2) even without the finite

energy requirement (see [9]). It is natural to ask weather there are finite energy non-radial

sign changing solutions to (1.2). This was first answered by Ding [10]. His proof is variational:

consider the functions of the form

u(x) = u(|x1|, |x2|), x = (x1, x2) ∈ SN ⊂ RN+1 = Rk × RN−k, k ≥ 2. (1.4)

The critical Sobolev embedding becomes compact and hence infinitely many sign changing so-

lutions exist, thanks to the Ljusternik-Schnirelmann theory. See also [17]. Recently, del Pino,

Musso, Pacard and Pistoia [24]-[25] gave another proof of countablely many sign changing non-

radial solutions. Their proof is more constructive: they built a sequence of solutions with one

negative bump at the origin and large number of positive bumps in a polygon. This gives more

precise information on such sign changing solutions.

On the other hand, the polyharmonic operator, in particular the biharmonic operator has

found considerable interest due to its geometry roots in recent years. For instance, when m = 2,

the problem (P ) is related to the Paneitz operator, which was introduced by Paneitz [23] for

smooth 4 dimensional Riemannian manifolds and was generalized by [8] to smooth N dimen-

sional Riemannian manifolds. We refer the reader to the papers [2], [5], [6], [11], [12], [14], [15],
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[16], [26], [27], [29], and the references therein, for various existence and multiplicity results on

the polyharmonic operator and related problems. It is evident from these papers that the poly-

harmonic operator presents new and challenging features compared with the Laplace operator.

However, few results are known for the Yamabe problem of polyharmonic operator. The purpose

of the present paper is concerned on this topic.

Similar to in the case of m = 1, by using the stereo-graphic projection, the problem (P ) can

be reduced to the following problem in RN , namely
{

(−∆)mu = |u| 4m
N−2m u in RN

u ∈ Dm,2(RN ),
(1.5)

where N ≥ 2m + 1,m ∈ N+, and Dm,2(RN ) is the completion of C∞
0 (RN ) with respect to the

norm induced by the scalar product

(u, v) =





∫

RN

∆
m
2 u ·∆m

2 v, if m is even,

∫

RN

∇∆
m−1

2 ∇∆
m−1

2 v, if m is odd.

(1.6)

Moreover it is known that the only finite energy positive solution to equation (1.5) are given by

the family of the functions (see [21],[6]):

µ−
N−2m

2 U(µ−1(x− ξ)), U(x) = P
N−2m

4m
m,N (1 + |x|2)−N−2m

2 ,

where Pm,N =
m−1∏

h=−m

(N + 2h).

Generalizing the idea of Ding and using variational method, Bartsch and Weth [5] established

an unbounded sequence of sign changing finite energy solutions to (1.5).

In this paper, following the idea in [24]-[25], we will construct a sequence of non-radial sign

changing solutions for problem (1.5). Our result cover the case of Yamabe equations and the

biharmonic equations.

Our main results are:

Theorem 1.1 Let m ≥ 1, N ≥ 2m + 1, and write RN = C × RN−2. Then for each k large

enough, the problem (1.5) admits a finite energy solution of the form

uk(x) = U(x)−
k∑

j=1

µ
−N−2m

2
k U(µ−1

k (x− ξj)) + o(1),

where ξj =
√

1− µ2
k(e

2π(j−1)
k

√−1, 0), j = 1, 2, · · · , k, U(x) = P
N−2m

4m
m,N (1 + |x|2)−N−2m

2 , µk =

δ
2

N−2m
k

k2 for N ≥ 2m + 2, and µk = δ2
k

k3 log2 k
for N = 2m + 1, and o(1) → 0 uniformly as k →∞.

δk is a positive number which depends on k only.

As a consequence, we have
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Theorem 1.2 Suppose that N ≥ 2m + 1, then problem (P ) has infinitely many non-radial sign

changing solutions.

Remark 1.3 The geometry picture of the sign-changing solution u is that it is positive near the

center while negative in the region of the bubbles scattered around the Obata type solution in the

middle.

Remark 1.4 We believe that similar result should also hold for the following Lane-Emden system




(−∆)mu = |v|α−1v;

(−∆)mv = |u|β−1u.
in RN , m ≥ 1. (1.7)

It is known that (see [18]), for N > 2m, α, β ≥ 1 but not equal to 1 such that

1
α + 1

+
1

β + 1
>

N − 2m

N
,

(1.7) has no any positive solutions. On the other hand, for N > 2m, α, β ≥ 1 such that

1
α + 1

+
1

β + 1
≤ N − 2m

N
.

(1.7) admits infinitely positive solutions (see [19]), We conjecture that the following is true:

Conjecture 1.1 For N > 2m, α, β ≥ 1 and 1
α+1 + 1

β+1 = N−2m
N , problem (1.7) has infinitely

many sign changing solutions.

The paper is organized as follows: Section 2 contains the construction of an approximation

solution and the estimates of the error. While the Section 3 will devote to the detailed calculus

and further thoughts on the gluing procedures and linearization of the problem. The proof of

the theorem will be also given in this section.

Acknowledgement: The first author was supported by NSFC (11171171) and the third author

was supported from a General Research Grant of RGC of Hong Kong.

2 Approximation solution and the estimate of the error

In this section, we first construct an approximation solution for our problem (1.5). Then we

give the precise estimate of the error.

As we mentioned in the introduction, it is well known that the equation

(−∆)mu = u
N+2m
N−2m (2.1)

has the following radial solution

U(x) = P
N−2m

4m
m,N (1 +

∣∣x∣∣2)−N−2m
2 ,
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with

Pm,N =
m−1∏

h=−m

(N + 2h).

Moreover this radial solution U is invariant under the Kelvin type transform :

û(y) =
∣∣y

∣∣2m−N
u(

y∣∣y
∣∣2 ). (2.2)

That is, Û(y) = U(y)(c.f.[6]).

We begin with

Lemma 2.1 The equation (2.1) is invariant under the Kelvin transform (2.2), namely,

(−∆)mû(y) =
∣∣û(y)

∣∣m∗−2
û(y), where m∗ =

2N

N − 2m
.

Proof. The result is known. For the sake of completeness, we give the proof. We first prove

the case of m = 2. To simplify our proof, we make use of the spherical coordinates, then

∆u(r, θ) = (∂2
r +

N − 1
r

∂r +
∆θ

r2
)u(r, θ).

Iterate the Laplace-Beltrami operators two times, we obtain

∆2u(r, θ) =(∂2
r +

N − 1
r

∂r +
∆θ

r2
)2u(r, θ)

=
[
∂4

r +
2(N − 1)

r
∂3

r +
(N − 1)(N − 3)

r2
∂2

r −
(N − 1)(N − 3)

r3
∂r

+
8− 2N

r4
∆θ +

2N − 6
r3

∆θ∂r +
2
r2

∆θ∂
2
r +

1
r4

∆2
θ

]
u(r, θ),

which gives the formula of the scalar transform of u as the following:

∆2u(ρ, θ)
∣∣∣
ρ= 1

r

=(∂2
ρ +

N − 1
ρ

∂ρ +
∆θ

ρ2
)2u(ρ, θ)

∣∣∣
ρ= 1

r

=
[
∂4

r + 2(N − 1)r∂3
r + (N − 1)(N − 3)r2∂2

r − (N − 1)(N − 3)r3∂r

+ (8− 2N)r4∆θ + (2N − 6)r3∆θ∂r + 2r2∆θ∂
2
r + r4∆2

θ

]
u(

1
r
, θ).

(2.3)

For the same reason, we have for α > 0,

∆
(
rαu(

1
r
, θ)

)
=

[
α(N + α− 2)rα−2 + (3−N − 2α)rα−3 + rα−4∂2

r + rα−2∆θ

]
u(

1
r
, θ), (2.4)

and

∆2rαu(
1
r
, θ) =

{
α(α− 2)(N + α− 2)(N + α− 4)rα−4 + rα−8∂4

r + (14− 2N − 4α)rα−7∂3
r

+
[
α(α + N − 2) + (3−N − 2α)(9−N − 2α) + (α− 4)(N + α− 6)

]
rα−6∂2

r

+
[
α(α + N − 2)(7−N − 2α) + (3−N − 2α)(α− 3)(α + N − 5)

]
rα−5∂r

+
[
α(N + α− 2) + (α− 2)(N + α− 4)

]
rα−4∆θ

+ (10− 2N − 4α)rα−5∆θ∂r + 2rα−6∆θ∂
2
r + rα−4∆2

θ

}
u(

1
r
, θ).

(2.5)
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In order to avoid the possible u term and preserve the derivative terms, we set α = 4 − N in

(2.5) above, by comparison with the equation (2.3), we can derive the following formula of the

∆2 operator on the Kelvin type transform, namely,

∆2r4−Nu(
1
r
, θ) =r−(N+4)

[
∂4

r + 2(N − 1)r∂3
r + (N − 1)(N − 3)r2∂2

r − (N − 1)(N − 3)r3∂r

+ (8− 2N)r4∆θ + (2N − 6)r3∆θ∂r + 2r2∆θ∂
2
r + r4∆2

θ

]
u(

1
r
, θ)

=r−(N+4)∆2u(ρ, θ)
∣∣∣
ρ= 1

r

.

(2.6)

By using the formula (2.6), we have,

(−∆)2û(y) =∆2û(y) = r−(N+4)∆2u(ρ, θ)
∣∣∣
ρ= 1

r

=r−(N+4)(−∆)2u(ρ, θ)
∣∣∣
ρ= 1

r

=r−(N+4)|u| 8
N−4 u(ρ, θ)

∣∣∣
ρ= 1

r

=|û| 8
N−4 û(y).

For any m > 1, to avoid the horrible details and inessential repeats, it is reasonable to give an

induction to reveal the scheme of the proof in the case of m 6= 2. Indeed, for some fixed α > 0,

∆m(rαu(
1
r
, θ)) =∆

(
∆m−1(rαu(

1
r
, θ))

)

=∆
{ m−2∏

h=0

[
(α− 2h)(N + α− (h + 1))

]
rα−2(m−1)u(

1
r
, θ)

+ rα−4(m−1)∂2(m−1)
r u(

1
r
, θ) + · · ·

}

=
m−2∏

h=0

[
(α− 2h)(N + α− (h + 1))

]
∆

(
rα−2(m−1)u(

1
r
, θ)

)

+ ∆
(
rα−4(m−1)∂2(m−1)

r u(
1
r
, θ)

)
+ ∆ · · ·

=
{ m−2∏

h=0

[
(α− 2h)(N + α− (h + 1))

]} · [(α− 2(m− 1))(α + N − 2m)
]·

rα−2mu(
1
r
, θ) + rα−4m

[
∂2m

r u(
1
r
, θ) + · · ·

]

=
m−1∏

h=0

[
(α− 2h)(N + α− (h + 1))

]
rα−2mu(

1
r
, θ) + rα−4m∆mu(ρ, θ)

∣∣∣
ρ= 1

r

.

By using the same statement as that in the case of m = 2, we set α = 2m−N , and the conformal

invariance under the Kelvin type transform (2.2) holds. ¤
Let

wµ(y − ξ) = µ−
N−2m

2 U(µ−1(y − ξ)).

Then a simple algebra computation shows that:
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Lemma 2.2 wµ(y−ξ) is invariant under the Kelvin type transform (2.2) if and only if µ2+|ξ|2 =

1.

Let k be a large positive integer and µ > 0 be a small concentration parameter such that:




µ = δ
2

N−2m k−2, N ≥ 2m + 2,

µ = δ2k−3 log−2 k, N = 2m + 1,

where δ is a positive parameter that will be fixed later. Let

ξj =
√

1− µ2(e
2π(j−1)

k

√−1), j = 1, 2, · · · , k,

be the points that are arranged symmetrically as the vertices of a planar regular polygon. Set

Uj(y) = wµ(y − ξj), j = 1, 2, ..., k

and

U∗ = U −
k∑

j=1

Uj .

In order to find out sign-changing solutions for the problem (1.5). We follow the method of

[24] and use the number of the bubble solutions Uj as a parameter. This was originally developed

by Wei and Yan in [31] for the critical problems with the presence of weights. We will show that

when the bubbles number k is large enough, the problem (1.5) admits a solution of the form:

u(y) = U∗(y) + φ(y)

where φ is a function which is small when compared with U∗. With u being this form, the

equation (1.5) can be restated as

(−∆)mφ− p|U∗|p−1φ + E −N(φ) = 0 (2.7)

where p = m∗ − 1, and

E = (−∆)mU∗ − |U∗|p−1U∗,

N(φ) = |U∗ + φ|p−1(U∗ + φ)− |U∗|p−1U∗ − p|U∗|p−1φ.

We expect that for k large, the error term E will be controlled small enough so that some

asymptotic estimate holds. In order to get the better control on the error, for a fixed number

N > q > N
2 , we introduce the following weighted Lq norm:

‖h‖∗∗ := ‖(1 + |y|)N+2m− 2N
q h(y)‖Lq(RN ) (2.8)

and

‖φ‖∗ := ‖(1 + |y|N−2m)φ(y)‖L∞(Rn). (2.9)
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Proposition 2.3 There exists an integer k0 and a positive constant C such that for ∀k ≥ k0,

the following estimates for the error term E hold true:

‖E‖∗∗ ≤
{

Ck
1−N

q if N ≥ 2m + 2;

C log−1 k if N = 2m + 1.
(2.10)

Proof. We estimate the error in two steps. In the first step, we estimate the error in the exterior

region:

EXT :=
k⋂

j=1

Bc
ξj

(η/k) :=
k⋂

j=1

{|y − ξj | > η/k}.

In the second step, we estimate the error in the interior:

INT = EXT c =
k⋃

j=1

{|y − ξj | ≤ η/k} where η << 1.

Step 1: (The estimate for the exterior region EXT ). In order to use mean value theorem

appropriately, we write the formula of E as the following:

E =(−∆)mU∗ − |U∗|p−1U∗

=(−∆)m
[
U −

k∑

j=1

Uj

]− ∣∣U −
k∑

j=1

Uj

∣∣p−1(
U −

k∑

j=1

Uj

)

=Up −
k∑

j=1

Up
j −

∣∣U −
k∑

j=1

Uj

∣∣p−1(
U −

k∑

j=1

Uj

)

=−
[
|x|p−1x

∣∣∣
U−

kP
j=1

Uj

U
+

k∑

j=1

Up
j

]

=−
[∣∣U − s

k∑

j=1

Uj

∣∣p−1(
U − s

k∑

j=1

Uj

)
+

k∑

j=1

Up
j

]
, for s ∈ (0, 1),

where |x|p−1x
∣∣∣
U−

kP
j=1

Uj

U
= |U −

k∑
j=1

Uj |p−1(U −
k∑

j=1
Uj)− |U |p−1U.

We split the exterior region into two parts, namely:

I := {y
∣∣|y| ≥ 2} and II := {|y| < 2}

⋂ [ k⋂

j=1

{|y − ξj | > η/k}
]
.
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For y ∈ I, we have 1
|y−ξj | ∼

1
1+|y| . Thus

|E(y)| ≤C
{(

1 + |y|2)−2m +
[ k∑

j=1

µ
N−2m

2
(
µ2 + |y − ξj |2

)−N−2m
2

] 4m
N−2m

}
·

[ k∑

j=1

µ
N−2m

2
(
µ2 + |y − ξj |2

)−N−2m
2

]

≤C
[(

1 + |y|2)−2m +
µ2mk

4m
N−2m

(1 + |y|2)2m

]
·

k∑

j=1

µ
N−2m

2

|y − ξj |N−2m

≤C
µ

N−2m
2

(1 + |y|2)2m

k∑

j=1

1
|y − ξj |N−2m

;

For y ∈ II, we have two cases:

Case 1. There exists i0 ∈ {1, 2, 3, · · · , k} such y is closest to ξi0 , but far away from all the

other ξj ’s (j 6= i0) so that

|y − ξj | ≥ 1
2
|ξj − ξi| ∼ |j − i0|

k
.

Case 2. y is far from all ξi’s , namely, ∃C0 > 0 such that |y − xi| ≥ C0 (1 ≤ i ≤ k).

In both of the cases, we have

|E(y)| ≤C
{(

1 + |y|2)−2m +
[ k∑

j=1

µ
N−2m

2
(
µ2 + |y − ξj |2

)−N−2m
2

] 4m
N−2m

}
·

[ k∑

j=1

µ
N−2m

2
(
µ2 + |y − ξj |2

)−N−2m
2

]

≤C
{(

1 + |y|2)−2m +
[ µ

N−2m
2

|y − xi0 |N−2m
+

∑

j 6=i0

µ
N−2m

2

|y − xj |N−2m

] 4m
N−2m

}
·

k∑

j=1

µ
N−2m

2

|y − ξj |N−2m

≤C
{(

1 + |y|2)−2m +
[
µ2mk4m + max{

∑

j 6=xi0

µ2mk4m

|j − i0|4 , k
4m

N−2m µ2m}
]}
·

k∑

j=1

µ
N−2m

2

|y − ξj |N−2m

≤C
µ

N−2m
2

(1 + |y|2)2m

k∑

j=1

1
|y − ξj |N−2m

.

Hence, by combining the results above, we obtain the estimate for E in the exterior region

as:
‖E‖∗∗(EXT ) =‖(1 + |y|)(N+2m)q−2NEq(y)‖Lq(EXT )

≤Cµ
N−2m

2

k∑

j=1

[ ∫

Bc
ξj

(η/k)

(
1 + |y|)(N+2m)q−2N

(
1 + |y|)4mq|y − ξj |(N−2m)q

]1/q

≤Cµ
N−2m

2 k
[ ∫ 1

η/k

rN−1dr

r(N−2m)q
+

∫ +∞

1
r−(N+1)dr

]1/q

≤





C(k1−N
q + k1+2m−N ) ≤ Ck

1−N
q , if N ≥ 2m + 1;

C log−1 k, if N = 2m + 1.
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Step 2: (For the interior region INT.) In this case, we see that for ∀y ∈ INT , there

exists j ∈ {1, 2, 3, · · · , k}, such that |y−ξj | ≤ η/k. In order to make the integral region restricted

to the regular region centered at the origin, for this particular j, we define

Ẽj(y) = µ
N+2m

2 E(ξj + µy).

Note that µ
N−2m

2 Uj(ξj + µy) = U(y) and for i 6= j, µ
N−2

2 Ui(ξj + µy) = U
(
y − µ−1(ξi −

ξj)
)
, where µ−1

∣∣ξj − ξi

∣∣ ∼ |j−i|
kµ .

Since µ2(1 + |y|4) < µ2(1 + ηµ−4k−4) ≤ C. We have
∣∣Ẽj(y)

∣∣

≤C
∣∣∣U(y) +

∑

i6=j

(kµ)N−2m

|j − i|N−2m
+ µ

N−2m
2 U(ξj + µy)

∣∣∣
p−1

· (
∑

i6=j

(kµ)N−2m

|j − i|N−2m
+ µ

N−2m
2 U(ξj + µy)

)

+
∑

i6=j

( (kµ)N−2m

|j − i|N−2m

)p
+ µ

N+2m
2 Up(ξj + µy)

≤C
∣∣∣
( 1
1 + |y|2

)N−2m
2 + µ

N−2m
2

∣∣∣
p−1

· µN−2m
2 + µ

N−2m
2

p + µ
N+2m

2

≤C
∣∣∣ µ

N−2m
2

1 + |y|4m
+ µ

N+2m
2

∣∣∣

≤C
µ

N−2m
2

1 + |y|4m
.

Hence we get the estimate of the error E in one branch of the interior region as

‖E‖∗∗(|x−ξj |<η/k) ≤C
[ ∫

|y|≤η/(kµ)

∣∣∣µN
q
−N+2m

2 Ẽj(y)
∣∣∣
q
dy

]1/q

≤C
[
µN−2mq

∫ η/(kµ)

0

rN−1

1 + r4mq
dr

]1/q

≤Cµ2m · k−N
q

+4m

≤




Ck
−N

q , if N ≥ 2m + 2;

Ck
−N

q · log−4m k, if N = 2m + 1.

At last, by combining the estimates in the exterior region and interior region together, we

get

‖E‖∗∗ ≤‖E‖∗∗(EXT ) + ‖E‖∗∗(INT ) ≤ ‖E‖∗∗(EXT ) +
k∑

j=1

‖E‖∗∗(|x−ξj |<η/k)

≤





Ck
1−N

q , if N ≥ 2m + 2;

C
(
log−1 k + k

1−N
q · log−4m k

) ≤ C log−1 k, if N = 2m + 1.

3 Linearization and gluing

In this section, we focus on the invertibility theory for a linearized equation and the proof of the

main theorem follows from the obtained series of propositions and lemmas.
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We consider the linear operator L0 defined by

L0(φ) :=
[
(−∆)m − pUp−1

]
φ, with p = m∗ − 1.

We consider the following linear equation

L0(φ) = h. (3.1)

Then it is well known that (see [6]) the solution space for the corresponding homogeneous

equation

L0(φ) = 0

is spanned by the following N + 1 functions,

vi = ∂yiU, i = 1, 2, 3, · · · , N ; vN+1 = x · ∇U +
n− 2m

2
U.

We also consider the linear operator L∗ of (2.7), that is

L∗(φ) :=
[
(−∆)m − p|U∗|p−1

]
φ, with p = m∗ − 1,

Since the region is scattered around the vertices of the regular k-polygonal, the direct calculus

on this L∗ is not convenient. We introduce the following gluing procedure to split the working

space into the respective single branch by some cut-off functions, and the equation (1.5) will be

splitted into k + 1 equations with respective single branches or simple linear operator L0.

Let ζ(s) be a smooth function satisfying

ζ(s) =





1, 0 ≤ s < 1/2;

smooth, 1/2 ≤ s ≤ 1;

0, s > 1.

We define the cut-off functions as

ζj(y) =





ζ
(
kη−1|y|−2 ·

∣∣y − |y|2ξk

∣∣
)
, if |y| ≥ 1;

ζ
(
kη−1

∣∣y − ξj

∣∣
)
, if |y| < 1,

such that

ζj(y) = ζj(
y

|y|2 ), supp{ζj} ⊂ {y
∣∣|y − ξj | ≤ η/k}, j = 1, 2, · · · , k.

By means of the cut-off functions, we can split the equation (2.7) into a system comprised

of k + 1 equations.

Let φ =
k∑

j=1
φ̃j + ψ, y = (y1, y2); y′ = (y3, · · · , yN ), we assume

φ̃j(y, y′) = φ̃1(e−
2π(j−1)

k

√−1y, y′), j = 1, · · · , k, (3.2)
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φ̃1(y) =
∣∣y∣∣2m−N

φ̃1(
y

|y|2 ), (3.3)

φ̃1(y1, · · · , ys, · · · , yN ) = φ̃1(y1, · · · ,−ys, · · · , yN ), s = 2, 3, · · · , N, (3.4)

and

‖φ1‖∗ ≤ ρ with ρ << 1, (3.5)

where φ1(y) := µ
N−2m

2 φ̃1(ξ1 + µy).

Then the equation (2.7) can be splitted into the following system:




(−∆)mφ̃j − p|U∗|p−1ζjφ̃j + ζj

[
− p|U∗|p−1ψ + E −N(φ̃j +

∑

i6=j

φ̃i + ψ)
]

= 0, j = 1, · · · , k;

(−∆)mψ − pUp−1ψ +
[
− p(|U∗|p−1 − Up−1)(1−

k∑

j=1

ζj) + pUp−1(
k∑

j=1

ζj)
]
ψ

− p|U∗|p−1
k∑

j=1

(1− ζj)φ̃j + (1−
k∑

j=1

ζj)
(
E −N(

k∑

j=1

φ̃j + ψ)
)

= 0.

(3.6)

3.1 The existence of ψ

In this subsection, we will focus on the existence of ψ in the second equation of the system (3.6).

For this purpose, we first prove the following

Proposition 3.1 Assume that N
2 < q < N , let h(y) be a function such that ‖h‖∗∗ < +∞, and

∫

RN

vlh = 0, ∀l = 1, 2, · · · , N + 1.

Then the equation

L0(φ) =
[
(−∆)m − pUp−1

]
φ = h, (3.7)

has a unique solution φ satisfying ‖φ‖∗ < ∞ and
∫

RN

Up−1Zlφ = 0, ∀l = 1, 2, · · · , N + 1.

Moreover, there is a constant C depending only on q and N such that

‖φ‖∗ ≤ C‖h‖∗∗.

Proof. Let

H = {φ ∈ Dm,2(RN )
∣∣∣
∫

Rn

Up−1vlφ = 0, ∀l = 1, 2, · · · , N + 1}.

Then H is a Hilbert space endowed with the inner product:

< u, v >H :=





∫

Rn

∆m/2u(y) ·∆m/2v(y)dy if m is even;
∫

Rn

[(∇∆
m−1

2 u(y)
) · (∇∆

m−1
2 v(y)

)]
dy if m is odd.
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Moreover, for any φ̃ ∈ H

(
L0φ, φ̃

)
=

(
(−∆)mφ, φ̃

)− p
(
Up−1φ, φ̃

)

=< φ, φ̃ >H −p
(
Up−1φ, φ̃

)

=< φ̃, φ >H −(
φ̃, pUp−1φ

)

=
(
φ,L0φ̃

)
.

By the Sobolev inequality, Lp estimates ( Caldéron-Zygmund inequality)(c.f.[13]), and the

iteration by m times, we get

‖L0φ‖2
2 ≤





C
[
‖(−∆)mφ‖2

2 + ‖∆m
2 φ‖2

2 + ‖φ‖2
2

]
, m is even;

C
[
‖(−∆)mφ‖2

2 + ‖∇∆
m−1

2 φ‖2
2 + ‖φ‖2

2

]
, m is odd,

≤




C
[
‖(−∆)mφ‖2

2 + ‖∆m
2 φ‖2

2 + ‖φ‖2
2

]
, m is even;

C
[
‖(−∆)mφ‖2

2 + ‖∆m+1
2 φ‖2

2 + ‖φ‖2
2

]
, m is odd,

≤




C
[
‖(−∆)m−1φ‖2

2 + ‖∆m
2
−1φ‖2

2 + ‖φ‖2
2

]
, m is even;

C
[
‖(−∆)m−1φ‖2

2 + ‖∆m−1
2 φ‖2

2 + ‖φ‖2
2

]
, m is odd,

≤ · · ·
≤C‖φ‖2

2.

Hence L0 is a bounded, linear and self-adjoint operator in
(
H, (·, ·)

)
. The Fredholm alter-

native in Hilbert space tells us that the closure of the range of the operator L0 is the orthogonal

complement of the null space of L∗0 = L0. We have known from the beginning of this section,

the null space is actually spanned by {v1, v2, · · · , vn+1}, therefore, the invertibility problem (3.1)

has a weak solution if and only if

(h, vi) = 0, for i = 1, 2, 3, · · · , N + 1,

which are exactly the assumption required in Proposition 3.1. It admits a weak solution φ.

Since ‖h‖∗∗ < ∞, we choose the pair r = 2N
N+2m , r′ = 2N

N−2m = p + 1, by Hölder inequality,

we have

‖h‖r ≤
[ ∫

RN

|h|q(1 + |y|)(N+2m)q−2Ndy
]1/q

·
[ ∫

RN

(1 + |y|)−2Ndy
] 1

r
− 1

q

≤C‖h‖∗∗ < ∞,

(3.8)

and

‖Up−1φ‖r ≤
( ∫

RN

|φ|r·N+2m
N−2m

) N−2m
(N+2m)r

( ∫

RN

U (p−1)r·N+2m
4m

) 4m
(N+2m)r

=‖φ‖p+1 ·
( ∫

RN

U
2N

N−2m

) 2m
N

≤C‖φ‖p+1 = C‖φ‖m∗ ≤ C‖(∇)mφ‖ = C‖φ‖H < ∞.

(3.9)
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By (3.8) and (3.9), we have f = pUp−1φ + h ∈ Lr, and the weak solution can be represented by

the following equations




∫

RN

∆
m
2 φ ·∆m

2 ψ +
∫

RN

fψ = 0, m is even;
∫

RN

[
(∇∆

m−1
2 φ) · (∇∆

m−1
2 ψ)

]
+

∫

RN

fψ = 0, m is odd,
for ∀ψ ∈ H. (3.10)

Now we define the functional Af : H → R by

Af (ψ) = −
∫

RN

fψ,

then 



∫

RN

∆
m
2 φ ·∆m

2 ψ = Af (ψ), m is even;
∫

RN

[
(∇∆

m−1
2 φ) · (∇∆

m−1
2 ψ)

]
= Af (ψ), m is odd.

Moreover, by Hölder inequality, we know that

∣∣Af (ψ)
∣∣ ≤ ‖f‖r‖ψ‖p+1 ≤ C‖f‖r‖ψ‖H .

Thus Af is a bounded linear functional on the Hilbert space
(
H,

(·, ·)
)
, by the Riesz’s represen-

tation theorem, there exists a unique φ ∈ H such that

Af (ψ) =





∫

RN

∆
m
2 φ ·∆m

2 ψ m is even,
∫

RN

[
(∇∆

m−1
2 φ) · (∇∆

m−1
2 ψ)

]
m is odd.

Consequently, we can define an operator A : Lr → H, through the functional Af , by

A(f) = φ, and < A(f), ψ >H=
(
f, ψ

)
, ∀ψ ∈ H.

As a result, the equation (3.1) can be equivalent to

φ = A(h) + A(pUp−1φ) = A(h) + A(τ(φ)),

where τ : H → Lr, φ 7→ pUp−1φ, is a compact mapping by the rapid decreasing rate of Up−1.

Set B = A ◦ τ , then B is the operator from H to H. Moreover, it is easy to see that B is also

compact since it is the composition of the bounded linear operator and the compact operator,

hence the equation (3.1) can be rewritten as

(I −B)φ = A(h).

Also it is natural to verify that B is also self-adjoint, and the Fredholm alternative applies.

Hence (I −B)φ = A(h) has a solution if and only if

∀v ∈ Ker(I −B), (I −B)v = 0 = A(0),
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since A is injective.

Then, we obtain h ≡ 0 with

A(0) ∈ R(I −B) = (Ker(I −B∗))⊥ = (Ker(I −B))⊥.

Therefore the equation (3.1) is reduced to the homogeneous version, that is

L0(v) = 0,

where v can be written as the sum of vi’s,

v(y) =
N+1∑

l=1

al · vl(y),

with constants a1, a2, · · · , aN+1.

Recall the constraint of the H is such that

0 =
∫

RN

Up−1vl · v = al

∫

RN

Up−1(y)v2
l (y)dy,

which yields the vanishing components

al = 0, l = 1, 2, · · · , N + 1, and v ≡ 0, Ker(I −B) = {0}.

Hence, the orthogonal complement R(I −B) = H,

this shows the existence of φ by

(I −B)φ = A(h),

and the uniqueness of φ by

Ker(I −B) = {0}.

In the following , we will show that

‖φ‖∗ ≤ C‖h‖∗∗.

Set φ0 = φ, the linearized equation (3.1) is equivalent to the following system:




(−∆)φ = φ1,

(−∆)φ1 = φ2,

· · ·
(−∆)φm−1 = pUp−1φ + h.

By the elliptic regularity, we know that {φl, l = 0, 1, 2, · · · ,m− 1} are all bounded in L∞ norm,

and h is also bounded in the L∞ norm. Moreover by the Local elliptic estimates, we have

‖D2φm−1‖Lq(B1) + ‖Dφm−1‖Lq(B1) + ‖φm−1‖L∞(B1) ≤ C‖h‖L2(B2) ≤ C‖h‖r ≤ C‖h‖∗∗;
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‖D2φl‖Lq(B l
m

) + ‖Dφl‖Lq(B l
m

) + ‖φl‖L∞(B l
m

) ≤ C‖φl+1‖L2(B l+1
m

) ≤ C‖φl+1‖L∞(B l+1
m

),

l = 0, 1, · · · ,m− 2.

Hence

‖φ‖L∞(B 1
m

) ≤ C‖φm−1‖ ≤ C‖h‖∗∗.

Without loss of generality, we can write

‖φ‖∗(B1)
= ‖(1 + |y|N−2m)φ(y)‖L∞(B1) ≤ C‖φ‖L∞(B1) ≤ C‖φ‖∗∗.

To complete the estimate outside the unit ball, we make use of the Kelvin type transform

φ̃(y) =
∣∣y∣∣2m−N

φ( y
|y|2 ). And a simple algebra shows,

(−∆)mφ̃(y)− pUp−1(y)φ̃(y)

=
∣∣y∣∣−(2m+N)(−∆)mφ(

y

|y|2 )− pUp−1(y) · ∣∣y∣∣2m−N
φ(

y

|y|2 )

=
∣∣y

∣∣−(2m+N)(−∆)mφ(
y

|y|2 )− p
∣∣y

∣∣(p−1)(2m−N)
Up−1(

y

|y|2 ) ·
∣∣y

∣∣2m−N
φ(

y

|y|2 )

=
∣∣y∣∣−(2m+N)

[
(−∆)m − pUp−1

]
φ(

y

|y|2 )

=
∣∣y

∣∣−(2m+N) · h(
y

|y|2 ) = h̃(y).

It turns out that

(−∆)mφ̃− pup−1φ̃(y) = h̃(y).

Similarly, by using the Hölder inequality and the local elliptic estimates, we have

‖h̃‖Lq(B2) ≤ C
( ∫

Bc
1
2

∣∣y∣∣(N+2m)q−2N ∣∣hq(y)
∣∣dy

)1/q
≤ C‖(1 + |y|)N+2m− 2N

q h‖q = C‖h‖∗∗,

and

‖φ‖∗(Bc
1)

= ‖(1 + |y|N−2m)φ‖L∞(Bc
1) ≤ C‖φ̃‖L∞(B1) ≤ C‖h̃‖Lq(B2) ≤ C‖h‖∗∗.

Therefore, we get the estimate for φ

‖φ‖∗ ≤ ‖φ‖∗B1
+ ‖φ‖∗Bc

1
≤ C‖h‖∗∗.

This completes the proof of proposition 3.1. ¤
Now we return to the existence and uniqueness of solution ψ for the equation in (3.6), which

can be simplified to

(−∆)mψ − pUp−1ψ + (V1 + V2) · ψ + M(ψ) = 0, (3.11)

where

V1 = −p
(∣∣U∗

∣∣p−1 − Up−1
)(

1−
k∑

j=1

ζj

)
, V2 = pUp−1

( k∑

j=1

ζj

)
,
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M(ψ) = −p
∣∣U∗

∣∣p−1
k∑

j=1

(
1− ζj

)
φj +

(
1−

k∑

j=1

ζj

)[
E −N(

k∑

j=1

φ̃j + ψ)
]
, (3.12)

and

N(φ) =
∣∣U∗ + φ

∣∣p−1(
U∗ + φ

)−
∣∣U∗

∣∣p−1
U∗ − p

∣∣U∗
∣∣p−1

φ. (3.13)

Proposition 3.2 There exists some positive constants k0, C, ρ0, such that for ∀k ≥ k0, and φ̃j

satisfying (3.2)−(3.5), with ρ < ρ0. Then there exists a unique solution ψ = Ψ(φ1) to (3.11)

satisfying the symmetries:

ψ(y, y3, · · · , yl, · · · , yn) =ψ(y, y3, · · · ,−yl, · · · , yn);

ψ(y, y′) =ψ(e
2πj
k

√−1y, y′), j = 1, 2, · · · , k − 1;

ψ(y) =
∣∣y

∣∣2m−N
ψ

( y

|y|2
)
.

Moreover 


‖ψ‖∗ ≤ C

[
k

1−N
q + ‖φ1‖2

∗
]
, if N ≥ 2m + 2;

‖ψ‖∗ ≤ C
[
log−1 k + ‖φ1‖2

∗
]
, if N = 2m + 1.

And the operator Ψ satisfies the Lipschitz condition

‖Ψ(φ1
1)−Ψ(φ2

1)‖∗ ≤ C‖φ1
1 − φ2

1‖∗.

Proof. Notice that

[(
V1 + V2 · ψ

)
+ M

(
ψ

)](
y
)

=
∣∣y

∣∣−(N+2m)
[(

V1 + V2 · ψ
)

+ M
(
ψ

)]( y

|y|2
)
,

we digress to a general problem for (3.7) in Proposition 3.1, where h satisfies

h(y, y3, · · · , yl, · · · , yN ) =h(y, y3, · · · ,−yl, · · · , yN );

h(y, y′) =h(e
2πj
k

√−1y, y′), j = 1, 2, · · · , k − 1;

h(y) =
∣∣y

∣∣−(N+2m)
h
( y

|y|2
)
.

We claim that (3.7) has a unique bounded solution ψ = T (h) such that there is a constant

C, depending on q and N satisfying

‖φ‖∗ ≤ C‖h‖∗.

Thanks to the results in Proposition 3.1, it is sufficient to check

(h, vl) =
∫

Rn

hvl = 0, ∀ l = 1, 2, · · · , N + 1.

From the assumption that h is even with respect to y3, y4, · · · , yn, and the oddness of vl = ∂U
∂yl

,

it is natural (h, vl) = 0 for l = 3, · · · , N.
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For l = 1, 2, we consider the vector integral

I =
∫

RN

h

[
v1

v2

]
= cN

∫

RN

h(y)
(
1 + |y|2)

N
2
−1+m

·
[

y1

y2

]
dy.

Let

(z, z′) = (e
2πj
k

√−1y, y′),

by the invariance of h and the integral I under this change of variables, we know that

e
2πj
k

√−1 · I =cN

∫

RN

h(y)
(
1 + |y|2)

N
2
−1+m

·
[

y1

y2

]
· e 2πj

k

√−1dy

=cN

∫

RN

h(z)
(
1 + |z|2)

N
2
−1+m

·
[

z1

z2

]
dz

=I,

which yields I = 0, since e
2πj
k

√−1 6= 0 for k ≥ 2.

For l = N + 1, we define a function I(λ), for λ > 0, by

I(λ) = λ
N−2m

2

∫

RN

U(λy)h(y)dy.

By changing the variables y 7→ z = y
|y|2 , we have

I(λ) =λ
N−2m

2

∫

RN

U(λy)h(y)dy

=λ
N−2m

2

∫

RN

U(
λy

|y|2 )h(
y

|y|2 )d(
y

|y|2 )

=
(
λ−1

)N−2m
2

∫

RN

U(λ−1y)h(y)dy

=I(λ−1) := g(λ),

which shows

I ′(1) = g′(1) = − 1
λ2

I ′(
1
λ

)
∣∣
λ=1

= −I ′(1).

Thus

0 = I ′(1) = (h, vN+1),

Up to now we have verified that all conditions of proposition 3.1 are satisfied, hence

T (h) = ‖ψ‖∗ ≤ C‖h‖∗∗,

and T is a bounded linear operator.

Now we return to our problem, take h = (V1 + V2)ψ + M(ψ), then the unique existence of ψ

is reduced to the survey of the fixed point of an operator M from the complete space X to itself,

where X denotes the linear space with bounded norm ‖ · ‖∗ and all symmetries in Proposition

3.2. For this purpose, we consider the following fixed point problem:

ψ = −T
[(

V1 + V2

)
+ M(ψ)

]
:= M(ψ), ψ ∈ X.
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By the uniqueness result of Proposition 3.1 and fact that

ψl(y) = ψ(y, y3, · · · ,−yl, · · · , yN ), l = 3, 4, · · · , N ;

ψj2(y) = ψ(e
2πj
k

√−1y, y′); ψN+1(y) =
∣∣y∣∣2m−N

ψ
( y

|y|2
)

satisfy the ψ− equation in (3.7), we obtain that

ψ = ψl = ψj2 = ψN+1,

which are exactly the symmetries required in Proposition 3.2.

Throughout the last part of this section, we will prove that M is a contraction mapping.

This crucial conclusion is derived from a series of estimates of V1, V2, M respectively.

Recall

V1 = −p
(∣∣U∗

∣∣p−1 − Up−1
)(

1−
k∑

j=1

ζj

)
,

then the multiplier
(
1−

k∑
j=1

ζj

)
shows that suppV1 ⊂ EXT.

By using the similar arguments as in the discussion of Step 1 in Proposition 2.3, for y ∈
EXT, there exists s ∈ (0, 1) such that

∣∣V1(y)ψ(y)
∣∣ =

∣∣∣V1(y)ψ(y)
(
1 + |y|N−2m

) · 1
1 + |y|N−2m

∣∣∣

≤C
∣∣∣V1(y)U(y)

∣∣∣ ·
∣∣∣1 +

∣∣y∣∣N−2m
ψ(y)

∣∣∣
≤C‖ψ‖∗

∣∣∣V1(y)U(y)
∣∣∣

≤C‖ψ‖∗
∣∣∣Up−1(y)−

∣∣U∗
∣∣p−1(y)

∣∣∣U(y)

=C‖ψ‖∗U(y)
∣∣∣U(y)− s

k∑

j=1

Uj(y)
∣∣∣
p−2[ k∑

j=1

Uj(y)
]
.

Note that EXT = I
⋃

II. For y ∈ I, we have µ2 + |y − ξj |2 ∼ 1 + |y|2, hence

k∑

i=1

Ui(y) ≤Ckµ
N−2m

2 U(y)

≤




Ck2m+1−NU(y) ≤ CU(y), N ≥ 2m + 2;

Ck−
1
2 log−1 k · U(y) ≤ CU(y), N = 2m + 1.

For y ∈ II, we have

k∑

i=1

Ui(y) =
k∑

i=1

µ
N−2m

2

( 1
µ2 + |y − ξi|2

)N−2m
2

≤Ck · k N−2m
2 µ

N−2m
2

≤




Ck
2m+2−N

2 ≤ C ≤ CU(2) ≤ CU(y), N ≥ 2m + 2;

C(log k)−
1
2 ≤ CU(2) ≤ CU(y), N = 2m + 1.
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Combine the obtained results for I and II, we have

k∑

i=1

Ui(y) ≤ CU(y), ∀y ∈ EXT. (3.14)

Put (3.14) into the estimate of |V1ψ|, we obtain, for y ∈ EXT,

∣∣V1(y)ψ(y)
∣∣ ≤C‖ψ‖∗Up−1(y) · (

k∑

i=1

Ui(y)
)

≤C‖φ‖∗
( 1
(1 + |y|)2

)2m
k∑

i=1

µ
N−2m

2

|y − ξi|N−2m
.

At last by using the similar arguments as in the the Step 2 of Proposition 2.3, we know that

‖V1 · ψ‖∗∗ ≤




Ck
1−N

q , N ≥ 2m + 2;

C log−1 k, N = 2m + 1.

Now we turn to the estimate of V2 · ψ. Recall

V2 = pUp−1
( k∑

j=1

ζj

)
.

The multiplier
( k∑

j=1
ζj

)
shows that the support of V2 · ψ lies in the annular region, namely,

suppV2 ⊂ INT ⊂ {y
∣∣∣
∣∣|y| −

√
1− µ2

∣∣ ≤ η

k
} := ANN.

By the argument of measures, we obtain

‖V2ψ‖∗∗ ≤C‖ψ‖∗
k∑

j=1

‖Upζj‖∗∗(|y−ξj |≤η/k)

≤C‖ψ‖∗ ·meas
(
ANN

)

≤C‖ψ‖∗ · k1−N < C‖ψ‖∗k1−N
q .

The discussion of M(ψ) will be more technical, since the operator M is not linear as V1 and

V2 are. We introduce the following notations to simplify the presentation of M(ψ).

Define

M1 = −p
∣∣U∗

∣∣p−1
k∑

j=1

(1− ζj)φj ; M2 = (1−
k∑

j=1

ζj)E;

M3(ψ) = −(1−
k∑

j=1

ζj)N(
k∑

j=1

φ̃j + ψ).

Then the nonlinear operator M(ψ) can be rewritten as

M(ψ) = M1 + M2 + M3(ψ).
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For M1, apply the estimate of the exterior region, we have

‖M1‖∗∗ ≤C

k∑

j=1

‖
∣∣U∗

∣∣p−1
φj‖∗∗(|y−ξj |>η/k)

≤




C‖ψ‖∗k1−N
q , N ≥ 2m + 2;

C‖ψ‖∗ log−1 k, N = 2m + 1.

The estimate for M2 is the same as that for the error term E.

For M3(ψ), we have

suppM3(ψ) ⊂ EXT.

Recall the formula of N , by means of the mean value theorem, there exist s, t ∈ (0, 1) such

that

∣∣N(
k∑

j=1

φ̃j + ψ)
∣∣ =

∣∣∣
∣∣U∗ +

k∑

j=1

φ̃j + ψ
∣∣p−1 · (U∗ +

k∑

j=1

φ̃j + ψ
)−

∣∣U∗
∣∣p−1 · U∗ − p

∣∣U∗
∣∣p−1( k∑

j=1

φ̃j + ψ
)∣∣∣

=p
∣∣∣
∣∣U∗ + s(

k∑

j=1

φ̃j + ψ)
∣∣p−1 −

∣∣U∗
∣∣p−1( k∑

j=1

φ̃j + ψ
)∣∣∣

=p
∣∣U∗ + ts(

k∑

j=1

φ̃j + ψ)
∣∣p−2∣∣

k∑

j=1

φ̃j + ψ
∣∣2

We restricted N to the exterior region, by the proof of Step 1 in the Proposition 2.3, we

have

∣∣
k∑

j=1

ψ̃j(y)
∣∣ ≤





C‖φ1‖∗U(y);
k∑

j=1

µ
N−2

2

|y − ξj |N−2
.

Hence

‖M3(ψ)‖∗∗ =‖(1−
k∑

j=1

ζj)N(
k∑

j=1

φ̃j + ψ)‖∗∗

≤C‖N(
k∑

j=1

φ̃j + ψ)‖∗∗(EXT )

≤C‖[|U∗|+ |
k∑

j=1

φ̃j |+ |ψ|]p−1 · [|
k∑

j=1

φ̃j |2 + |ψ|2]‖∗∗(EXT )

≤C‖φ1‖2
∗‖Up−1 ·

k∑

j=1

µ
N−2

2

|y − ξj |N−2
‖∗∗(EXT )

+ C‖ψ‖2
∗‖Up‖∗∗(EXT )

≤




C‖φ1‖2
∗k

1−N
q + C‖ψ‖2

∗, N ≥ 2m + 2

C‖φ1‖2
∗ log−1 k + C‖ψ‖2

∗, N = 2m + 1.
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Summing together the obtained estimates above, we have

‖M(ψ)‖∗∗ ≤‖M1‖∗∗ + ‖M2‖∗∗ + ‖M3(ψ)‖∗∗

≤




C
(
k

1−N
q + ‖φ1‖2

∗k
1−N

q + ‖ψ‖2
∗
)
, N ≥ 2m + 2

C
(
log−1 k + ‖φ‖2

∗ log−1 k + ‖ψ‖2
∗
)
, N = 2m + 1.

On the other hand, for any ψ1, ψ2 ∈ Bρ/2 ⊂ X, by the mean value theorem, there exists some

s, t ∈ (0, 1) such that

‖M(ψ1)−M(ψ2)‖∗∗ =‖M3(ψ1)−M3(ψ2)‖∗∗

≤C‖N(
k∑

j=1

φ̃j + ψ1)−N(
k∑

j=1

φ̃j + ψ2)‖∗∗(EXT )

=C‖p
∣∣U∗ +

k∑

j=1

φ̃j + s(ψ1 − ψ2)
∣∣p−1(ψ1 − ψ2)− p

∣∣U∗
∣∣p−1(ψ1 − ψ2)‖∗∗(EXT )

≤C‖
∣∣U∗ + t

k∑

j=1

φ̃j + ts(ψ1 − ψ2)
∣∣p−2 ·

∣∣
k∑

j=1

φ̃j + s(ψ1ψ2)
∣∣ ·

∣∣ψ1 − ψ2

∣∣‖∗∗(EXT )

≤C
(‖φ1‖∗ + ‖ψ1 − ψ2‖∗

)‖ψ1 − ψ2‖∗ · ‖Up‖∗∗(EXT )

≤Cρ‖ψ1 − ψ2‖∗.

More generally, we have

‖M(ψ1 − ψ2)‖∗ =‖ − T
[
(V1 + V2) · (ψ1 − ψ2) +

(
M(ψ1 − ψ2)

)]‖∗
≤C

[
‖(V1 + V2

) · (ψ1 − ψ2)‖∗∗ + ‖M3(ψ1)−M3(ψ2)‖∗∗
]

≤




C(k1−N
q + ρ)‖ψ1 − ψ2‖∗, N ≥ 2m + 2;

C(log−1 k + ρ)‖ψ1 − ψ2‖∗, N = 2m + 1.

Choosing k0 large enough and ρ0 small enough, then for any k ≥ k0 and ρ ≤ ρ0, it holds:




C(k1−N
q + ρ) < 1,

C(log−1 k + ρ) < 1.

Hence M is a contraction mapping from the small ball in X to the ball itself. The Banach fixed

point theorem gives the unique existence of ψ. ¤

3.2 The existence of φ̃j in (3.6)

In this subsection, we will turn to study the first series of equations (3.6):

(−∆)mφ̃j − p|U∗|p−1ζjφ̃j + ζj

[
− p|U∗|p−1ψ + E −N(φ̃j +

∑

i6=j

φ̃i + ψ)
]

= 0, j = 1, · · · , k;

Indeed, these equations can all be reduced to the φ1− equation by means of the changing of the

variables, that is the equation:
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(−∆)mφ̃1 − p|U∗|p−1ζ1φ̃1 + ζ1

[
− p|U∗|p−1ψ + E −N(φ̃1 +

∑

i6=1

φ̃i + ψ)
]

= 0.

In order to simplify the horrible formula above, we introduce the following new notation N , h̃:

N (φ1) := p
(|U1|p−1 − |U∗|p−1ζ1

)
φ̃1 + ζ1

[
− p|U∗|p−1ψ + E −N(φ̃1 +

∑

i6=1

φ̃i + ψ)
]
;

h̃ := ζ1E +N (φ1);

where h̃ is even with respect to each of the variables y2, y3, · · · , yN and satisfies

h̃(y) = |y|−(N+2m)h̃(
y

|y|2 ).

Then the φ1− equation can be simplified as

[
(−∆)m − p

∣∣U1

∣∣p−1
ζ1

]
φ̃1 + h̃ = 0. (3.15)

Recall the definition of µ,




µ = δ
2

N−2m k−2, N ≥ 2m + 2,

µ = δ2k−3 log−2 k, N = 2m + 1.

We know that µ is relevant to δ, hence

cN+1(δ) :=

∫
RN (ζ1E +N (φ1))ṽN+1∫

RN Up−1
1 ṽ2

N+1

=

∫
RN h̃ṽN+1∫

RN Up−1
1 ṽ2

N+1

is also a variable relevant to δ.

By the argument of changing variables through translating and scaling, we can get the

equivalence between equation (3.15) and equation (3.7).

Consider the result of Proposition 3.1, it is evident to assert that, the unique existence of φ̃1

is equivalent to the verification of the following series of conditions
∫

RN

h̃ṽl =
∫

RN

hvl = 0, l = 1, 2, 3, · · · , N + 1.

From the formula of cN+1(δ), we know one of the conditions holds
∫

RN

h̃ṽN+1 = 0 ⇔
∫

RN

hvN+1 = 0 ⇔ cN+1(δ) = 0,

under a selected positive number δ.

And the existence of this particular δ is granted by the following lemma (see [24])

Lemma 3.3 We can write the δ related
∫
RN h̃ṽN+1 in the following form as

∫

RN

h̃ṽN+1 =





AN
δ

kN−2m

[
δaN − 1

]
+

1
kN−m

Θk(δ), N ≥ 2m + 2;

A3
δ

k log k

[
δa3 − 1

]
+

1
k2 log2 k

Θk(δ), N = 2m + 1,
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where Θk(δ) is continuous w.r.t δ and uniformly bounded as k → ∞, AN = p
∫
RN Up−1vN+1,

with the positive number

aN =





2
N−2m

2 lim
k→∞

1
kN−2m

k∑

j=2

1
|ξ1 − ξj |N−2m

, N ≥ 2m + 2;

√
2 lim

k→∞
1

k log k

k∑

j=2

1
|ξ1 − ξj | , N = 2m + 1.

In fact, by Lemma 3.3, we can see that for δ small enough,
∫
RN h̃ṽN+1 < 0, while for δ large

enough,
∫
RN h̃ṽN+1 > 0. By the continuity arguments with respect to δ, we can always find some

δ0 > 0 such that
∫
RN h̃ṽN+1 = 0.

For the simplified version (3.15), and for this particular δ0, we give the following theorem to

complete the unique existence problem of splitting system (3.6).

Proposition 3.4 For h̃ given above, assume in addition that

h(y) := µ
N+2m

2 h̃(ξ1 + µy) satisfying ‖h‖∗∗ < ∞.

Then the equation (3.15) has a unique solution φ̃ := T̃ (h̃) that is even with respect to each of

the variables y2, y3, · · · , yN , and is invariant under the Kelvin type transform:

φ̃(y) =
∣∣y

∣∣2m−N
φ̃
( y

|y|2
)
,

and ∫

RN

φUp−1vN+1 = 0, with ‖φ‖∗ ≤ C‖h‖∗∗.

where φ(y) = µ
N−2m

2 φ̃(ξ1 + µy).

Proof. By Lemma 3.3, we have
∫

RN

hvN+1 = 0.

It follows from the oddness of v2, v3, · · · , vN and the evenness of h that
∫

RN

hvj = 0, j = 2, 3, · · · , N.

In the following, we only need to prove that
∫
RN hv1 = 0. However, this needs some toiling work,

since we do not have any symmetry of h with respect to the first component y1.

Define an integral I(t) and wµ(y) as

I(t) :=
∫

RN

wµ(y − tξ1)h̃(y)dy, wµ(y) = µ−
N−2m

2 U(µ−1y).
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Then the direct calculus gives,

I ′(1) =−
∫

RN

ξ1

µ
· U(

y − tξ1

µ
) · h(

y − ξ1

µ
) · µ−N−2m

2 · µ−N+2m
2 dy

∣∣
t=1

= −
√

1− µ2

µ

∫

RN

U1(y)h(y)dy

= −
√

1− µ2

µ

∫

RN

hv1.

(3.16)

Changing the variable y 7→ z = y
|y|2 , we obtain

I(t) =
∫

RN

wµ(y − tξ1)|y|−(N+2m)h̃(
y

|y|2 )dy

=
∫

RN

wµ(
y

|y|2 − tξ1)
∣∣z

∣∣2m−N
h̃(z)dz

=
∫

RN

( µ

µ2 + t2|ξ1|2
)N−2m

2
P

N−2m
4m

m,N ·
[∣∣y − tξ1

µ2 + t2|ξ1|2
∣∣2 +

µ2

(µ2 + t2|ξ1|2)2
]−N−2m

2
h̃(y)dy

=
∫

RN

wµ(t)(y − s(t)ξ1)h̃(y)dy,

where

µ(t) :=
µ

µ2 + t2|ξ1|2 , s(t) =
t

µ2 + t2|ξ1|2 .

Take the derivative on both sides of the formula of I(t), we get

I ′(1) =
[ ∫

RN

∂µwµ(y − s(t)ξ) · h̃(y)dy · µ′(t)− ξ1
1

∫

RN

∂y1

(
wµ(t)(y − s(t)ξ1)

)
h̃(y)dys′(t)

]∣∣∣
t=1

=2µ2

∫

RN

ṽN+1(y)h̃(y)dy −
√

1− µ2

µ
(2µ2 − 1)

∫

RN

hv1

=

√
1− µ2

µ
(2µ2 − 1)

∫

RN

hv1.

(3.17)

Compare (3.16) and (3.17), we have

−
√

1− µ2

µ

∫

RN

hv1 = I ′(1) =

√
1− µ2

µ
(2µ2 − 1)

∫

RN

hv1,

and the equality holds if and only if
∫
RN hv1 = 0, this is what we need at last.

Apply Proposition 3.1, we see that if h̃ is a general function satisfying all the symmetries in

Proposition 3.2, then there exists some unique solution φ̃ := T̃ (h̃) that is even with respect to

each of the variables y2, y3, · · · , yN and

‖φ̃‖∗ = ‖T̃ h̃‖∗ ≤ C‖h̃‖∗∗.

However, this h̃ in our problem (3.15) is not general, but relevant to φ1 itself, which tells us

the direct application of the Proposition 3.1 can not work. We need to emulate what we have

done in Proposition 3.2, that is to construct a contraction mapping, then the Banach fixed point
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theorem will give the answer to our problem. Since h̃ = ζ1E +N (φ1), we define an operator M
by

M(φ1) := T̃
(
ζ1E +N (φ1)

)
.

Then the unique existence of the solution φ1 is reduced to the existence of a fixed point of a

contraction mapping M.

In the following, we split ζ1E +N (φ1) into several shorter terms and estimate these terms

one by one. Define

f1 := pζ1

(
Up−1

1 − |U∗|p−1
) · φ̃1; f2 := (1− ζ1)U

p−1
1 φ̃1;

f3 := −pζ1

∣∣U∗
∣∣p−1

ψ(φ1); f4 := ζ1N
( k∑

j=1

φ̃j + ψ(φ1)
)
; f5 := ζ1E,

and

f̃i(y) = µ
n+2m

2 fi(ξ1 + µy), i = 1, 2, 3, 4, 5.

Set

h̃ =
5∑

i=1

fi.

Thanks to the multiplier ζ1, we know that

suppfj ⊂ {y
∣∣|y − ξ1| < η/k} =: INT1 ⊂ INT, j = 1, 3, 4, 5.

For f1, we have

|f̃1(y)| ≤
∣∣∣p

∣∣U(y) +
k∑

j=2

U
(
y + µ−1(ξ1 − ξj)

)− µ
N−2m

2 U(ξ1 + µy)
∣∣p−1 − pUp−1(y)

∣∣∣ ·
∣∣φ1(y)

∣∣

≤C
∣∣

k∑

j=2

U
(
y + µ−1(ξ1 − ξj)

)
+ µ

N−2m
2 U(ξ1 + µy) + U(y)

∣∣p−2

·
∣∣µN−2m

2 U(ξ1 + µy) + U(y)
∣∣ · U(y) · ‖φ1‖∗

≤C‖φ1‖∗Up−1(y) · µN−2m
2 ≤ C‖φ1‖∗ µ

N−2m
2

1 + |y|4m
,

Thus we can proceed the same discussion of Step 2 in Proposition 2.3 and obtain

‖f1‖∗∗ = ‖f1‖∗∗(INT1)
≤





C‖φ1‖∗k−
N
q , N ≥ 2m + 2,

C‖φ1‖∗ log−1 k, N = 2m + 1.
(3.18)

Similarly, with the application of the estimate of ψ in Proposition 3.2, we can get the estimate

of f3, f4, for y ∈ INT1 :
∣∣f̃3(y)

∣∣ ≤CUp−1µ
N−2m

2 ‖ψ(φ1)‖∞
≤CUp−1µ

N−2m
2 ‖ψ(φ1)‖∗

≤





Cµ
N−2m

2
(
k

1−N
q + ‖φ1‖2

∗
) · 1

1 + |y|4m
, N ≥ 2m + 2;

Cµ
N−2m

2
(
log−1 k + ‖φ1‖2

∗
) · 1

1 + |y|4m
, N ≥ 2m + 1,
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and

‖f3‖∗∗ ≤




C
(
k

1−N
q + ‖φ1‖2

∗
)
, N ≥ 2m + 2;

C
(
log−1 k + ‖φ1‖2

∗
)
, N = 2m + 1,

(3.19)

‖f4‖∗∗ ≤




C‖φ1‖2
∗k

1−N
q + C‖ψ‖2

∗, N ≥ 2m + 2;

C‖φ1‖2
∗ log−1 k + C‖ψ‖2

∗, N ≥ 2m + 1,

≤




C‖φ1‖2
∗k

1−N
q + C

(‖φ1‖2
∗ + k

1−N
q
)2

, N ≥ 2m + 2;

C‖φ1‖2
∗ log−1 k + C

(‖φ1‖2
∗ + log−1 k

)2
, N ≥ 2m + 1.

(3.20)

The estimate of f5 can be directly derived from the error term E

‖f5‖∗∗ ≤




Ck
1−n

q , N ≥ 2m + 2;

C log−1 k, N = 2m + 1.
(3.21)

For f2, we know that

∣∣f̃2(y)
∣∣ =

∣∣ζ1(µy + ξ1)− 1
∣∣ · Up−1 · |φ1| ≤ CUp‖φ1‖∗,

hence
‖f2‖∗∗ ≤C

[ ∫

|y−ξ1|>η/k
(1 + |y|)(N+2m)q−2nµ−

N+2m
2

q
∣∣f̃ q

2 (
n− ξ1

µ
)
∣∣dy

]1/q

≤C
[
µ−

N+2m
2

qµ(N+2m)q−2N ·
∫ +∞

η/(kµ)
r(N+2)q−2N−(N−2)pqdr

]1/q

≤Cµ
N+2

2
− 1

2q < Ck
−N

q .

(3.22)

Sum all the estimates obtained above, we can see that for φ̂, φ̂1, φ̂2 ∈ Bρ(0) ⊂ X,

‖M(φ̂)‖∗ ≤C

5∑

i=1

‖fi(φ̂)‖∗∗ ≤




C
(
k

1−N
q + ‖φ̂‖∗

)
, N ≥ 2m + 2;

C
(
log−1 k + ‖φ̂‖∗

)
, N ≥ 2m + 1.

and

‖M(φ̂1)−M(φ̂2)‖∗ ≤C
4∑

i=1

‖fi(φ̂1)− fi(φ̂2)‖∗∗

≤




C
(
k
−N

q + ‖φ̂1‖∗ + ‖φ̂2‖∗
)‖φ̂1 − φ̂2‖∗, N ≥ 2m + 2;

C
(
k
−N

q + k−1 log−1 k + ‖φ̂1‖∗ + ‖φ̂2‖∗
)‖φ̂1 − φ̂2‖∗, N = 2m + 1,

=:J ‖φ̂1 − φ̂2‖∗, with J < 1.

Hence M is a contraction mapping from Bρ(0) to Bρ(0), for k is large enough and ρ is small

enough. By the Banach fixed point theorem, there exists a unique solution φ̃1 of the equation

(3.15). ¤
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3.3 The Proof of the Main theorem

Since we are looking for the solution with the form:

u(y) = U∗(y) + φ(y),

with u being this form, our equation (1.5) can be restated as (2.7). Then for φ =
∑k

j=1 φ̃j + ψ,

by means of the cut-off functions, we split the equation (2.7) into a system equation of φ̃j , j =

1, 2, ..., k and ψ (see (3.6)). In this way, the original problem is reduced to prove the existence of

ψ and φ̃j , j = 1, 2, ..., k. These are done in Subsection 3.1 and Subsection 3.2 , respectively. Thus

for any k ≥ k0, we get the sign-changing solution uk = U∗ +
k∑

j=1
φj + ψ for the poly-harmonic

equation (1.5). This completes the proof of the main theorem. ¤
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