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Abstract. Singularly perturbed reaction-diffusion systems such as the Gierer-Meinhardt, Schanken-
berg, and Gray-Scott models are known to exhibit localized multi-spike solutions in which one of
the species concentrates on a discrete collection of well-separated points. A recent focus has been
the extension of the analysis, both rigorous and formal, of such localized solutions to the case where
classical diffusion is replaced by anomalous diffusion exhibiting Lévy flights. Mathematically, such
systems replace the classical Laplacian with the fractional Laplacian (−∆)s where s is the frac-
tional order. In this paper we consider the formal analysis of multi-spike solutions to the fractional
Schnakenberg system with periodic boundary conditions when the fractional order of the activator
satisfies 1/4 < s1 < 1 and that of the substrate satisfies 1/2 < s2 < 1. Using the method of
matched asymptotic expansions we derive a nonlinear algebraic system that determines the struc-
ture of equilibrium solutions, a nonlocal eigenvalue problem that determines its linear stability over
a fast, O(1), timescale, as well as a system of ordinary differential equations that determine the
dynamics of multi-spike solutions over a slow, O(ε−2), timescale. We explicitly construct symmet-
ric multi-spike solutions and derive stability criteria for instabilities arising over both fast and slow
timescales. One of the key findings in this paper is that the slow timescale instability thresholds are,
barring symmetry considerations, less degenerate than in the classical s2 = 1 case. In addition we
numerically calculate bifurcation diagrams that show how asymmetric multi-spike solutions branch
out from symmetric ones at distinct points for solutions with five or more spikes.

Keywords: Schnakenberg system, fractional Laplacian, Lévy flights, localized solutions, singular
perturbation, matched asymptotic expansions.

1. Introduction

Singularly perturbed activator-inhibitor or activator-substrate reaction-diffusion systems in which
the activator’s diffusivity ε2 ≪ 1 is asymptotically small, are known to exhibit localized spike solu-
tions. Such solutions are characterized by an activator that is localized within O(ε) neighbourhoods
of a discrete set of points and an inhibitor or substrate that is globally variable. This asymptotically
large separation between characteristic length scales has made such models particularly amenable
to both rigorous and formal analysis. In particular, it is possible in these systems to obtain detailed
properties of equilibrium solutions arising far-from equilibrium, i.e. well beyond the onset of linear
(Turing) instabilities [21, 29]. Prototypical examples of such singularly perturbed reaction diffusion
systems include the Gierer-Meinhardt, Gray-Scott, Brusselator and Schnakenberg systems, the lat-
ter of which will be the focus of this paper. The method of matched asymptotic expansions has
been remarkably successful in probing the structure, linear stability, and slow-dynamics of localized
solutions in each of these models starting with pioneering work of Iron, Ward, and Wei in 2001 on
the one-dimensional Gierer-Meinhardt system [12]. Subsequent studies have considered properties
of localized solutions in other contexts including, but not limited to, higher-dimensional domains
[14, 25, 7], curved surfaces [22], and bulk-surface coupled systems [6]. Additionally, rigorous meth-
ods based on Lyapunov Schmidt reductions and spectral estimates have been used to rigorously
establish the existence and stability properties of localized solutions for the Gierer-Meinhardt and
other singularly perturbed reaction-diffusion systems [28, 29, 24].

A growing body of literature has studied localized spike solutions to the one-dimensional fractional
singularly perturbed Gierer-Meinhardt system in which classical diffusion is replaced with anomalous
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diffusion exhibiting Lévy flights. Mathematically, the introduction of such an anomalous diffusion
amounts to replacing the classical (local) Laplacian (−∆) with the (nonlocal) fractional Laplacian
(−∆)s where s is referred to as the fractional order and which we define below. Using the method
of matched asymptotic expansion, Y. Nec first investigated the effects on the structure and linear
stability of localized spike solutions when Lévy flights are introduced into the activator equation
[20]. This was followed by Wei and Yang who rigorously proved the existence of multi-spike solutions
in the fractional Gierer-Meinhardt system on the real line when the fractional order of both the
inhibitor and activator is s ∈ [1/2, 1) [30]. More recently, both formal and rigorous methods have
been used to investigate multi-spike solutions in bounded domains where the fractional order of the
activator is s ∈ (1/4, 1) while that of the inhibitor is s ∈ [1/2, 1) [8], s = 1/2 [17], and s ∈ (0, 1/2)
[5]. As highlighted in [5], one can draw analogies between the fractional Gierer-Meinhardt system
in R1 with the classical Gierer-Meinhardt system in R1, R2, and R3, with this connection being
closely related to the singular behaviour of the fractional free-space Green’s function. Specifically,
when the fractional order is s < 1/2 (supercritical case) the free-space Green’s function has an
algebraic singularity, when s = 1/2 (critical case) it has a logarithmic singularity, and when s > 1/2
(subcritical case) is it non-singular (though its first derivative is discontinuous). The behaviour in
each of these regimes respectively parallels that of the classical free-space Green’s function in R3,
R2, and R1.

Interest in fractional reaction-diffusion systems, or anomalous diffusion systems more generally,
is not limited to localized solutions in the singularly perturbed case. Indeed, anomalous systems are
not only theoretically interesting in their own right but also have wide applicability in the natural
sciences [18, 15, 1]. In the pattern formation literature, several studies have considered both the
linear (Turing) stability analysis [9, 4] and the weakly-nonlinear analysis [31, 13] of anomalous
counterparts to classical reaction-diffusion systems, while solitons and other localized solutions
have likewise been numerically and theoretically studied in the fractional nonlinear Schrödinger
equation [16]. In addition to studying specific solutions of fractional systems, the past few years
have also seen the development of a growing toolbox for both the numerical simulation of fractional
systems [10, 19] as well as their numerical continuation [3]. Within this larger context, the detailed
asymptotic analysis of localized solutions in singularly perturbed reaction-diffusion systems offers
both an impetus for rigorous studies while also providing markers for what kind of behaviour such
systems may exhibit.

In this paper we consider the structure and linear stability of spike solutions to the fractional
Schnakenberg reaction-diffusion system given by


ut + ε2s1(−∆)s1u+ u− u2v = 0, −1 < x < 1,

εvt +D(−∆)s2v − 2−1 + ε−1Au2v = 0, −1 < x < 1,

u(x+ 2) = u(x), v(x+ 2) = v(x), x ∈ R.

(1.1a)

(1.1b)

(1.1c)

Here we assume that ε≪ 1 is asymptotically small, while D = O(1) and A = O(1) with respect to
ε≪ 1. In addition we assume that the fractional orders satisfy

1/4 < s1 < 1, 1/2 < s2 < 1. (1.2)

The fractional Laplacian appearing in (1.1) is defined by

(−∆)sφ(x) = Cs

∫ ∞

−∞

φ(x)− φ(x̄)

|x− x̄|1+2s
dx̄, Cs =

22ssΓ(s+ 2−1)√
πΓ(1− s)

, (1.3)
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where Γ(z) is the Gamma function and which, in light of the periodic boundary conditions in (1.1),
simplifies to

(−∆)sφ(x) = Cs

∫ 1

−1
Ks(x− x̄)(φ(x)− φ(x̄))dx̄,

Ks(z) :=
1

|z|1+2s
+

∞∑
j=1

(
1

|z + 2j|1+2s
+

1

|z + 2j|1−2s

)
.

(1.4a)

(1.4b)

Finally, we remark that an equivalent way to define the fractional Laplacian is in terms of its spectral
decomposition which takes the form

(−∆)sφ =

∞∑
n=1

(nπ)2s
(
cos(nπx)

∫ 1

−1
cos(nπx̄)φ(x̄)dx̄+ sin(nπx)

∫ 1

−1
sin(nπx̄)φ(x̄)dx̄

)
, (1.5)

with this final form being particularly useful when computing the relevant fractional Green’s func-
tion.

The remainder of the paper is organized as follows. First, in §2 we use the method of matched
asymptotic expansions to derive a nonlinear algebraic system (NAS) with which N -spike quasi-
equilibrium solutions can be constructed. Particular attention is paid to the case of symmetric N -
spike solutions for which the NAS can be solved explicitly. We follow this with a detailed asymptotic
analysis of the linear stability of symmetric N -spike solutions. First, linear stability with respect to
the large eigenvalues is considered in §3 by deriving a nonlocal eigenvalue problem (NLEP). This is
followed in §4 by a derivation of a system of ordinary-differential-equations (ODEs) dictating the
slow-dynamics of N -spike solutions. The linearization of this ODE system about the symmetric
N -spike solution configuration then yields the linear stability of these solutions with respect to the
small eigenvalues. In §5 we use the numerical continuation software PyDSTool [2] to construct
bifurcation diagrams. These diagrams illustrate how asymmetric solutions branch from symmetric
solutions at the small eigenvalue stability thresholds. In §6 we briefly outline the calculation of
large and small eigenvalue thresholds for the Gierer-Meinhardt system to illustrate similarities with
the Schnakenberg system. In §7 we briefly outline the numerical method used to simulate the full
system (1.1) to validate the asymptotics and include some plots showing the dynamics of an N -
spike solution for N = 4, 5. Finally, we summarize our results and suggest some directions for future
research in §8.

2. Asymptotic Construction of Quasi-Equilibrium Solutions

The equilibrium problem is
ε2s1(−∆)s1u+ u− u2v = 0, −1 < x < 1,

D(−∆)s2v − 1
2 +

1

ε
Au2v = 0, −1 < x < 1,

u(x+ 2) = u, v(x+ 2) = v(x).

(2.1a)

(2.1b)

(2.1c)

in this section we will use the method of matched asymptotic expansions to construct solutions
to (2.1). Specifically, we will construct N -spike solutions in which u(x) concentrates at N well-
separated points −1 < x1 < · · · < xN < 1 in the sense that

|xi − xj | ≫ ε for all i ̸= j, 2 + x1 − xN ≫ ε. (2.2)

The second condition above ensures x1 and xN are well-separated given that we are considering
periodic boundary conditions.



4 D. GOMEZ, J. WEI, AND Z. YANG

We begin by introducing rescaled variables u(xi + εy) ∼ Ui(y) and v(xi + εy) ∼ Vi(y) to get the
inner problem{

(−∆)s1Ui + Ui − U2
i Vi = 0, −1+xi

ε < y < 1−xi
ε ,

D(−∆)s2Vi − ε2s2
2 + ε2s2−1AU2

i Vi = 0, −1+xi
ε < y < 1−xi

ε ,

(2.3a)

(2.3b)

where Ui → 0 as |y| → ∞ and the far-field behaviour of Vi is determined by the limiting behaviour
of the outer problem as x → xi. Observe that Vi(y) ∼ ξ−1

i + h.o.t where ξi is a constant that
remains to be found and h.o.t denotes higher-order-terms. In terms of the undetermined constant
ξi we write Ui(y) ∼ ξiw(y)+h.o.t where w(y) is the fractional homoclinic satisfying (see Proposition
4.1 in [30])

(−∆)s1w + w − w2 = 0, −∞ < y <∞; w(y) ∼ bs1
|y|1+s1

(1 + o(1)) , |y| → ∞, (2.4)

where bs1 is a constant that must in general be calculated numerically. Note that when s1 = 1/2
we can explicitly calculate w(y) = 2/(1 + y2).

We now consider the outer problem by first making note of the distributional limit

1

ε
u2 −→ ω

N∑
j=1

ξ2j δ(x− xj), ω :=

∫ ∞

−∞
w(y)2dy, (2.5)

in terms of which we find that the outer problem for v is

D(−∆)s2v − 1

2
+Aω

N∑
j=1

ξjδ(x− xj) = 0, x ∈ (−1, 1) \ {x1, ..., xN}. (2.6)

Note that for s1 = 1/2 we have ω = 2π. Furthermore, from the above equation we deduce the
solvability condition

N∑
j=1

ξj =
1

Aω
. (2.7)

Provided the solvability condition is satisfied we obtain the outer solution

v(x) ∼ Aω

D

N∑
j=1

ξjG(x− xj) + χ, x ∈ (−1, 1) \ {x1, ..., xN}, (2.8)

where χ is an undetermined constant and G(x) is the fractional Green’s function satisfying

(−∆)s2G(x)− 1

2
+ δ(x) = 0, −1 < x < 1; G(x+ 2) = G(x);

∫ 1

−1
G(x)dx = 0. (2.9)

Using the spectral definition it is straightforward to calculate

G(x) = −
∞∑
n=1

cosnπx

(nπ)2s2
, (2.10)

which with a little more work can be rewritten as

G(x) = −as2 |x|2s2−1 +R(x), (2.11)

where

as2 := −2s2Γ(−2s2) sin(πs2)

π
. (2.12)
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and R(x) is the regular part given by (A.3) in Appendix A. Evaluating the outer solution (2.8) at
xi and comparing this with the leading order behaviour of Vi(y) as |y| → ∞ yields the matching
condition

ξ−1
i =

Aω

D

N∑
j=1

ξjG(xi − xj) + χ.

Multiplying both sides by ξi, summing over all i = 1, ..., N , and using the solvability condition (2.7),
we can solve for

χ = NAω − (Aω)2D−1
N∑

i,j=1

ξiξjG(xi − xj).

To more succinctly summarize our results we define the N ×N matrix G with entries

Gij := G(xi − xj), i, j = 1, ..., N, (2.13)

as well as the N -dimensional vectors ξξξ, ξξξα, and eeeN respectively given by

ξξξ := (ξ1, ..., ξN )T , ξξξα := (ξα1 , ..., ξ
α
N )T , eeeN = (1, ..., 1)T , (2.14)

where α ∈ R is arbitrary. The following proposition then summarizes the the above asymptotic
construction.

Proposition 2.1. Let w be the fractional homoclinic solution to(2.4), ω :=
∫∞
−∞w2dy, and G(x)

be the fractional Green’s function satisfying (2.9). Given N well-separated points −1 < x1 < ... <
xN < 1 in the sense of (2.2), the equilibrium system (2.1) admits the following asymptotic solution
for ε≪ 1

ue(x) ∼
N∑
j=1

ξjw

(
x− xi
ε

)
, ve(x) ∼

Aω

D

N∑
j=1

ξjG(x− xj) + χ, (2.15a)

where χ = NAω − (Aω)2D−1ξξξTGξξξ and ξξξ is determined by solving the nonlinear-algebraic-system
(NAS)

ξξξ−1 =
Aω

D
Gξξξ + χeeeN . (2.15b)

2.1. Symmetric N-Spike Solutions. Symmetric N -spike solutions are characterized by having
the same spike heights, i.e. for which ξξξ = ξceeeN . From the solvability condition (2.7) it is immediately
clear that in such a case

ξc =
1

NAω
. (2.16)

However, in light of the NAS (2.15b) we see that arbitrary spike configurations −1 < x1 < ... <
xN < 1 will in general not yield such a solution. Indeed, for ξξξ = ξceeeN to solve the (2.15b) we require
that −1 < x1 < ... < xN < 1 be chosen in such a way that eeeN is an eigenvector of G. For the
remainder of the paper, when we refer to symmetric solutions we will be assuming that the spike
configuration is given by

xj = −1 +
2j − 1

N
, j = 1, ..., N. (2.17a)

In this case the matrix G is circulant (see Appendix B) and we can readily calculate

GeeeN = µNeeeN , µN =
N−1∑
k=0

G(2k/N). (2.17b)
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3. Linear Stability of Symmetric N-Spike Solutions: Large Eigenvalues

Singularly perturbed reaction diffusion systems are known to exhibit linear instabilities over
two distinguished timescales and these correspond to large and small eigenvalues of the linearized
system. In this section we consider the linear stability of the quasi-equilibrium solutions from
Proposition 2.1 with respect to the large eigenvalues. We let λ = O(1) and substitute u = ue+ e

λtϕ
and v = ve+e

λtψ into (1.1), retaining only linear terms in ϕ and ψ to obtain the linearized stability
problem ε

2s1(−∆)s1ϕ+ ϕ− 2ueveϕ− u2eψ + λϕ = 0,

D(−∆)s2ψ +
2

ε
Aueveϕ+

1

ε
Au2eψ + ελψ = 0.

(3.1a)

(3.1b)

Let ϕ(xi + εy) ∼ Φi(y) and ψ(xi + εy) ∼ Ψi(y) to deduce the inner problem{
(−∆)s1Φi +Φi − 2wΦi − ξ2i w

2Ψi + λΦi = 0, −1+xi
ε < y < 1−xi

ε ,

D(−∆)s2Ψi + 2ε2s2−1AwΦi + ε2s2−1Aξ2i w
2Ψi + ε2s2+1λΨi = 0, −1+xi

ε < y < 1−xi
ε .

(3.2a)

(3.2b)

We deduce that Ψi is constant to leading order. Moreover, the distributional limits (2.5) and

1

ε
ueveϕ −→

N∑
j=1

∫ ∞

−∞
wΦjdyδ(x− xj),

yield the leading order outer problem

D(−∆)s2ψ +A

N∑
j=1

(
2

∫ ∞

−∞
w(y)Φi(y)dy + ωξ2jΨj

)
δ(x− xj) = 0.

Provided the solvability condition

2

N∑
j=1

∫ ∞

−∞
w(y)Φi(y)dy + ω

N∑
j=1

ξ2jΨj = 0, (3.3)

is satisfied, we thus deduce that

ψ(x) ∼ A

D

N∑
j=1

(
2

∫ ∞

−∞
w(y)Φi(y)dy + ωξ2jΨj

)
G(x− xj) + γ,

where γ is an undetermined constant. The resulting matching condition is then

Ψi =
A

D

N∑
j=1

(
2

∫ ∞

−∞
w(y)Φi(y)dy + ωξ2jΨj

)
G(xi − xj) + γ. (3.4)

Together with the solvability condition (3.3) this can be solved for the unknowns Ψ1, ...,ΨN and γ.
For the purposes of this paper it will suffice to consider the resulting expression only in the case

of symmetric N spike solutions. In such a case we can rewrite (3.3) and (3.4) as
2eeeTN

∫ ∞

−∞
w(y)ΦΦΦ(y)dy + ωξ2ceee

T
NΨΨΨ = 0,(

IN − Aωξ2c
D

G
)
ΨΨΨ =

2A

D
G
∫ ∞

−∞
w(y)ΦΦΦ(y)dy + γeeeN ,

(3.5a)

(3.5b)

where IN is the N×N identity matrix and ΦΦΦ = (Φ1, ...,ΦN )T . Left multiplying the second equation
by eeeTN and using the first equation together with (2.17b) we deduce

γ = − 2

Nωξ2c
eeeTN

∫ ∞

−∞
w(y)ΦΦΦ(y)dy.
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We thus obtain

ΨΨΨ = 2

(
IN − Aωξ2c

D
G
)−1(

A

D
G − 1

ωξ2c
EN

)∫ ∞

−∞
w(y)ΦΦΦ(y)dy, (3.6)

where we define the rank one matrix

EN :=
1

N
eeeeeeTN . (3.7)

Substituting this into (3.2a) we obtain the nonlocal eigenvalue problem (NLEP)

(−∆)s1ΦΦΦ+ΦΦΦ− 2wΦΦΦ− 2B
∫∞
−∞w(y)ΦΦΦ(y)dy∫∞

−∞w(y)2dy
w2 + λΦΦΦ = 0, (3.8a)

where

B =

(
IN − Aωξ2c

D
G
)−1(

Aωξ2c
D

G − EN
)
. (3.8b)

The matrices G and EN appearing in (3.8b) are both circulant so they share the same eigenvectors
and their eigenvalues can be computed explicitly as in Appendix B. Specifically, since G is symmetric
its eigenvalues are real and given by

σk(G) = G(0) +

N−1∑
j=1

G(2j/N) cos(2πjk/N), k = 0, ..., N − 1. (3.9)

On the other hand, it is straightforward to check that σk(EN ) = δk0 for k = 0, ..., N − 1. The
eigenvalues of B can thus be readily computed and are explicitly given by

σk(B) = −δk0 −Aωξ2cD
−1σk(G)

1−Aωξ2cD
−1σk(G)

, k = 0, ..., N − 1. (3.10)

We can thus diagonalize the NLEP system (3.8a) to obtain the scalar NLEPs

(−∆)s1Φk +Φk − 2wΦk − 2σk(B)
∫∞
−∞w(y)Φk(y)dy∫∞

−∞w(y)2dy
w2 + λΦk = 0, k = 0, ..., N − 1, (3.11)

which determine the linear stability with respect to kth-mode perturbations of the form ΦΦΦk = ϕ(y)vvvk
where vvvk is the eigenvector corresponding to σk(B) (see Appendix B). By Theorem 3.2 in [8] we
deduce that the scalar NLEP (3.11) is unstable (i.e. Reλ > 0) if σk(B) > −1/2 and is stable when
σk(B) < −1/2. In particular, we deduce that the symmetric N -spike solution is stable with respect
to kth-mode perturbations provided that

max
k=1,...,N−1

σk(B) < −1

2
, (3.12)

where we have used σ0(B) = −1 to restrict the maximization to k = 1, ..., N − 1. We numerically
find that σk(G) < 0 for all k = 1, ..., N − 1 so that

max
k=1,...,N−1

σk(B) = max
k=1,...,N−1

− Aωξ2cD
−1|σk(G)|

1 +Aωξ2cD
−1|σk(G)|

.

Taking D → ∞ we determine that the symmetric N -spike solution is always linearly unstable,
whereas it is linearly stable provided D > 0 is sufficiently small. In particular, we deduce that the

unique stability threshold D = Dlarge
N is given by

Dlarge
N = min

k=1,...,N−1
Dlarge

N,k , Dlarge
N,k :=

1

N2Aω
|σk(G)|, (3.13)

in terms of which the symmetric N -spike solution is linearly stable with respect to the large eigen-

values provided that D < Dlarge
N . In Figure 1 we plot the large eigenvalue thresholds Dlarge

N,k for
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Figure 1. Large eigenvalue stability thresholds Dlarge
N,k . Note that all plots share a

common y-axis indicated by the left-most figure.

N = 5, 6, 7, 8 versus s2. Note that the rescaled thresholds plotted in this figure are independent
of A and s1 since the s1 dependence arises only through the factor ω. Note that, in contrast to
the s2 = 1 case, the large eigenvalue thresholds for distinct modes appear to merge as s2 → 0.5+.

Finally, in Figure 3a we plot the large eigenvalue thresholds Dlarge
N together with small eigenvalue

thresholds to be further discussed in the next section.

4. Slow Dynamics and the Small Eigenvalues

Spike solutions of a variety of classical singularly perturbed reaction-diffusion systems are known
to exhibit slow dynamics over a long time scale. The same phenomenon likewise holds for the one-
dimensional fractional Gierer-Meinhardt system as described in [8]. In this section we determine the
slow dynamics of spike solutions to (1.1) and by then studying the linear stability of the resulting
ODE system we will determine the eigenvalue problem satisfied by the small eigenvalues. Through-
out this section we assume that the quasi-equilibrium solution is linearly stable with respect to the
large eigenvalues.

We begin by first refining the limiting behaviour of the outer solution (2.15a) as x→ xi. Specif-
ically, using (2.11) we find that

ve(xi + εy) ∼ Aω

D

N∑
j=1

ξjG(xi − xj) + χ− Aωξi
D

as2 |y|2s2−1ε2s2−1 +
εA

D
ωβiy, (4.1)

where βi =
∑

j ̸=i ξjG
′(xi−xj). Now we suppose that xi = xi(t) and consider the higher order inner

expansions u(xi + εy) ∼ ξi + Ui1 and v(xi + εy) ∼ ξ−1
i + Vi1 where Ui1 ≪ 1 and Vi1 ≪ 1 satisfy−ε−1ξi

dxi
dt
w′ + (−∆)s1Ui + Ui − 2wUi1 − ξ2i w

2Vi1 + h.o.t = 0,

D(−∆)s2Vi1 + ε2s2−1Aξiw
2 + h.o.t = 0.

(4.2a)

(4.2b)

Matching the far-field behaviour of Vi1 with (4.1) we find that Vi1 must satisfy

Vi1 ∼ −Aωξi
D

as2 |y|2s2−1ε2s2−1 +
εAω

D
βiy, |y| → ∞.

We write Vi1(y) = εAωD−1βiy+ ε2s2−1Ṽi1 + o(ε), where Ṽi1 is an even function in y and to leading
order is given by

Ṽi1 = −AξiD−1(−∆)−s2w + o(1). (4.3)
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Since (−∆)s2y = 0 we deduce that such a Vi1 does indeed satisfy (4.2b). Moreover by taking Fourier
transforms we find that

(−∆)−s2w = C + as2

∫ ∞

−∞
|y − z|2s2−1w(y)2dy −→ C + as2 |y|2s2−1ω, |y| → ∞,

so that Vi1 also has the desired far-field behaviour. Substituting Vi1 into (4.2a) then gives

−ε−1ξi
dxi
dt
w′ + LUi1 − εξ2iAωD

−1βiyw
2 − ε2s2−1ξ2i w

2Ṽi1 + h.o.t = 0, (4.4)

where the linear operator L is defined by

L ϕ := (−∆)s1ϕ+ ϕ− 2wϕ. (4.5)

Multiplying (4.4) by w′ and integrating then gives

−ξi
ε

dxi
dt

∫ ∞

−∞
|w′|2dy − εξ2iAω

D
βi

∫ ∞

−∞
yw′w2dy + h.o.t = 0,

where we have used the fact that w′ is odd and satisfies Lw′ = 0 to deduce
∫∞
−∞w′LUi1dy =∫∞

−∞ Ui1Lw′dy = 0 and
∫∞
−∞w′Ṽi1dy = 0.

The leading order slow dynamics of the N spike quasi-equilibrium solution (2.15a) are thus
determined by the ODE system

dxxx

dt
= ε2

Aω
∫∞
−∞w3dy

3D
∫∞
−∞ |w′|2dy

ξ1 0
. . .

0 ξN

βββ, (4.6)

where

xxx = (x1, ..., xN )T , βββ = ∇xxxGξξξ, (4.7)

and ∇xxxG is the N ×N matrix with entries

(∇xxxG)ij =

{
0, i = j,

G′(xi − xj), otherwise.
(4.8)

This system of ODEs (4.6) is to be solved together with the NAS (2.15b) and therefore constitutes
a differential algebraic system (DAE). We remark that since G′(z) ≷ 0 for z ≷ 0 the spikes are
mutually repelling. Moreover, an N -spike solution is in equilibrium provided that βi = 0 for all
i = 1, ..., N . From symmetry considerations it is straightforward to see that the symmetric N -spike
solution of §2.1 with (2.17) satisfies these conditions and is therefore in equilibrium.

4.1. Small Eigenvalues for Symmetric N-Spike Solutions. We now consider the linear stabil-
ity of the symmetric N -spike solution from §2.1 with respect to the small eigenvalues. We remind
the reader that by a symmetric solution we mean one for which ξξξ = ξceee

T
N where ξc is given by

(2.16) and where the spike locations are given by (2.17a). The small eigenvalues are determined by
studying the linear stability of the N -spike solution over an O(ε−2) timescale. Specifically, we seek
eigenvalues of the linearization of the slow dynamics (4.6). Since βββ = 0 for an equilibrium solution,
it suffices to calculate the eigenvalues of the N ×N matrix

H := ∇xxx(∇xxxGξξξ) = (∇xxxG)(∇xxxξξξ) + ξcQ,

where ∇xxxG is given by (4.8) while ∇xxxξξξ and Q are the N ×N matrices with entries

(∇xxxξξξ)ij =
∂ξi
∂xj

, Qij =

{∑
l ̸=iG

′′(xi − xl), i = j,

−G′′(xi − xj), otherwise.
(4.9)
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It thus remains to find ∇xxxξξξ for which we turn our attention to the NAS (2.15b). First, by differen-
tiating the solvability condition (2.7) with respect to the spike locations we deduce that eeeT∇xxxξξξ = 0
and hence

∇xxxχeeeN = −2ND−1µNξc(Aω)
2EN∇xxxξξξ = 0,

where we have also used the fact that
∑

j ̸=iG
′(xi − xj) = 0 for all i = 1, ..., N . It is then straight-

forward to differentiate the NAS (2.15b) to deduce that

∇xxxξξξ =
ξ2c
DN

(
IN +

ξc
DN

G
)−1

∇xxxG.

With the above equations we finally conclude that

H =
ξ2c
DN

∇xxxG
(
IN +

ξc
DN

G
)−1

∇xxxG + ξcQ. (4.10)

Note that the matrices G, ∇xxxG, and Q are each circulant so they share the same eigenvectors and
their eigenvalues can be computed explicitly as in Appendix B. Specifically, the eigenvalues of G are
explicitly given by (3.9) whereas those of ∇xxxG and Q are respectively given by

σk(∇xxxG) = i
N−1∑
j=1

G′(2j/N) sin(2πjk/N), k = 0, ..., N − 1,

σk(Q) =

N−1∑
j=1

G′′(2j/N) (1− cos(2πjk/N)) , k = 0, ..., N − 1.

(4.11)

(4.12)

The eigenvalues of H are therefore given by

σk(H) = ξ2c
σk(∇xxxG)2

DN + ξcσk(G)
+ ξcσk(Q), k = 0, ..., N − 1.

Observe that σ0(∇xxxG) = σ0(Q) = 0 so that σ0(H) = 0. This neutrally stable k = 0 mode is a
consequence of the translational invariance of the system (1.1). Recalling our definition of the large

eigenvalue stability thresholds Dlarge
N,k from (3.13) we rewrite the expression for σk(H) as

σk(H) =
1

N3A2ω2

σk(∇xxxG)2

D −Dlarge
N,k

+
1

NAω
σk(Q), k = 1, ..., N − 1,

in which stability with respect to the large eigenvalues implies thatD < Dlarge
N,k for all k = 1, ..., N−1.

Note that by the symmetry properties of the matrices involved in the above definition we have
σk(H) = σN−k(H) so that we need only consider the values k = 1, ..., ⌊N/2⌋ where ⌊z⌋ denotes the
largest integer ≤ z.

We make the following observation regarding the small eigenvalue thresholds. First, since ∇xxxG is
skew-symmetric we deduce from (B.5) that σk(∇xxxG) = 0 when N is even and k = N/2. Otherwise,
we numerically find that σk(∇xxxG)2 < 0. On the other hand, numerical calculations indicate that
σk(Q) < 0 for all k = 1, ..., N − 1 for any N ≥ 2. Thus, if N is even then the k = N/2 small
eigenvalue is always linearly stable. In particular we deduce that for N = 2 we have σ0(H) = 0 and
σ1(H) < 0 so that N = 2-spike solutions are linearly stable with respect to the small eigenvalues
and their overall linear stability is therefore dictated solely by the large eigenvalues.

Turning our attention next to N ≥ 3 we deduce that the N -spike solution is linearly stable with
respect to the kth small eigenvalue provided that D < Dsmall

N,k where

Dsmall
N,k := Dlarge

N,k − 1

N2Aω

σk(∇xxxG)2

σk(Q)
≤ Dlarge

N,k . (4.13)
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Figure 2. Small eigenvalue stability thresholds Dsmall
N,k . Note that all plots share a

common y-axis indicated by the left-most figure.

Note that this equation no longer holds if N is even and k = N/2. Stability with respect to the
small eigenvalues is determined by the minimum of Dsmall

N,k over all k = 1, ..., ⌊N/2⌋ if N is odd

and k = 1, ..., N/2− 1 if N is even. In fact, numerical calculations indicate that these minima are
attained at k = ⌊N/2⌋ for odd N and k = N/2− 1 for even N . Letting

Dsmall
N =

{
Dsmall

N,⌊N/2⌋, N odd,

Dsmall
N,N/2−1, N even,

(4.14)

then we immediately deduce that if N is odd then Dsmall
N < Dlarge

N . On the other hand, numerical

calculations indicate that if N is even then Dlarge
N < Dsmall

N (see Figures 3c and 3b). We therefore
deduce that whereas it is the small eigenvalues that dictate the linear stability of N -spike solutions
when N is odd, it is instead the large eigenvalues that dictate the linear stability when N is

even. Note that for even N the inequality Dsmall
N,k < Dlarge

N,k still holds for all k = 1, ..., N/2 −
1, but in this case all these small eigenvalue thresholds exceed Dlarge

N,N/2. We remark that in the

case s2 = 1 we find that if N is even then Dsmall
N = Dlarge

N , i.e. the small- and large-eigenvalue
thresholds coincide. However, this equality is broken if periodic boundary conditions are replaced
with Neumann boundary conditions in which case the small eigenvalues always dictate the linear
stability [27]. Indeed, apart from periodic boundary conditions, the slow dynamics and linear
stability are known to be affected by interactions with the boundary [27, 11].

We summarize the results from the previous two sections in the following proposition.

Proposition 4.1. Suppose that ε ≪ 1 and let ue and ve be the symmetric N -spike solution in
Proposition 2.1 with spike locations x1, ..., xN given by (2.17a) and a common spike height ξc =
(NAω)−1. Then ue and ve are equilibrium solutions of (1.1) and they are linearly stable with
respect to both the large and small eigenvalues if and only if

D <

{
Dlarge

N = 1
N2Aω

|σN/2(G)|, if N is even,

Dsmall
N = 1

N2Aω

(
|σ(N−1)/2(G)| −

σ(N−1)/2(∇xxxG)2
σ(N−1)/2(Q)

)
, if N is odd.

(4.15)

In Figure 2 we plot the difference Aω(Dsmall
N,k − Dsmall

N ) for N = 5, 6, 7, 8. Note that the small
eigenvalue thresholds differ for different modes for s2 < 1. This is in stark contrast to the classical
s2 = 1 case. Some of the consequences of this behaviour on the existence of asymmetric solutions are
numerically investigated in §5 below. In §6 we observe a similar behaviour for the small eigenvalues
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Figure 3. (A) Small and large eigenvalue stability thresholds Dsmall
N and Dlarge

N
versus s2. (B) Difference between the large and small eigenvalue thresholds for odd
N , and (C) difference between the small and large eigenvalue thresholds for even N .

of the fractional Gierer-Meinhardt system. This behaviour appears to be unique to fractional
reaction-diffusion systems though the reasons for this peculiar behaviour are not presently well
understood. We conclude this section by plotting in Figure 3a both the small and large eigenvalue
thresholds versus s2 for N = 5, 6, 7, 8. As expected we see that for even values of N the small
eigenvalue threshold (just barely) exceeds the large eigenvalue threshold whereas for odd values of
N the opposite is (more pronouncedly) the case.

5. Asymmetric Solutions and the Small Eigenvalues

Classical singularly perturbed reaction diffusion systems like the Schnakenberg and Gierer-Meinhardt
systems are known to exhibit not only symmetric N -spike solutions, but also asymmetric N -spike
solutions [26, 27]. Although the stability of such asymmetric solutions often requires the numerical
computation of eigenvalues of certain matrices, their construction is remarkably tractable. Specifi-
cally, a complete characterization of asymmetric N -spike solutions can be achieved by using a gluing
method in which solutions to the same problem in a domain of variable length are glued together
[26, 27]. However, this method relies crucially on the local nature of the classical Laplacian and is
therefore not applicable in the fractional Laplacian case.

Although we can’t analytically construct asymmetric solutions to the fractional system (1.1) with
the gluing method discussed above, we can obtain such asymmetric solutions using a numerical
continuation starting from the symmetric N -spike solutions considered in §2.1, and the small-
eigenvalue thresholds Dsmall

N,k . Indeed, each of the small eigenvalue thresholds Dsmall
N,k correspond to

bifurcation points from the symmetric N -spike solution to the 2N -dimensional nonlinear system
consisting of the NAS (2.15b) and equilibrium system for the DAE (4.6), i.e.

ξξξ−1 − Aω

D
Gξξξ + χeeeN = 0, ∇xxxGξξξ = 0. (5.1)

Using the numerical continuation sub-package PyCont of PyDSTool [2] we numerically calculate
bifurcation diagrams for the system (5.1) when A = 1, s1 = 0.5 and s2 = 0.7, s2 = 0.9. The resulting
bifurcation diagrams are shown in Figures 4a and 5a for s2 = 0.7 and s2 = 0.9 respectively. In
these diagrams we plot ∥ξξξ∥22 :=

∑N
i=1 ξ

2
i versus D for N = 2, 3, 4, 5-spike solutions. The solid (resp.

dotted) horizontal lines indicate symmetric N -spike solutions that are stable (resp. unstable) with
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Figure 4. (A) Bifurcation diagram for s2 = 0.7 plotting ∥ξξξ∥2 versus D. The
colours indicate the number of spikes in each solution as per the legend. Solid

(resp. dotted) horizontal lines indicate symmetric N spike solutions that are stable
(resp. unstable) with respect to the O(1) eigenvalues. Dashed lines indicate

asymmetric N -spike solutions whose linear stability is undetermined. The insets
provide a close up of the points where asymmetric solutions bifurcate from the
symmetric ones. (B) Plots of the asymptotically calculated equilibrium solution
ue(x) for sample asymmetric N -spike solutions at the labelled ▲ points in (A).

respect to the O(1) eigenvalues. The large eigenvalue threshold for the N = 2 curve appears at a
larger value of D and is not here shown. The dashed curves branching out of the symmetric solution
branches correspond to asymmetric solutions. The insets in both of these figures show a close up
of the regions where asymmetric branches bifurcate from the symmetric ones. In these insets the
circles and square respectively indicate the small and large eigenvalue thresholds. Additionally, in
Figures 4b and 5b we plot the asymptotically calculated equilibrium solution ue(x) when ε = 0.005
at the corresponding triangle markers on bifurcation diagram.

We draw particular attention to the insets at the N = 5 bifurcation points for which we see that
there are two distinct points from which asymmetric solutions bifurcate, with this difference being
more pronounced in the s2 = 0.7 case in Figure 4a as opposed to the s2 = 0.9 case in Figure 5a.
In addition, from the insets around the N = 4 bifurcation point we see that the large eigenvalue
threshold is to the left of the small eigenvalue threshold in contrast to the (odd) values of N = 3
and N = 5. Finally, we remark that numerical simulations of the full system (1.1) (not shown)
starting from the asymmetric N -spike solutions suggest that these solutions are linearly unstable.
This is inline with the theoretical predictions obtained in [27] for the classical two-dimensional
Schnakenberg system in which it was shown that asymmetric solutions always have an unstable
small, O(ε2) eigenvalue. We leave a systematic study of the linear stability of asymmetric solutions
to (1.1) for future work.
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Figure 5. (A) Bifurcation diagram for s2 = 0.9, and (B) accompanying sample
asymmetric solutions. See Figure 4 for further details.

6. Small Eigenvalues for the Fractional Gierer-Meinhardt System

Proceeding as for the Schnakenberg system above, we here briefly consider the linear stability of
multi-spike solutions to the fractional Gierer-Meinhardt system

ut + ε2s1(−∆)s1u+ u− u2v−1 = 0 −1 < x < 1,

τvt +D(−∆)s2v + v − u2 = 0, −1 < x < 1,

u(x+ 2) = u(x), v(x+ 2) = v(x), x ∈ R,

(6.1a)

(6.1b)

(6.1c)

where we assume 1/4 < s1 < 1 and 1/2 < s2 < 1. The existence and linear stability of two-spike
solutions, both symmetric and asymmetric, was previously considered in [8]. Here we summarize
the results of the asymptotic analysis that characterizes the equilibrium solutions and their lin-
ear stability. Specifically, following the method of matched asymptotic expansions we find that
equilibrium solutions take the form

ue(x) ∼ ε−1
N∑
j=1

ξjw

(
x− xj
ε

)
, ve(x) ∼ ε−1ω

N∑
j=1

ξ2jGD(x−j),

where w(y) is the fractional-homoclinic satisfying (2.4), ω =
∫∞
−∞w(y)2dy, and GD(x) is the frac-

tional 2-periodic Green’s function satisfying

D(−∆)s2GD(x) +GD(x) = δ(x), −1 < x < 1; GD(x) = GD(x+ 2), x ∈ R.

A rapidly converging series expansion of this Green’s function can be found in Appendix C of [8].
The values ξξξ = (ξ1, ...., ξN )T are determined by the matching conditions which take the form

ξξξ − ωGDξξξ
2 = 0, (6.2)

where GD is the N ×N matrix with entries (GD)ij = GD(xi − xj).
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The equilibrium positions are determined by the slow dynamics ODE which takes the form

dxxx

dt
= −ε2

∫∞
−∞w2dy

∫∞
−∞w3dy

3
∫∞
−∞ |dw/dy|2dy

ξ
−1
1 0

. . .

0 ξ−1
N

∇xxxGDξξξ
2.

where xxx = (x1, ..., xN )T and ∇xxxGD is the N ×N matrix with entries

(∇xxxGD)ij =

{
0, i = j,

G′
D(xi − xj), otherwise.

As for the Schnakenberg system above, we can construct symmetric N -spike solutions by assuming
x1, ..., xN are distributed according to (2.17a). With this choice of spike locations the matrix
GD is again circulant and we can read off its eigenvalues σ0(GD), ..., σN−1(GD) as in Appendix B.
Substituting ξξξ = ξceee into (6.2) then gives the common spike height ξc = (ωσ0(GD))

−1.
The linear stability of a symmetric N -spike pattern (with τ = 0 to avoid Hopf bifurcations) with

respect to the large eigenvalues is determined by the NLEPs

(−∆)s1Φk +Φk + 2
σk(GD)

σ0(GD)

∫∞
−∞w(y)Φk(y)dy∫∞

−∞w(y)2dy
+ λΦk = 0,

for k = 0, ..., N − 1. By Theorem 3.2 of [8] the eigenvalue in the kth NLEP above will be stable if
and only if

2σk(GD) > σ0(GD).

Thus for k = 0 the NLEP is always linearly stable and we can otherwise determine the large

eigenvalue thresholds Dlarge
k,N by solving 2σk(GD)−σ0(GD) = 0. In particular the symmetric N -spike

solution is linearly stable with respect to the large eigenvalues provided that

D < Dlarge
N = min

k=1,...,N−1
Dlarge

N,k .

Proceeding as in §4.1 we find that the small eigenvalues are, up to a positive and O(ε2) multi-
plicative constant, equal to the eigenvalues of the matrix

H = 2ωξc∇xxxGD (IN − 2ωξcGD)
−1∇xxxGD −QD,

where QD is the N ×N matrix with entries

(QD)ij =

{∑
l ̸=iG

′′(xi − xl), i = j,

−G′′(xi − xj), otherwise.

Since each of the matrices appearing in this expression are circulant they share the same eigenvectors
and after substituting the common spike height ξc we obtain

σk(H) =
2σk(∇xxxGD)

2

σ0(GD)− 2σk(GD)
− σk(QD).

As for the Schnakenberg case we note that σ0(∇xxxGD) = σ0(QD) = 0 so that only the k = 1, ..., N−1
modes need to be considered. We likewise observe that for even N and k = N/2 the corresponding
small eigenvalue is always linearly stable. Otherwise we find the small eigenvalue stability threshold
Dsmall

N,k by numerically solving

2σk(∇xxxGD)
2

σ0(GD)− 2σk(GD)
− σk(QD) = 0.

Our numerical calculations again indicate that the small eigenvalue threshold for different modes
differ as shown in Figure 6a. Interestingly, it appears that the mode with the minimum threshold
value changes as s2 is varied. We likewise numerically calculate the large eigenvalue thresholds and
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Figure 6. Mode-dependent stability thresholds for the Gierer-Meinhardt system:
(A) Small eigenvalue stability thresholds Dsmall

N,k . (B) Large eigenvalue stability

thresholds Dlarge
N,k . Note that all plots share a common y-axis indicated by the

left-most figure.

these are shown in Figure 6b. Next we minimize the thresholds Dsmall
N,k and Dlarge

N,k over all modes to

obtain the small- and large-eigenvalue thresholds which we respectively denote by Dsmall
N and Dlarge

N .
The results of these numerical calculations can be found in Figure 7a. We again observed from our

numerical calculations that Dlarge
N < Dsmall

N for even values of N and the inequality is reversed for
odd N values (see Figures 7b and 7c). In summary, we observe that the linear stability thresholds for
the subcritical Gierer-Meinhardt systems shares many similarities with the Schnakenberg system.

7. Numerical Simulations

To validate the numerically calculated stability thresholds from §3 and §4 we include here a brief
outline of some numerical simulations of the full system (1.1). We use the numerical discretization
and time-stepping algorithms used in [8, 17, 5] where we refer the reader for additional details. In
short we use the finite-difference-quadrature methods in [10] to spatially discretize the fractional
Laplacians in (1.1) and then perform time stepping with a second-order semi-implicit backwards
difference scheme (SBDF-2) bootstrapped with a first-order semi-implicit backwards scheme (SBDF-
1) [23].

We include here numerical simulations performed for s1 = 0.5, s2 = 0.9, A = 0.01, and ε =
0.01. We discretized the domain −1 < x < 1 with 1000 points and used a time step size of
0.0001 in the SBDF-2 scheme, using five steps of SBDF-1 with a step size of 0.00002 to get the
two initial conditions required for SBDF-2. We observed good agreement with the asymptotically
predicted stability thresholds. Mainly, the symmetric N spike solution was seen to be stable for
values of D below the small (resp. large) eigenvalue threshold when N was odd (resp. even), and
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Figure 7. Numerical threshold calculations for the Gierer-Meinhardt system: (A)
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Figure 8. Plots of u(x, t) (in blue with corresponding left axis) and v(x, t) (in
orange with corresponding right axis) obtained from a numerical simulation of
(1.1). In (A) we use D = 1.05Dsmall

5 with the initial condition being a small
perturbation from the asymptotically constructed symmetric 5-spike solution. In

(B) we use D = 1.05Dlarge
4 with the initial condition being a small perturbation

from the asymptotically constructed symmetric 4-spike solution.

unstable otherwise. In Figures 8a and 8b we respectively show the dynamics of a symmetric solution

consisting of N = 5 and N = 4 spikes with D = 1.05Dsmall
5 and D = 1.05Dlarge

4 .
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8. Conclusions

In this paper we have used the method of matched asymptotic expansions to construct symmetric
N -spike solutions to the singularly perturbed fractional Schnakenberg system. In addition we
analysed the linear stability of these symmetric N -spike solutions with respect to both the large
(or O(1)) and small (or O(ε2)) eigenvalues. For the former, we derived in §3 a nonlocal eigenvalue
problem (NLEP) from which the stability of the large eigenvalues could be determined by looking
at the spectrum of some circulant matrices related to the Green’s function satisfying (2.9). On the
other hand, the linear stability with respect to the small eigenvalues was determined by deriving in §4
a system of ODEs for the slow-dynamics and then considering its linearization about the symmetric
N -spike solution. This analysis yielded the interesting result that for N ≥ 5 a symmetric N -spike
solution will have distinct small-eigenvalue stability thresholds for different instability modes. This
is in sharp contrast to the classical case for which the small eigenvalue thresholds are found to
coincide. In §6 we verified that this behaviour also appears in the fractional Gierer-Meinhardt
system, which suggests it may be a common feature for singularly perturbed fractional systems.

In addition to calculating stability thresholds we also performed in §5 a numerical continuation
from symmetric N -spike solutions using the continuation software PyDSTool [2]. This continuation
revealed that for N = 5 there are distinct asymmetric solution branches that bifurcate from different
points along the symmetric N -spike solution branch. Although numerical simulations suggest that
these asymmetric solutions are linearly unstable, a more comprehensive analysis of these solutions
falls outside of the scope of this paper. Some interesting questions for future work in this direction
is to determine whether the fractional order has any bearing on the linear stability of these asym-
metric solutions and in particular whether they can be stabilized. Finally, we comment that the
Green’s function satisfying (2.9) and given by (2.11) was prominently featured throughout both the
construction of equilibrium solutions and analysis of their linear stability. In Appendix A we calcu-
lated the regular part (A.3) with which the resulting expression (2.11) yields a rapidly converging
series expansion. We believe that these quickly convergins series will be of use for further studies
of singularly perturbed fractional systems with other reaction kinetics such as the Gray-Scott and
Brusselator systems.
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Appendix A. A Rapidly Converging Green’s Function

In this appendix we summarize the computation of the rapidly converging series expansion for
the Green’s function appearing in (2.11). We follow closely the methods used in [30, 8] by adding
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and subtracting singular terms from the series expansion and refer to those references for further
details. First we make note of the Fourier series

|x|2 = 1

3
+ 4

∞∑
n=1

(−1)n

(πn)2
cos(πnx),

and

|x|4 = − 7

15
+ 2|x|2 − 48

∞∑
n=1

(−1)n

(πn)4
cos(πnx).

After repeatedly integrating by parts we then obtain the Fourier series

|x|β−1 =
1

β
+ 2(β − 1)Γ(β − 1) cos

(
πβ

2

) ∞∑
n=1

cosπnx

(πn)β
+
β − 1

2

(
|x|2 − 1

3

)
− (β − 1)(β − 2)(β − 3)

24

(
2|x|2 − |x|4 − 7

15

)
+ 2(β − 1) · · · (β − 5)

∞∑
n=1

aβ,n
(πn)β

cos(πnx),

(A.1)

where

aβ,n =

∫ ∞

πn
xβ−6 sinxdx. (A.2)

Substituting β = 2s2 we thus obtain (2.11) where

R(x) = as2

[
1

2s2
− 2s2 − 1

6
+

7

15

(2s2 − 1)(2s2 − 2)(2s2 − 3)

24

+

(
2s2 − 1

2
− (2s2 − 1)(2s2 − 2)(2s2 − 3)

12

)
|x|2

+
(2s2 − 1)(2s2 − 2)(2s2 − 3)

24
|x|4

+ 2(2s2 − 1) · · · (2s2 − 5)
∞∑
n=1

a2s2,n
(πn)2s2

cos(πnx)

]
.

(A.3)

Appendix B. Eigenvalues of Circulant Matrices

The symmetric N -spike configurations with points arranged according to (2.17a) results in several
circulant matrices throughout the paper. An N ×N circulant matrix B has the general form

B =


b0 b1 b2 · · · bN−1

bN−1 b0 b1 · · · bN−2
...

...
...

. . .
...

b1 b2 b3 · · · b0

 . (B.1)

The eigenvectors of such a matrix are given by

vvvk =
(
1, ei

2πk
N , ei

4πk
N , ei

6πk
N , · · · , ei

2(N−1)πk
N

)T
, k = 0, ..., N − 1, (B.2)

which we remark are independent of the entries b0, ..., bN−1. Therefore all circulant matrices share
the same eigenvectors. Moreover the eigenvalues are given by

σk(B) =
N−1∑
j=0

bje
i 2πjk

N , k = 0, ..., N − 1. (B.3)
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If in addition to being circulant the matrix B is also symmetric, then the eigenvalues are real valued
and given by

σk(B) =
N−1∑
j=0

bj cos (2πjk/N) =

{
b0 + 2

∑N/2
j=1 bj cos (2πjk/N) , if N is even,

b0 + 2
∑(N−1)/2

j=1 bj cos (2πjk/N) , if N is odd,
(B.4)

whereas if is skew-symmetric, then the eigenvalues are imaginary and given by

σk(B) = i

N−1∑
j=1

bj sin (2πjk/N) =

{
2i

∑N/2−1
j=1 bj sin (2πjk/N) , if N is even,

2i
∑(N−1)/2

j=1 bj sin (2πjk/N) , if N is odd,
(B.5)

for each k = 0, ..., N −1. Note that when N is even and B is skew symmetric we have σN/2(B) = 0.
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