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Abstract. A linear stability analysis of localized spike solutions to the singularly perturbed two-component Gierer-Meinhardt (GM)
reaction-diffusion (RD) system with a fixed time-delay T in the nonlinear reaction-kinetics is performed. Our analysis of this model is
motivated by the computational study of Seirin Lee et al. (2010) [13] on the effect of gene expression time delays on spatial patterning for both
the GM model and some related RD models. It is shown that the linear stability properties of such localized spike solutions are characterized
by the discrete spectra of certain nonlocal eigenvalue problems (NLEP). Phase diagrams consisting of regions in parameter space where the
steady-state spike solution is linearly stable are determined for various limiting forms of the GM model in both 1-D and 2-D domains. On
the boundary of the region of stability, the spike solution is found to undergo a Hopf bifurcation. For a special range of exponents in the
nonlinearities for the 1-D GM model, and assuming that the time-delay only occurs in the inhibitor kinetics, this Hopf bifurcation boundary
is readily determined analytically. For this special range of exponents, the challenging problem of locating the discrete spectrum of the NLEP
is reduced to the much simpler problem of locating the roots to a simple transcendental equation in the eigenvalue parameter. By using a
hybrid analytical-numerical method, based on a parametrization of the NLEP, it is shown that qualitatively similar phase diagrams occur for
general GM exponent sets and for the more biologically relevant case where the time-delay occurs in both the activator and inhibitor kinetics.
Overall, our results show that there is a critical value T⋆ of the delay for which the spike solution is unconditionally unstable for T > T∗,
and that the parameter region where linear stability is assured is, in general, rather limited. A comparison of the theory with full numerical
results computed from the RD system with delayed reaction-kinetics for a particular parameter set suggests that the Hopf bifurcation can be
subcritical, leading to a global breakdown of a robust spatial patterning mechanism.

1. Introduction. In [20], Alan Turing proposed that localized peaks in the concentration of a chemical substance,

known as a morphogen, could be responsible for the process of morphogenesis, which describes the development of a

complex organism from a single cell. Through the use of a linearized analysis, he showed how stable spatially complex

patterns can develop from small perturbations of spatially homogeneous initial data for a coupled two-component system

of reaction-diffusion (RD) equations. Although there is now a vast literature on the study of Turing pattern formation for

specific RD systems proposed to model various morphogenetic processes (cf. [5] and the references therein), these previous

studies have typically neglected any time-delays in the reaction kinetics owing to the time needed for gene expression.

More specifically, as discussed in [5], there may exist a time-delay between the initiation of protein signal transduction,

due to ligand-receptor binding, and the time at which genes are ultimately produced.

In [5], [13], [14], [15] (see also the survey [17]), the effect of a fixed time-delay in the reaction-kinetics for some Turing

pattern formation systems, modeling various hypothetical sub-cellular gene expression dynamical processes, was studied

computationally and through a Turing-type linear stability analysis on both fixed and slowly growing domains. Each

of the two-component RD models studied in [5], [13], [14], and [15] is characterized by a short-range activation and a

long-range inhibition, with the Gierer-Meihnardt (GM) RD model being one such prototypical system [6]. In [13], a GM

model with a time-delayed reaction-kinetics, modeling a signal transduction process involving reversible binding at the cell

surface, was studied numerically (this is Model I in [13]). This computational study [13] showed that temporal oscillations

in the spatial patterning occur as the time-delay increases, and that these oscillations become large and uncontrolled as

the delay increases further. The main goal of this paper is provide a theoretical framework to predict parameter ranges

where stable spatial patterning exists for this GM model of [13] with delayed reaction-kinetics.

In one spatial dimension, the dimensionless GM RD model [6] allowing for delayed reaction-kinetics (Model I of [13]),

and posed on |x| ≤ 1 with ux(±1, t) = vx(±1, t) = 0, is

vt = ε2vxx − v + vpT /u
q
T , τut = Duxx − u+ ε−1vmT /us

T , (1.1a)
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where uT ≡ u(x, t − T ), vT ≡ v(x, t − T ), 0 < ε2 ≪ 1 is the activator diffusivity, D > 0 is the inhibitor diffusivity, and

τ > 0 is a reaction-time constant. We assume the usual condition (cf. [11]) on the exponents (p, q,m, s) that

p > 1 , q > 0 , m > 1 , s ≥ 0 , ξ ≡ qm

p− 1
− s− 1 > 0 . (1.1b)

In the semi-strong regime where ǫ ≪ 1 and D = O(1), and in the absence of delayed kinetics, there is a large literature

on the stability of localized 1-D spike solutions to the GM model (1.1) (cf. [24], [4], [10], [11], [23], [22], [21]). To analyze

the linear stability of a steady-state spike solution to O(1) time-scale instabilities, the main technical challenge is that

one must rigorously analyze the discrete spectrum of a nonlocal eigenvalue problem (NLEP). Although there are many

rigorous results on the spectrum of the NLEP for various ranges of the exponent set (p, q,m, s) (see the survey [25]), the

theory is still incomplete. More recently, in [19] it was shown that when p = 2m− 3 and m > 2 the study of the spectrum

of the NLEP for the 1-D undelayed GM model (1.1) can be reduced to the analysis of a simple transcendental equation

in the eigenvalue parameter. For this parameter range p = 2m − 3 with m > 2, where we refer to the NLEP as being

“explicitly solvable”, detailed results for the linear stability of 1-D spike solutions are readily obtained. The specific case

p = m = 3 also arises in the study of the stability of hot-spot patterns for a RD model of urban crime (cf. [12]).

Motivated by the previous computational studies (cf. [5], [13], [14], [15]) of spatial patterning for the GM and related

models with delayed reaction-kinetics, the main goal of this paper is to analyze the linear stability of steady-state spike

solutions for (1.1) and its 2-D counterpart when the reaction-kinetics have a time delay T . For various limiting forms

of (1.1), as we discuss below, our main focus is to determine a phase diagram in the τ versus T parameter space where

the spike solution is linearly stable. On the boundary of the region of stability the spike solution undergoes a Hopf

bifurcation. In our analysis, we will consider only O(1) time-scale instabilities associated with unstable spectra of the

associated NLEP, which is obtained by linearizing (1.1) and its 2-D counterpart around a steady-state spike solution. In

the 1-D case, and under the assumption of a delay only in the inhibitor kinetics, we will show that the NLEP stability

analysis becomes highly tractable analytically for the parameter range p = 2m− 3 with m > 2.

From a mathematical viewpoint, most previous studies of the effect of time-delayed reaction-kinetics on RD systems

have focused on characterizing the linear stability of spatially uniform steady-states. In particular, rigorous results

regarding the linear stability of the spatially uniform state for a general class of two-component RD system under time-

delayed reaction-kinetics were established in [2] (see also the references therein). In addition, for a GM model with

saturated and time-delayed reaction-kinetics, it was proved in [1] that the spatially uniform state is globally attractive

when the saturation parameter is sufficiently large. In contrast to these previous studies regarding the spatially uniform

steady-state, to our knowledge there has been no prior analytical studies of the linear stability of spike-type solutions to

singularly perturbed RD systems with delayed reaction-kinetics.

A detailed outline of this paper is as follows. In §2 we study the linear stability of a one-spike solution to (1.1) in the

shadow limit D → ∞ (cf. [22]) under the assumption that the delay occurs only in the inhibitor. In the limit T → ∞ of

large delay, we show in §2.1 that there are branches of spectra for the NLEP in the unstable right-half plane Re(λ) > 0

that tend to origin λ = 0 as T → ∞. For the subrange of exponents p = 2m − 3 with m > 2 for which the NLEP is

explicitly solvable, in §2.2 we give an explicit determination of the Hopf bifurcation boundary in the τ versus T plane that

forms the edge of the region in parameter space where the spike solution is linearly stable. For the corresponding shadow

problem in N -spatial dimensions, and with an arbitrary GM exponent set, in §2.3 we show how to readily compute

the Hopf bifurcation boundary in the τ versus T plane. In particular, in the left panel of Fig. 1.1, we plot the Hopf

bifurcation boundary and the region of linear stability for the 1-D shadow problem for the prototypical GM exponent set
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Fig. 1.1: The stable shaded region in the τ versus T plane for a one-spike solution to the shadow GM problem (2.1) (left panel) and
for the infinite-line problem (3.1) (right panel), with delay only in the inhibitor. The GM exponents are the prototypical
set (p, q,m, s) = (2, 1, 2, 0). In the left and right panels the boundaries of the shaded region are computed from the
parametrization (2.36) and (3.26), respectively.

(p, q,m, s) = (2, 1, 2, 0). We conclude that when T exceeds a threshold the spike solution is always unstable.

In §3 we analyze the linear stability of a one-spike steady-state for the 1-D infinite-line problem for (1.1) assuming that

the delay only occurs in the inhibitor kinetics. For this case we set D = 1 and consider (1.1) on −∞ < x < ∞. For the

parameter range p = 2m−3 with m > 2 where the NLEP is explicitly solvable, in §3.1 we analytically determine the Hopf

bifurcation boundary in the τ versus T plane. For an arbitrary GM exponent set, in §3.2 we formulate and implement

a simple numerical method to readily compute the Hopf bifurcation boundary from a parametrization of the NLEP. For

the prototypical GM exponent set (p, q,m, s) = (2, 1, 2, 0) this boundary and the region of linear stability is shown in

the right panel of Fig. 1.1. In §3.3 we compare theoretical predictions for the region of stability of a one-spike solution

on a finite domain with corresponding full numerical results. Under delayed inhibitor kinetics, we show numerically that

large-scale oscillations of the spike amplitude occur just beyond the Hopf bifurcation boundary.

In §4 we study the linear stability of an M -spot solution, with M ≥ 2, for the GM model with prototypical parameter

set (p, q,m, s) = (2, 1, 2, 0) in a 2-D bounded domain Ω with delayed inhibitor kinetics. In our analysis we consider the

weak-coupling regime of [26] where the inhibitor diffusivity D satisfies D = O(− log ǫ). In the absence of delay, it is

well-known (cf. [26]) that the multi-spot pattern can be destabilized by either a synchronous perturbation of the spot

amplitudes or by M − 1 possible asynchronous perturbations of the spot amplitudes. By using a hybrid analytical-

numerical approach to analyze the corresponding NLEP for either the synchronous or asynchronous modes, we determine

phase diagrams in the three-dimensional parameter space τ , T , and µ = 2πMD0/|Ω|, where the multi-spot pattern is

linearly stable. Here D = D0/ν with ν ≡ −1/ log ǫ and |Ω| is the area of Ω.

In §5 we consider various limiting forms of the 1-D and 2-D GM model where we now assume that the reaction-

kinetics have a time delay in both the activator and the inhibitor. We first formulate a generalized NLEP to encompass

the infinite-line problem, the shadow problem, and the multi-spot problem in 2-D. Although it is intractable analytically

to determine Hopf bifurcation boundaries from this NLEP, we provide a rigorous argument, based on continuity of paths

of spectra, to prove that there is a critical value of the delay T at which a Hopf bifurcation occurs. Our numerical

computations of the Hopf bifurcation boundary for the 1-D problem show that the phase diagram in the τ versus T plane

is qualitatively very similar to the phase diagram that occurs when there is a time-delay only in the inhibitor kinetics.

Finally, in §6 we briefly summarize our main results and suggest a few open problems for further investigation.
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2. Delay Effects: The Limiting Shadow Problem. In this section, we will analyze the shadow limit D → +∞
for the GM model (1.1). In the limit D → ∞, (1.1) reduces to the so-called shadow problem for v(x, t) and u(t) (cf. [10])

vt = ε2vxx − v + vpT /u
q
T , −1 < x < 1 , vx(±1, t) = 0 ; τut = −u+

1

2ε

∫ 1

−1

vmT
us
T

dx . (2.1)

For ε → 0, a one-spike steady-state solution ve, ue for (2.1), with spike centered at x = 0, is given for p > 1 by (cf. [10])

ve ∼ Uγ
e w (x/ε) ; Ue ∼

(

1

2

∫ ∞

−∞
wm dy

)−1/ξ

, w =

(

p+ 1

2

)1/(p−1)(

sech

(

(p− 1)

2
y

))2/(p−1)

, (2.2)

where γ ≡ q/(p− 1), and w(y) is the unique positive homoclinic solution to

w′′ − w + wp = 0 , −∞ < y < ∞ ; w → 0 as |y| → ∞ ; w′(0) = 0 , w(0) > 0 . (2.3)

To study the stability of this steady-state solution we linearize (2.1) about (2.2) by introducing v = ve + eλtΦ(x/ε),

and u = ue + eλtη. After a short calculation, similar to that done in [10] and [22], but now accounting for the effect of

delayed reaction-kinetics, we obtain the nonlocal eigenvalue problem (NLEP) for Φ(y), with Φ → 0 as |y| → ∞, given by

LTΦ− mqe−2λT

1 + τλ+ se−λT
wp

∫∞
−∞ wm−1Φ dy
∫∞
−∞ wm dy

= λΦ , −∞ < y < ∞ ; LTΦ ≡ Φ′′ − Φ+ pwp−1e−λTΦ . (2.4)

For the simpler case where the delayed reaction-kinetics in (2.1) only arises in the inhibitor u and not in the activator

v, so that vT = v in (2.1), the NLEP (2.4) is replaced by

L0Φ− mqe−λT

1 + τλ+ se−λT
wp

∫∞
−∞ wm−1Φ dy
∫∞
−∞ wm dy

= λΦ , −∞ < y < ∞ ; L0Φ ≡ Φ′′ − Φ+ pwp−1Φ . (2.5)

2.1. Inhibitor Delay: The Spectrum Near the Origin with Large Delay. For the NLEP (2.5) we now

determine the spectrum near λ = 0 in the limit of large delay T ≫ 1. We first write (2.5) as

L0Φ− χsw
p

∫∞
−∞ wm−1Φ dy
∫∞
−∞ wm dy

= λΦ , −∞ < y < ∞ ; χs ≡
mqµ

1 + τλ+ sµ
, µ ≡ e−λT . (2.6)

We let T → ∞ and look for eigenvalues near the origin with λ = O(T−1). As a result of the identity L0w = (p− 1)wp, we

obtain from (2.6) that λ = 0 when χs = (p− 1). Upon writing λ = c/T ≪ 1, so that µ = e−c, the condition χs = (p− 1)

determines c. In this way, we obtain the leading-order estimate for T ≫ 1 that

λ ∼ c/T , c ≡ ln(1 + ξ) + 2nπi , (2.7)

where n = 0,±1,±2, . . ., and ξ > 0 is defined in (1.1b) in terms of the GM exponents (p, q,m, s). Therefore, for a fixed

large value of the delay, there are many eigenvalues near the origin in the unstable right half-plane Re(λ) > 0.

To determine a more refined approximation for the eigenvalues of (2.6) near λ = 0, we substitute the expansion

Φ = w +Φ1/T + · · · , λ = c/T + c1/T
2 + · · · , (2.8)

into (2.6), expand χs = (p− 1) + χs1/T + . . ., and collect terms of order O(T−1). This readily yields that

L0Φ1 ≡ L0Φ1 − (p− 1)wp

∫∞
−∞ wm−1Φ1 dy
∫∞
−∞ wm dy

= χs1w
p + cw ; χs1 ≡ −(p− 1)

(

c1 + τc

1 + se−c

)

. (2.9)
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Since L0w = 0, the corresponding homogeneous adjoint problem

L⋆
0Ψ1 ≡ L0Ψ1 − (p− 1)wm−1

∫∞
−∞ wpΨ1 dy
∫∞
−∞ wm dy

= 0 , (2.10)

has a nontrivial solution Ψ1 = Ψ⋆
1. As such, the solvability condition for (2.9) is that χs1

∫∞
−∞ Ψ⋆

1w
p dy = −c

∫∞
−∞ Ψ⋆

1w dy.

Upon using (2.9) for χs1, the expression above can be solved for c1 as

c1 = −τc+ c
(s+ 1 + ξ)

(1 + ξ)(p− 1)

I1
Ip

, where In ≡
∫ ∞

−∞
Ψ⋆

1w
n dy . (2.11)

To calculate the integral ratio I1/Ip in (2.11) we use the readily-derived identity L−1
0 w = w/(p− 1) + yw′/2. We

multiply (2.10) by L−1
0 w and integrate by parts, using the decay of w as y → ±∞, to obtain

∫ ∞

−∞

(

L−1
0 w

)

(L0Ψ
⋆
1) dy = I1 =

(p− 1)Ip
∫∞
−∞ wm dy

∫ ∞

−∞
wm−1

(

L−1
0 w

)

dy .

Then, upon using our expression for L−1
0 w, we obtain that

I1
Ip

=
(p− 1)

∫∞
−∞ wm dy

∫ ∞

−∞

(

wm

p− 1
+

1

2
ywm−1w′

)

dy = 1 +
(p− 1)

2m

∫∞
−∞ y (wm)

′
dy

∫∞
−∞ wm dy

.

Finally, upon integrating by parts, we get I1/Ip = 1 − (p− 1)/(2m), which determines c1 from (2.11). From (2.8), this

yields a two-term expansion for λ in the limit of large delay T ≫ 1,

λ ∼ c

T

(

1 +
f

T
+ · · ·

)

, f = −τ +
mq

(p− 1)2(1 + ξ)

(

1− (p− 1)

2m

)

; c ≡ ln(1 + ξ) + 2nπi . (2.12)

For m = 2 and 1 < p ≤ 5, and with no delay T = 0, we recall from Theorem 2.3 of [22] that there is a unique critical

Hopf bifurcation value τ = τ0H > 0 for which (2.5) has a complex conjugate pair of eigenvalues λ = ±iλ0
IH with λ0

IH > 0,

with Re(λ) > 0 for τ > τ0H and Re(λ) < 0 for τ < τ0H . Since (2.12) shows that there are eigenvalues in Re(λ) > 0 for large

delay T ≫ 1, this suggests that there should be a sequence of Hopf bifurcations at some critical values of the delay T for

any τ < τ0H . This issue is explored in detail below for a special subrange of the GM exponents.

2.2. Inhibitor Delay Effects: An Explicitly Solvable NLEP. We now show that under certain conditions on

the exponents m and p the determination of the point spectrum of (2.5) in the right half-plane Re(λ) > 0 can be reduced

to the study of a rather simple transcendental equation in λ. As such, for this subrange of exponents the effect of delayed

inhibitor reaction-kinetics is readily analyzed. We first recall some properties of the local eigenvalue problem L0φl = νφl

on R for φl ∈ H1(R). From [16], this problem admits the eigenvalues ν0 > 0 and ν1 = 0, where ν0 is simple, and the

corresponding eigenfunction φl0 has one sign. Furthermore, from Proposition 5.6 of [4], when p ≥ 3 there are no discrete

eigenvalues for L0 in the interval (−1, 0). The continuous spectrum for L0 is the segment λ < −1 with λ real.

As shown in Lemma 2.3 of [19], when p = 2m− 3 and m > 2, we have the key identity that

L0

(

wm−1
)

= (m2 − 2m)(wm−1) . (2.13)

We now use this identity to characterize the unstable point spectrum of the NLEP (2.5) for a particular parameter range.

Lemma 2.1. Consider the NLEP (2.5) when p = 2m − 3 and m > 2, corresponding to eigenfunctions for which
∫∞
−∞ wm−1Φ dy 6= 0. Then, any unstable eigenvalues in Re(λ) > 0 for (2.5) must satisfy the transcendental equation

λ = (m2 − 2m)− m

2
χs , χs ≡

mqµ

1 + τλ+ sµ
, µ ≡ e−λT . (2.14)

The remaining eigenfunctions Φ, for which
∫∞
−∞ wm−1Φ dy = 0, are simply the eigenfunctions of L0 corresponding to the

zero eigenvalue and any negative real eigenvalues.
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Proof. We use Green’s identity on wm−1 and Φ, together with the far-field decay for Φ and w as |y| → ∞, to get
∫∞
−∞

(

wm−1L0Φ− ΦL0w
m−1

)

dy = 0. Then, substituting L0Φ from (2.5) and L0w
m−1 = (m2 − 2m)wm−1, we get

(
∫ ∞

−∞
wm−1Φ dy

)

(

λ− (m2 − 2m) + χs

∫∞
−∞ w3m−4 dy
∫∞
−∞ wm dy

)

= 0 .

For eigenfunctions for which
∫∞
−∞ wm−1Φ dy 6= 0, the first factor is non-vanishing, and we conclude

λ = m2 − 2m− χs

∫∞
−∞ w3m−4 dy
∫∞
−∞ wm dy

. (2.15)

To calculate the integral ratio in (2.15), we multiply w′′ − w + w2m−3 = 0 by wm−1 and we multiply the identity

L0w
m−1 = (m2 − 2m)wm−1 by w. We subtract the resulting two expressions and integrate over −∞ < y < ∞. Upon

using w → 0 as |y| → ∞ we obtain that (2m− 4)
∫∞
−∞ w3m−4 dy = (m2 − 2m)

∫∞
−∞ wm dy. Therefore, the integral ratio in

(2.15) is
∫∞
−∞ w3m−4 dy =

(

∫∞
−∞ wm dy

)

(m/2), which yields (2.14).

Next, consider the eigenfunctions for which
∫∞
−∞ wm−1Φ dy = 0. From (2.13), together with the facts that wm−1 is

the unique and one-signed principal eigenfunction of L0, and that any eigenfunctions of the self-adjoint operator L0 must

be orthogonal, it follows that these other eigenfunctions must belong to the set of eigenfunctions of L0 corresponding to

the zero eigenvalue and any negative real eigenvalues of L0.

We now study the roots of (2.14) in Re(λ) ≥ 0, after first writing (2.14) as

(1 + τλ)eλT = −s+
m2q

2 (β − λ)
, β ≡ m2 − 2m. (2.16)

With no delay, so that T = 0, (2.16) reduces to the quadratic equation

λ2 −
(

β − (1 + s)

τ

)

λ+
βξ

τ
= 0 , ξ ≡ mq

2m− 4
− (s+ 1) . (2.17)

Since p = 2m− 3, the condition (1.1b) on the GM exponents yields ξ > 0. From (2.17) we conclude that there is a unique

Hopf bifurcation value τ = τ0H , with λ = iλ0
IH , for which Re(λ) < 0 if τ < τ0H and Re(λ) > 0 if τ > τ0H , given by

τ0H =
(1 + s)

β
, λ0

IH =
β
√
ξ√

1 + s
. (2.18)

Next, we show that if 0 < s < 1, there is a minimal positive value of the delay T for which (2.16) has a purely

imaginary complex conjugate pair of roots when τ = 0. To show this, we set τ = 0 and λ = iλIH in (2.16). Upon

separating the real and imaginary parts of the resulting expression we obtain

cos (λIHT ) = −s+
m2qβ

2(β2 + λ2
IH)

, sin (λIHT ) =
m2qλIH

2(β2 + λ2
IH)

. (2.19)

We square both sides of this expression and add, and after introducing ξ = m2q/(2β)− (s+ 1), we derive that

∣

∣

∣
− s+

m2q

2(β − iλIH)

∣

∣

∣

2

=
1

β2 + λ2
IH

(

(

m2q

2

)2

−m2qβs

)

+ s2 =
β2 (ξ + 1)

2
+ s2λ2

IH

β2 + λ2
IH

= 1 . (2.20)

Since ξ > 0, and assuming that 0 < s < 1, we obtain that λIH = λf
IH , where

λf
IH ≡ β√

1− s2

[

(ξ + 1)
2 − 1

]1/2

, where β = m2 − 2m, ξ ≡ mq

2m− 4
− (1 + s) . (2.21)
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Then, to determine the minimum critical value of the delay T , we substitute (2.21) into (2.19), to obtain

sin
(

λf
IHT

)

=
m2q

2β
(1− s2)1/2

[

(ξ + 1)2 − 1
]1/2

(ξ + 1)2 − s2
.

We then use m2q/(2β) = ξ + (s+ 1) in this expression, to obtain that T = T f, where

T f ≡ 1

λf
IH

sin−1

(

(1− s2)1/2
[

(ξ + 1)2 − 1
]1/2

(ξ + 1)− s

)

. (2.22)

Therefore, if 0 < s < 1, we conclude that there is a Hopf bifurcation value T f of T even when τ = 0. We remark that

further Hopf bifurcations occur at the larger values of the delay T f
n = T f +2πn/λIH for n ≥ 1, where n is an integer. For

the exponent set (p, q,m, s) = (3, 2, 3, 0), for which β = 3 and ξ = 2, we get from (2.21) and (2.22) that

λf
IH = 6

√
2 , T f =

1

6
√
2
sin−1

(

2
√
2

3

)

≈ 0.145 . (2.23)

Next, we seek a parametrization in the τ versus T plane, corresponding to the minimal value of T for which a Hopf

bifurcation occurs. To do so, we write (2.16) in the form

eλT =
1

1 + τλ

(

−s+
m2q

2 (β − λ)

)

. (2.24)

We let λ = iλIH with λIH = ω0β, and set the modulus of (2.24) to unity. Upon using (2.20), we get

τ2β2ω2
0 + 1 =

(ξ + 1)2 + s2ω2
0

ω2
0 + 1

.

Upon solving for τ , and then taking the imaginary part of (2.24), we obtain the following parameteric description, in

terms of ω0, of the curve in the τ versus T plane where the minimal Hopf bifurcation occurs:

τ =
1

βω0

√

(ξ + 1)2 − 1 + (s2 − 1)ω2
0

1 + ω2
0

, T =
1

ω0β
sin−1

(

ω0

[

(1 + ξ + s)− τβ(1 + ξ − sω2
0)
]

(ξ + 1)2 + ω2
0s

2

)

, (2.25)

where β = m2 − 2m. The corresponding eigenvalue is λ = iω0β. For 0 < s < 1, we require that
√

ξ/(s+ 1) < ω0 <
√

[(ξ + 1)2 − 1] /(1− s2), where the lower limit for ω0 corresponds to T = 0, and the upper limit is where τ = 0.

Alternatively, for s ≥ 1, we need only that ω0 > (ξ/(s+ 1))
1/2

in (2.25), and so on the Hopf bifurcation boundary we

must have τ > 0. By taking the limit ω0 → +∞ in (2.25), and recalling that λIH = βω0, we derive for τ → 0+ that

T ∼ τ√
s2 − 1

sin−1

(√
s2 − 1

s

)

, λIH ∼
√
s2 − 1

τ
, s > 1 , (2.26a)

T ∼
(

1 +

√

ξ + 2

ξ

)

τ , λIH ∼
√

β

τ

(

ξ2 + 2ξ
)1/4

, s = 1 . (2.26b)

We remark that the limiting expression (2.26a) is not uniformly valid as s → 1+.

We now illustrate our results. For the special case (p, q,m, s) = (3, 2, 3, 0), for which ξ = 2 and β = 3, (2.25) becomes

τ =
1

3ω0

√

8− ω2
0

1 + ω2
0

, T =
1

3ω0
sin−1

(ω0

3
(1− 3τ)

)

. (2.27)

For this parameter set, the stability boundary (2.27) is shown in the left panel of Fig. 2.1. For the qualitatively different

case where (p, q,m, s) = (3, 2, 3, 1), for which s = 1, there is no longer any Hopf bifurcation value of T > 0 when τ = 0.
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Fig. 2.1: The stable shaded region in the τ versus T plane for a one-spike solution to the shadow problem, with delay only in the
inhibitor, as governed by the NLEP (2.5). Left: The exponent set (p, q,m, s) = (3, 2, 3, 0). The boundary of the shaded
region is given by (2.27). Right: (p, q,m, s) = (3, 2, 3, 1). The boundary of the shaded region is given by (2.25). Since
s = 1, we do not have a Hopf bifurcation at some T > 0 when τ = 0. The dashed line is the limiting approximation given
in (2.26b), valid for τ → 0+, which agrees closely with the numerically computed Hopf bifurcation boundary.

For ω0 ≫ 1, we have from (2.26b) that the stability boundary satisfies τ → 0 and T → 0 as ω0 → ∞. A plot of the

stability boundary in the τ versus T plane, as computed from (2.25), is shown in the right panel of Fig. 2.1 together with

the limiting approximation given in (2.26b), which is valid for τ → 0+. This limiting approximation is seen to provide a

very accurate determination of the lower stability boundary.

In the left panel of Fig. 2.2 we show the other Hopf bifurcations that occur for the larger values of T given by

Tn = T + 2πn/(3ω0) for n ≥ 1, with n an integer, where T is given by (2.27). In the left panel of Fig. 2.2, we also show

the curve in the τ versus T plane where real roots of (2.16) first occur. We further remark that the large T asymptotics

of (2.16), as obtained by substituting λ = c/T + c1/T
2 + · · · into (2.16), agrees with the general result (2.12) when

p = 2m− 3. For the special case where (p, q,m, s) = (3, 2, 3, 0), (2.12) reduces to

λ ∼ c

T

(

1 +
1

T

(

1

3
− τ

)

+ · · ·
)

, c = ln 3 + 2nπi , n = 0,±1,±2, . . . . (2.28)

In the right panel of Fig. 2.2, this two-term expansion for large T is favorably compared with corresponding results,

computed numerically from (2.16), for τ = 0.2 and (p, q,m, s) = (3, 2, 3, 0).

In summary, these results show that a time-delay in the inhibitor concentration destabilizes the spike solution for

the shadow problem in the sense that there exists a critical value Tmin of T for which the spike is unstable for all τ ≥ 0

when T > Tmin. Although we have only given an analysis of this for GM exponent sets where the NLEP is explicitly

solvable, the numerical computations shown in Fig. 1.1 for the standard exponent set (p, q,m, s) = (2, 1, 2, 0) reveals a

similar behavior. In the next section, we show how the Hopf bifurcation boundary is readily computed numerically for

arbitrary GM exponents sets for the 1-D or 2-D shadow problem.

2.3. Inhibitor Delay: The Shadow Problem in 2-D. Next, we consider the following shadow problem in an

N -dimensional bounded domain Ω, where N = 1, 2, assuming only a delayed reaction-kinetics in the inhibitor:

vt = ε2∆v − v + vp/uq
T , x ∈ Ω , ∂nv = 0 , x ∈ ∂Ω ; τut = −u+

1

|Ω|

∫

Ω

vm

us
T

dx , (2.29)

where |Ω| denotes the measure of Ω. A one-spike steady-state solution to (2.29) is given by (cf. [24], [10], [22])

ve ∼ Uγ
e w
[

ε−1|x− x0|
]

, Ue ∼
(

1

|Ω|

∫

R2

[w (|y|)]m dy

)−1/ξ

, (2.30)
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Fig. 2.2: The shadow problem (2.16) for the exponent set (p, q,m, s) = (3, 2, 3, 0), with delay only in the inhibitor, characterized
by the NLEP (2.5). Left: Hopf bifurcation curves (dashed curves) in the τ versus T plane for which additional complex
conjugate pairs, indexed by n, enter the region Re(λ) > 0. The thick line indicates when eigenvalues for (2.5) first appear
as a double root on the positive real axis. Right panel: Paths of unstable eigenvalues versus T when τ = 0.2. The heavy
solid curve is the path associated with the primary Hopf bifurcation on the interval T ∈ [T0, T

′] where T0 ≈ 0.578 is the
smallest Hopf bifurcation value of the delay, and T ′ ≈ 0.9292 is the delay where a real eigenvalue appears. On the interval
T ∈ [T ′, 10] (dashed horizontal line) there are two real positive eigenvalues, with one tending to the origin as T increases
(corresponding to n = 0 in (2.28)). The dashed-dotted and faint dotted curves are eigenvalue paths that emerge in the
right half-plane through additional Hopf bifurcation points occurring at T1 ≈ 1.2792, and T2 ≈ 2.4420. The black dots
near the origin are the two-term asymptotic result (2.28), valid for large delay, evaluated at T = 10 for n = 0, 1, 2.

for some x0 ∈ Ω, where γ = q/(p− 1) and ξ is defined in (1.1b). Here y = ε−1(x − x0), where w(ρ) with ρ = |y| is the

unique radially symmetric ground-state solution to the following BVP, in which ∆ρw ≡ w′′ + (N − 1)w′/ρ:

∆ρw − w + wp = 0 , 0 < ρ < ∞ ; w(0) > 0 , w′(0) = 0 ; w → 0 as ρ → ∞ . (2.31)

By proceeding similarly as in [22], but now allowing for delayed inhibitor kinetics, the NLEP governing the stability

of the steady-state solution (2.30) is

L0Φ− χsw
p

∫∞
0

ρN−1wm−1Φ dρ
∫∞
0

ρN−1wm dρ
= λΦ , 0 < ρ < ∞ ; χs(λ) ≡

mqe−λT

1 + τλ+ se−λT
, (2.32)

where Φ = Φ(ρ) → 0 as ρ = |y| → ∞, and L0Φ = ∆ρΦ − Φ + pwp−1Φ. It is readily shown (cf. [22]) that any unstable

eigenvalue of (2.30) must be a root of g(λ) = 0, where

g(λ) =
1

χs(λ)
−F(λ) ; F(λ) ≡

∫∞
0

ρN−1wm−1
[

(L0 − λ)−1wp
]

dρ
∫∞
0

ρN−1wm dρ
. (2.33)

We now seek a parametrization of the Hopf bifurcation boundary for (2.29) in the τ versus T plane. We let λ = iλIH

and set g(iλIH) = 0 in (2.33) to obtain

eiλIHT =
mqF(iλIH)− s

1 + iτλIH
, where F(iλIH) = FR(λIH) + iFI(λIH) . (2.34a)

By separating F(iλIH) into real and imaginary parts we get

FR(λIH) ≡
∫∞
0

ρN−1wm−1L0

[

L2
0 + λ2

IH

]−1
wp dρ

∫∞
0

ρN−1wm dρ
, FI(λIH) ≡ λIH

∫∞
0

ρN−1wm−1
[

L2
0 + λ2

IH

]−1
wp dρ

∫∞
0

ρN−1wm dρ
. (2.34b)
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By taking the modulus of both sides of (2.34a), and labeling FR ≡ FR(λIH) and FI ≡ FI(λIH), we obtain that

τ2λ2
IH = Ns(λIH) ≡ (mqFR − s)

2
+ (mqFI)

2 − 1 . (2.35)

On the range of λIH for which Ns(λIH) > 0, we can solve for τ , and then take the imaginary part of (2.34a) to obtain

the following parametric representation of the Hopf bifurcation boundary in the τ versus T plane:

τ ≡ 1

λIH

√

Ns(λIH) , T ≡ 1

λIH
sin−1

(−mqτλIHFR + sτλIH +mqFI

1 +Ns(λIH)

)

. (2.36)

From this formulation it is easy to prove that when s < 1, that there is a Hopf bifurcation value T f even when τ = 0.

To prove this we need only show that there is a root λIH = λf
IH to Ns(λIH) = 0. From [22] we have FR(0) = 1/(p− 1),

FI(0) = 0, together with FR(λI) = O(λ−2
IH) and FI(λI) = O(λ−1

IH) as λIH → ∞. In this way, since

Ns(0) = (ξ + 1)
2 − 1 > 0 , lim

λIH→∞
Ns(λIH) = s2 − 1 < 0 , (2.37a)

it follows that Ns(λIH) = 0 for some λIH = λf
IH > 0. Then, by using (2.36) for T , the Hopf bifurcation value is

T f =
1

λIH
sin−1 (mqFI(λIH)) . (2.37b)

This establishes for our general shadow problem that whenever s < 1 there must be a Hopf bifurcation value of the delay

when τ = 0 for any GM exponent set satisfying (1.1b) in either 1-D or 2-D.

We remark that if we take p = 2m− 3 for the 1-D problem where N = 1, for which the NLEP is explicitly solvable,

we can readily calculate that F(λ) = m/[2(β − λ)] where β = m2 − 2m. For this special case, a simple calculation shows

that the parametrization (2.36) reduces to (2.25), while (2.37b) agrees with (2.22).

We now use the parametrization (2.36) to calculate Hopf bifurcation curves in the τ versus T plane for a few GM

exponent sets. To compute FR(λIH) and FI(λIH) numerically we adopt the simple numerical procedure of [22] after first

computing the ground-state solution w. With this numerical procedure, the Hopf bifurcation curve for the 1-D shadow

problem for the prototypical GM exponent (p, q,m, s) = (2, 1, 2, 0) is shown in Fig. 1.1. In the left panel of Fig. 2.3 we

plot the Hopf bifurcation curve in the τ versus T parameter plane for the 2-D shadow problem for the parameter set

(p, q,m, s) = (3, 2, 3, 0), which was previously considered for the 1-D case in Fig. 2.1. With no delay, i.e. T = 0, there is a

unique Hopf bifurcation value when τ ≈ 0.182, with corresponding eigenvalue λ ≈ 7.56i. In the right panel of Fig. 2.3 we

plot a similar Hopf bifurcation boundary when (p, q,m, s) = (3, 2, 3, 1) for the 2-D shadow problem. In this latter case,

where s = 1, we have T → 0 as τ → 0+, as was observed previously in Fig. 2.2 for the 1-D shadow problem.

Next, we analyze the spectrum of the NLEP (2.32) for large delay T . Since the identity L0w = (p− 1)wp still holds

in 2-D, we can proceed similarly as in (2.8)–(2.12) to determine the spectrum of the NLEP (2.32) for the 2-D shadow

problem near the origin in the limit T ≫ 1 of large delay. We set N = 2 and readily derive that

λ ∼ c

T

(

1 +
f

T
+ · · ·

)

, f ≡ −τ +
mq

(p− 1)2(ξ + 1)

I1
Ip

, In ≡
∫ ∞

0

ρwnΨ⋆
1 dρ , (2.38)

where c = ln(1 + ξ) + 2nπi, with n = 0,±1,±2, . . .. Here Ψ⋆
1(ρ) is the nontrivial solution of the adjoint problem

L⋆
0Ψ1 ≡ L0Ψ1 − (p− 1)wm−1

∫∞
0

wpΨ⋆
1ρ dρ

∫∞
0

wmρ dρ
= 0 ; Ψ⋆

1 → 0 , as ρ → ∞ . (2.39)

To calculate the integral ratio I1/Ip in (2.38) we use the identity L−1
0 w = w/(p− 1)+ρw′/2 (cf. [22]), where w(ρ) satisfies

(2.31). We multiply (2.39) by L−1
0 w and integrate by parts, using the decay of w as ρ → ±∞, to obtain

I1
Ip

=
(p− 1)

∫∞
0

wmρ dρ

∫ ∞

0

ρwm−1
(

L−1
0 w

)

dρ =
(p− 1)

∫∞
0

wmρ dρ

[

1

p− 1

∫ ∞

0

wmρ dρ+
1

2m

∫ ∞

0

ρ2 (wm)
′
dρ

]

.
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Fig. 2.3: Left: the stability region (shaded) in the τ versus T plane of the 2D shadow problem (2.29) with delayed inhibitor
kinetics for the parameter set (p, q,m, s) = (3, 2, 3, 0). Right: the corresponding stability region for the parameter set
(p, q,m, s) = (3, 2, 3, 1), where the Hopf bifurcation boundary satisfies τ → 0 as T → 0.

Upon integrating the last expression by parts we get I1/Ip = 1 − (p− 1)/m. By combining this relation with (2.38), we

obtain the following two-term expression for the eigenvalues near the origin in the limit T ≫ 1 of large delay:

λ ∼ c

T

(

1 +
f

T
+ · · ·

)

, f = −τ +
mq

(p− 1)2(ξ + 1)

(

1− (p− 1)

m

)

. (2.40)

Here c = ln(1 + ξ) + 2nπi, with n = 0,±1,±2, . . .. Apart from a factor of 2, this expression is identical to that derived in

(2.12) for the 1-D problem, and shows that many eigenvalues cluster near the origin in the limit of large delay.

3. Delay Effects: An Explicitly Solvable NLEP Problem on the Infinite Line. In this section we analyze

the stability of a one-spike solution to the following non-dimensionalized GM system with delayed reaction-kinetics:

vt = ε2vxx − v + vpT /u
q
T , τut = uxx − u+ ǫ−1vmT /us

T , −∞ < x < ∞ , t > 0 , (3.1)

where uT ≡ u(x, t− T ) and vT = v(x, t− T ), under the condition (1.1b) on the GM exponents (p, q,m, s). Since we are

considering the infinite-line problem, without loss of generality we have specified a unit inhibitor diffusivity.

In [11] a one-spike steady-state solution to (3.1) was constructed for ε → 0. The result is summarized as follows:

Principal Result 3.1. For ε → 0, a one-spike steady-state solution to (3.1), labeled by ve(x) and ue(x), is given by

ve(x) ∼ Uγ
0 w
(

ε−1x
)

; ue(x) ∼ U0
G0(x)

G0(0)
; U0 =

(

1

2

∫ ∞

−∞
wm dy

)−1/ξ

, (3.2)

where w(y) is the homoclinic satisfying (2.3), and where the Green’s function G0(x) = e−|x|/2 in (3.2) satisfies G0xx−G0 =

−δ(x) with G0 → 0 as |x| → ∞. Here ξ is defined in (1.1b).

Next, we linearize (3.1) around the steady-state solution by introducing v = ve+ eλtφ and u = ue+ eλtη where φ ≪ 1

and η ≪ 1 in (3.1). This yields a singularly perturbed eigenvalue problem for φ(x) and η(x) given by

ε2φxx − φ+
pvp−1

e

uq
e

e−λTφ− qvpe

uq+1
e

e−λT η = λφ , −∞ < x < ∞ , (3.3a)

ηxx − (1 + τλ) η = −mε−1 v
m−1
e

us
e

e−λTφ+ sε−1 vme
us+1
e

e−λT η , −∞ < x < ∞ . (3.3b)

In the limit ε → 0, (3.3) can be reduced to a nonlocal eigenvalue problem (NLEP). Since a similar calculation was done

in [11] for the case of no delay, we only briefly highlight the analysis here.
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Since ve is concentrated near x = 0, we look for a localized eigenfunction for φ(x) in the form φ = Φ
(

ε−1x
)

. Upon

using ve ∼ Uγ
0 w and ue ∼ U0 near x = 0 from (3.2), where γ = q/(p− 1), we obtain from (3.3a) that Φ(y) satisfies

LTΦ− qU
γp−(q+1)
0 e−λTwpη(0) = λΦ , −∞ < y < ∞ ; LTΦ ≡ Φ′′ − Φ+ pwp−1e−λTΦ . (3.4)

To derive the NLEP for Φ(y), we must determine η(0) from (3.3b). Since veφ is concentrated only near x = 0, we

calculate for ǫ → 0 in the sense of distributions that

mε−1 v
m−1
e

us
e

e−λTφ → mU
γ(m−1)−s
0 e−λT

(
∫ ∞

−∞
wm−1Φ dy

)

δ(x) ,

sε−1 vme
us+1
e

e−λT η → sU
γm−(s+1)
0 e−λT η(0)

(
∫ ∞

−∞
wm dy

)

δ(x) .

Therefore, by using these relations in (3.3b), together with (3.2) for U0, we obtain in the outer region |x| ≫ O(ǫ) that

ηxx − (1 + τλ) η = −mU
γ(m−1)−s
0 e−λT

(
∫ ∞

−∞
wm−1Φ dy

)

δ(x) + 2se−λT η(0) δ(x) , (3.5)

with η → 0 as |x| → ∞. To solve (3.5), we introduce the eigenvalue-dependent Green’s function Gλ(x) satisfying

Gλxx − (1 + τλ)Gλ = −δ(x) , −∞ < x < ∞ ; Gλ → 0 as |x| → ∞ . (3.6)

The solution to (3.6) is simply Gλ(x) = e−2
√
1+τλ|x|/

[

2
√
1 + τλ

]

, where we must choose the principal branch of
√
1 + τλ

to ensure that Gλ → 0 as |x| → ∞ for any λ with Re(λ) > 0.

We represent the solution to (3.5) in terms of Gλ, and in so doing we determine η(0) as

η(0) =
(m

2

) U
γ(m−1)−s
0 e−λT

√
1 + τλ+ se−λT

∫ ∞

−∞
wm−1Φ dy . (3.7)

Upon substituting (3.7) into (3.4), we obtain the following NLEP for the case where both the activator and inhibitor have

delayed reaction-kinetics:

LTΦ− mqe−2λT

√
1 + τλ+ se−λT

wp

∫∞
−∞ wm−1Φ dy
∫∞
−∞ wm dy

= λΦ , −∞ < y < ∞ , (3.8)

where Φ → 0 as |y| → ∞. For the simpler case where the delayed reaction-kinetics in (3.1) only arises in the inhibitor u

and not in the activator v, so that vT = v in (3.1), the NLEP (3.8) is replaced by

L0Φ− mqe−λT

√
1 + τλ+ se−λT

wp

∫∞
−∞ wm−1Φ dy
∫∞
−∞ wm dy

= λΦ , −∞ < y < ∞ ; L0Φ ≡ Φ′′ − Φ+ pwp−1Φ . (3.9)

3.1. Inhibitor Delay Effects: An Explicitly Solvable NLEP. In this subsection we analyze the spectrum of

the NLEP (3.9) for the explicitly solvable case where p = 2m − 3 and m > 2. By using Lemma 2.1 we obtain that any

discrete eigenvalue of the NLEP (3.9) must be a root of

√
1 + τλ eλT = −s+

m2q

2(β − λ)
, β = m2 − 2m. (3.10)

For the case of no delay, where T = 0, it was shown in Principal Result 3.8 of [19] that there is a unique Hopf

bifurcation value τ0H , with corresponding eigenvalue λ = iλ0
IH , given by

τ0H =
(m2q)2

2ζ2

(

β − 2s

m2q

)

, λ0
IH =

√

ζ − β2 , (3.11a)
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where ζ > β2 is the smallest root of the quadratic

4(s2 − 1)ζ2 −
[

(m2q)2 + 4βs(m2q)
]

ζ + 2β2(m2q)2 = 0 . (3.11b)

For the exponent set (p, q,m, s) = (3, 2, 3, 1), we have τ0H = 2.5 and λ0
IH = 3/

√
5 ≈ 1.34. For (p, q,m, s) = (3, 2, 3, 0) we

have τ0H = [13 + 3
√
17]/12 ≈ 2.114 and λ0

IH ≈ 3
√

3
√
17− 11/

√
2 ≈ 2.482.

First, we determine whether there is a Hopf bifurcation value of T even when τ = 0. By setting τ = 0 in (3.10) we

obtain the same problem considered in §2.2 for the shadow problem. Therefore, for s < 1 the Hopf bifurcation value T f

is given in (2.22) while the eigenvalue λf
IH is given in (2.21). For s ≥ 1, there is no Hopf bifurcation when τ = 0.

Next, we seek a parametrization of the Hopf bifurcation boundary in the τ versus T plane parameterized by λ = iλIH ,

where λIH ≡ βω0. We first calculate that

√

1 + iτλIH = B+ + iB− , B± ≡
√

α± 1

2
, α ≡

√

1 + τ2λ2
IH . (3.12)

Next, we isolate eiλIHT in (3.10) and take the modulus of the resulting expression. By using (2.20), we obtain that

α =
∣

∣

∣
− s+

m2q

2(β − iλIH)

∣

∣

∣

2

=
(ξ + 1)

2
+ s2ω2

0

1 + ω2
0

. (3.13)

Since α2 = 1 + τ2β2ω2
0 , we can solve for τ = τ(ω0) to obtain

τ =

√
α2 − 1

βω0
, α =

(ξ + 1)2 + s2ω2
0

1 + ω2
0

. (3.14)

Next, to determine T = T (ω0) we separate eiλIHT into real and imaginary parts after calculating that

eiλIHT =
(B+ − iB−)

B2
+ +B2

−

(

−s+
m2qβ

2(β2 + λ2
IH)

+
im2qλIH

2(β2 + λ2
IH)

)

. (3.15)

By using m2q/(2β) = ξ + s+ 1, B2
+ +B2

− = α, and writing λIH = βω0, we derive from (3.15) that

T =
1

βω0
sin−1

[

B+ω0(ξ + s+ 1) +B−(sω2
0 − ξ − 1)

α(1 + ω2
0)

]

, (3.16)

where α is given in (3.14) and B± are defined in (3.12). In this way, (3.14) and (3.16) yields the Hopf bifurcation curve

in the τ versus T plane, parameterized by ω0. For s < 1, the range of ω0 is λ0
IH/β < ω0 < λf

IH/β, where λ0
IH and λf

IH

are the Hopf eigenvalues for the limiting cases T = 0 and τ = 0, as given in (3.11) and (2.21), respectively.

Alternatively, for s ≥ 1, we need only that ω0 > λ0
IH/β. By letting ω0 → ∞ in (3.14) and (3.16) it is easy to show

that the Hopf bifurcation boundary tends to the origin (T, τ) = (0, 0) as ω0 → ∞. In analogy with (2.26) we get

T ∼ τ√
s4 − 1

sin−1

(√
s2 − 1√
2s

)

, λIH ∼
√
s4 − 1

τ
, s > 1 , (3.17a)

T ∼
(

1 +

√

2ξ + 4

ξ

)

τ

2
, λIH ∼

√

β

τ

(

2ξ2 + 4ξ
)1/4

, s = 1 . (3.17b)

We remark that the limiting expression (3.17a) is not uniformly valid as s → 1+.

We now illustrate our result for the GM exponent set (p, q,m, s) = (3, 2, 3, 0). We obtain from (3.14) and (3.16) that

τ =
1

3ω0

(

81

(1 + ω2
0)

2
− 1

)1/2

, λIH = ω0/3 , for

√

3
√
17− 11/

√
2 ≤ ω0 ≤ 2

√
2 , (3.18a)

T =
1

3ω0
tan−1

(

ω0B+/B− − 1

B+/B− + ω0

)

,
B+

B−
=

√

10 + ω2
0

8− ω2
0

. (3.18b)
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In this way, in the left panel of Fig. 3.1 we plot the Hopf bifurcation boundary in the τ versus T plane. Alternatively, for

the exponent set (p, q,m, s) = (3, 2, 3, 1), for which s = 1, there is no longer any Hopf bifurcation value of T > 0 when

τ = 0. For this case, a plot of the stability boundary in the τ versus T plane, as computed from (3.14) and (3.16) is shown

in the right panel of Fig. 3.1, together with the limiting approximation given in (3.17b), which is valid for τ → 0+.
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Fig. 3.1: The stable shaded region in the τ versus T plane for a one-spike solution to the infinite-line problem (3.1), with delay

only in the inhibitor, as governed by the NLEP (3.9). Left: the exponent set (p, q,m, s) = (3, 2, 3, 0). The boundary of
the shaded region is given in (3.18). Right: (p, q,m, s) = (3, 2, 3, 1). The boundary of the shaded region is given by (3.14)
and (3.16). The dashed line is the limiting approximation (3.17b) valid for τ → 0.

For the exponent set (p, q,m, s) = (3, 2, 3, 0) in the left panel of Fig. 3.2 we plot the other Hopf bifurcations that occur

for the larger values of T given by Tn = T + 2πn/(3ω0) for n ≥ 1, with n an integer, where T is given in (3.18), together

with the curve where real roots of (3.10) first occur. Additionally, we can fix a value of τ and calculate the path of the

eigenvalues as T ranges from its first Hopf bifurcation point T0 to some large value of T . Setting τ = 1 in (3.10), and by

computing the roots of (3.10) numerically, in the right panel of Fig. 3.2 we plot the path of some of the eigenvalues in the

unstable half-plane Re(λ) > 0 as T increases. The eigenvalue path for the primary Hopf bifurcation hits the real axis at

T ≈ 0.8239, with one eigenvalue tending to the origin while the other tending to λ = β = 3 as T increases. In the right

panel of Fig. 3.2 other eigenvalue branches are shown, and these branches tend to the origin as T increases.

To characterize this behavior observed in Fig. 3.2, we first analyze the roots of (3.10) on the positive real axis. For

simplicity we will consider only the case s = 0. We write (3.10) as

√
1 + τλ = K(λ) ≡ m2q

2(β − λ)
e−λT , β = m2 − 2m. (3.19)

We first observe that
√
1 + τλ is a monotone increasing concave function of λ. For the right-hand side of (3.19) we

calculate that K(0) = 1 + ξ > 1 and K(λ) → +∞ as λβ−. Moreover, after a little algebra, we calculate that

K′(λ) =
m2q

2(β − λ)2
e−λT [1− (β − λ)T ] , K′′(λ) =

β(ξ + 1)

(β − λ)3
e−λT

[

(T (β − 1)− 1)
2
+ 1
]

> 0 . (3.20)

Therefore, K′′(λ) > 0 on 0 < λ < β and K′(λ) = 0 at λmin = β (1− 1/T ) < β. As such, we conclude that (3.19) has

exactly two real roots on 0 < λ < β whenever T is large enough so that Kmin = K(λmin) < 1. To determine the precise

value of T for which a double real root of (3.19) occurs we simply require that (3.19) holds together with the tangency

condition τ(1 + τλ)−1/2/2 = K′(λ). As τ is varied for the exponent set (p, q,m, s) = (3, 2, 3, 0) the double root value for

T is shown by the heavy solid curve in the left panel of Fig. 3.2.

Next, we follow the procedure in §2.1 to determine the spectrum near the origin for the NLEP (3.9) in the limit of

large delay T . The determination of the limiting asymptotics follows precisely that given in (2.7)–(2.12) except that we
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Fig. 3.2: The infinite-line problem (3.1) for the exponent set (p, q,m, s) = (3, 2, 3, 0), with delay only in the inhibitor, characterized
by the NLEP (3.9). Left: Hopf bifurcation curves (dashed curves) are shown corresponding to where additional complex
conjugate pairs, indexed by n, enter the region Re(λ) > 0. The thick line corresponds to when eigenvalues for (3.1) first
appear as a double root on the positive real axis. Right: Eigenvalue paths for τ = 1. The description of this plot is
identical to that in the caption of Fig. 2.2. The heavy solid curve is the eigenvalue path associated with the primary Hopf
bifurcation on the interval T ∈ [T0, T

′], where T0 ≈ 0.0626 is the primary Hopf bifurcation point and T ′ ≈ 0.8239 is where
the first real eigenvalue appears. For T > T ′ one eigenvalue tends to the origin, whereas the other eigenvalue tends to
λ = β = 3 as T increases. In addition, T1 ≈ 1.8186 and T2 ≈ 3.5746 are where additional Hopf bifurcations occur.

must replace τ by τ/2 since
√
1 + τλ ≈ 1 + τλ/2 + · · · for λ ≪ 1. In this way, in place of (2.12) we obtain that

λ ∼ c0
T

(

1 +
f

T
+ · · ·

)

, f = −τ

2
+

mq

(p− 1)2(1 + ξ)

(

1− (p− 1)

2m

)

, (3.21)

where c0 ≡ ln(1+ ξ)+2nπi with n = 0, 1, 2, . . .. For the exponent set (p, q,m, s) = (3, 2, 3, 0) of Fig. 3.2, (3.21) reduces to

λ ∼ [ln 3 + 2nπi]

T

(

1 +
1

T

[

1

3
− τ

2

]

++ · · ·
)

. (3.22)

Therefore, branches of eigenvalues tend to the origin as T increases, as seen in the right panel of Fig. 3.2.

3.2. Inhibitor Delay: The Infinite-Line Problem for Arbitrary GM Exponent Sets. In this subsection we

use the NLEP (3.9) to compute the Hopf bifurcation boundary in the τ versus T plane for a one-spike solution to the

1-D infinite-line problem (3.1) for an arbitrary exponent set (p, q,m, s) satisfying (1.1b). In analogy with (2.34), and with

w(y) defined by (2.3) and L0Φ ≡ Φ′′ − Φ+ pwp−1Φ, the discrete eigenvalues of the NLEP (3.9) must be the roots of

1

mq

[

eλT
√
1 + τλ+ s

]

= F(λ) , where F(λ) ≡
∫∞
−∞ wm−1

[

(L0 − λ)−1wp
]

dy
∫∞
−∞ wm dρ

. (3.23)

To determine the Hopf bifurcation boundaries we set λ = iλIH in (3.23) and separate real and imaginary parts to get

eiλIHT =
(B+ − iB−)

B2
+ +B2

−
(−s+mqFR + imqFI) , (3.24)

where F(iλIH) = FR(λIH) + iFI(λIH), and
√
1 + iτλIH = B+ + iB−, where B± are defined in (3.12). We have

FR(λIH) ≡
∫∞
−∞ wm−1L0

[

L2
0 + λ2

IH

]−1
wp dy

∫∞
−∞ wm dy

, FI(λIH) ≡
λIH

∫∞
−∞ wm−1

[

L2
0 + λ2

IH

]−1
wp dy

∫∞
−∞ wm dy

. (3.25)

By taking the modulus of both sides of (3.24) we obtain that

τ2λ2
IH = Ni(λIH) ≡

[

(mqFR − s)
2
+ (mqFI)

2
]2

− 1 ,
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provided that Ni(λIH) > 0. Then, by taking the imaginary part of (3.24), restricted to the range of λIH for which

Ni(λIH) > 0, we obtain the following parametric representation of the Hopf bifurcation boundary in the τ versus T plane:

τ ≡ 1

λIH

√

Ni(λIH) , T ≡ 1

λIH
sin−1

(

mqB+FI +B−(s−mqFR)
√

1 +Ni(λIH)

)

. (3.26)

When s < 1, we can readily prove, as was done for the shadow problem studied in §2.3, that there is a Hopf bifurcation

value of T when τ = 0. To prove this we use FR(0) = 1/(p− 1) and FI(0) = 0, together with FR(λI) = O(λ−2
IH) and

FI(λI) = O(λ−1
IH) as λIH → ∞ (cf. [22]). This yields that Ni(0) = (ξ + 1)4 − 1 > 0 and Ni → s4 − 1 < 0 as λIH → ∞.

Therefore, there is a root λIH = λf
IH to Ni(λIH) = 0. Then, by using (3.26) for T , the Hopf bifurcation value of the

delay is the same as given in (2.37b). Therefore, we conclude for the 1-D infinite-line problem that whenever s < 1 there

must be a Hopf bifurcation value of the delay when τ = 0 for any GM exponent set satisfying (1.1b).

In the right panel of Fig. 1.1 we use the parametrization (3.26) to calculate the Hopf bifurcation curve in the τ

versus T plane for the infinite-line problem for the prototypical GM exponent set (p, q,m, s) = (2, 1, 2, 0). The numerical

procedure to compute FR(λIH) and FI(λIH) are as described in §2.3.
Finally, we remark that we can determine the spectrum of the NLEP (2.32) near the origin for large delay T . We

readily derive, in analogy with (2.12) for the 1-D shadow problem, that

λ ∼ c0
T

(

1 +
f

T
+ · · ·

)

, f = −τ

2
+

mq

(p− 1)2(ξ + 1)

(

1− (p− 1)

2m

)

. (3.27)

Here c0 = ln(1 + ξ) + 2nπi, with n = 0,±1,±2, . . .. This expression is identical to that derived in (2.12) for the 1-D

shadow problem apart from the factor of 1/2 in τ .

3.3. Comparison with Full Numerics. In order to compare our stability theory with results from full-scale

numerical computations, we consider the GM model for the exponent set (p, q,m, s) = (3, 2, 3, 0) with delayed inhibitor

kinetics on the finite domain |x| ≤ L, formulated as

vt = ε2vxx − v + v3/u2
T , τut = uxx − u+ ε−1v3 ; ux(±L, t) = vx(±L, t) = 0 , (3.28)

where uT ≡ u(x, t− T ). The steady-state one-spike solution for (3.28) is given in Principal Result 3.1 with m = 3, γ = 1,

and where the Green’s function G0(x) satisfies G0xx −G0 = −δ(x) in |x| ≤ L with G0x(±L) = 0.
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Fig. 3.3: The stability regions in the τ versus T plane for a one-spike solution to the finite-line problem (3.28) with GM exponent
set (3, 2, 3, 0), with delay only in the inhibitor, on a domain of length 2L with L = 1, 2. The result for the infinite line
problem is also shown. The boundary of the shaded regions are computed using (3.29).
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To analyze the linear stability of the one-spike steady-state on an O(1) time-scale we proceed as for the infinite-line

problem, noting that the NLEP with this exponent set is explicitly solvable. We readily derive that the eigenvalues of the

NLEP satisfy the transcendental equation

λ = 3− 9
e−λT

√
1 + τλ

(

tanh θ(0)

tanh θ(λ)

)

, θ(λ) ≡ L
√
1 + τλ√
D

. (3.29)

If we let L → ∞ in (3.29) we recover (3.19) with m = 3 and q = 2. By setting λ = iω0 in (3.29), and equating the real and

imaginary parts of (3.29) to zero, we obtain a parameterization of the stability boundary in the τ versus T plane where

a Hopf bifurcation occurs. This numerically computed boundary is shown in Fig. 3.3 for L = 1, L = 2, and L = ∞.

Next, we compare results from the stability diagram Fig. 3.3 with full numerical results computed from (3.28). To

numerically solve (3.28), we used a method of lines approach that approximated the spatial derivatives in (3.28) with

centered differences and used the dde23 solver of Matlab to solve the system of delay (ordinary) differential equations

(DDEs). To generate a more precise initial condition than the asymptotic one-spike steady-state solution of Principal

Result 3.1 we used this asymptotic spike profile as an initial guess for the Matlab bvp4c solver. This numerically computed

steady-state was used as the initial functions on the interval t ∈ [−T, 0). The computations shown in Fig. 3.4 for the spike

amplitude v(0, t) versus t used 151 spatial meshpoints for both u and v, and the parameter set ǫ = 0.05, L = 2, time

delay T = 0.05, and the GM exponent set (p, q,m, s) = (3, 2, 3, 0). With this parameter set, the phase diagram Fig. 3.3

predicts a Hopf bifurcation when τ = τH ≈ 1.23, and that the spike is linearly stable only when τ < τH . In the left panel

of Fig. 3.4 where τ = 1.0, we observe that the oscillation amplitude slowly decreases in time, whereas from the right panel

of Fig. 3.4, where τ = 1.3, we observe uncontrolled temporal oscillations of the spike amplitude, suggesting that the Hopf

bifurcation is in fact subcritical. Although, as a result of of prohibitive computational expense of solving large systems

of delay differential equations, we were unable to resolve the Hopf bifurcation threshold more precisely by increasing the

number of spatial meshpoints, the results in Fig. 3.4 are entirely consistent with our linear stability predictions.
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Fig. 3.4: Full numerical results for the spike amplitude v(0, t) versus t for (3.28) with ǫ = 0.05, L = 2, T = 0.05, and (p, q,m, s) =
(3, 2, 3, 0). Left panel: τ = 1.0, showing slowly decaying oscillations. Right panel: τ = 1.3 showing large-scale uncontrolled
oscillations beyond the Hopf bifurcation value τH ≈ 1.23.

4. Delay Effects for an N-Spot Pattern in a Finite 2-D Domain. In this section, we determine stability

thresholds for an M -spot pattern for the GM model, with M > 1, for the prototypical exponent set (p, q,m, s) = (2, 1, 2, 0)

with delayed inhibitor kinetics in a bounded 2-D domain Ω. This problem is formulated as

vt = ε2∆v − v +
v2

uT
, x ∈ Ω ; τut = D∆u− u+

1

ε2
v2 , x ∈ Ω ; ∂nu = ∂nv = 0 , x ∈ ∂Ω . (4.1)
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A localized spot pattern is one for which the steady-state solution for v concentrates at a discrete set of points xj ∈ Ω,

for j = 1, . . . ,M , as ǫ → 0. In [26], the linear stability properties of such patterns were analyzed in the weak coupling

regime where D = O(ν−1) where ν = −1/ ln ǫ. Here we extend this analysis to allow for the effect of delayed inhibitor

kinetics. By setting D = D0/ν in (4.1), we can readily extend the analysis of [26] to show that, with a delayed inhibitor

kinetics, the linear stability of an N -spot solution is determined by the spectrum of the following NLEP:

L0Φ− χw2

∫∞
0

ρwΦ dρ
∫∞
0

ρw2 dρ
= λΦ , Φ → 0 as ρ → ∞ ; L0Φ ≡ ∆ρΦ− Φ+ 2wΦ , (4.2a)

where ∆ρ ≡ ∂ρρΦ + ρ−1∂ρΦ is the radially symmetric part of the Laplacian, and w(ρ) > 0 is the ground-state solution

obtained by setting p = 2 in (2.31). In (4.2a), there are two possible choices for the multiplier χ, corresponding to either

synchronous or asynchronous perturbations near each localized spot, denoted by χs and χa, respectively (cf. [26]):

χa ≡ 2e−λT

1 + µ
, χs ≡ χa

(

1 +
µ

1 + τλ

)

, µ ≡ 2πMD0

|Ω| , D =
D0

ν
, ν = − 1

ln ε
, (4.2b)

where |Ω| is the area of Ω. With either choice of the multiplier, the discrete eigenvalues of the NLEP are roots of

1

χ(λ)
= F(λ) ; F(λ) ≡

∫∞
0

ρw
[

(L0 − λ)−1w2
]

dρ
∫∞
0

ρN−1w2 dρ
. (4.3)

The following lemma will be used to determine the behavior of the eigenvalues of (4.2) in the large delay limit T ≫ 1:

Lemma 4.1. Consider the NLEP

L0Φ− χ̃(λ)e−λTw2

∫∞
0

ρwΦ dρ
∫∞
0

ρw2 dρ
= λΦ , (4.4)

with Φ → 0 as ρ → ∞, where χ̃(λ) has asymptotics χ̃(λ) ∼ χ̃0 + λχ̃1 + · · · as λ → 0. Then, for T ≫ 1, the eigenvalues

of (4.4) near the origin have the limiting asymptotics

λ ∼ c0
T

+
c0
T 2

[

χ̃1

χ̃0
+

1

2

]

+ · · · ; c0 = ln(χ0) + 2nπi , n = 0,±1,±2, . . . . (4.5)

Proof. To establish this result, we proceed in a similar way as done in (2.8)–(2.12). We set λT = c with T ≫ 1, and use

χ̃ ∼ χ̃0 + (c/T ) χ̃1 + · · · , and expand c = c0 + c1/T + · · · . From (4.4) we derive that

L0Φ− e−c0

(

χ̃0 +
1

T
(c0χ̃1 − c1χ̃0) + · · ·

)

w2

∫∞
0

ρwΦ dρ
∫∞
0

ρw2 dρ
=

c0
T
Φ+ · · · . (4.6)

Then, we use the identity L0w = w2 and expand Φ = w + (1/T ) Φ1 + · · · . This yields that e−c0 χ̃0 = 1, and that

L0Φ1 − w2

∫∞
0

ρwΦ1 dρ
∫∞
0

ρw2 dρ
= w2

(

c0χ̃1

χ̃0
− c1

)

+ c0w . (4.7)

By imposing the solvability condition for (4.7), as done in (2.39), we calculate c1 = c0 (χ̃1/χ̃0 + 1/2). This yields (4.5).

4.1. The Competition or Asynchronous Modes. We first examine (4.2) with χ = χa. With no delay, i.e. T = 0,

the rigorous results of [26] prove that Re(λ) < 0 if and only if µ < 1, i.e. if and only if the number of spots satisfies

M < |Ω|/(2πD0). Moreover, there is a unique unstable real positive eigenvalue for any µ > 1.

To consider the effect of delay, we set χ = χa in (4.3), and let λ = iλIH with λIH > 0. Upon separating (4.3) into

real and imaginary parts, we readily derive that at a Hopf bifurcation λIH must be a root of

(µ+ 1)2

4
= M(λIH) ≡ [FR(λIH)]

2
+ [FI(λIH)]

2
, (4.8a)
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Fig. 4.1: Left panel: the Hopf bifurcation boundary and the region of linear stability in the T versus µ plane for the asynchronous
mode for an M -spot pattern of (4.1) in the regime D = O(ν−1). Right panel: plot of M(λIH) = |F(iλIH)|2 versus λIH ,
which establishes that there is a Hopf bifurcation value of the delay whenever 0 < µ < 1, where µ = 2πMD0/|Ω|.

where FR(λIH) and FI(λIH) are obtained by setting N = 2 and p = m = 2 in (2.34b). Since FR(0) = 1, FI(0) = 0,

while FR → 0 and FI → 0 as λIH → ∞, the intermediate value theorem yields that there is a root to (4.8a) whenever

0 < µ < 1. As proved in §2 of [22] we have FR(λIH) > 0 and FR(λIH) > 0 for all λIH > 0. Moreover, from the right

panel of Fig. 4.1, where we plot the numerically computed M(λIH) versus λIH , we observe that M(λIH) is monotone

decreasing and satisfies 0 < M(λIH) < 1. Thus, there is no root to (4.8a), and hence no Hopf bifurcation, when µ > 1.

In contrast, for any µ in 0 < µ < 1, there is a unique root to (4.8a), and the corresponding minimum value of the delay is

T =
1

λIH
tan−1

( FI(λIH)

FR(λIH)

)

. (4.8b)

A plot of (4.8b) versus µ on 0 < µ < 1, together with the shaded region where the spot pattern is linearly stable, is shown

in the left panel of Fig. 4.1. As a remark, since FI(λIH) ∼ λIH/2 as λIH → 0 and FR(0) = 1 (cf. [22]), we predict from

(4.8b) that T ∼ 1/2 as µ → 1−. This limiting value is indeed confirmed from the left panel of Fig. 4.1.

Next, we use (4.5) of Lemma 4.1 with χ̃0 = 2/(1 + µ) and χ̃1 = 0 to establish, for large delay T , that the eigenvalues

near the origin have the limiting asymptotics

λ ∼ c0
T

[

1 +
1

2T

]

, as T → +∞ ; c0 = − ln

(

1 + µ

2

)

+ 2nπi . (4.9)

We conclude that when µ > 1, where no Hopf bifurcation value of T occurs, we have Re(c0) < 0 and so as T → ∞
the eigenvalues approach the origin from the stable left-half plane Re(λ) < 0. In contrast, when 0 < µ < 1, we have

Re(c0) > 0, and so as T → ∞ the eigenvalues approach the origin from the unstable half-plane Re(λ) > 0. We note that

the eigenvalue with n = 0 is real and tends to the origin as T → +∞.

Finally, we determine the behavior of the eigenvalues on the positive real axis. For λ > 0 real, we write (4.3) as

(1 + µ)

2
eλT = F(λ) , (4.10)

where F(λ) is defined in (4.3). As proved in [22] we have that F(0) = 1, F ′(λ) > 0 on 0 < λ < σ0, where σ0 ≈ 1.648 is

the principal eigenvalue of L0. Moreover, it was shown in [22] that F ′(λ) > 0 on 0 < λ < σ0. We further note that the

left-hand side of (4.10) begins at (1 + µ)/2, and is monotone increasing convex function in λ for T > 0. As such, when

0 < µ < 1, there are two real roots to (4.10) on the interval 0 < λ < σ0 when T is large enough. As T → ∞, one of these

roots tends to the origin λ = 0. This root corresponds to the limiting asymptotics result (4.9) with n = 0 and T ≫ 1. In

contrast, when µ > 1, there is a unique root to (4.10) on 0 < λ < σ0 for any T > 0. This root tends to σ0 as T → +∞.
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4.2. The Synchronous Mode. Next, we study (4.2) with χ = χs. From (4.3), the eigenvalues of the NLEP satisfy

eλT

2
(1 + µ)

(

1 + τλ

µ+ 1 + τλ

)

= F(λ) , (4.11)

where F(λ) is defined in (4.3). To determine the Hopf bifurcation boundary we set λ = iλIH with λIH > 0, to obtain

eiλIHT =
2

µ+ 1

(

µ+ 1 + iτλIH

1 + iτλIH

)

F(iλIH) . (4.12)

By setting the modulus of the right hand side to unity, and then solving for τ , we conclude that

τ =
(µ+ 1)

λIH

(

4|F|2 − 1

(µ+ 1)2 − 4|F|2
)1/2

, for
1

4
≤ |F|2 <

(µ+ 1)2

4
, (4.13)

where |F|2 ≡ (FR(λIH))
2
+ (FI(λIH))

2
. From the plot of |F|2 versus λIH shown in the right panel of Fig. 4.1, the range

of |F|2 required in (4.13) implicitly specifies a range of λIH . To determine the minimum value of the delay T for a Hopf

bifurcation, we then separate (4.12) into real and imaginary parts. After a short calculation we obtain that

T =
1

λIH
sin−1

(

2

(µ+ 1)(1 + τ2λ2
IH)

(

(µ+ 1 + τ2λ2
IH)FI − τλIHµFR

)

)

. (4.14)
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Fig. 4.2: Two views of the Hopf bifurcation surface in the (τ, T, µ) space for the synchronous mode for an M -spot pattern of (4.1)
in the regime D = O(ν−1). Any triple (τ, T, µ) that lies below this surface is linearly stable.

For a fixed value of µ, the coupled system (4.13) and (4.14) specifies a curve in the τ versus T plane parametrized by

λIH . By varying µ, we then obtain a surface in the (τ, T, µ) space at which a Hopf bifurcation occurs. By using (2.34b)

with N = 2 and p = m = 2 to compute FR and FI numerically, in Fig. 4.2 we give two different views of the Hopf

bifurcation surface in the (τ, T, µ) plane. We now explain some of the qualitative features of this surface.

We first characterize the Hopf bifurcation boundary when T = 0. The left panel of Fig. 4.2 suggests that µ = 1 is a

critical threshold. With no delay, we obtain from the real and imaginary parts of (4.12) that

(µ+ 1+ τ2λ2
IH)FI = τλIHµFR ,

2

(µ+ 1)(1 + τ2λ2
IH)

[

(µ+ 1 + τ2λ2
IH)FR + (µ+ 1)τλIHFI − τλIHFI

]

= 1 . (4.15)

To decouple (4.15), we solve the second equation for (µ+1), and then eliminate this quantity by using the first equation.

This yields a cubic equation for τ , which can be factored as (1+ τ2λ2
IH)

(

τλIHFI − 2|F|2 + FR

)

= 0. This determines τ .

We then determine µ from the first equation of (4.15) by eliminating τ . In this way, we obtain for the case of no delay

that the Hopf bifurcation boundary in the τ versus µ plane, as parameterized by λIH > 0, is

τ =
1

λIHFI

(

2|F|2 −FR

)

, µ =
(2FR − 1)

2
+ 4F2

I

2FR − 1
, (4.16)
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on the range of λIH > 0 for which τ > 0 and µ > 0.
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Fig. 4.3: Left panel: the Hopf bifurcation boundary and the region of linear stability in the τ versus µ plane for the synchronous
mode for an M -spot pattern of (4.1) in the regime D = O(ν−1) assuming no delay in the inhibitor kinetics, i.e. T = 0.
Right panel: the corresponding Hopf bifurcation frequency λIH versus µ with no delay.

By computing FR and FI numerically, in Fig. 4.3 we use (4.16) to plot the Hopf bifurcation threshold τ and the

corresponding frequency λIH versus µ. We observe that a Hopf bifurcation occurs only when µ > 1, and that τ → +∞
and λIH → 0+ as µ → 1+. Since FI ∼ λIH/2 and FR ∼ 1+O(λ2

IH) as λIH → 0+ from [22], we conclude from (4.16) that

τ ∼ 2/λ2
IH as λIH → 0, or equivalently τ = O (1/(µ− 1)) as µ → 1+. Alternatively, as λIH → λ0

IH from below, where

λ0
IH ≈ 1.59 is the unique root of FR(λIH) = 1/2, we conclude from (4.16) that τ → τ∞ ≡ 2

λ0

IH

2FI(λ
0
IH)/λ0

IH ≈ 0.563 as

µ → +∞. These results explain the behavior of the Hopf bifurcation surface T = 0 shown in the left panel of Fig. 4.2.

A second qualitative feature that is evident from Fig. 4.2 is that there is a Hopf bifurcation value of T when τ = 0 that

is independent of µ. To show this analytically, we set τ = 0 in (4.12) to obtain that this threshold, denoted by T f , and the

corresponding frequency λf
IH satisfy eiλIHT = 2FR(λIH)+2iFI(λIH), which is independent of µ. Therefore, λIH satisfies

F2
R + F2

I = 1/4, which yields λf
IH ≈ 2.55. The corresponding value of the delay T f = (λf

IH)−1 tan−1 (FI/FR) ≈ 0.379,

confirms the horizontal line in the right panel of Fig. 4.2 in the τ = 0 plane. This critical value T f separates the

stability boundary surface into two sections. For 0 < T < T f , the Hopf bifurcation boundary in the τ versus µ plane

has τ → τ∞ ≈ 0.563 as µ → ∞, while τ → ∞ as µ → 1, and the region of stability is to the left of the curve. For

T f < T < Tmax, the contour created is parabolically shaped, with τ → ∞ as µ → 0 or µ → 1, and the region of linear

stability lies above the curve. In Fig. 4.4 these differences are shown in the plots of τ versus µ for four separate values of

the delay T . These plots are obtained numerically by using Newton’s method on (4.13) and (4.14).

Next, we calculate the large delay behavior of the roots to the NLEP (4.2) for the synchronous mode. Since χ̃0 = 2 and

χ̃1 = −2µτ/(µ+ 1), we obtain from (4.5) of Lemma 4.1 that the eigenvalues near the origin have the limiting asymptotics

λ ∼ c0
T

[

1 +
1

T

(

1

2
− µτ

1 + µ

)]

, as T → +∞ ; c0 = ln 2 + 2nπi . (4.17)

Since Re(c0) < 0, it follows for T → ∞, and for any µ > 0, that the eigenvalues approach the origin from the unstable

right-half plane Re(λ) > 0. The eigenvalue in (4.17) with n = 0 is real and tends to the origin as T → +∞.

Finally, we can readily show from (4.11) that, for any µ > 0, there are exactly two real eigenvalues on the interval

0 < λ < σ0, where σ0 ≈ 1.648 is the principal eigenvalue of L0, whenever T is sufficiently large.

5. Hopf Bifurcations With Both Inhibitor and Activator Delayed Kinetics. In this section we consider the

GM model with exponent set (p, q,m, s) = (2, 1, 2, 0) under the effect of reaction kinetic delays in both the activator and
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Fig. 4.4: Cross-sections of the stability region for the synchronous mode in the τ versus µ plane for four values of the delay; T = 0
(left); T = 0.35 < T f (left middle); T ≈ T f (right middle); T = 0.4 ∈ (T f , Tmax) (right). Here T f ≈ 0.379 is the Hopf
bifurcation value of the delay when τ = 0, which is independent of µ.

the inhibitor. For an arbitrary exponent set, the NLEP for a one-spike solution for the 1-D shadow problem and the

infinite-line problem have been derived in (2.4) and (3.8), respectively. For the case of an M -spot pattern with M > 1 on

a finite domain in the regime D = D0/ν ≫ 1, studied in §4 for the exponent set (p, q,m, s) = (2, 1, 2, 0) assuming only a

delay in the inhibitor, the NLEP is obtained by replacing L0Φ and e−λT in (4.1) with LTΦ and e−2λT , respectively.

For the exponent set (p, q,m, s) = (2, 1, 2, 0), all these different NLEPs correspond to special cases of a more general

NLEP, formulated in terms of the delayed local operator LTΦ ≡ ∆ρΦ− Φ+ 2we−λTΦ, as

LTΦ− χ̃(τλ)e−2λTw2

∫∞
0

ρN−1wΦ dρ
∫∞
0

ρN−1w2 dρ
= λΦ , 0 < ρ < ∞ ; Φ′(0) = 0 , Φ → 0 as ρ → ∞ , (5.1a)

where w(ρ) is the ground-state solution obtained by setting p = 2 in (2.31). In (5.1a), χ̃, which depends only on the

product τλ, and the dimension N , with N = 1, 2, can be chosen to correspond to one of our NLEPs as follows:

χ̃ ≡ 2

1 + τλ
, N = 1, 2 , (N-D shadow problem) ; χ̃ =

2√
1 + τλ

, N = 1 , (1-D infinite-line problem) ; (5.1b)

χ̃ ≡ 2

1 + µ
, N = 2 , (2-D async) ; χ̃ ≡ 2

1 + µ

(

1 + µ+ τλ

1 + τλ

)

, N = 2 , (2-D sync) . (5.1c)

In (5.1c), the two choices of χ̃ correspond to either the asynchronous and synchronous modes of instability for an M -spot

solution in 2-D. In this context, µ ≡ 2πMD0/|Ω|, as was defined in (4.2b).

It is readily shown that any unstable eigenvalue of (5.1) must be a root of g(λ) = 0, where

g(λ) =
e2λT

χ̃(τλ)
−FT (λ) ; FT (λ) ≡

∫∞
0

ρN−1w
[

(LT − λ)−1w2
]

dρ
∫∞
0

ρN−1w2 dρ
. (5.2)

By setting g(iλIH) = 0, where λIH > 0, we obtain a 2 × 2 nonlinear system for the Hopf bifurcation values τ and λIH

at a particular value of the delay T ≥ 0. By using Newton’s method on this system, in Fig. 5.1 we plot the numerically

computed Hopf bifurcation boundary in the τ versus T plane for both the 1-D shadow problem and the infinite-line

problem. By comparing Fig. 5.1 and Fig. 1.1, we conclude that the stability boundaries for the case of only inhibitor

delay are qualitatively rather similar to those that occur when the delay arises in both the activator and inhibitor.

It it is intractable analytically to determine the Hopf bifurcation boundaries for the NLEP (5.1). However, under

certain conditions described below, we can show that there must be a Hopf bifurcation value of the delay T . To do so,

we first prove the following lemma that characterizes the behavior of certain eigenvalues of the NLEP (5.1a) for T ≫ 1:

22



0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T

τ

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

T

τ

Fig. 5.1: The effect of delay in both the activator and inhibitor. The stable shaded region in the τ versus T plane for a one-spike
solution to the 1-D shadow GM problem (left figure) and for the infinite-line problem (right figure). The GM exponents
are (p, q,m, s) = (2, 1, 2, 0). The Hopf bifurcation boundaries of the shaded regions are computed using Newton’s method
on (5.2) with λ = iλIH . These plots are similar to those shown in Fig. 1.1 with only a delay in the inhibitor kinetics.

Lemma 5.1. Consider the NLEP (5.1a) where the multiplier χ̃(τλ) has the asymptotic behavior χ̃(τλ) ∼ χ̃0+τλχ̃1+ · · · ,
as λ → 0, where χ̃0 > 0. Then, for T ≫ 1, the eigenvalues of (5.1a) near the origin have the limiting asymptotics

λ ∼ c0
T

+
c1
T 2

+ · · · , c1 ≡ c0
2

(

e−c0 − 1
)−1

(

I1T
I2T

+ τ χ̃1e
−2c0

)

, (5.3a)

where c0 and the integral ratio I1T /I2T satisfy

χ̃0e
−2c0 − 2e−c0 + 1 = 0 ;

I1T
I2T

≡
∫∞
0

ρN−1wΨ⋆ dρ
∫∞
0

ρN−1w2Ψ⋆ dρ
. (5.3b)

Here Ψ∗ is the solution to the following adjoint problem on 0 < ρ < ∞;

∆ρΨ
⋆ −Ψ⋆ + 2we−c0Ψ⋆ − χ̃0e

−2c0w

∫∞
0

ρN−1w2Ψ⋆ dρ
∫∞
0

ρN−1w2 dρ
= 0 ; Ψ⋆

ρ(0) = 0 , Ψ⋆ → 0 as ρ → ∞ . (5.3c)

Proof. We set λT = c with T ≫ 1 and λ ≪ 1, and use χ̃(λ) ∼ χ̃0 + τλχ̃1 + · · · as λ → 0 to obtain

∆ρΦ− Φ+ 2we−cΦ− e−2c
(

χ̃0 +
cτ

T
χ̃1 + · · ·

)

w2

∫∞
0

ρN−1wΦ dρ
∫∞
0

ρN−1w2 dρ
=

c

T
Φ+ · · · . (5.4)

We then expand c = c0+ c1/T + · · · and Φ = Φ0+Φ1/T + · · · , and substitute these expressions into (5.4). Upon equating

powers of 1/T , and defining the operator LcΦ by LcΦ ≡ ∆ρΦ− Φ+ 2we−c0Φ, we get

LcΦ0 − χ̃0e
−2c0w2

∫∞
0

ρN−1wΦ0 dρ
∫∞
0

ρN−1w2 dρ
= 0 , (5.5a)

LcΦ1 − χ̃0e
−2c0w2

∫∞
0

ρN−1wΦ1 dρ
∫∞
0

ρN−1w2 dρ
= e−2c0 (c0τ χ̃1 − 2c1χ̃0)w

2

∫∞
0

ρN−1wΦ0 dρ
∫∞
0

ρN−1w2 dρ
+
(

c0 + 2e−c0c1w
)

Φ0 . (5.5b)

Now since Lcw = w2 (−1 + 2e−c0), we obtain from (5.5a) that Φ0 = w provided that c0 satisfies (5.3b). Then, the

solvability condition for (5.5b) yields that e−2c0 (c0τ χ̃1 − 2c1χ̃0) I2T + 2e−c0c1I2T + c0I1T = 0. Upon solving for c1, and

using 2e−c0 = χ̃0e
−2c0 + 1 from (5.3b), we obtain the expression for c1 in (5.3a).
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We now show from (5.3a) that for T ≫ 1 there are many eigenvalues near the origin in the right-half plane Re(λ) > 0

whenever χ̃0 > 1. To establish this, we observe that (5.3b) is a quadratic in e−c0 , which can be solved to yield

λ ∼ c0/T , c0 = ln χ̃0 + i
[

tan−1
(

√

χ̃0 − 1
)

+ 2nπ
]

+ · · · , n = 0,±1,±2, . . . . (5.6)

Therefore, if χ̃0 > 1, we have Re(c0) > 0, and consequently Re(λ) > 0 for T ≫ 1.

Finally, we establish for (5.1a) that, for fixed τ < τ0H and χ̃0 > 1, there must be a Hopf bifurcation whenever the delay

T is large enough. Here τ = τ0H is the Hopf bifurcation threshold for (5.1a) when there is no delay T = 0. Qualitatively,

this result corresponds to taking a horizontal slice at a fixed τ through the stability diagrams of Fig. 5.1. From (5.1b) we

conclude that χ̃0 = 2 > 1 for both the shadow and infinite-line problems. From (5.1c), we also have χ̃0 = 2 > 1 for all

µ > 0 for the synchronous mode. However, for the asynchronous mode, we have χ̃0 > 1 only when 0 < µ < 1.

To establish this result we proceed as follows. We first observe that eigenvalues for (5.1a) can never cross through the

origin λ = 0 as either τ or T increases, owing to the fact that the eigenvalues depend on the product λT and λτ . Next,

we recall from [24] that all eigenvalues of the NLEP (5.1a) satisfy Re(λ) < 0 when τ = 0 and T = 0 if and only if χ̃0 > 1.

Fixing T = 0, and assuming χ̃0 > 1, then, as we have shown for the different choices (5.1b) and (5.1c) in §2–4, (5.1a) has
a Hopf bifurcation at some value τ = τ0H > 0, with Re(λ) < 0 for 0 < τ < τ0H . Finally, if we take χ̃0 > 1 and fix τ in

0 < τ < τ0H , then for sufficiently large delay T we have from (5.6) that many eigenvalues tend to the origin as T → ∞.

Therefore, if the eigenvalue paths are continuous in T , then there must be an intermediate value of the delay T at which

a Hopf bifurcation first occurred. The outline of a rigorous proof of this statement is sketched as follows:

Remark 5.1. We follow the arguments of [3] to establish the existence of Hopf bifurcation. We first check the Fredholm

properties of the eigenvalue problem (5.1a). Note that the map Φ → 2we−λTΦ− χ̃(τλ)e−2λTw2
∫

∞

0
ρN−1wΦdρ∫

∞

0
ρN−1w2dρ

is a relatively

compact operator of H2(RN ) into L2(RN ) since w is exponentially decaying. Hence LT − λ is Fredholm if and only if

∆− (1 + λ) is Fredholm and this is true as long as λ > −1 or Im(λ) 6= 0. Thus, the operator

LTΦ− χ̃(τλ)e−2λTw2

∫∞
0

ρN−1wΦdρ
∫∞
0

ρN−1w2dρ
− λΦ ,

is Fredholm of index zero if λ > −1 or Im(λ) 6= 0. Since |e−λT | ≤ 1 for Re(λ) ≥ 0, we conclude that all eigenvalues of

(5.1a) lie on the left half plane Re(λ) ≤ K for some K > 0, independent of T > 0. This implies the analyticity of the

operator for −1 < Re(λ) ≤ K. The analyticity of the operator, the Fredholm property and a classical theorem of Gokhberg

and Krein [2, Theorem 3.6] imply that the eigenvalues of (5.1a) in the region −1 < Re(λ) < K are isolated. This then

implies that the eigenvalue paths are continuous in the delay parameter T . We now choose the path containing the lowest

branch in (5.6) and continue this branch in decreasing T .

Next, we consider the limiting behavior as T → ∞ of any eigenvalue near the origin when χ̃0 satisfies 0 < χ̃0 < 1.

From (5.1c) the condition 0 < χ̃0 < 1 holds only for the asynchronous mode when µ > 1. We define y = e−c0 , and write

the quadratic equation (5.3b) for e−c0 as H(y) ≡ χ̃0y
2 − 2y + 1 = 0. We calculate that H′(y) = 0 at y = 1/χ̃0 > 1, and

that H (1/χ̃0) = 1− 1/χ̃0 < 0. Moreover, we calculate that H(0) > 0, H(1) = χ̃0 − 1 < 0, and H(y) → +∞ as y → +∞.

It follows that H(y) = 0 has two roots y±, which satisfy 0 < y− < 1 and y+ = 1/χ̃0 > 1. Only for the smaller of the two

roots, for which c0− ≡ − ln y− > 0 since 0 < y− < 1, will we have Re(λ) > 0.

Finally, we remark on an open issue regarding the boundedness of the eigenvalues of the NLEP as T is increased.

Remark 5.2. It is easy to prove that if Re(λ) ≡ λR ≥ 0, then λR = O (1/T ) as T → ∞. In fact, if not, we would have

|e−λT | → 0 which can be easily excluded by (5.1a). However, it is unclear if there holds

Im(λ) ≡ λI = O (1/T ) ,
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as T → ∞. Indeed let λT = cT + i(bI + 2nπ) where 0 ≤ bI < 2π. Assuming for a subsequence of Tn → +∞ that there

holds cT → c0, bT → b0, e
−λT → e−c0−ib0 = µ0 and 2nπ

T → a0, then we obtain the following limiting NLEP, as T → +∞

∆Φ− Φ+ 2wµ0Φ− χ̃(τia0)µ
2
0w

2

∫∞
0

ρN−1wΦdρ
∫∞
0

ρN−1w2dρ
= ia0Φ .

The existence of eigenvalues of this problem would imply the existence of another branch of eigenvalues with λ = λR +

iλI , λR = O( 1
T ), λI = a0 +O( 1

T ). We leave this as an open question.

6. Discussion. Motivated by the computational studies (cf. [5], [13], [14], [17]) of pattern formation in RD systems

with a time-delay in the reaction-kinetics, modeling gene expression time delays, we have analyzed the linear stability

of spike solutions to various limiting forms of the GM RD model with delayed reaction-kinetics in both 1-D and 2-D

domains. Our analysis has provided phase diagrams in parameter space where such solutions are linearly stable.

When the delay occurs only in the inhibitor kinetics, one of our main conclusions is that if the delay T exceeds

a threshold, the steady-state spike solution is unconditionally unstable. Comparison with full numerical results in 1-D

suggests that large-scale oscillations, indicative of a subcritical Hopf bifurcation, occur just beyond the Hopf bifurcation

boundary. Such uncontrolled oscillations, representing a global breakdown of a robust stable patterning mechanism, were

observed in the numerical studies of [5], [13], and [14] for the GM and some related models. A second main conclusion of

our study is that our detailed and explicit analysis of spike stability for the special subrange of GM exponents for which

the NLEP is explicitly solvable is actually representative of the more general case. More specifically, we showed that

qualitatively identical conclusions regarding the stability of a spike hold for more general GM exponent sets, including the

prototypical GM model where (p, q,m, s) = (2, 1, 2, 0) in (1.1). Finally, although we have primarily focused on the case

where only the inhibitor kinetics has a time-delay, in §5 we have also shown that qualitatively similar results occur when

both the activator and inhibitor reaction-kinetics have a time delay. In particular, for this latter case where the study

of the NLEP is intractable analytically, we have determined the Hopf bifurcation boundary numerically and have shown

analytically, for various limiting forms of the GM model, that a Hopf bifurcation must occur as the delay increases.

We now briefly discuss a few possible extensions of this study. Firstly, from a mathematical viewpoint, it would be

interesting to investigate whether the Hopf bifurcation due to delayed reaction-kinetics is typically subcritical, confirming

the numerical observations in [13] and §3.3, and therefore can lead to uncontrolled oscillations of the spike amplitude

near the Hopf bifurcation boundary. Secondly, our analysis has been restricted to determining the linear stability of

spike solutions on an O(1) time-scale, as characterized by the spectrum of an NLEP. In addition, it would be interesting

to determine the effect of a time-delay in the reaction-kinetics on the small eigenvalues of order O(ǫ2) (cf. [11]) in the

linearization of the steady-state spike pattern. Moreover, it is an open problem to derive and then analyze an ODE with

time-delay characterizing the slow dynamics of a spike for the finite-domain problem under delayed reaction-kinetics.

From a modeling viewpoint, the analysis herein has shown that there is a rather restricted range of the delay T in

the GM reaction-kinetics that can lead to linearly stable steady-state spike patterns. Given that time-delays in reaction-

kinetics are well-motivated biologically as a result of time lags needed for gene expression (cf. [5], [13], [14], [15], [17]),

a natural modeling question is how to incorporate time-delays in the reaction-kinetics but still maintain robustly stable

spatial patterning. Although some such possible improved models are discussed in (cf. [5], [13], [14], [15], [17]), it would

also be interesting to explore the effect of time-delays on a new class of 2-D quorum-sensing models (cf. [18], [8]) for which

spatially localized signaling compartments, undergoing nonlinear kinetics, are coupled through a 2-D bulk diffusion field.

For a related class of 2-D models with small signaling compartments, it has been shown recently in [9] that time-delays

can lead to stable temporal oscillations.
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