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Abstract

We study the semi-classical ground states of the nonlinear Maxwell-
Dirac system with critical /subcritical nonlinearities:

a- (ihV + g(z)A(z))w — afw — ww — q(z)d(z)w = f(z, |w])w

— A¢ = g(x) [w]®
—AA =q(2)(qw) -w  k=1,2,3

for # € R3, where A = (Ay, Ay, A3) is the magnetic field, ¢ is the
electron field, ¢ is the changing pointwise charge distribution. We
develop a variational argument to establish the existence of least energy
solutions for A small. We also describe the concentration phenomena
of the solutions as i — 0.

Mathematics Subject Classifications (2000): 35Q40, 49J35.

Keywords: nonlinear Maxwell-Dirac system, semiclassical states,
concentration.

1 Introduction and main result

The Maxwell-Dirac system, which have been widely considered in literature
(see [1], [15], [17], [21], [23], [24], [29] and references therein), is fundamental
in the relativistic description of spin 1/2 particles. It represents the time-
evolution of fast (relativistic) electrons and positrons within external and
self-consistent generated electromagnetic field.



The linear Dirac equation coupling to the electromagnetic field whose
gauge potentials are A = (A1, Ag, A3), ¢ is

3
(1.1) ih%f = (Z ay (—ichdy — qu)) b+ qpp + mc® By,
=1

here v(t,z) € C*, ¢ denote the speed of light, ¢ denotes the charge of the
particle, m > 0 the mass of the electron, and A denotes Planck’s constant.
Furthermore, oy, a9, ag and (8 are 4 x 4 complex matrices:

(I 0 (0 o _
/8_<0 —I)’ ak‘_(o_k 0 >a kj_172337
0 1 0 —i 1 0
0-1:(1 0>a 0-2:(2- 0>7 0-3:<0_1>5

and A :R xR? — R3, ¢: R x R?® — R, and we have used o = (a1, ag, a3),
a-V = Zi:l a0, and a -V = Zi:l a;, Vi, for any vector V € C3.
If we set

with

o(t @) = w(t,z)e SN,

where (w,S) : R x R? — C* x R, the Lagrangian density relative to (1.1) is
given by (hereafter for u, v € C*, uv denotes the inner product of u and v)

Lo=-|ih—w — |w|” — — a- (—ichV + ¢V S — ¢A)ww
—qo |[w]’ — m(Bw)w|.

Further, one considers the Lagrangian density of the electromagnetic field
E H

c (E? — H?)
Ly=—17—"7,
8T
and E, H are related to A, ¢ by
10A
1.3 E=—— - H= A.
(1.3) o~ Vo, v x

Then the total action is given by

82//,604-[,1.

Making the variation of S with respect to w, S, ¢ and A respectively, we
get

(1.4)  ihdyw — 8;Sw — o - (—ichV + VS — gA)w — qpw — mc*Bw = 0,



3
(1.5) O [wl* + ¢ Ok ((aww)w) =0,
k=1

Cc 1 B 2

17 qloew)yo — 28 <18tA + w) ~ CUX(VxA)=0
47 c 47

where (aw)w := ((a1w)w, (cow)w, (azw)w).
One is interested in finding stationary solutions of (1.4)-(1.7), which have
the form ‘
Yt z) = w(x)e®™’ eR, w:R>— C,
A=A(z), ¢=¢(x) inR>

For notation convenience, one shall denote Ay = ¢. If (¢, A, Ap) is a sta-
tionary solution of (1.4)-(1.7), then (w, A, Ap) is a solution of

{a-(ihV—i—QA)w—aﬁw—ww—QAow:O,

1.8
(18) — AAg = nQ(apw)w, k=0,1,2,3,

where a =me >0, w € R, Q = ¢/c and o := I.

The existence of stationary solution of (1.8) has been an open problem
for a long time, see [19]. Using variational methods Esteban, Georgiev and
Séré [16] proved the existence of regular stationary solutions of the form
Y(t,z) = w(r)e™! with w € (0,a). On the other hand, in [21], Garrett
Lisi gave numerical evidence of the existence of bounded states for w €
(—a,a). After that, Abenda in [1] obtained the existence result of solitary
wave solutions for w € (—a,a).

For small A, the solitary waves are referred to as semi-classical states. To
describe the translation from quantum to classical mechanics, the existence
of solutions wy, h small, possesses an important physical interest. Sparber
and Markowich, see [26], studied the existence and asymptotic description of
the semiclassical solution of the Cauchy problem for Maxwell-Dirac system
as h — 0, and obtained the asymptotic approximation as O(v/h).

In this paper we are interested in the existence and concentration phe-
nomenon of stationary semi-classical solutions to the system with

e the changing pointwise charge distribution @ () including the constant
q as a special one;

e the subcritical self-coupling nonlinearity of the form

J
S W) [wPiPw  (2<p;<3,1<j <)
j=1



e the critical self-coupling nonlinearity.

More precisely, we consider the system, writing € = h,

Lo a- (ieV+ Q(z)A)w — afw —ww — Q(x) Agw = f(z, |w|)w,
(1.9) — AAg = 47Q(x)(pw)w  k=0,1,2,3.

Firstly, consider the subcritical case where f(x,s) = Z;}:l W;(x)sPi=2,
we assume:

(Qo) Q € CYY(R3) with Q(z) > 0 a.e. on R?;

(Py) W; € COY(R3) with inf W; > 0 for j = 1,2,---,J, and there is jy €
{1,2,---,J} such that

lim sup Wj, (z) < max Wj,(z),

|z|—00 z€R3

and there is g € #j, makes W;(zg) > Wj(z) for all || > R, some R
large and j # jo, where

Win = {z € R?: Wjo(w) = max Wy ()}

(P1) 2<pi<p2<---<pyj<3.

Denoted by m; = max,cgs Wj(z),

J
W = U {x €Wy o Wi(z) > Wj(w0)},
fon

J
W= U Az & #jo - Wila) > Wj(ao)},
Ji
Wo:={z eR: W;(zx)=mj, j=1,---J},
and 7 = V/Jé U 7/33 Under (Py), we find # # (), and particularly, for the

case #( # ) we would have V/Jg =0 and # = 7/3(1)
Our results would be

Theorem 1.1. Assume that w € (—a,a), (Qo) and (Py) — (P1) are satisfied.
Then for all e > 0 small,

(2) The subcritical system (1.9) has at least one least energy solution w, €
W4 for all ¢ > 2. In addition, if Q,W; € CHL(R3) the solutions will
be in C* class.



(ii) The set of all least energy solutions is compact in W4 for all ¢ > 2.

(131) There is a mazimum point x. of |we| with lim._,odist(x., #') = 0 such
that, for some C,c > o

w:(@)] < Cexp (5o — ).

(1v) Setting ue(x) := we(ex + x), for any sequence x. — T as e — 0, ue
converges uniformly to a least energy solution of (the limit equation)

J
(1.10) ia-Vu —afu —wu = ZI/I/j(j;)|u|pj72u‘
=1

In particular, if #o # 0, then lim._,o dist(ze, #0) = 0 and us converges
uniformly to a least energy solution of (the limit equation)

J
(1.11) ia-Vu—aﬁu—wu:ij|u|pj_2u.
j=1

Next we consider the Maxwell-Dirac systems involving the critical ex-
ponent of the relevant Sobolev embedding. We would treat the subcritical
perturbation of the form f(z,s) = P(x)g(s) + W(x)s for s > 0. Writing

G(|lwl]) := O‘w‘ g(s)sds, we make the following hypotheses:

(g1) 9(0) =0, g € C(0,00), ¢'(s) > 0 for s >0, and there exist p € (2,3),
c1 > 0 such that g(s) < c1(1+ sP72) for s >0 ;

(g2) there exist o > 2, 0 > 2 and co > 0 such that cos” < G(s) < 5g(s)s>
forall s >0 .

A typical example is the power function g(s) = s?~2. For describing the

charge distribution and external fields, set

o—2)/2
_— 5322/ D\ >/’
6y

where S denotes the best Sobolev embedding constant: S |u|%s < [Vul3, for
all u € HY(R3), o and ¢y are the constants form (go), and « is the least
energy of the ground state for the superlinear subcritical equation (which
exists, see [14])
ior- Vu — afu — wu = |ul” 2u
Denoting m := max,cgs P(x), Mmoo = limsup P(x), | := max,cgs W(x), we
|z —00

will use the following hypotheses:



(Py) P, W € C%Y(R?) with inf P > 0, inf W > 0 and

Moo < m, limsup W(zx) <1,

|z|—o0

(P3) mt 172 < R,.
Set additionally,
P ={zecR®: P(x) =m,W(z) =1}.
Our result reads as

Theorem 1.2. Assume that w € (—a,a), (g1) — (g2), (Qo) and (P) — (Ps)
are satisfied. Then for all € > 0 small,

(2) The critical system (1.9) has at least one least energy solution w. €
Ngz2WHA(R3) N L®(R3). In addition, if Q, P,W € CY(R?) the solu-
tions will be in C' class.

(ii) The set of all least energy solutions is compact in H'.

(i7i) Assume that & # (. Then there is a mazimum point x. of |w.| with
lim. g dist(ze, &) = 0 such that us(x) := we(ex+z.) converges in H'
to a least energy solution of (the limit equation)

(1.12) ia - Vu — afu — wu = mg(|u|)u + 1 |u| .
(v) |we(x)] < Cexp (=< |a — a|) for some C,c > 0.

It is standard that (1.9) is equivalent to, letting u(x) = w(ex)

(1 13) « - (Zv + QsAs) u— aﬁu — WU — QEAE,OU = f(é“l‘, |u|)u,
' — AA = *4nQ.J, k=0,1,2,3,

where Q:(z) = Q(ex), P.(xz) = P(ex), Ac(xz) = A(ex), A p(x) = Ag(ex),
k=0,1,2,3, and
Jr = (agu)u for k=0,1,2,3.

In fact, with the variable substitution: x — /e, we are going to focus on
studying the equivalent problem (1.13). Our argument is variational: the
semiclassical solutions are obtained as critical points of an energy functional
®. associated to the equivalent problem (1.13).

There have been a large number of works on existence and concentra-
tion phenomenon of semi-classical states of nonlinear Schrédinger-Poisson
systems arising in the non-relativistic quantum mechanics, see, for example,
[3, 4, 7] and their references. It is quite natural to ask if certain similar results



can be obtain for nonlinear Maxwell-Dirac systems arising in the relativis-
tic quantum mechanics. Mathematically, the two systems possess different
variational structures, the Mountain-Pass and the Linking structures respec-
tively. The problems in Maxwell-Dirac systems are difficult because they are
strongly indefinite in the sense that both the negative and positive parts
of the spectrum of Dirac operator are unbounded and consist of essential
spectrums. As far as the authors know there have been no results on the ex-
istence and concentration phenomenon of semiclassical solutions to nonlinear
Maxwell-Dirac systems.

Very recently, one of the authors, jointly with co-authors, developed an
argument to obtain some results on existence and concentration of semi-
classical solutions for nonlinear Dirac equations but not for Maxwell-Dirac
system, see [11, 12, 13]. Compared with the papers, difficulty arises in
the Maxwell-Dirac system because of the presence of nonlocal terms A, j,
k = 0,1,2,3. In order to overcome this obstacle, we use cut-off argu-
ments. Roughly speaking, an accurate uniformly boundness estimates on
(C)c-sequences of the associate energy functional ®. enables us to introduce
a new functional ®. by virtue of the cut-off technique so that ®. has the same
least energy solutions as ®. and can be dealt with more easily, in particular,
the influence of these nonlocal terms can be reduced as ¢ — 0. In addition,
for obtaining the exponential decay, since the Kato’s inequality seems not
work well in the present situation, we handle, instead of considering Alu| as
in [11], the square of |ul, that is Alu|?, with the help of identity (4.16), and
then describe the decay at infinity in a subtle way.

2 The variational framework

2.1 The functional setting and notations

In this section we discuss the variational setting for the equivalent system
(1.13). Throughout the paper we assume 0 € & and 0 € # without loss of
generality.

In the sequel, by |- |, we denote the usual L¢-norm, and (-,-)2 the usual
L?-inner product. Let Hy = ia - V — a8 —w denote the self-adjoint operator
on L? = L*(R3,C*) with domain D(Hy) = H' = H'Y(R3,C*). It is well
know that o(Hy) = 0.(Hp) = R\ (—a—w, a—w) where o(-) and o.(-) denote
the spectrum and the continuous spectrum. Thus the space L? possesses the
orthogonal decomposition:

(2.1) LP=LtToL, u=u"+u"

so that Hy is positive definite (resp. negative definite) in L™ (resp. L™). Let
E = D(|H0|1/2) = H'/? (see [10, 14]) be equipped with the inner product

(u, v) = R(|Ho|"/? u, | Ho["'* v)s



and the induced norm ||u|| = (u, u>1/2, where |Hy| and |H0|1/2 denote re-
spectively the absolute value and the square root of |Hy|. Since o(Hp) =
R\ (—a —w,a — w), one has

(2.2) (a—|w)|u2 < ||ul|* forallue E.

Note that this norm is equivalent to the usual H*/2-norm, hence E embeds
continuously into L for all ¢ € [2, 3] and compactly into L for all ¢ € [1,3).

loc
It is clear that E possesses the following decomposition

(2.3) E=FE*®FE with E* = En L%,

orthogonal with respect to both (-, )2 and (-, -) inner products. This decom-
position induce also a natural decomposition of LP, hence there is d, > 0
such that

(2.4) dy |u*[) < [ufh for all u € E.

Let D12 = DL2(R3, R) be the completion of C2°(R3, R) with respect the

Dirichlet norm
Julfy = [ (Vuf da.

Then (1.13) can be reduced to a single equation with a non-local term.
Actually, by (Qo), for any u € E one has Q. |u|2 € L5/5 and there holds

< ([ o)™ (f1or) "

—-1/2
< 85 |zl vl

' / Q. (2)Jy - vz

(2.5)

where Sp is the Sobolev embedding constant: Sp|u|2 < [|u[| for all u € D2,
Hence there exists a unique AQU € D2 for k =0,1,2,3 such that

(2.6) /VAf,qudx = 5247r/Q€(x)Jk ~vdx
for all v € D2, Tt follows that AQU satisfies the Poisson equation
—AAL, = E4nQc(x)J),

and there holds

2
(2.7) AE(2) = &2 Wdy — Q)

Substituting Algju, k=0,1,2,3in (1.13), we are led to the equation

3
(2.8) Hou — Qe(2) AL u+ > Qe(x)a AL ju = f(ex, |ul)u.
k=1

8



Denote F(x,|u|) = 0'"' f(z,s)sds and F¢(z,|u|) = F(ex,|u|). Note that
J
Z —W;j(ex)|u[’? in the subcritical case,
Fe(z, |u]) = 1P
1
P.(z)G(|ul|) + §W€(x)|u|3 in the critical case.

On E we define the functional

@) = 3 (1P IP) — Tew) - We(w)

for u = u™ 4+ u~, where

/ Qe (x ) Jodz — 72 / Q-(x) AL, Jypda,

U, (u) = /Fg(x, |u|)dx

2.2 Technical results

In this subsection, we shall introduce some lemmas that related to the func-
tional ®..

Lemma 2.1. Under the hypotheses on f(x,s), one has ®. € C*(E,R) and
any critical point of ®. is a solution of (1.13).

Proof. Clearly, ¥, € C?(E,R). It remains to check that I'. € C*(E,R). It
suffices to show that, for any u,v € E,

(2.9) IP-(u)] < €201 QI [lull*,

(2.10) T (o] < e2Ca QI Ilull® [lv]l,

(2.11) T2 (w)[o, v]| < £2C5 QI [fuf® [[o]|?
Observe that one has, by (2.5) and (2.6) with v = A’gu,

(2.12) AFJs < S5 214 llp < £2C1 QL Ilul

This, together with the Holder inequality (with » = 6,7 = 6/5), implies
(2.9). Note that I'.(u)v = 4T, (u + tv) ‘t _o SO

// Q€|x—y| < o) Rleout(y)] + Jo(y) Rlaou(x)

(2.13) - Z <Jk(x)%[akuﬁ(y)] + Jk(y)%[akuv(ﬂc)D)dydx
k=1

/(Qs Rlaou] ZQE akuv])



which, together with the Holder inequality and (2.12), shows (2.10). Simi-
larly,

3
wle.ol = [ @o(a%,5 - > 4tup)
Lo // Q€|$_y| [ Rlaouv(x)]) (Rlaouv(y)])

Moo

Rlaguv(x %[akuv(y)])}
k:l

where J}! = agu and J; = a,vv, and one gets (2.11).
Now it is a standard to verify that critical points of ®. are solutions of
(1.13). O

We show further the following

Lemma 2.2. For every € > 0, I'c is nonnegative and weakly sequentially
lower semi-continuous.

Proof. 1t is not difficult to see

(2.14) Jo(x)Jo(y) = ) Jr(x)Jk(y) = 0,

NE

k=1

(see an argument of [16]). Hence (see (2.7))

= If Q=(@)Q:=(w) (o(@)Jo(y) = Xty (@) (w)) n =0

|z — |

And if up, — w in E, then u,, — u a.e., and, with (2.14) and Fatou’s lemma,

I (u) <liminf Ty (uy,).

n—oo

as required. O

In virtue of the assumptions (g1) — (g2), for any 6 > 0, there exist r5 >
0,¢5 > 0 and ¢§ > 0 such that

g(s) <6 forall 0 <s <ry;

(2.15) G(s) > c5s" — 5% forall s > 0;
G(s) < 65>+ csP forall s >0
and
~ 1 -2 —
(2.16) G(s) = 59(5)52 —G(s) > HTeg(S)SQ > g G(s) > cps°



for all s > 0, where cg = (6 — 2)/2.
Set, for r >0, B, ={u€ E: ||lu]| <r}, and for e € ET

E.:=E @®Rte
with RT = [0, +00).
Lemma 2.3. For all € € (0,1], ®. possess the linking structure:

1) There existr > 0 and T > 0, both independent of €, such that (I)€|B;r >0
and @clgr > 7.

2) For any e € E1 \ {0}, there exist R = R, > 0 and C = C, > 0 both
independent of € such that for all e > 0 there hold ®.(u) < 0 for all
u € E.\ Br and max ®.(E,) < C.

Proof. We verify the critical case (the subcritical case can be checked sim-
ilarly). Recall that |ul) < Cp|[ul|” for all u € E by Sobolev embedding
theorem. 1) follows easily because, for u € ET and § > 0 small enough

@a(u) = 5 Jull* ~ Tew) — Va(w)

Lo 2 4 2 W 3
> < llull® = £2C1 QP lull* = 1Pl (81ul} +ch ful}) — =52 Juf}
with C1, C) independent of u, and p > 2.
For checking 2), take e € E*\{0}. In virtue of (2.4), for u = se+v € E,,
one gets

1, 9 1.
@(u) = 1 flsel — & [[ol]* ~ Tew) — o)
0 < Lopee = Loz - BRIV s
< 25 e 5 v 3 57 lely
proving the conclusion. O

Recall that a sequence {u,} C E is called to be a (PS). sequence for
functional ® € CY(E,R) if ®(u,) — ¢ and ®'(u,) — 0, and is called to be
(C). sequence for ® if ®(uy,) — ¢ and (1 + ||un||)® (un) — 0. It is clear
that if {u,} is a (PS). sequence with {||u,||} bounded then it is also a (C),
sequence. Below we are going to study (C'). sequences for ®. but firstly we
observe the following

k
Lemma 2.4. Let {u,} C E\ {0} be bounded in L?. Then {%} is
bounded in L uniformly in e € (0,1], for k=0,1,2,3.

11



Proof. Set v, =

”Z"”. Notice that A’g’un satisfies the equation

_AAk = 6247TQS ($)(O‘kun)%,

£,Un

hence,
k

As,un 2 _

Observe that ||v,| = 1, E embeds continuously into LY for g € [2, 3], and

‘ / Q-(x) vty - i

S |Q|oo |u’n‘o' |UTL|q ‘¢|6
—1/2
< 55 21Ql unly loal, 1#1p

for any ¢ € DV4(R3,C*) and 1 + % + ¢ = 1. We obtain

as desired. O

£,Un

AF -

un” D

We now turn to an estimate on boundness of (C').-sequences which is the
key ingredient in the sequel. Recall that, by (g1), there exist r; > 0 and
a1 > 0 such that

a— |w|
2.18 s) < for all s < rq,
and, for s >y, g(s) < a1sP72, so g(s)UO_1 < a9s? with

0012L>3

p—2
which, jointly with (g2), yields (see (2.16))
(2.19) 9(5)7° < azg(s)s® < asG(s) for all s > 7.

Lemma 2.5. For any A\ > 0, denoting I = [0, \], there is A > 0 independent
of € such that, for all € € (0,1], any (C).-sequence {us,} of ®. with ¢ € I,
there holds (up to a subsequence)

lunll < A

for all n € N.

12



Proof. Again we only check the critical case because the subcritical case can
be dealt with similarly with some obvious modifications.

Let {u$,} be a (C)-sequence of &, with ¢ € I. Without loss of generality
we may assume that ||u$|| > 1. The form of ®. and the representation (2.13)
(T (u)u = 4T'-(u)) implies that

2A >c+o(1) = P (u;,) — 7<I>’( o )us,

(2.20)
o+ ity o
and
o(1) = @ (uf) (u," — ug”)
(2.21)

2 — T () (i ?R/f e, Jus s, ST —

By Lemma 2.2, (2.16) and (2.20), {u5} is bounded in L° and L? uniformly
in € with the upper bound, denoted by C1, depending on A, o, 6 and inf P.
It follows from (2.21) that

o)+ 5[ < Th s (w5t — ui) + % [ e ui s - uiF — i
This, together with (2.18),(2.2) and the boundedness of {u$} in L3, shows

1 _
o(1) + g llunI* <TL(uR) (ug” —ui)

(2.22)
+R Pe(x)g(lug)ug, - un™ —un~ + Co

lug | >r1

with C9 independent of €.

Recall that (g1) and (g2) imply 2 < o < p. Setting t = 52~ 5 one sees
1 1 1
2<t<p, —+-—+-=1
ogp o t

By Hoélder inequality, the fact T'c(ug) > 0, (2.19), (2.20), the boundedness
of {|uf|,} uniformly in €, and the embedding of F to L', we have

[ Pl g o g =
lug[271

N O B 0 R O A0 B (e

< O]

with C3 independent of e.

13



Letq:%. Then2<q<3and%+%+%:1. Set

0 if g =o0;
2(0—4q) . ‘
¢={ q0=2) if ¢ < o3
3g—0) .
ifg>oco
q(3—0)

and note that ’ .
], < luls - Jull™C if2<g<o
T S el o< q<3l

By virtue of the Holder inequality, Lemma 2.2, the boundedness of {|u$|,}
and {|uZ |3}, and the embedding of F to L? and L3, we obtain that

‘ /QE “Ls (aguy,) - u —un

k
QHunﬁR/Qg 2”7 "H(Oékua) u%—i- _u%_
k
<& |Ql o Il Unlg Junt =g,

2H H

< Cslluglluglg < 6204!\UZH”<

with Cy independent of e. This, together with the representation of (2.13),
implies that

(2.24) ITE () (ug™ — i) < Cs g ||+

n

with C5 independent of €.
Now the combination of (2.22), (2.23) and (2.24) shows that

(2.25) g, 1? < Mo + M Jlug, || + Ma||ug, |+

nll

with My, M7 and M5 being independent of ¢ < 1. Therefore, there is A > 1
independent of & such that
Jun || < A

as desired. 0

Finally, for the later aim we define the operator A, : £ — DL2(R?) by
Ae i (u) = A’;u. We have

Lemma 2.6. For k=0,1,2,3,

(1) Ac i maps bounded sets into bounded sets;

14



(2) A. is continuous.

Proof. Clearly, (1) is a straight consequence of (2.12). (2) follows easily
because, for u,v € E, Al, — A, satisfies

_A(Ag,u — Af__i’v) = 6247'(@5(1‘) [ajutt — avd],
consequently,
ALy — ALy |12 < E2C QN [(aju)u — (ajv)vlg

< 2C1Qlue (11— vlhas [ehays + 16— Vg [0]3/5)
< 201 (Qlug (Ilu = vl -l + 1w = o] - o]

This implies the desired conclusion. ]

3 Preliminary results

Observe that the non-local term I'. is rather complex. The main purpose
of this section is, by cut-off arguments, to introduce an auxiliary functional
which will simplify our arguments.

In order to prove our main result, we will make use of some results on
the following autonomous equations for u € H'(R3, C*):

J
(3.1) ia-Vu —afu —wu = Z vilulPi—?u,
j=1
(3.2) io - Vu — afu —wu = pg(|ul)u,
(3.3) i - Vu —afu —wu = pg(ju))u+ x |u|u

where 7 := (v1,...,v5) € R’ with v;>0,5=1,...,J,and p,x > 0.

3.1 The equation (3.1)

Its solutions are critical points of the functional

Totw) := 5 (It ? = ) Z”ﬂ JNEE
= 2 (I = 1 IP) - %)
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defined for u = u* +u~ € E = ET @ E~. Denote the critical set, the least
energy, and the set of least energy solutions of .7 as follows

Ky ={ueFE: Ti(u) =0},
vz = inf{Tz(u) : ue #;\ {0}},
Ry ={u € Hz: T(u) =75, [w(0)| = |uf}.

The following lemma is from [14].
Lemma 3.1. There hold the following
i) Ky #0, 5> 0, and Ky C >y wha.:
ii) vy is attained, and Zy is compact in H'(R3, C*);
i1i) there exist C,c > 0 such that
lu(x)| < Cexp (—clz|) for all z € R, u € %y.

Motivated by Ackermann [2] (also see [11, 12, 14]), for a fixed u € ET,
let ¢, : E~ — R be defined by

pu(v) = T5(u+ ).
Observe that, for any v,w € E~,
pu(0)[w, w] = = Jwl* = FF (u + v)[w, w] < — [|w]|*.

In addition ) )
2 2
pulv) < 3 [lulP ~ 2 ol

Therefore, there exists a unique ¢z : ET — E~ such that

Tp(u+ Ji(u)) = max F(u +v).

Now one introduces the following notations (see, |2]):

Jy 1 ET =R, Jy(u) = Tp(u+ Fo(u));
My ={ue ET\{0}: Ji(uw)u=0}.

We call J; is the reduction functional for .77 on E*. Plainly, critical points
of Jy and ; are in one to one correspondence via the injective map v —
u+ Zz(u) from ET into E.

It is not difficult to check that, for each u € E™ \ {0}, there is a unique
t = t(u) > 0 such that tu € 4 (see |2, 14]). Moreover, letting u € .#; be
such that J;(u) = 77, and set E, = E~ & R u, one verifies easily that

max Jz(w) = Jz(u).
wek,
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Clearly, Jz has the Mountain-pass structure, which, together with the
above discussion, implies

> =inf{Js(u) : ueE My} = 71en£ Jax Jz(v(#)),

where Q5 := {y € C([0,1], ET) : 7(0) = 0, Jz(y(1)) < 0}.
In the sequel, for vectors @ = (a1, ...,a7),b = ( 1,.,by) € RY, we write

=

ﬁzgifaijjforjzl J, anda>b1f bndajo>bjof0rsome
jo- The following lemma is clear.

Lemma 3.2. Let v, >0, k=1,2. If ) — i/ > 0 then vy, < Vp,-

3.2 The equation (3.2)

Its solutions are critical points of the functional

(et ]2 = = 12) — / G(Ju])

=5 (12 = a7 I?) = Fu(u)

Tu(u) =

M\HMM—‘

defined for u =u* +u~ € E = ET & E~. Denote the critical set, the least
energy and the set of least energy solutions of .7, as follows

Hy={ue E: F(u) =0},
V= f{ T (u) : u e A\ {0},
Gy =A{u e Ay Tu(u) =y, [w(0)] = ul}

The following lemma is from [14]
Lemma 3.3. There hold the following:
i) % # 0, Yu > 0 and Jifu C ﬂqZQWLQ;
ii) 7, is attained and %, is compact in H'(R3,C*);

iii) there exist C,c > 0 such that |u(z)| < Cexp (—c|z|) for all z € R? and
U € Xy

Now as before we introduce:
I EY > E, T(ut f.(u) = max T(u+v),
ver—

Ju EY =R, J,(u) = T (u+ Zu(u)),
My = {u e EF\{0}: J,(u)u=0}.

17



For any uw € ET and v € E~, setting z = v — _£,(u) and I(t) = T, (u +
Fu(u )—l—tz) one has [(1 ) Tu(u+0),10) = T (u+ _Zu(u)) and I'(0) =0
Thus (1 fo t)I"”(t)dt. This implies that

Tu(u+v) = Tp(u+ Fu(u))
1
—/0 (1 =0T (u+ Fu(u) +tz) [z, 2]dt
=— /1(1 — 1) ||2|* dt — /1(1 — )9 (u+ _Zu(u) +tz)[z, z|dt
0 0 g g ’ ’
hence
1
/O (- t)%’(u ) + 82)[z, 2Lt + o el

(u+ Zu(u Tu(u+v).

It is not difficult to see that, for each u € ET \ {0} there is a unique t =
t(u) > 0 such that tu € .#), and

(3.4)

Yo =nf{Ju(u) : ve 2} = eeblﬂl{{o}ﬁ%): Tu(u)

(see [14], [11]).
For the later use, define, for o € (2, 3),

2
To = ueg&{{o} qfrel%)f lu 4 v|

and consider the equation

(3.5) io-Vz—afz—wz=|2]""22

with the energy functional defined by

1 _ 1, .
So(2) =5 (=517 = 1=71%) = gl

and the least energy denoted by «. The following lemma is due to [13]:
Lemma 4.5.

Lemma 3.4. T, is achieved at some z which is a least energy solution of
the equation (3.5). Moreover,

T, = < 207 )(0_2)/0.
o—2
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Proof. For reader’s convenience, we give the sketch of the argument in [13].
Set, for any u € ET and v € E—,

2

If we E- with my(w) = T,(u), then after tedious computations we have,

forve E7,

m,(wyw=0 and 7, (w)v,v]<O0.

Hence, 7, attains its maximum at a unique point.
Observe that

2 —2
lw ™| = lw”]]
2

(2

T, = inf max
u€ B\ {0} weEy |w]

If the function ) )
I e |
= 2
o

my(w)
|wl
attains its maximum on E, at w, setting @ = my,(w)"/("=2w/|w]|,, then
My (W) = my(w) and, for any v € E,, m) (w)v = 0.
Consequently,
o—2

N = S (ma(w))7 7,
g

o—2 R
20 (ma (@

(0-2)/0

v < Sp(w) =

2
hence, T, > (%

On the other hand, let z be a least energy solution of (3.5) with z =
2t + 27 and take u = z*. One has m,(z) = |27 2. Plainly, for v € B,

m,(z)v=0 and (27 )v,v] <O0.

u

Therefore,

412 —n2 (0—2)/c
z — ||z _ 20
neny LI (200700

|25

completing the proof. O

Lemma 3.5. If g(s) = cos® 2, then the corresponding least energy of (3.2)
denoted by (o) satisfies

(3.6) V(o) < (neo) ™22y,
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2

Proof. Now assume g(s) = c9s”° °, and denote the corresponding energy

functional of (3.2) by

S (w) = 5 (a2 = 1) = 22 [ jup.

Let z be a least energy solution of (3.5) and u = z*. Set ¢, € E, with
St (eq) = maxyep, S*(w). Then by Lemma 3.4,

DN |

(o) < 5% (eq)

_ o/(c—2)
_o- 2(,&00)72/(072) <Heq+H2_H€‘IH2>

20 |€q|i
o—2 —2/(oc— o/(oc—
< ?(HCO) 2/(e=2)o/(e=2)
as desired. 0

3.3 The equation (3.3)

Its solutions are critical points of the functional

(1= 1) = [ Gl =% [

(117 = [l 1%) = Fiy ().

Triw) =

NI o) =

defined for u = ut +u~ € E = ET @ E~. Denote the critical set, the least
energy and the set of least energy solutions of .7 as follows

A = {u€ B: 75/ (w) =0},

Yo = Inf{ T () w e 5\ {0)),

Ky = w € Ay o T5 (W) = Yy [w(0)] = Jul }-
Firstly we have the following

Lemma 3.6. v, is altained if

53/2
’)/MX < E = 67><2

Proof. Let {un} be a (C)c-sequence with ¢ = ~; . By the statements in
Lemma 2.5, {uy} is bounded in E. By Lion’s concentration principle [20],
{un} is either vanishing or non-vanishing.
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Assume that {u,} is vanishing. Then |u,|, — 0 for s € (2,3). By (¢1),
(g2) one gets

* 1 * 1 —
C+dU=%ZAWJ—§Z@WmWnZEOWHP—HMJ%
or
[ || = [Juy, | < 6+ o(1).
Similarly,
6¢c
3
Unp|” < — +0(1).
[l < % o)
Moreover,
Junl xR [ fuf i — ) < o(0).
Thus,

2 2 -
[ < X Junls [ — g, |5 + 0(1)

Observe that S1/2 |u\§ < Jlul? (see [9]), we have

a contradiction.
Therefore, {u,,} is non-vanishing, that is, there exist r,§ > 0 and z,, € R?
such that, setting v, (x) = u,(x + x,,), along a subsequence,

/ lun|? > 6.
+(0)

Without loss of generality we assume v, — v. Then v # 0 and is a solution
of (3.3). And so v}, is attained. O

Lemma 3.7. v, is attained if
(3.7) T2 < Ry

Proof. Observe that, for the nonlinearities, we have

HCo
G) 2 G,(0) 2 22 [ ul”
So, by the reduction process and the min-max scheme, we deduce

Y < YV < Yu(0).

If
(peo)™
that is, (3.7) is satisfied, then 7}, < £*. So -}, is attained by Lemma 3.6. [
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As a consequence of Lemma 3.7 we have
Lemma 3.8. If (3.7) is satisfied, then
* L . * / _
Hyy i ={ue B F) (u) =0} #10,
Ve = f{ T (u) + we 2, \{0}} >0,
and %y, = {u € X, + T\ (w) =7}y, [w(0)] = ul} is compact in E.

Set as before the induced map 7, : ET — E~, the functional iy €
CHE',R) : Ji (u) = Z5 (u+ g} (u) and the manifold .} . The
following lemma will be useful to study our problem.

Lemma 3.9. There hold:
1). Let u € M, be such that J} (u) =~} and set B, = E- @ Rtu.
Then
i 775, 0) = i, o).
2). If p1 < po and x1 < X2, then
Tixr = Vnoxe:
In addition, if max{ue — 1, x2 — x1} > 0, then

* *
Vurxa =~ Vo

Proof. Since 1) is obvious (see [11, 12]), we only prove 2).
Let u € £, with " (u) =7, and set e = uT. Then

H1X1 H1X1
=7, (u) = max T (W).

/Y:lxl H1X1
Let w1 € E. be such that %ZXQ(ul) = maxXyck, %ZXQ(w). One has
= T (W) 2 T, (W)

*
7“1 X1 H1X1

= T ) + 2 =) [ Gl + D22 [

* X2 - Xl
>+ =) [ Glual) + D222 [
as desired. O

Remark 3.10. Similarly to (3.4) we have, for any u € ET and v € E~,

1
/0 (1= 0G50t i () + 1) 2, Dt + 5 | 2|
= T (ut Fun(w) = T (u+ )
where 2z 1= v — 77 (u).

(3.8)
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3.4 Auxiliary functionals

In order to make the reduction method work for ®. as ¢ small, we circumvent
by cutting off the nonlocal terms. We find our current framework is more
delicate, since the solutions we look for are at the least energy level and I'¢
is not convex (even for u with [|u|| large). By cutting off the nonlocal terms,
and using the reduction method, we are able to find a critical point via an
appropriate min-max scheme. The critical point will eventually be shown
to be a least energy solution of the original equation when ¢ is sufficiently
small.

By virtue of () and (P), set b; = inf W for j =1,2,---,J, b=inf P
and d = inf W, denote b= (b1,...,by),

{ 7; for the subcritical case;
"y =

g for the critical case,

and let
{ Py for the subcritical case;
ey €

Ry, for the critical case.

By the linking structure and the representation of ®. we have directly
Lemma 3.11. For all € > 0, max,ep,, D, (v) < .

To introduce the modified functional, by virtue of Lemma 2.5, for A = ~,
and I = [0,7p], let A > 1 be the associated constant (independent of ¢).
Denote T := (A + 1)? and let  : [0,00) — [0,1] be a smooth function
with n(t) =110 <t <T, nt)=0ift > T+ 1, max|n'(t)] < ¢; and
max |n”(t)| < ca. Define

e(u) = 5 (lt 11> = lu™ %) = n(lfull®)Te(u) - Ve (u)

(a1 = llu ) = Fe(u) — Pe(u).

DN — DN =

By definition, ®.|p, = ®|p,. It is easy to see that 0 < .Z.(u) < I'e(u) and
[ZLw)o] < |20/ (ul*)Te(w) (w,0)| + [Pyl

for u,v € E.

Lemma 3.12. There exists €1 > 0 such that, for any ¢ < €1, if {u,} is

a (O). sequence of ®, with ¢ € I then |[us| < A + 1, and consequently
D (uf) = P (uf).

n n
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Proof. We discuss only the critical case because the subcritical case is easier
and can be handled similarly. We repeat the arguments of Lemma 2.5. Let
{us} be a (C)e-sequence of @, with ¢ € I. If ||us||2 > T'+1 then .Z.(uS) = 0
so, as proved in Lemma 2.5, one changes (2.25) by ||u5||? < My + M ||us|
and gets ||JuS|| < A, a contradiction. Thus we assume that ||u5||? < T + 1.
Then, using (2.9), |7/ (||u,||?)||us||?Te (us)| < €2dp (here and in the following,
by d; we denote positive constants independent of ¢). Similar to (2.20),

27 > e+ 0(1) > (Il 1?) + 20" (lug %) g 1) Te (ur)

+/Pe( /W s P

~ 1
2, + 2y > (|| |P)To () + / P(0)G (1)) + ¢ / W () |uS)?

which yields

consequently |uf |, < da and |ug |3 < dy. Similarly to (2.22) we get that
1 €112 2 EI2\T (,,E e+ e—

+ %R Pe(@)g(|ug g, - ™ — wi”

|u5 ‘>T1

[ W) i
which, together with (2.23) and (2.24), implies either ||ug|| < 1 or as (2.25)
IS 2 < e2ds + My a5 | + Mall 17 + M,

thus
llus || < e2dy + A.

The proof is complete. O

Based on this lemma, to prove our main results, it suffices to study <AISE
and get its critical points with critical values in [0, v,]. This will be done via
a series of arguments. The first is to introduce the minimax values of ®.. It
is easy to verify the following lemma.

Lemma 3.13. CD possesses the linking structure and the constants in Lemma
2.3 are true for d.. In addition, maxycg,, d. (v) <.

Define (see [8, 27])

= inf D (u).
7 et o 1B )

As a consequence of Lemma 3.13 we have
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Lemma 3.14. 7 < c. < .

We now describe further the minimax value c.. As before, for a fixed
u € ET we define ¢, : E= — R by

Ou(v) = Po(u +v).
A direct computation gives, for any v,z € E~,

w2 2] = = |2l° = FL(w+0)[z, 2] — U (u+0)]z, 2,
— F(u+ )|z, 2],
and
T (u+ )|z, 2]
= (477”(Hu+vH2) [(u+ v, 2)* + 20/ (|lu + o]|?) Hsz) Te(u+0)
+ 41 (|| + v|?) (u+ v, 2) T (u+v)z
+n(flu+ o) (w + v)[2, 2].

Combining (2.9)-(2.11) yields that there is g9 € (0, 1] such that
1
ol (v)[z, 2] < —§Hz\|2 if 0 <e <ep.

Since ) )
Pu(v) < 5 > — 3 o],

there is he : E¥ — E—, uniquely defined, such that

Ou(he(u)) = max ¢, (v)

veE~

and
v # he(u) & Bo(u+v) < O (u+ he(u)).

It is clear that, for all v € E~

0 = ¢, (he(u))v = — (he(u),v) — FL(u + he(w))v — WL(u + he(u))v.
Observe that, similar to (3.4), we have for u € E* and v € E~

D (u+ he(u)) — D (u+v)
1
= [ O+ helu) + 0~ () o), v~ he(w)
(3.9) 0
+ U (u+ he(u) + t(v — he(uw)))[v — he(u), v — he(uw)]]dt

1
+ 5 llo = hew)?.
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Define I, : ET — R by
I (u) = O (u+ he(u)),
and set
Ne:={ue ET\ {0} : I.(u)u = 0}.

Lemma 3.15. For any u € E™ \ {0}, there is a unique t = t(u) > 0 such
that tu € ;.

Proof. See |2, 14]. O
Lemma 3.16. c. = inf,c 4, I-(u).

Proof. Indeed, denoting de = inf,c 4, I-(u), given e € ET,ifu=v+sec E,
with ®.(u) = max.cp, ®.(z) then the restriction ®.|z, of ®. on E, satisfies
(®.|g,) (1) = 0 which implies v = ho(se) and I’(se)(se) = 0, i.c. se € M.
Thus d. < c.. While, on the other hand, if w € 4 then (®.|p,) (w +
h.(w)) = 0, hence, ¢. < maxyep, Pe(u) = I.(w). Thus d. > c.. O

Lemma 3.17. For any e € E* \ {0}, there is T, > 0 independent of € such
that t. <T. for te > 0 satisfying tee € k.

Proof. Since I.(t.e)(t.e) = 0, one get

D, (tee + he(tee)) = max B (w) > 7.

weE,
This, together with Lemma 3.13, shows the assertion. O

Next we estimate the regularities of critical points of <1> Let 7 == {u €
E: @ (u) = 0} be the critical set of ®.. It is easy to see that if #\ {0} # 0
then ¢, = inf{®.(u) : ue€ 4 \{0}} (sec an argument of [14]).

For the subcritical case, using the same iterative argument of [15] one
obtains easily the following

Lemma 3.18. If u € J with ]$E(u)| < (4, then, for any q € [2,4+00),
u € WH(R3, C*) with |Jully1.q < Aq where Ay depends only on Cy and q.

Proof. See [15]. We outline the proof as follows. From (2.8), we write
J
U= HO_1< AO u—E:QE akA’guu+ZWj(sa:) |u[Pi 2 u)

Jj=1
= u1 + u

where

J
<ZW] ex) [ulP™ u)
7j=1
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and ,
Uy = Ho_l <QE . Ag’uu — Z Q- - akA];uu).
k=1
By Hoélder’s inequality, for ¢ > 2

k
‘ankAavuu

k
<1l 4L,

e,

11 1,1
Wlthg—g%—gand

ey |Pi2 ) pj—1
Wie - =2, < W1 fuli L.

Thus, the standard argument shows that u € Ng>2L9, therefore, u; €
mqZQWLq an us € ﬂ6>q22W1’q.

By Sobolev embedding theorems, u € C%Y for some ¥ € (0,1). This
together with elliptic regularity (see [18]), shows A, € VVi’f(R?’) N L5(R3)
for k=0,1,2,3 and

|4

€,u

<y <€2 Qoo [l T 123y a)) + ‘A’;u

W2:6(B(z)) L5(Ba(x)) >

for all z € R3, with Cy independent of x and e, where B,(r) = {y € R3:
ly — x| < r} for r > 0. Since W2%(By(x)) — C1(Bi(x)), we have

(3.10) HA{;U

< 2 i :
, SO <€ |Qloo [ulLr2(By(a)) + ‘AE’“ L6(BQ(:C))>

C1(Bi(z)

for all € R3 with C3 independent of z and . Consequently A];u € L and
that yields

Qo Al u

k
 <1Ql |4,

|u”5 *
oo

Thus us € mqZQWLq, and combining with u; € ﬂngwl’q, the conclusion is
obtained. m

Concerning the critical nonlinearity, the standard bootstrap argument
does not yield regularity of finite action weak solutions (see |5, 6]). Motivated
by Takeshi Isobe [28], we give the following lemma

Lemma 3.19. Let u be a weak solution to the critical system in E. Then
u € Ny W,HI(R3) N L(R3).

Proof. Recall that for z € R? being arbitrary, by elliptic regularity (see [18]),
for £k =0,1,2,3, we infer

k
e,u

W23 (Bs()

) =© <‘ S IR ’u|3>
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with C independent of z, v and €. And since A’;u € L5(R?), one has

|4

€,u

=€ (3\/7?)14’;,” el \u|§> .

3
W22 (B LS(Bs(x

Set z € R3 fixed, let p € C°(By(x)) be arbitrary. Take 77 € C°(Ba(z))
such that 7 = 1 on supp p. We deduce, letting D =ia - V,

D(pu) = pDu+ Dp-u
=n-pDu+ Dp- u.

Noting that
3
Du=afu+wu+Qc- AL u— > Qc-arAl u+ P g(ju)u+ We - Julu,
k=1

one has
(3.11) Dp-u= Hy(pu) — T: u(pu),

where, for 1 < s < 3, Tr,, : Wh*(Bg(x)) — L*(Ba(x)) is defined by

3

w7 [Qe - A2, — ZQs R AL, + Peg(|ul) + We - ul]w.
k=1

Notice that, by the Sobolev embedding W1$(By(x)) — L;%S(Bg(l')) and
Holder inequality, we have 1. ,(w) € L*(Ba(x)) for w € Wh%(By(z)) and
the above map is well defined. Using Minkowski and Hélder inequalities, the
operator norm can be estimated as

3
s k
”TE,UHWLS—»LS < (’u‘L:s(B) + ’B|3 + Z ’Aa,u LG(B)>
k=0

for some constant C (depending on s), where B := supp 7.
Since 0 ¢ o(Hy),

Hy — Tvy : WH¥(Ba(x)) — L*(Ba())

is invertible if |B| is small.
Therefore, by (3.11), there is a unique solution w € Wh(By(z)) to the
equation
How — T, y(w) =Dp-u in By(z).

On the other hand, we have a well defined map

T : L (By(z)) — WL3(By(x)).
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Indeed, by Hélder inequality, we have T, ,(w) € L%(Bg(ﬂ?)). Taking into
account that L%(Bg(x)) C W=13(By(z)) by the Sobolev embedding, the

above map is well defined and the operator norm is estimated as before:

L6(8)> '

is invertible if |B| is small and there is a unique solution 1w € L3(Bz(z)) to
the equation

3
1
1Teull s p—15 < C2 (‘3’3 + |u]L3(B) + Z ’Alg,u
k=0

Thus,
Hy—T., : L¥(Ba(z)) — W13 (By(z))

(3.12) Hoo — T (®) = Dp - .

Consequently, @w = pu by (3.11). On the other hand, with the fact
that W1 (Bgy(z)) — L3(Ba(z)) if 3/2 < s < 3, w € W' is also a L3-
solution to (3.12) provided 3/2 < s < 3. Thus, by uniqueness, w = pu and
pu € WH$(By(z)) for any s € [3/2,3) provided B = supp1 is small. Since p
and 7 arbitrary, one has u € W1¥(By(z)) for any s € [3/2,3).

Therefore, by Sobolev embedding, we obtain u € Ng>oLi (R?) and this
implies u € ﬂqZQWli’Cq(Rg). Finally, with the elliptic estimate, we obtain
u € L™>. O

Remark 3.20. Let £, denote the set of all least energy solutions of P..
If ue %, &.(u) = cc <. Recall that £ is bounded in E with upper
bound A independent of €. As a consequence of Lemmas 3.18 and 3.19,
together with the Sobolev embedding theorem, we see that there is Cpo > 0
independent of £ with

(3.13) |ullo, £ Cse  forall u € Z,.

4 Proof of the main result

Throughout this section we suppose (Qo) and (Pp) — (Py) are satisfied for
the subcritical case and (g1) — (g2), (Qo) and (P») — (Ps) are satisfied for the
critical case, and recall that we always assume 0 in & and #'. The proof of
the main theorem will be finished in three parts: Ezxistence, Concentration,
and Ezxponential decay.

Part 1. Existence

Its proof is carried out in three lemmas. The modified problem gives us an
access to Lemma 4.1, which is the key ingredient for Lemma 4.2.
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In the sequel, denoted by a; = Wi(0),--- ,a; = W;(0), u = P(0) and
x = W(0), we remark that

Wilex) —a; j=1,---,J

(4.1) P(ex) = p
W(ex) — x
uniformly on bounded sets of x as ¢ — 0. Setting @ = (a1,--- ,ay), m =

(my,---,my), let I and 7~ be the functionals defined by

Ii(u) for the subcritical case;

(u) for the critical case,

and

_ Tz(u) for the subcritical case;
o(u) =

T (u) for the critical case,

and Joo, Joo denote the associated reduction functionals on E*. Corre-
spondingly, denote

7 for the subcritical case;
(4.2) Yoo = " ...
v, for the critical case,
and
- ~vgz for the subcritical case;
Yy for the critical case.

For notation convenience, we also denote

&2 for the critical case.

£ { #y for the subcritical case,

And our existence results are organized as

Lemma 4.1. limsup,_,yc: < 7o In particular, if 0 # 0,
lim ¢, =4 = Yoo-
e—0

Lemma 4.2. c. is attained for all small € > 0.

Lemma 4.3. %, is compact for all small e >0 in H'.
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Proof of Lemma 4.1. Firstly we show that
(4.4) lim i(l)lf Ce > Voo
E—>

Arguing indirectly, assume that lim iélf Ce < Yoo- By definition and Lemma
e—
3.16 we can choose e; € .4 and 6 > 0 such that

Do (U) < Yoo — 6
J?%f (1) <o

as ; — 0. Since (Fp), (P) and % (u) = o(1) as ¢ — 0 uniformly in u
(by (2.9) and the definition of 7), the representations of ®. and s imply
that ®.(u) > Joo(u) — 6/2 for all w € FE and ¢ small. Note also that
Yoo < Joo(ej) < MaXyef,, Too(u). Therefore we get, for all ¢; small,

5
—0> <I> > ——> _
Y Jox ;) 2 Igx Too(u) = 5 2 oo

Y

N[ O

a contradiction.

We now turn to prove the desired conclusion. We only check the critical
case because the subcritical case can be treated similarly.

Set P°(x) = p—P(z), W9 (z) = x—W(z) and P?(z) = P°(ex), W2(z) =
WO(ez). Then

(45)  Ba(w) = T3 () — Fulu) + / PO()G(ul) + / WO Juf?.

In virtue of Lemma 3.8, let u = u™ +u~ € Zj;, and set e = u™. Surely,

e € My, Zi(e)=u" and J; (e) = 7,,. There is a unique t. > 0 such

that t.e € A% and one has
(4.6) ce < I.(tce).

By Lemma 3.17 t. is bounded. Hence, without loss of generality we can
assume t. — to as € — 0. By using (3.4) and (3.9), we infer

5 el + (1) = 2(aw2) — @)
= Z;;((WE) - ZL*X(U&) — Fe(we) + Fe(ue)

+/P€0(:c)(G(|wa|) — G(Juc)))
+;/W£(w)(\we!3 ~ Juel*)
where, setting

us =tee + 7, (tee), we =tee+ he(tee), ve = u. — wy,
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(I):= /01(1 —35) (9‘"(105 + sve)[ve, ve] + WY (we + svs)[vs,v€]>ds.

Taking into account that

1
Ze(ue) — Zo(we) = FL(we)ve + / (1 — 8).Z (we + sve)[ve, ve]ds
0

and
[ PE@(Guel) = Gllach) + 5 [ WOl uf?)
/PO g(|ue|)ue - vz — /WO ) Jue| ue - Uz
/0 (1-9)9, (ug—sve)[vg,va}ds
1
—/ (1 — 8)V” (ue — sve)[ve, ve]ds,
0
setting

1
(IT) ::/O (1 —s)U(ue — sve)[ve, ve] ds,
by (3.8) one has
5 el + (1) + (1)
1
< F (we)ve + /0 (1 — 8).Z (we + sve)[ve, ve] ds

- [ Pt~ [ W2 w72

So we deduce, noticing that 0 < PY(z) and 0 < W2(x),

1 1
ol + [ (1= )W we + suo)lee v ds
(4.7) 0

< |7t + [ P@g(huch bl -l + [ W0 el o]

Since t. — to, it is clear that {u.},{w.} and {v.} are bounded, hence, by
the definitions and (2.9), (2.10),

Fe(ze) =o(1), |[[FL(z)] = o(1)

as € — 0 for z. = u., we,ve. Moreover, by noting that for g € [2, 3]
limsup/ lue|? =0,
r—00 |z|>r

32



use the assumption of 0 € & one deduces

[ w2@)* el

([ _+[ ) ) s
|z|<r |z|>r

< / (WO(@)™ Juef? + 132 / e
|| <r |z|>r
= o(1)

and analogously, by (g1),

/ PO()g Jue]) Jue] - [ve] = o(1)

as e — 0. Thus by (4.7) one has ||vc||*> — 0, that is, he(t.€) — i (toe).

Consequently,
[ PP@Gue + 5 [ WO fuf - 0

as € — 0. This, jointly with (4.5), we have
.(we) = T4 (we) +o(1) = Fy5 (ue) + o(1),

m
that is,

I(tee) = J,, (toe) + o(1)
as € — 0. Then, since

J/jx(toe) < gé%,x C?u)(( ) J;x(e) = ’7;:)(7

we obtain by (4.6)

limsupc, < hm I (t.e) = J:X(toe) < ’yZX.

e—0

Remark that, for the subcritical case, one may replace P(z), W (z), P°(z)
and WO(z) with W;(x) and WJQ(IL‘) =a; — Wj(z),j=1,---,J respectively.
With some obvious modifications, one gets limsup,_,qc. < vgz. Therefore,
we proved

limsup e < 7.
e—0

Suppose additionally &' # () (that is 0 € &), we find @ = m and u = m,

X = [, then 7o, =7, and obviously, by (4.4), we have

lim ¢; = Yoo = Vo
e—0
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Proof of Lemma 4.2. Given € > 0, let {u,} C A be a minimization se-
quence: I.(u,) — c.. By the Ekeland variational principle we can assume
that {u,} is in fact a (PS). —sequence for I. on E* (see [22, 30]). Then

Wpn, = Up, + he(uy) is a (PS).. —sequence for &, on E. It is clear that {w,}
is bounded, hence is a (C),.-sequence. We can assume without loss of gen-
erality that w, — w. = w? +w; € H#; in E. If w. # 0 then ®.(w.) = c..
So we are going to show that w. 7% 0 for all small € > 0.

For this end, take K = (k1, -+, k) > 0 and k > 0 satisfies respectively

lim sup Wj, (z) < kj, < max Wiy,

|z| =00 for the subcritical case,

kj = W;(0) j # jo,

limsup P(z) < k < max P for the critical case,
|z|—o0 R

and define
Wi (z) = min{x;, Wj(z)} for the subcritical case,
P*(z) = min{k, P(z)} for the critical case.
For the later use, we set
A={zeR®: P(z)>r or Wj(z) > Kjfor j=1, - ,J}

and A. = {x € R3: ex € A}. Following (Fy) and (P,), A. is a bounded set
for any fixed € > 0. Note that, for the critical case, k > Mmqo, S0 we infer

(4.8) R T2 <R,
And invoking Lemma 3.7, (4.8) implies 77, is attained.

Now we consider the functionals

J

(et = u1?) = Felw) = >

Jj=1

1

OF (1) = =
) -

Wf”(ew)]u\pﬁ

N

for the subcritical case and
Tk 1 _ 5 1
B ) = 5 (b~ o) — Felu) - / PE@)G(ul) ~ 5 / We () luf?

for the critical case. As before define correspondingly h¥ : Et — E—|
IF: ET — R, A%, ¢f and so on. As done in the proof of Lemma 4.1,

(4.9) lim o = 5,
where

Voo =

{ =z for the subcritical case,

~i for the critical case.
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Assume by contradiction that there is a sequence €; — 0 with w.; = 0.
Then wy, = un + he;(up) — 0 in E, u, — 0 in Ll for ¢ € [1,3), and
wp(x) — 0 ae. in x € R3. Let t, > 0 be such that t,u, € </I{_:f Then
{tn} is bounded and one may assume ¢, — ty as n — oo. Remark that
hZ (tnuy) — 0 in E and hf (tnuy) — 0 in Ll for g € [1,3) as n — oo (see
[2]). Moreover, :IV)%. (tnun + RE (tnun)) < Ic; (un). We obtain, for the critical
case,

of < IE (tntun) = BF (tntin + hE, (o))

€j

= B (Lt + 1 () + / (P, () = P2 (2)) G (It + B (1))

< I, (un) + / (P, (%) — P2 (2))G ([tutin + B, (b))

€5

=ce; +o(1)
as n — 00. And for the subcritical case, following the above arguments, one
has the same conclusion that ¢f < cc; +0(1) as n — oo.
Hence ¢f; < c.;. By (4.9), letting j — oo yields
Yoo < limsupce; <7y,
Jj—00
where 7 is defined in (4.3). However, this contradicts with v, < %, and
V& < Vg O

Proof of Lemma 4.3. Since %, C By for all small € > 0, assume by con-
tradiction that, for some ¢; — 0, £, is not compact in E. Let ul € Z,
with u), — 0 as n — co. As done in proving the Lemma 4.2, one gets a
contradiction.

Let {u,} C % such that u,, — v in E, and recall Hy = ia-V — aff — w,
by

3
Hou = Qc(2) A2 ,u— Y Qc(z)ap AL ,u+ f(e, |ul)u
k=1

one has
|Ho(un — u)|2 < ’Qs(l‘) (A(E)Unun - Aguu) |2
3
o [t (2 )

+ | f (e, [unl)un — f(ex, [ul)ul, -

And a standard calculus shows that

k k 1/6 k k 5/6

Q- (@) (AL, un = AL )| < 1Qlg unl L0 |AE,, — AL, Junl2)S
5/6
1Qluo fun — w8 |AE, | Jun — ul3j5
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By Lemma 2.6 and the fact that u,, — u in L4(R3 C*) for all ¢ € [2, 3], one
gets |Ho(un — u)|, — 0, therefore u,, — u in H'(R3,C%). O

Part 2. Concentration

It is contained in the following lemma. To prove the lemma, it suffices to
show that for any sequence £; — 0 the corresponding sequence of solutions
uj € £, converges, up to a shift of z-variable, to a least energy solution of
the limit problem.

For better description, we denote

@ — { W for the subcritical case,

&2 for the critical case.

We remark that, if #{ # 0, one may replace # with #{ in €.

Lemma 4.4. There is a mazimum point x. such that dist(y., €) — 0 where
Ye = €x¢, and for any such xe, ve(x) = us(x + x2) converges in E ase — 0
to a least energy solution of the corresponding limit equation (see (1.10) and
(1.12) respectively).

Proof. Let ¢; — 0, uj € &, where &5 = Z... Then {u;} is bounded. A
standard concentration argument (see [20]) shows that there exist a sequence
{z;} C R? and constant R > 0, § > 0 such that

liminf/ |uj|2 > 6.
I JB(xj,R)
Set
)
Then v; solves, denoting Q;(z) = Q(gj(z + ;)), A’gu] (x) = Aguj (x + x;)
and fj(z,s) = f(j(x + z;), 5),

3
(4.11) Hovj — QA2 vj+ > QAL vj = fi(x, v;])v;,
k=1

with energy

Sj(vj) = % (vaHz - HUJ-_H2> — T (vy) — /Fy(ﬂﬂ vjl)
= 0;(v;) = ©;(v;) =T;(v)) + (% fi (g [v;|* = Fj(z, |Uj!))

= G-

Additionally, v; = v in F and v; — v in L for q € [1,3).

loc
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We now turn to prove that {e;z;} is bounded. Arguing indirectly we
assume €; || — oo and get a contradiction.

Consider the critical case. Assume, without loss of generality, that
P(ejrj) — Ps and W(ejzj) — Ws. Note that m > Py and [ > W
by (P). Since for any i € C2°

3
0= lim (HO'Uj — QAL i+ QAL v — fi(x, !vj!)vj)lﬁ
k=1

= lim [ (Hov — Pyog(|v])v — W |v|v) 0,

Jj—o0
one sees that v solves
ia- Vo — afv — wv = Pyxg(|v])v + Wee |v] 0.

Therefore,

1 _ Weo ¥
Soo(v) 1= 5 (Il — o™ |) - / PooG(Jo]) — =5° / o = ...

It follows from m > Pw and | > Wy that v, < 7p_y, by Lemma 3.9.
Moreover, by the Fatou’s lemma,

jlirgo/(;fj(w,lvjl)!vaQ—Fj(% |Uj|))
>/Pooa(|11’)+é/woo [0]> = Soo(v).

Consequently, noting that f‘j(vj) =o0(1) as j — o0,

Yt < VPaoWoo < Soo(V) < T ce; =y,
a contradiction.
Similarly, consider the subcritical case for v = (vq,--- ,vy) with v} =
hmj—>oo W1 (Ej.%'j), e, Vg = limj_mo WJ(Ejl'j) and

J
= Lz — 2 i i
Soo(v) =5 (" I* = llo7I%) = ;:1 pi/]R3 Jul.

One gets,
Ya < V5 < Seo(v) <limsupce; =7z,
J—00
again a contradiction.
Thus {ejz;} is bounded. And hence, we can assume y; = €;2; — Yo.
Then v solves

(4.12) ia- Vv —afv —wv = f(yo, |v|)v.
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And we also have

So(v) = = (12 = o= |2) — / Flyo le]) > 0

| =

where g is defined by, setting 7 = (W1(yo), -+, Wi(y0)),

{ Vi, for the subcritical case,
Y0 =

7;’(yo)W(yo) for the critical case.
Furthermore, use the fact

P(&jl‘ + yj) - P(yo),
(4.13) W(ejz +y;) — W(yo),
Wieje +y;) — Wilyo), i=1,---,J

and

S0(0) = So(v) = 58500 = [ (3500 o) Iof* = Fion, o).

by Fatou’s lemma and Lemma 4.1 (apply to S; defined right below (4.11)),
we have

(4.14) Y0 < So(v) < liminf e, <limsupe.; < 7.
J—00 j—00

Now, we are ready to show lim;_, dist(y;, ¢) = 0. In fact, it sufficient
to check that yg € €. Suppose that yg € €. It is easy to see that vo > vz
Together with (4.14) and limsup,_,,, c-; < 7z (see Lemma 4.1), we would
have a contradiction. And it’s obvious that one may assume that x; € R3
is a maximum point of |u;|. Moreover, from the above argument we readily
see that, any sequence of such points satisfies y; = ¢jx; converging to some
point in € as j — oc.

In order to prove v; — v in F, recall that, by (4.14),

dim [ (GGl ol = B o) = [ (57 oD lof = P o).

By the exponential decay of v, using the Brezis-Lieb lemma, one obtains

|vj —v| ~— 0 in the subcritical case,

p1
|v; —v|; — 0 in the critical case,

where pp is the smallest power in the subcritical case (see (Pp)). Then, by
(2.4), Jvi — v¥[p — 0 with

p1 for the subcritical case;
] 3 for the critical case.
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Denote z; = v; — v. Remark that since {z;} is bounded in F and z; — 0 in
LP, one sees z; — 0 in LY for all ¢ € (2,3). The scale product of (4.11) with
z;f yields

<v;-r,z;-r> = o(1).

Similarly, using the exponential decay of v together with the fact that z]i —0
in Lj  for g € [1,3), it follows from (4.12) that

<v+,z;f> =o0(1).

Thus
Izl = o(1),
and the same arguments show
1257 [l = o(1),
we then get v; — v in F. O

Part 3. Exponential decay

See the following Lemma 4.6. For the later use denote D = i« - V, and for
u € 2., write (2.8) as

3
Du = afu+ wu+ Qc(z)A2 ,u — Z Q=(x) o AF ju+ flex, Ju|)u.
k=1
Acting the operator D on the two side of the representation and noting that
D? = —A, we get
Au = a’u — (w+ Qg(x)Agyu(a:) + f(ex, ]u\))2 u
— D (f(ex, u]))u— D (Q-A2,) u

3 3
(4.15) + Z (Q5A§7u>2 u—+ Z D (QEAISC’U) apu
k=1 k=1
3
+2i Y QAL Opu.
k=1

With the fact that
(4.16) Alu)? = @Au + ulAa + 2 |Vul?
and o, - u = apu - u one deduces
Alul? = 2a% [uf? = 2 (w + Qu(2) A%, (&) + (e, [u]))? ful

+2 i (QEAQU>2 |u|2 + 2i 23: Z 0; (QEAQH) Qo - U
k=1

k=1 1<j<3
J#k

3
+ 4932 QsAguaku 42| Vul?.
k=1
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In addition, setting
O(x) := max{‘Qg(:z)Asu(@’ tk=0,1,2, 3} ,

fH(@) = max {|V(Qe(@) AL, (@) |+ k = 0,1,2,3},

one has 5

2i Z Z 0; <Q5A§7u> ajagu - | < e fHz) [ul®

k=1 1<j<3
7k
and
3
]4%2 QAL O 1| < eaf(a) (|9 + Jul’)
k=1

Hence

2
A7q¢\22(2az—2(w+Q6 w+ flez, |ul)) +22<Qa ) )U\z
= af2 @) [u]? = e2f2(@) (IVul® + [ul?) +2|Vul.
Observe that, by (3.10), for € > 0 small enough,
C2 |f€0’ < 2>
hence

3
A|u\222<a2_(w+Qg u+ flez, [ul)) +Z( )2>|u|2

(4.17) r

— e fl (@) [ul® = eaf2(x)|ul.

This together with the regularity results for w implies there is M > 0 satis-

fying
Alu)? > =M |uf*.

By the sub-solution estimate [18, 25|, one has

(4.18) ju()] < Co< /B P dy> 1/2

with Cy independent of z and u € .Z., ¢ > 0 small.

Lemma 4.5. Let v, and A’gus for k = 0,1,2,3 be given in the proof of
Lemma 4.4. Then |ve(z)] — 0 and ’fl’;us (x)’ — 0 as |z| — oo uniformly in
e > 0 small.
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Proof. Arguing indirectly, if the conclusion of the lemma is not held, then
by (4.18), there exist § > 0 and x; € R® with |z;| — oo such that

1/2
s<tu@<al [ k)"
1(xj

where €; — 0 and v; = v.,. Since v; — v in E, we obtain

5§CO</Bl(xj) ‘Uj|2)1/2
§CO(/|UJ'_U|2)1/2+CO(/B(

1\T;

1/2
o) " =0,
)

a contradiction. Now, jointly with (3.10), one sees also ‘fl’;ve(w)’ — 0 as

|x| — oo uniformly in & > 0 small.

Lemma 4.6. Let v. be given in the above Lemma. Then there exist C > 0
such that for all € > 0 small

|ue(2)] < Cexp (—w/2 | — ),

2 2

where w = Va® — w?.

Proof. The conclusions of Lemma 4.5 with (4.17) allow us to take R > 0
sufficient large such that

A \UE\Q > (a2 — w2) ]1)5]2

for all x| > R and ¢ > 0 small. Let I'(y) = I'(y,0) be a fundamental
solution to —A+ (a2 - wg). Using the uniform boundedness, we may choose
that |ve(y)|* < (a® —w?)I'(y) holds on |y| = R for all € > 0 small. Let
ze = vl — (a? —w?) . Then
Az. = A — (a® - w2) AT
> (a® — w?) <|v€|2 — (a® = w?) F) = (a* — w?) z.

By the maximum principle we can conclude that z.(y) < 0 on |y| > R. It is
well known that there is C’ > 0 such that I'(y) < C’ exp(—w |y|) on |y| > 1,

we see that
v ()] < C” exp(—w |yl)

for all y € R? and all € > 0 small, that is
|ue(z)] < Cexp(—w/2|z — zc|)

completing the proof. O
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Now, with the above arguments, we are ready to prove the main Theo-
rems

Proof of Theorem 1.1. Going back to system (1.9) with the variable substi-
tution: z — x/e, Lemma 4.2 and Lemma 3.18, shows that, for all ¢ > 0
small, the subcritical system (1.9) has at least one least energy solution
ue € Whe for all ¢ > 2. In addition, if assumed W; € CHH(R?), with (4.15)
and the elliptic regularity (see [18]) one obtains the classical solution, that
is, the conclusion (i) of Theorem 1.1. And Lemma 4.3 is nothing but the
conclusion (ii). Finally, the conclusion (iii) and (iv) follows from Lemmas
4.4 and 4.6, respectively. O

Sketch of Proof of Theorem 1.2. Lemma 4.2 jointly with Lemma 3.19, shows
that, for all ¢ > 0 small, the critical system (1.9) has at least one least energy
solution u € ﬂngVVli’cq N L*, that is, the conclusion (i) of Theorem 1.2. And
the rest conclusions follow the same lines in proving Theorem 1.1. O
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