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ABSTRACT. We study the set of solutions of the nonlinear elliptic system

—Au+ Au = M1u3 + ,3’1)211, in Q,
(P) —Av+ Ayv = p2v3 + Bulv in Q,

u,v >0 in Q, u=v=0 on 09,

in a smooth bounded domain @ ¢ RY, N < 3 with coupling parameter 3 € R.
This system arises in the study of Bose-Einstein double condensates. We show that
the value 8 = —,/p1p2 is critical for the existence of a priori bounds for solutions
of (P). More precisely, we show that for 8 > —,/p1p2, solutions of (P) are a priori

bounded. In contrast, when A1 = A2, u1 = p2, (P) admits an unbounded sequence
of solutions if 8 < —/u1p2.

1. INTRODUCTION

In this paper we study existence and a priori bounds for solitary wave solutions of
the following two-component system of nonlinear Schrodinger equations (also called
Gross-Pitaevskii equations):

_i%q)l = %A(}l — Vi (x)®1 + p1|®1]?®1 + B]|P2|?®1 for y € Q,t >0,
(1.1) _i%q)? = 57 A%y — ?/2(50)@2 + po|@2|? @y + B]®1|°®, for y € Q,t >0,

®;=®(y,t) eC, j= 1,2,

®i(y,t) =0 for ye oN,t>0,j=1,2.

This system models a binary mixture of Bose-Einstein condensates in two different
hyperfine states |1) and |2) (see [7]). Physically, ®; and ®2 are the corresponding
condensate amplitudes, @ C RV is the domain for condensate dwelling, h is the
Planck constant divided by 27, m is atom mass, and V; is the trapping potential for
the j-th hyperfine state. Moreover, u; and 3 are the intraspecies and interspecies
scattering lengths which determine the interaction of the states.

Throughout the paper, we assume that ) is a smooth bounded domain and that
i >0, 7 = 1,2. The latter condition implies that the self-interactions of the single
states |j) are attractive. The sign of B determines the interaction of state |1) with
state |2). When 8 < 0, this interaction is repulsive (as considered e.g. in [26]). In
contrast, when 8 > 0, the interaction is attractive.
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~To obtain solitary wave solutions of the form @ (z,?) = eMby(z), ®o(z,t) =
e ty(x), system (1.1) is reduced to the following elliptic system for u,v:

B2 nq, — (M +V)u+ piud + Buv? =0 in Q,
(1.2) g—mAv — Mo+ Vo)v+ pev® + fuv =0 in 9,
u,v>0 in Q, u=v=0 on 9N.

Motivated by recent experimental and theoretical eximinations of double condensates
(see [7,11-13, 26]), system (1.2) has been attracting fastly growing attention. In
[17], the existence and asymptotic behavior of least energy solutions is studied in a
bounded domain with constant trapping potential, as A — 0. In [18], the asymptotic
behavior is studied in RN under the influence of nonconstant trapping potentials.
When Q = RY | least energy and higher energy bound states of (1.2) are investigated
in [1,2,16,20,24,29).

The purpose of this paper is to analyze the impact of the parameter 3 (the inter-
species scattering length) on a priori bounds and the existence of multiple solutions
of (1.2). We first consider a priori estimates for the following more general version of
(1.2):

—Au = f(z,u,v) in Q,
(1.3) —Av = g(z,u,v) in Q,

u,v >0 in Q, u=v =0 on 9.
Here f and g are continuous in  and smooth in u and v, and they satisfy the following
asymptotic conditions at +oo:

(1.4) f(@,u,v) = foolu,v) + hi(z,u,v), g(u,v) = goo(u,v) + ha(z, u,v)
where
(1.5) foo(t,0) = pu® + Buv®,  goo(u,v) = pgv® + Bu’v,
and
hi(z,u,v) . . .
(1.6) 3 — 0 uniformly in z € Q for i = 1,2 as max{u,v} — oo.

(max{u,v})

Our first result is the following.

Theorem 1.1. Assume that (1.4)-(1.6) holds. Then if N < 3,8 > —./p12, there
exists a constant C = C(B, u1, p2, Q) such that for any solution (u,v) of (1.8) we
have

[ull o @), lvllzee(@y < C

The proof of Theorem 1.1 relies on Liouville type theorems which we state in
Section 2 below. A priori bounds for systems like (1.3) have been studied extensively
in recent years, see [5,6,22,23,31] and the references therein. With the exception
of [22], in all these papers, it is assumed that the limiting nonlinearity (foo,goo) is
cooperative (or quasimonotone), i.e,

0foo(u,v) >0 0900 (u,v) >0,

1.
(1.7) Ov =7 Ou =
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For cooperative systems, the maximum principle still works. So one can use various
versions of the moving plane method to prove Liouville theorems and a priori esti-
mates. In particular, when § > 0, Theorem 1.1 follows from results in [6] and [23].
In contrast, our system is non-cooperative if f < 0 and therefore the methods in the
above-mentioned papers fail. To our knowledge, the result here seems to be the first
in obtaining a priori bounds via Liouville theorems for a non-cooperative system. As
discussed in [22, Introduction|, there are also other methods — not relying on Liou-
ville theorems — to obtain a priori bounds. In particular, the method in [22] works for
non-cooperative systems but requires growth restrictions on the nonlinear part which
are not satisfied here.

We may assume that § < 0 from now on.

In our second result we show that the assumption on 8 in Theorem 1.1 is optimal.
More precisely, we consider the fully symmetric case A\; = A9, 1 = uo and V3 =V, =
0. Then, by a rescaling, (1.2) becomes

—Au+u=u®+ Bviu in Q,
(1.8) —Av+v =03+ puv in Q,
u,v>0 inQ, u=v=0 on Of).

We note that the critical value —,/uip2 corresponds to 8 = —1 in (1.8). We also
point out that (1.8) is invariant under the reflection (u,v) = o(u,v) = (v,u). This
invariance is essential for the following multiplicity result depending on §.

Theorem 1.2. Let N < 3.
(a) If B < —1, then system (1.8) admits a sequence (uk,vg)x of solutions with

lukllLoo (@) + vkl Loo () — 00-

(b) For any positive integer k there exists a number B > —1 such that, for 8 < Gy,
system (1.8) has at least k pairs (u,v), (v,u) of solutions.

We add some comments.

Remark 1.1. (i) For § > —1, every positive solution of the Dirichlet problem for
the scalar equation —Awu 4 u = u? in  gives rise to a diagonal solution ﬁ(u, u) of
(1.8). In contrast, it will be evident from our construction that the solutions obtained
in Theorem 1.2 have different components u,v. Moreover, for § # 1, system (1.8)
does not admit nontrivial solutions (u,v) with u # v and u < v or v < u (as is easily
seen by multiplying the first equation of (1.8) with v, the second equation with u and
integrating). Consequently, all solutions obtained in Theorem 1.2 have intersecting
components.

(ii) The proof of Theorem 1.2 relies on a variant of Liusternik-Schnirelman theory on
a submanifold M of Nehari type (depending on ) of the underlying energy space
H(9) x H} (). The importance of this manifold is given by the following properties;
it contains all solutions of (1.8), it is invariant under the reflection o, and o has no
fixed points in M if g < —1.
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(iii) The multiplicity statements in Theorem 1.2 carry over to the corresponding prob-
lem in the full space RY if compactness is restored by restricting to radial functions.
More precisely, with essentially the same proof we can show that, for § < —1, sys-
tem (1.8) admits infinitely many radial bound state solutions if O = RV, and the
number of radial bound states tends to infinity as 6\, —1, 8 > —1.

(iv) If Q@ = B;(0) is the unit ball in RV, a different approach based on a corresponding
parabolic problem shows the existence of radial solutions of (1.8) with a prescribed
number of intersections of u and v, see [30].

We briefly describe the organization of the paper and the line of arguments in our
proofs. In Section 2 we prove the Liouville theorems for the limit system

(1.9) —Au = foo(u,v), —Av = foo(u,v)

which are the basis for the a priori estimates asserted in Theorem 1.1. For N = 1,2,
these Liouville theorems are rather simple consequences of nonexistence results
for solutions of the differential inequality —Aw > w? obtained in [8, 14, 15]. The
case N = 3 is essential more involved, since —Aw > w3 admits solutions if the
underlying domain is a half space in R?, see [15]. In this case we proceed in two steps.
Assuming by contradiction that there exists a nonnegative, nontrivial solution to
(1.9) satisfying Dirichlet boundary conditions, we use a doubling lemma of Pol4¢ik,
Quittner and Souplet [21], the boundary Harnack inequality of Berestycki, Caffarelli
and Nirenberg [3] and comparison arguments to obtain a uniform gradient estimate
in terms of boundary derivatives, see Lemma 2.3 below. Then we apply a variant of
Pohozaev’s identity in a family of unbounded cylindrical subdomains Z,, » > 0 in
]Ri. The gradient estimate obtained before shows that the corresponding boundary
integrals over 0Z, exist, and the identity leads to a differential inequality in r» which
forces the solution to vanish everywhere. This procedure is new and should be useful
for other elliptic systems. Indeed, the procedure is even new for scalar equations,
and in some cases it leads to better results than the ones based on the moving plane
method (see the references [5,6,23,31] mentioned earlier). An example has already
been given by Zou [32, see p. 424] who adapted our strategy in order to prove a
Liouville type result for a quasilinear Dirichlet problem in a half space. In Section 3
we complete the proof of Theorem 1.1 by a standard blow up argument. Finally,
Section 4 contains the proof of Theorem 1.2.

We add a general remark concerning the structure of the elliptic systems (1.8)
and (1.9). These systems are of gradient type, so they can be written in the form
Au = 0y F(u,v), Av = 0,F(u,v) with suitably potential functions F : R? — R.
At first glance this might lead to the expectation that all methods available for
scalar problems can also be used for this type of systems. As we already have
discussed in the case of the moving plane method, this is not true. Moreover,
although Pohozaev type identities play a major role both for scalar problems and
gradient type systems, the true difficulty in the context of Liouville type theorems
is to derive asymptotic estimates which allow to state the identities for suitably
chosen subsets of the domain and to use the infomation obtained from it. We also
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note that the variational structure of (1.8) has some similarities with the one of a
scalar equation, but there are also crucial differences. In particular, we point out
the subtle dependence on 3 concerning the location of fixed points of 0. Avoiding
fixed points is of major importance in the context of general Liusternik-Schnirelman
theory. The situation is much simpler in the scalar case; here Liusternik-Schnirelman
theory is applied to the simple reflection u — —u which only admits the fixed point
u = 0. We note that the difference in the variational structure between gradient
systems of the type (1.8) and scalar problems has also been pointed out in [24, p. 205].

Acknowledgment. The research of the second author is partially supported by
an Earmarked Grant from RGC of Hong Kong.

2. LIOUVILLE TYPE THEOREMS

As usual, we put RY := {z € RV : zy > 0}. In this section we will prove the
following Liouville type theorems.

Theorem 2.1. If N <3, 8> —,/u1jiz, and (u,v) is a classical solution of the system
—Au = pud + Botu in RV,

{ —Av = pgv® + Buv in RV

with u > 0 and v > 0, then (u,v) = (0,0).

Theorem 2.2. Let 8 > —./pip2.
(i) If N < 2 and (u,v) is a classical solution of the system

(2.1)

—Au = pud + foiu in ]Rf,
(2.2) —Av = ppv® + Buv in Ril,
u,v >0 in]Ri[, u=v=20 ona]Rf,
then (u,v) = (0,0).
() If N =3 and (u,v) is a bounded classical solution of (2.2), then (u,v) = (0,0).

As we shall see below, Theorem 2.1 is a rather direct corollary of a known nonexis-
tence result for supersolutions. For Theorem 2.2, the same is true only in case N < 2.
We now recall these nonexistence results.

Theorem 2.3. (i) Suppose that 0 < q¢ < % ifN>3,0<g<oifN=1,2 and
suppose that w € C2(RY) is a nonnegative function satisfying
—Aw > w? in RN .

Then w = 0.
(i) Suppose that 0 < q < % ifN>2 0<gq<o0if N=1, and suppose that

w E CQ(@) is a nonnegative function satisfying

—Aw > wi? z'an, w=0 onaRf.
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Then w = 0.

Part (i) of this theorem is due to Gidas [8]. Part (ii) is due Berestycki, Capuzzo-
Dolcetta and Nirenberg [4] for ¢ > 1, whereas a more general result including the
statement was later obtained by Laptev [14,15].

Proof of Theorem 2.1. If 3 > 0, then —Au > pu® and —Av > pov® in RY | so that
@ = \/p1 u satisfies —Ad > %3 inRY and ¥ = V12 v satisfies —AD > 73 in RV . Hence
u=14=0and v =9 =0 by Theorem 2.3(i).

Next we assume that —,/uipe < 8 < 0. We put

(2.3) a= (@)%

M1
Then we have the following inequality: there exists vy > 0 such that

(2.4) a(pu® + Buv?®) + pov® + Buv > yo(au + v)? for all u,v > 0.

To see this, we let ¢ = 7 and consider the function

p1 + Bt + t(uat? + B)
(a+1)3

Then p(0) = p1 > 0 and p(t) — pe > 0 as t — co. We show that p has no positive
zero. Indeed, since —\/p1p2 < 8 <0,

(+1)°p(t) > apr — Vimpat®) + t(ust® — /i)

=t () (= (2)°) =l () T ()

>0 for t > 0.

t— p(t) := o ) t>0.

Hence Itn>l(I)l p(t) > 0, and from this (2.4) follows.
We now put z = au + v. Then (2.4) shows
(2.5) —Az > yy2* in RY,

so that 7 := \/ypz satisfies —AZ > #3. Since # is nonnegative, we conclude again from
Theorem 2.3(i) that 2 = 0. Hence z = 0 and therefore ©w = 0 and v = 0. O

Part (i) of Theorem 2.2 can be deduced from Theorem 2.3(ii) similarly as in the
proof of Theorem 2.1. The case N = 3 is much more delicate since the differential
inequality —Aw > w? admits positive solutions in R? , see [15].

The remainder of this section is devoted to the proof of Theorem 2.2(ii). We first need
an a priori singularity and decay estimate for (possibly) singular solutions. The proof
of the next Lemma is modeled on an argument of Pola¢ik, Quittner and Souplet [21].

Lemma 2.1. There is a constant C1 > 0 such that for every solution (u,v) of

{ —Au = ud + fvu,

2.6
(2.6) —Av = pgv® + fuv

. 3 : 3
in Ry, u,v >0 in Ry
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we have

(2.7) [u+ v+ |Vul? + |Vo|2](z) < % for every z = (z1,72,73) € R,
3

Proof. Suppose by contradiction that there exists a sequence of solutions (uy, vy ), of
(2.6) and a sequence of points 2™ = (27,25, z%) € R3, n € N such that

M, (z"™)xy > 2n
for all n, where the functions M,, : ]Ri — R are defined by
(2.8) My (2) = [tn + v + |Vtn|2 + |Vog|2](z), 2 €R3.

By the Doubling Lemma of Pold¢ik, Quittner and Souplet [21, Lemma 5.1] there exist
another sequence (y"), C R3 such that

M, (y")ys > 2n and My (z) < 2M,(y"™) for z € By, (y"),
where )\, := [M,,(y")] . We now define
U, On : Bp(0) = R, Un (1) = Mun (" + Anz),  On(z) = Apop(y™ + Anz).

Then 4y, v, are nonnegative functions solving

(2.9) { — Ay, = i1 (@in)* + B(n) i, || <,
— Ay = pa(0n)® + Blin) 0y, |z| < n.

Moreover,

(2.10) [, + B, + |Viin|? + [Viin|3](0) = 1

and

max [iiy, + Ty + |Viig|2 + |Vin|2] < 2.
B, (0)

By standard elliptic estimates, we deduce that a subsequence of (@, U, ), converges in

CL.(RY) to a solution (u,v) of (2.1) on RY which is nonnegative in both components.

Since
1 1
[u+v+|Vu|2 +|Vv|2](0) =1

by (2.10), (u,v) is a nontrivial solution. This contradicts Theorem 2.1. O

Lemma 2.2. Let N = 3. Then there is a constant Co > 0 such that, for every
solution (u,v) of (2.2) and every z = (z1,32,13) € R,

(2.11) w(z) < C2v/Ogyw(z1,72,0),
where w = u + v.

Proof. Tt clearly suffices to show that, for some Cy > 0, every solution (u,v) of (2.2)
and every x € Ri we have

(2.12) 2(z) < Cor/Opy2(x1, 29, 0),
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where z = au + v and « given by (2.3). Suppose by contradiction that there exists a
sequence of solutions (uy,vy)n of (2.2) and a sequence of points 2" = (27,25, 25) €
]Ri, n € N such that for z, := au, + v, we have

zn(z") > n \/Bmszn(w?,xg, 0) for all n.
We put A, m, y" = (27, 2%,0), and we consider the rescaled functions
Up,, Up - ]R+ — R, Un () = Apun(y"™ + Anx), () = Apon(y"™ + Anx)
and Z, = adl, + . Then 4y, 0, solve again the system (2.2), and

(2.13) V02370 (0) = Apy/ Oy 2n(a?, 23, 0) <

Moreover, for t, := A\, 'z3 and a" := (0,0,t,) € ]R3 we have z,(a™) = 1, so that
t, < Oy for all n by Lemma 2.1. We put 7 = min{ 5 3T T6 02} and consider
1

1
n

B, ={zeR : |z—a" <7t}

For z € B, we have |z| > t, — 72 = t,(1 — 7t,) > t,(1 — 7Cy) > %‘ and therefore

|Vz,(z)| < (tn)2 = 8%3 by Lemma 2.1. From this we conclude that
8C? 1
Zn(z) > Zn(a") — ( t;) 2=1-8Cir>5 forz€B,
We now define the comparison functions
t2 1 1
RS\ {£a"} 5 R = Tn( = )

For every n, g, is a harmonic function which vanishes on R? and is bounded above
by % on 0B,. On the other hand, 2, satisfies —AZ, > 772 > 0 in Ri with 7
as in (2.4). Moreover, 7, is bounded below by 1 on 0B, and vanishes on OR? .
Consequently, the functions ¢, := z, — g, satisfy

~Ap, >0  inR3\B,,
©n >0  on O(R3 \ By),
lim inf ¢, = liminf z, > 0.

|z|— o0 |z|— 00

3 3
mER+ .’L‘ER+

Since ¢, cannot attain a negative minimum in Rii \ B, by the maximum principle,
we conclude that ¢, > 0 and therefore z, > g, in ]Ri \ Bj,. We thus obtain
Tt2

2
—_n (—) =T independently of n,

81-3§n(0) Z amggn(o) = 2 12

contrary to (2.13). The proof is complete. O
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Lemma 2.3. Let N = 3, and let (u,v) be a bounded solution of (2.2). Then there is
a constant C3 > 0 (possibly depending on u,v) such that, for every r = (x1,x9,23) €
]R3

=+

1

(2.14) |Vu(z)| + |Vv(z)| < C3min{l, x—}\/awsw(xl,xg,()),
3

where w = u + v.

Proof. Let x € R‘:’_ be fixed. We distinguish two cases, and we point out that the
constants C5,Cly,... chosen below are all independent of .

Case 1: z3 > 1. Then we consider the rescaled functions @, v, : ]R?’,_ — R defined
by

a(y) = zzu((z1,22,0)+x3y), 9(y) = z30((21, 2, 0)+23y) and w(y) = a(y)+o(y).

Since 1, ¥ solve again the system (2.2), Lemma 2.1 implies that

1
(2.15) w(y) <20 whenever |ys| > 3"

We put e3 = (0,0,1) € R} and Qy = {y € R : |[y—e3] < %} Moreover, we note
that

(2.16) —Au = fi(y)a, and — AD= fo(y)o in Qo,
where fi = p1%? + 89? and fo = pev? + Bu?. By (2.15), we have
(217) |f1‘, |f2| S 04 in QQ.

Therefore, using (2.15) together with the standard estimate [10, Theorem 3.9] for
solutions of the Poisson equation, we infer that

(2.18)  [|Va(es)| < Cs( sup a(y)+ sup |fi(y)a(y)]) < Cs sup a(y)

ly—es|<7 ly—es|<3 ly—es|<%
and similarly
(2.19) |Vi(e3)] < Cs sup  (y).
ly—es|<}

Using (2.16), (2.17) and the Harnack inequality (see [10, Theorem 8.20]), we also infer
that

(2.20) sup u(y) < C7 (es), sup 9(y) < C79(es)
ly—es|<% y—es|<jy

Combining (2.18), (2.19), (2.20) and Lemma 2.2, we obtain
|V’&,(63)‘ + ‘V6(63)| S Cg ’u~)(€3) S Cg AV4 833’&)(0).

We conclude that

Vute)] + Vo(e)] = 5 (1Vides) + 950 ) < 33 /0ri0)

(2.21) = 9\/8I3w(:1:1,x2,0).

QO§M|H
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Case 2: 0 < z3 < 1. We note that u and v solve the linear equations
(2.22) —Au=gi(y)u, and — Av=go(y)v in ]Ri,

where g1 = p1u?+4v? and gy = pov?+pu?. Since u and v are bounded by assumption,
the functions g1, g2 are also bounded in ]R:j_. Since u, v are classical solutions satisfying
Dirichlet boundary conditions on BIRi’_, standard estimates up to the boundary for
solutions of the Poisson equation (see e.g. [10, Theorem 4.16]) yield

(2.23) [Vu(z)] < Cro( sup u(y)+ sup |gi(y)u(y)]) < Cii sup u(y).

ly—x|<3 y—z|<3 ly—x|<3
and
(2.24) |[Vo(z)] < Ci11 sup v(y).
ly—z|<3

Moreover, applying the Harnack inequality up to the boundary of Berestycki, Caf-
farelli and Nirenberg [3, Theorem 1.3] to (2.22), it follows that

(2.25) sup u(y) < Crou(x1,29,1) and sup v(y) < Crav(x1,29,1).
ly—z|<3 ly—z|<3

Combining (2.23), (2.24), (2.25) and Lemma 2.2, we obtain

(226) |V’LL(.CC)| + |V’U($)| S 013 AV 8m3w(x1,a:2,0).

Combining (2.21) and (2.26), we conclude that
|Vu(z)| + |Vv(z)| < (Cy + C13) min{1, }\/E)msw z1,%2,0 for all z € RS,
Now the claim follows with C5 := Cg + Clg. O

The following lemma, is related to a Pohozaev type identity.

Lemma 2.4. Let N = 3. For r > 0 consider the set Z, = {(z',t) : ' € R?, |2'| <
r, t > 0} C R, whose boundary consists of the two parts Cr = {(a',t) : z' €
R?, |[z'| =7, t >0} and D, = {(2',0) : 2' € R?, |z'| < r}. Let v denote the outer
unit normal vector field on C,. Then

(2.27) / [(Dayu)? + (B, 0)?] dptp = 2 / [(8y1) (Days) + (Byv) (Dayv) dps

for every r > 0 and every solution (u,v) of (2.2).

Here and in the following, u denotes the k-dimensional Hausdorff measure.

Proof. We use the fact that (2.2) is a gradient system, i.e. it can be written as
Au = 0y F(u,v), Av = 0,F(u,v) with

F:R? 5 R F(u,v) = A B2 §u2112.

4 4
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For r,s > 0, consider the sets

Z:={(,t) : &' €R?, |2'| <71, 0<t < s} C Zy,
Cs:={(a',t) : 2’ €R?, |2/| =7, 0<t<s}CC, and
Di:={(z,s) : o' € R, |2'| < r}.

Multiplying the first equation of the system with J,,u, the second with 0,,v and
integrating over Z;7, we get

p [Au Oyau + Av Ogyv] dz = . [0 F (1, 0)0pyu + Oy F(u, v)0p,v] dz

(2.28) = /s Oz F'(u,v) do = F(u,v) dus — / F(u,v) dug = F(u,v) dus

Dg r D3

since u = v = 0 on OR® and thus F(u(z),v(z)) = 0 for z € D,. On the other hand,
by Green’s formula,

p [Au Opgu + Av Oy,v] do = /CS[((?,,U)(BMU) + (0yv)(035v) dp2 + DS[(BMU)2 + (Og5v)?] dpa
(2.29) - / [(Dag0)? + (D, 0)?] dpt — / [VuVoy,u + VoVa,v] dz,
” Z;
whereas

1
(V¥ + VoVig] dz = | / Oay[[Vul? + [Vo]?] do

Z;? Zr
1 1
(2.30) _! / (Vul? + [Vol?] dpy — / (O 0)? + (Ouy0)?] .
2 /g 2 /b,
Combining (2.28)- (2.30), we obtain
1
- /D (Org)? + 02,0 iz = [ [(011)(05,0 + (000) (01 i

4 [ (@ + (00,0~ 9P +1¥0) — Flu,0))
D

Passing to the limit s — oo (for fixed » > 0) and using the decay estimates given in

Lemma 2.1, we get

1

2 DT[

8
T

(Orgw)? + (B30)”) dpo = / [(0yu)(Oz5u) + (8,v)(0z3v) dpa,
Cr
as claimed. 0

Proof of Theorem 2.2(ii) (completed).
Let N = 3, and suppose by contradiction that (u,v) is a nontrivial bounded solution
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of (2.2). Put h(r) = [}, [( Oz 1) + (0p3v)?] dyg and S, = {(2',0) : ' € R?, |2'| = r}.
Then (2.27) and Lemma 2.3 imply

h(r) = / [0y ugsu + 0,004, dug < 2/ [|[Vul? + |Vo|?] dus

T

<202 / Orsw(z',0) ( / min{l,t—2}dt> dx'
|z’ |=r

1
< 014/ a:vs U+ U) dpy < C'15[/11 / [ wsu wsv) ] dlu'l) ’
S C16 rh’(r).

It follows that (012)27" h2(( )) < 0, which implies that g(r) := (Cl.?g)z + h( ) is nonin-

creasing in r > 0. However, g(r) — oo as 7 — oo, which yields a contradiction. The
proof is finished. O

3. A PRIORI BOUNDS IN THE CASE (8 > —/u1/42

In this section we complete the proof of Theorem 1.1, and we fix 8 > —,/u1 2. We
proceed by contradiction, assuming that there is a sequence of solutions (uy,v,) to
(1.3) with

3.1 - — 00.
(3.1) rgggun(x)-i-glggvn(x) +00 as n — 0o

We follow a blow up procedure introduced by Gidas and Spruck [9] for scalar equations
which has already been generalized to elliptic systems, see e.g. [6] and [5]. Since the
method is standard, we only sketch the argument. Without loss of generality, we may
assume that

(3.2) M, = I;leaacun(x) > I;’léi.()z(’un(x)

Let z, € Q satisfy un(zn) = M,. Now we perform a rescaling, setting 2, = {y €
RY : 2, + - ~ € Q} and defining functions Uy, Vy, : @, — R by

un(Tn + 37-) Un(Tn + 37)

3.3 U, = , \ % = for y € Q.
(3-3) n(Y) M, n(Y) M, ) n
Then
(3.4) 1:= max Up(y) > max Va(y),
and (U,, V,) solves the rescaled problem
h ‘TTL + L’ un7 Un
—AU, = U3 + BU, V2 + i Mo ) in O,
Mn
3.5 ho(zp + 7%, Un,v
(3:5) —AV,, = iV + BV, U2 + 2(en ﬁg nrtn) in Q,,
n

U,=V,=0 on 0€),.
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Using (1.6), we see that

hi(xaunavn)
3.6 sup ——————
( ) meg Mg

Passing to a subsequence if necessary, we consider two cases.

-0 as n — ocQ.

Case 1: M,d(z,,00) — +oco. In this case, €2, approaches RY in the sense that

any compact subset of R is contained in [ €, for n large enough. Using elliptic
m>n

regularity theory as in [5,6], we may assume that (Up,V,) — (U, Vo) uniformly on

compact subsets of RN where (Up, V) is a solution of

(3.7) —AUy = U + BUGV, —AVo =V +pUVe  inRY
with 0 < Up(y) <1, 0 < Vy(y) < 1 for y € RN and Uy(0) = 1. This is impossible by
Theorem 2.1.

Case 2: d,, := M,d(z,,00) — dy > 0. In this case we consider ,,U, and V, as
before and let y,, € 92, be a point where

lyn| = dist(0,00,) = dp.-

Rotating €2, suitably, we may assume that y,, = t,en, where ey = (0,...,0,1) is the
n-th coordinate vector and ¢, = —d, — —dp as n — oo. In this case, {2, approaches
the half space H := {x € RY : zx > —dy} in the sense that Q,,N Br(0) — H N Bg(0)
for every R > 0 with respect to the Hausdorff distance. As in [5,6,9] we may now
pass to a subsequence such that (U, V,,) — (Uy, Vp) uniformly on compact subsets of
RY , where now (Up, Vp) is a solution of the following limiting problem on H.

—AUp = mUg + BUVG in H,
(3.8) —AVy = ua V3 + UV, in H,
UO = V() =0 on OH.

Moreover, 0 < Up(y) <1, 0 < Vy(y) < 1 for y € RY and Uy(0) =1 (a posteriori this
implies that dy > 0). This is impossible by Theorem 2.2.

Since in both cases we have come to a contradition, the proof of Theorem 1.1 is
complete.

4. MULTIPLE POSITIVE SOLUTIONS IN THE SYMMETRIC CASE

In this section we prove Theorem 1.2. Throughout this section, we assume that
M =X =1,p =p=1and 8 <0. We put H = H}(Q) x H}(), and we consider
the energy functional E € C?(#,R) defined by

1 1 p
Bu0) = 50l + ol?) = 7 [ (w1 + ot do = § [ ue? o

Here and in the following, u* = max{u, 0}, v~ = —min{u,0} and ||u||* = [,(|Vu|>+
|u|?) dz for u € H(Q2). Moreover, for a function u € L%(Q2), we denote by |u|s the
usual L-norm of u. We are interested in nontrivial critical points (u,v) of E. These
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are critical points with 4 # 0 and v # 0, as opposed to semitrivial critical points
which are of the form (u,0) or (0,v).

Lemma 4.1. Every nontrivial critical point (u,v) € H of E is a classical solution of
(1.8).

Proof. A critical point (u,v) € H is a weak solution of the system

—Au+ (1= BvHu = (uh)? in Q,
(4.1) —Av + (1 - pu’)o = (v7)° in Q,
u=v=20 on 0f).

Multiplying these equations with ™~ resp. v~ and integrating, we get

—2 N—12 — (4 — —2 a2 [ (2
/Q|Vu|+/9(1—ﬂv)|u|—O—/Q|V'u|—|—/n(1 Bu2) o 2.

Since 8 < 0, we conclude that u,v > 0, and therefore (u,v) is a weak solution of the
original system in (1.8). By standard elliptic regularity, (u, v) is a classical solution. If
u #Z 0 and v #Z 0, we conclude that u,v > 0 in {2 by the strong maximum principle. [

Next we put

2 29 A
M:{(U,U)E’H, u,v # 0 ||U|| — B [quv —fQ|u+| ,}

[v]|* = B [ u?o® = [q v |*.
= {(u,v) € H, u,v # 0| OE(u,v)u =0, 0,E(u,v)v =0}
Clearly, all nontrivial critical points (u,v) of E are contained in M.
Lemma 4.2. (i) M is a C%-submanifold of H of codimension two.
(ii) If (u,v) is a critical point of the restriction Exq of E to M, then (u,v) is a
nontrivial critical point of E.
(iii) E(u,v) = 1(|ull® + [[0]*) for (u,v) € M.
(iv) Epq : M — R satisfies the Palais-Smale condition.
Proof. (i) The Sobolev embedding H{(Q) < L*(f2) implies that for (u,v) € M we
have

(4.2) Clull* > [ulz > ul>  and  Cllv[li > [v|1 > [jv]|?
with a constant C' > 0, hence
(4.3) lull, Jv]| > C~Y2  for all (u,v) € M.

Moreover, M = {(u,v) € H : u,v # 0, F(u,v) = (0,0)}, where F € C?(H,R?) is
given by

) Fluw) - (qu,fu)) _ <||u||2 — Blut? — fq |u+|4>_

Fy(u,v) [][> = B [q u?v? = [o [vt]*

Note that for (u,v) € M we have

OuFy (u,v)u = 2||u||* — 2ﬁ/ uw?v? — 4/ lut|* = —2/ lut|* #£0
Q Q Q
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and
0, a0 = 2ol 28 [t —a [0t = =2 [ 10711 0,
Q Q Q
whereas 0y F (u,v)v = =2 [, u?v? = 0y Fy(u,v)u. Consequently,

o (BB B\ _ (2t 2eut? ) e
WU O (u,v)v Gy Fa(u,v)y ) T\ =28 [quiv? =2 [q vt ]t )

Since (u,v) € M, we have [q |[ut|* > —8 [qu?v? > 0 and [o [vH[* > -8 [ou?v? >0,
which implies that T, is negative definite. Hence the vectors F’(u,v)(u,0) and
F'(u,v)(0,v) are linearly independent in R?, so that F'(u,v) : H — R? is onto. We
therefore conclude that M is a C?-submanifold of H of codimension two.

(i) If (u,v) € M is a critical point of E|rq, then there are Lagrangian multipliers
A1, A2 € R such that

(4.5) A\ F (u,v) + Mo Fy(u,v) = E'(u,v) in H*.

Applying this to (u,0) and (0,v), respectively, gives

A
Ty (Q) = (g) with T, ,, as above.

Since T,,, is negative definite, A\; = Ay = 0, so that E'(u,v) = 0 by (4.5).
(iii) For (u,v) € M we have

1
(P +1101%) — § [ (1t + o1y o= 2 [ o2 de

1 g
(lul? + 1o1P) ~ 3 (1l + 101 =26 [ w20?) =2 [ a2 as
Q Q

1
= 5 (Iull® + o ]%).

N — N~

(iv) Let (ug,vx)r C M be a Palais Smale sequence for Enq. Then (ug, vk )k is bounded
in H by (iii). Passing to a subsequence, we may assume that (ug,vy) — (u,v) € H
and uy — u, v — v in L*(Q2). We note that

(4.6) ut #0 and vt #£0.

Indeed, suppose by contradiction that u™ = 0. Then
lim |u|s — 0 and limsup 3 o uivi < 0,
k—o0 k—00

so that |lug|| — 0 since uy € M. This contradicts (4.3). Similarly we exclude that
vt =0.
Next we note that

(47) 0(1) = Ej\/[(ukaluk) = E,(ukavk) - )‘IlcFll(ukavk) - AIQ‘:FZI(IU’/C’IU/C) as k — oo



16 E.N. DANCER, JUNCHENG WEI, AND TOBIAS WETH

for appropriate sequences (A\¥)g, (A\5)x C R, where Fy, F» are defined in (4.4). Since
the sequence (ug, vk ), is bounded in H, we find that

(1) = (E'(Uk,vk)(ukaﬂ) — [NEFY (up, vp) + /\I2€F2,(Uka’0k)](uka0)>
B (ug, vg) (0, v) — [NFF] (up, vg) + A5 F (ug, v)] (0, v)
_ _([A’fF{(Uk,Uk) + A’SFé(uk,vk)](uk,O)) _ (Alf)

NEFY (ug, o) + MBS (ug, 0p)] (0 0e) ) 97\
/\k
(4.8) = (~Tyun +o0(1)) (A}J
2
Since (ug,vi) € M for every k, the weak convergence implies that
lul? = B Jou*v® < o lu*[* and  |o]* = B fouPe® < fo o[

So as in the proof of (i) it follows that T, , is negative definite, and therefore A\¥, Ak —

0 by (4.8). Since Fj(ug,vr) and Fj(ug,vy) remain bounded in H* as k — oo, we now
infer from (4.7) that E'(ug,vx) — 0. It is then standard to deduce that (u,v) is a
weak solution of

—Au+u = (u")®+ fovu in §,
(4.9) —Av+v = (v")3 + Buv in Q,
u=v=0 on 0fQ.

Multiplying the first equation by u and integrating by parts we get
lull? = [ut]i + B o v*u® = lim (|uf |3+ B [oviui) = lim [lug?
k—o0 k—o0

since (ug,vg) € M. This implies that u; — u strongly in H(Q). Similarly we find
that v, — v strongly in H}(R), so that (ug,vk) — (u,v) strongly in H. O

To prove the existence of multiple critical points of E, we consider the sets M¢ :=
{(u,v) e M : E(u,v) <c} and

K. :={(u,v) € M : E(u,v) = ¢, E'(u,v) =0}
= {(u,v) € M : Epm(u,v) = ¢, E)\(u,v) =0}

for every ¢ € R, and we note that the functional £ and M, M€ and K, are invariant
with respect to the involution

o:H—>H, (u,v) = o(u,v) = (v,u).
We put
c(f) := inf{E(u,v) : (u,v) € M is a fixed point of o}.

Note that, in contrast to the notation introduced up to now, we stress the dependence
of ¢() on the parameter 8 in view of the following simple but crucial fact.

Lemma 4.3. ¢(8) = oo for § < —1, and lim ¢(8) = oo.
B——1
B> -1
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Proof. It follows immediately from the definition of M that o has no fixed fixed
points in M for 8 < —1, hence ¢(f8) = c0. If —1 < < 0 and (u,u) € M for some
u € H(R), then

lull* = [u*13 + Bluli < (1+ B)lul; < CA+ B)llull,

where the constant C is given independently of 8 by the Sobolev embedding H&(Q) —
L4(Q) as in (4.2). We conclude that ||ju?> > m and therefore E(u,u) > m
1

by Lemma 4.2(iii). Since soFE) 00 a8 B — —1, the claim follows. O

Using the Palais-Smale condition for the functional Exq : M — R and the fact

that M is a C'"!-manifold, we obtain the following equivariant deformation lemma.
Since the proof is standard, we omit it.

Proposition 4.1. Let ¢ € R, and let N C M be a relative open o-invariant neigh-
borhood of K.. Then there exists € > 0 and a C'-deformation n : [0,1] x M¢TE\ N —
MEYE such that, for all (u,v) € Mt \ N and s € [0, 1],

77(0’ (ualu)) = ('u" ’U)’ 7’(1’ (u’ 'U)) EMT" and 0[77(37 (u’ 'U))] = 77(3’ J(u’ 'U)))

For any closed o-invariant subset A C M we now define the genus v(A) as the
smallest n € NU {0} such that there exists a continuous map h: A — R" \ {0} with
h(o(u,v)) = —h(u,v) for all (u,v) € A. As usual, we set 7(A) = oo if no such map
h exists. In particular, v(A) = oo if A contains a fixed point of o. By definition we
have v(@) = 0. We list some properties of +.

Lemma 4.4. Let A,B C M be closed and o-invariant.
(i) If A C B, then v(A) < y(B).
(ii) /(AU B) <7(A) +1(B). -
(iii) If h : A — M is continuous and o-equivariant, then y(A) < y(h(A)).
If A does not contain fized points of o, then:
(iv) if 7(A) > 1, then A is an infinite set;
(v) if A is compact, then v(A) < 0o, and there exists a relatively open o-invariant
neighborhood N of A in M such that v(A) = v(N).
Finally,
(vi) if S is the boundary of a bounded symmetric neighborhood of zero in a k-
dimensional normed vector space und ¥ : S — M is a continuous map satis-

fying P(—u) = o(p(u)), then y(4(S)) > k.
Note that in (vii) the set 1(S) is closed since S is compact.

Proof. Properties (i) and (iii) are immediate consequences of the definition of +.
Properties (ii) and (v) can be proved precisely as in the case of the Krasnoselski
genus, see e.g. [27, Proposition 5.4].

To prove (iv), we note that a finite o-invariant subset A C M without fixed points
can be written as

A={(u1,v1),---, (tUn,vpn),0(u1,v1),...,0(Un,vn)},
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where the (u;,v;),0(u;,v;) € M, i = 1,...,n are pairwise different. Therefore a
continuous map h : A — R\ {0} is defined by

h(ui,v;) = —1 and h(o(ui,v;)) =1 fori=1,...,n,

showing that vy(A4) = 1.

Property (vi) is proved by contradiction, assuming that there exists a continuous map
h:4p(S) — R\ {0} with h(o(u,v)) = —h(u,v). Then hop : S — RF-1\ {0}
is an odd and continuous map, which contradicts the Borsuk-Ulam Theorem (see
e.g. [28, Theorem D.17.]). O

Proposition 4.2. For every ¢ < ¢(f) we have v(K.) < oo, and there exists € > 0
such that

(4.10) Y(MEFE) < Y(MF) + y(Ke)

Proof. Since E 4 satisfies the Palais Smale condition, the set K. is compact, and
it does not contain fixed points of o by definition of ¢(3). Hence y(K.) < oo by
Lemma 4.4(v), and there exists a relative open o-invariant neighborhood N ¢ M
of K, in M with y(N) = y(K,). Let ¢ > 0 and n : [0,1] x M*T¢\ N — M be
chosen as in the statement of Proposition 4.1. Put 7y :=n(1,-) : Mt \ N — M° ¢,
Since 71 is o-equivariant, Lemma 4.4(iii) implies that v(M®T¢\ N) < (M ™€) and
therefore
YMEH) < 3 (M \ N) + () < 4(M) +(K.),

as claimed. m

The nondecreasing sequence of Lyusternik-Schnirelman type levels associated to
the genus ~y is defined by

¢, = inf{c e R : y(M°) >k}, keN
We note the following.

Proposition 4.3. (i) For every k, ¢ < oo is bounded independently of 5 < 0.

(i) ¢, — ¢ as k — oo, where ¢(f) < ¢ < oo.

(11i) If ¢ := ¢ = cpp1 = - = ¢ < c(B) for some |l > k, then v(K.) >1—k + 1.

(iv) If ¢, < c(B), then K. # @, and M contains at least k pairs (u,v), (v,u) of
critical points of E.

Proof. (i) Let W C H{(9) be a k-dimensional subspace consisting of functions u €
Hj(Q) with [u=0,andlet S:={u € W : |ju]| =1}. Then u* # 0 and u~ # 0 for
every u € S. We therefore may consider the map

.55 M (Y (LY
peoom = () (i) )

Clearly ) is continuous, and % (—u) = o(+p(u)) for every u € S. Hence y(1(S)) > k
by Lemma 4.4(vi) and therefore ¢ < sup,cg E(¢(u)) < co. By definition of 3 and
Lemma 4.2(iii), the value of sup,cg E(1(u)) does not depend on 3. Hence the claim
follows.
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(ii) Suppose by contradiction that ¢y — ¢ < ¢(f8) as k — oo. Choosing € > 0 as in
Proposition 4.2 for ¢ = ¢, we find that ¢ — e < ¢, for k large, hence v(M?®¢) is finite.
By Proposition 4.2 we therefore conclude that v(M®¢) < v(M®¢) + v(K;) < oo,
which contradicts the fact that ¢ > ¢ for all k.

(iii) By assumption and the definition of the Lyusternik-Schnirelman values we have
y(M ) <k —1 and y(M°*¢) > [ for every € > 0, hence v(K.) > 1 —k+ 1 by
Proposition 4.2.

(iv) If ¢ < ¢(B), then (iii) implies that y(K. ) > 1, hence K., is a nonempty o-
invariant set. If ¢; < o < +-+ < ¢k, we conclude that M contains at least k pairs
of critical points of E. On the other hand, if ¢; = ¢; for some 4 < k and j > i, then
v(K¢;) > 1 by (iii), and therefore K., is an infinite set by Lemma 4.4(iv). Hence in
this case M contains infinitely many pairs of critical points of E. O

We now complete the

Proof of Theorem 1.2. (a) Choosing (uy,vx) € K., for every k, we get a sequence
of nontrivial critical points of E with E(ug,v;) — oo, hence |jug||? + |Jvg]|? — oo by
Lemma 4.2(iii). Since

|* (Juelso + [vrlee) > lurli + [vels > llull® + [loxl?,

we conclude that |ug|c + |Vk|ce — 00 as k — o0.

(b) Let k be a given positive integer. By Lemma 4.3 and Proposition 4.3(i), there
exists Oy > —1 such that for 8 < [ we have ¢; < ¢(3). Hence E has at least k pairs
of nontrivial critical points by Proposition 4.3(iv), and therefore (1.8) admits at least
k pairs (u,v), (v,u) of solutions. O
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