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ABSTRACT. We consider the following elliptic system

e2Au — \u+ pud + Buv? =0 in Q,

e2Av — Agv + pov® + fulv =0 in Q,

u,v >0 in Q, u=v=0 on 99,
where Q@ C RV (N < 3) is a smooth and bounded domain, ¢ > 0 is a
small parameter, A1, Ag, p1, 2 > 0 are positive constants and 8 # 0 is
a coupling constant. We show that there exists an interval I = [ag, bo]
and a sequence of numbers 0 < 1 < 2 < ... < B, < ... such that for
any 3 € (0,4+00)\(I U{p1, ..., Bn,-..}), the above problem has a solution
such that both u and v develop a spike layer at the innermost part of the

domain. Central to our analysis is the nondegeneracy of radial solutions
in RV,

1. INTRODUCTION

In this paper, we consider the coupled Gross-Pitaevskii equations, i.e., the

coupled nonlinear Schrodinger equations,

—\/?1%@1 = Equ)l + /1,1‘©1|2(D1 + /8‘(1)2‘2(1)1 for Yy E Q,t > O,
(11) —\/—_]_%QQ = EQA(I)Q.—{- /.1,2‘©2|2¢2 + /8‘@1‘2@2 for Yy € Q,t > 0,

q)j = Qj(y:t) €eC, j= 12

®(y,t) =0 for y € 00,t>0,5=1,2

where €, 111, 1o are positive constants, €2 is a domain in R¥, N < 3, and f is
a coupling constant.

System (1.1) arises in many physical problems. When Q is a bounded
domain, problem (1.1) arises in the Hartree-Fock theory for a double con-

densate, i.e. a binary mixture of Bose-Einstein condensates in two different
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hyperfine states |1) and [2) ([19]). Physically, |®;| and |®s| are the corre-
sponding condensate amplitudes, ;1; and B are the intraspecies and inter-
species scattering lengths respectively. The sign of the scattering length (3
determines whether the interactions of states |1) and |2) are repulsive or
attractive. When ( < 0, the interactions of states |1) and |2) are repulsive
([34]). In contrast, when 3 > 0, the interactions of states |1) and |2) are
attractive. For atoms of the single state |j), when y; > 0, the interactions of
the single state |j) are attractive.

When Q = RY, system (1.1) also arises in the study of incoherent solitons
in nonlinear optics. We refer to [29, 30] for experimental results, and (2, 7,
21, 22, 23] for a comprehensive list of references. Physically, the solution @,
denotes the j-th component of the beam in Kerr-like photorefractive media.
The positive constant p; is for self-focusing in the j-th component of the
beam. The coupling constant [ is the interaction between the first and the
second component of the beam. As § > 0, the interaction is attractive, while
the interaction is repulsive if 3 < 0.

To obtain solitary wave solutions of the system (1.1), we set ®;(z,t) =
eVt y(z), By(x,t) = eVt y(x), and the system (1.1) is transformed to
an elliptic system given by
e2Au — Mu+ wud + fur? =0 in Q,
e2Av — Xov + pov® + Bulv =0 in Q,

u,v >0 in €,
u=v=0 on 01,

(1.2)

where 2 C RY (N < 3) is a smooth and bounded domain, € > 0 is a small
parameter, A\, Ao, i1, o > 0 are positive constants and 3 # 0 is a coupling
constant.

When Q = RY, the existence of least energy solution to (1.2) is studied in
[1, 25, 33]. In [1, 3, 28, 33], the existence of bound states (i.e., solutions to
(1.2)) when 8 > 0 is proved.

In [26], the following result was proved:



BOSE-EINSTEIN CONDENSATES 3

Theorem 1.1. There ezists a constant By = Po(N, A1, Az, p, ) € (0, \/p1fiz)
such that the following holds:

(1) For any B € (—o0,fy) and € sufficiently small, (1.2) has a least
energy solution (ue,v:). Let P. be a local mazimum point of u. and

Q. be a local mazimum point of v,.

(2) If 0 < B < Py, then |P. — Q:|/e — 0 and
(1.3) d(P.,00) — rlrjlgé(d(P, 09), d(Q.,00) — max d(P,0Q).
Furthermore, u.(z),v:(x) = 0 in CL (Q\{P., Q.}) and let

Ucy) := u(P. +ey), Vi(y):= v(P.+¢ey)

then as e — 0, (Ug, Vo) — (Uy, Vo) which is a least-energy solution of

the following problem in RN
AUO — )\1U0 + ,UlUg + ﬂUoVE)Q =0 RN,
AVy — XVo + Vg + BUGVo = 0 in RY,
Uo(0) = maxy,ery Us(y), Vo(0) = maxXycrN Vo(y),
Up, Vo >0 RN, Uy, Vo =0 as |y| — +oo.

(3) If B < 0, then we have

(1.5) PP Qc) = max (P Q)

(1.4)

where
(1.6)
(P, Q) = min{y/\[P = QL VAol P = Q| v/ Mid(P,09), v/ Xod(Q, 0)}-
Furthermore, u.(z),v:(x) = 0 in CL (O\{P., Q.}), and if we let

Us(y) = us(Ps + gy), Ve(y) = Us(Qs + ey),
then
Ues(y) = wi(y),  Ve(y) — wa(y)

where w;(y), i = 1,2 is the unique solution of

(1.7)
Awi — )\zwz + ,UJZUJ? =0 RN,
w;(0) = maxyery wi(y),7i = 1,2, w; >0 in RY, wi(y) =0 as |y| — +oo.
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The case when 3 > (3, was left open. In this paper, we solve this problem

by proving the following result:

Theorem 1.2. There exists an interval I = [ag,by] C (0,+00) and a se-
quence of numbers 3y < By < ... < By < ... such that for any 5 € (0, +00)\(IU
{B1, s B, ---}), and e sufficiently small, (1.2) has a solution (u.,v.). Let P.
be a local mazximum point of u, and Q. be a local mazximum point of v.. Then

|P. — Q:|/e = 0 and
(1.8) d(P.,00) — max d(P,09), d(Q.,00) — max d(P,09Q).
Furthermore, u.(z),v.(x) = 0 in CL (Q\{P., Q.}) and let
Us(y) = UE(P5+‘€Z/)’ ‘/;(y) = US(PE+€y)

then as € — 0, (U, V.) — (Uy, Vo) which is a solution of the problem (1.4).

Remark: 1. We can also construct solutions at local maximum points of
the distance function.

2. The interval I is almost necessary for existence. In fact, let us suppose
A1 < Agy o < pp and pp < B < py. Multiplying the equation (1.2) for u by v
and the equation (1.2) for v by u, then integrating by parts and subtracting

together, we obtain

(1.9) (A2 — )\1)/qu + /Q[(,ul — B)uPv + (B — po)ur®] =0
which implies that u, v = 0. This implies that there are no solutions to (1.2)
if A < Ao, e < B < py.

One attempt to proving Theorem 1.2 is to use the mountain-pass lemma
and analyze the mountain-pass solution. The problem is that such solution
may become trivial (i.e., v = 0,v = 0) or semitrivial (i.e, v = 0 or v = 0).
Furthermore, there is no simple characterization of mountain-pass solutions
when ( becomes large and also the solutions to (1.4) may not be unique.

Our proof of Theorem 1.2 is by the so-called “Localized Energy Method”.

That is, we first use a Liapunov-Schmidt method to reduce the problem
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to a finite dimensional problem, and then use variational methods to find
critical points of the reduced finite dimensional problem. Such a method
has been used successfully in many papers for the scalar equations, see e.g.
[4], [5], [15], [13], [14], [16], [17] and [24]. (In particular, we follow [24].)
However, as far as the authors know, this method has never been used for
strongly coupled elliptic equations. One of the main difficulties in using
this method is the nondegeneracy assumption which is difficult to prove for
systems. For single scalar equations, the nondegeneracy can be proved by
using the uniqueness of radial solutions (see Appendix C of [31]). However
for systems, the uniqueness of the radial solutions seems out of reach at this
moment. Here, we use an idea of the first author in [11] by showing that
nondegeneracy holds for (1.4) except for isolated points of . More precisely,
let (U1,Us) be a solution of (1.4). We say that (U, Us) is nondegenerate if

the solution set of the linearized equation

A¢gr — M1 + 3 Uy + BUZ¢1 + 28U, Uspy = 0,
(1.10) Ay — Moo + Ui ds + BULD, + 26U Usy = 0,
[p1| + |p2| <1

is exactly N-dimensional, namely,

o)\, [ 5
(1.11) ((b;):Zaa(%i)
i= %

for some constants a;.
The following result is proved in this paper, and contains elements of

independent interest.

Theorem 1.3. There exists an interval I = [ag,by] C (0,+00) and a se-
quence of numbers 3y < By < ... < By < ... such that for any 5 € (0, +00)\(IU
{B1, -y By -.-}), problem (1.4) has a nondegenerate solution (Uy,Us).

Remark: 1. The set I is given explicitly in Section 2. See (2.7). As

remarked before, there is not always existence if § € I.
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2. We believe that the set {f, B2, ..., B, ...} is finite. In particular, for g
large, all solutions to (1.4) are nondegenerate.

3. Our proof of Theorem 1.3 also gives a new proof of existence of solutions
to (1.4). Here we use bifurcation analysis, which is different from those of
[1], [3] and [33] where variational or topological method is used.

The organization of this paper is as follows: In Section 2 and Section 3, we
prove Theorem 1.3: Section 2 contains nondegeneracy in the space of radial
functions while Section 3 contains nondegeneracy in the space of nonradial
functions. From Section 4 to Section 6, we apply the localized energy method
to prove Theorem 1.2: Section 4 studies a linear problem, Section 5 studies
a nonlinear problem and Section 6 completes the proof of Theorem 1.2.

Acknowledgments. The research of the first author is partially sup-
ported by the ARC, while the second author is partially supported by an
Earmarked Grant from RGC of Hong Kong. We thank the referees for care-

fully reading the manuscript and many suggestions.

2. NONDEGENERACY IN THE SPACE OF RADIAL FUNCTIONS

Let (u,v) be a solution of (1.4). By the moving plane method, as in [35], u
and v are both radially symmetric and strictly decreasing, i.e., u = u(r),v =
v(r),u (r) < 0,v'(r) < 0 for r # 0. We say that (u(r),v(r)) is locally unique
if the linearized problem

Apy — Mgy + 3pu’ ey + Bv ey + 2Buvdy = 0,
(2.1) Apy — Aoy + 3ugv>dy + Bu s + 2fuvgy =0,
¢1 = ¢1(r), g2 = ¢a(r)
admits only trivial decaying solutions. In this section, we prove the following

theorem.

Theorem 2.1. There exists I = [ag, by] and B < Py < ... such that problem
(1.4) has a locally unique non-degenerate solution for 3 & IyU{Sy, ..., Bn, ...}
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Before we prove Theorem 2.1, we need some definitions and lemmas. We

consider

Au— Mu+ pud + fuv? = 0 in RV,

Av — Xgv + pov® + fuv = 0 in RY,

U(O) = INnaXyecry U(y),’l)(O) = INaxXy,cry U(y),
u=u(r),v=v(r) >0in R¥N ju,v =0 as |y| = +oo.

(2.2)

Note that equation (2.2) admits three trivial solutions
(2:3) (0,0), (u,0), (0,v)

where 4 = w, 7 = wy, and w; is the unique solution of (1.7). By a simple

scaling

(2.4) w;(r) = \/i\%w(\/@)

where w is the unique solution to (1.7) with \; = p; = 1.
Let us define

_ g Jar (V9P + 2ed?)

(25)  ap= _ it Jew (V012 + A1)

bo =1
peH! Jan wid? ’ peH! Jaw w3

Without loss of generality, we may assume that

(26) ag < b()
We then set
(27) I:= [CL(), bo]

When A; = )y, problem (2.2) admits a bound state of the form

(2-8) (Uo, Uo) = (\//1_101?1)1, \/,11_2621112);

where
o = / po — B ey = / p— B
Pz — B2 Pt — B2
as long as (1 — B)(pe — B) > 0, i.e. B ¢ [min(uy, po), max(py, p2)]. Note

also that by a simple scaling

Jen (VO[> + 6°)

ag = inf = li1.
0= M o fRN w22 H1
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(See the proof of Lemma 2.2 below.) Similarly by = po. Thus in this case
I = [min(py, p), max(p1, peo)]-

Our next lemma says that this solution is nondegenerate in the space of
radial functions. (Note that in this case, by the remark after Theorem 1.2,

there is no existence to (1.4) for § € [min(uq, pe), max(uy, po)]-.)

Lemma 2.2. Let \; = Ay and § & [min(uq, pe), max(u1, pe)]. Then the solu-

tion (ug, vo) defined by (2.8) is nondegenerate in the space of radial functions.

Proof: We just need to study the eigenvalue problem (2.1) associated with
(ug,vg). Let Ay = Ay = Ag. Without loss of generality, we may assume that
Ao = 1. Then (ug,v) = (1w, cow) and (2.1) becomes

Apy — ¢1 4 (Buact + Be3)w’y + 2Bcicowdy = 0,
(2.9) Ay — ¢o + (pacs + BcT)d2 + 2Bcicaw’ 1 = 0,
1 = ¢1(r), 2 = ¢a(r)

By an orthonormal transformation, (2.9) can be transformed to two single

equations
(210) Aq)l - (I)l + 3w2<I>1 = 0, (1)1 = (I)l(’l"),
(2.11) ADy — By + (3 —28(c3 + ¢3))w?®y = 0, &y = By(r).

Note that the eigenvalues of

(2.12) A® — ® +vuw’d=0,0 € H'(RY)
are
(213) vV = 1,V2 = ... = VUN+1 = 3,VN+2 >3

where the eigenfunction corresponding to v; is cw, and the eigenfunctions
corresponding to v, is spanned by g—;‘;,j =1,...,N. (See Lemma 4.1 of [36].)

Hence ®; = 0. ®; =0 unless 3 —23(c? +¢2) =1. If 3—20(2 + &) =1,
then we have 3 = pu; = g, since pc? + Bc3 = pocs + B2 = 1. This is
impossible since § ¢ [min(uq, p2), max(uy, p2)]-.

In conclusion, we derive that ®; = &, = 0 and hence ¢; = ¢ = 0.
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Next we show that ag or by is a bifurcation point.

Lemma 2.3. When § = ag, (u,v) = (4,0) or g = by, (u,v) = (0,0), the

linearized problem (2.1) has exactly a one-dimensional set of solutions.

Proof: It is easy to see that ag can be attained by a radially symmetric
and positive function denoted by 1, (normalized so that 1(0) = 1). Let
B = ag, (u,v) = (4,0). Then (2.1) becomes

Ady — Moy + 3p’dy =0,
(2.14) Agy — gy + apli®¢y = 0,
¢1 = ¢1(r), 2 = ¢a(r)

Note that the two equations in (2.14) are decoupled. By the same ar-
gument as those of Lemma 2.2, we have ¢; = 0. On the other hand, by
the definition of ag, we see that ¢, is the principal eigenfunction and hence
¢ = cihy for some ¢ > 0. O

Henceforth, we may assume that
(2.15) AL F#E X

We will work on the space E = C,o(RY) x C,o(RY) where C,o(RY)
denotes the space of continuous radial functions vanishing at oo. We can

write the system (2.2) on F as

(2.16) u=(—A+ X)) (pu® + Buv?), v = (—A+ X)) (uov® + Buv).
We also need the following lemma.

Lemma 2.4. (1) For each fized 3 > 0, there is a Cz > 0 such that

(2.17) [ul[ Loo@ny + ||v][omry < Cp

for any nonnegative solution (u,v) of (2.16).
(2) Let B be bounded. Then the set of nonnegative solutions of (2.16) is

compact in E.
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Proof: (1). We proceed by contradiction, assuming that there is a sequence

of solutions (uy, v,) to (1.4) with

(2.18) max un(z) + max vp(x) = 400  asn — oo.
€ TE

We follow a blow up procedure introduced by Gidas and Spruck [20] for
scalar equations. Since the method is standard, we only sketch the argument.

Without loss of generality, we may assume that

(2.19) M, = u,(0) = max un(z) > v,(0) = max v ().
Now we perform a rescaling, setting x = Min and defining functions U, V,, :

RY — R by

un(MLn) Un(MLn) N
(2.20) Un(y) = M, Valy) = A for y € RY.
Then
2.21 1:= >
(2.21) max Un(y) > max Va(y),

and (U,,V,) solves the rescaled problem

A
—AU, = mU? + pU, V2 - ﬁgUn in RV,
(2.22) \
—AV, = m V! + BVaUs = 25 Va in RY,

Passing to a subsequence if necessary, we see that (Uy,, V,,) = (Up, V4) which

is a non-trivial and non-negative bounded radial solution of
(2.23) —Au = pu® + Buv?, —Av = pov® + pou®

If v is nonnegative, then we have —Awu > pu on RY which implies u = 0
by standard results (if N < 3). See [20]. Similarly if v is non-trivial, we also
obtain a contradiction. Hence we have the a priori bound (2.17).

(2) We now show that the set of nonnegative solutions to (2.16) can not
become non-compact in E for bounded 3 (while it remains non-negative and
bounded in E). To do this, we note that a bounded set T in C,o(RY) is

precompact ( that is, it has compact closure) if and only if it is equicontinuous
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on bounded sets and given € > 0, there is a u > 0 such that |u(r)| < € if
r > pand u € T. (This can most easily be seen if we identify C,o(R") with
{w € C[0,1];w(1) = 0} by mapping [0, c0) onto [0, 1] with oo corresponding
to 1 and using the Arzela-Ascoli compactness theorem.) Now our branch
is bounded in C?(R") for bounded 8. Thus we can only have trouble with
the second condition, i.e. if there exists a > 0 and r; — 400 and solutions
(ui, v;) to (2.16) with u;(r;) + v;(r;) = . By changing the origin to r; and
passing to the limit, we will obtain a non-trivial solution (u,v) on R of the

following problem
(2.24) " = =M+ mu + fuv?, v = = + pgv® + Bou?

with u(0) + v(0) = a,u,v > 0 and bounded. Moreover u and v must be
decreasing on R since non-negative solutions of (2.2) are decreasing on [0, co).
Hence v and v have limits u,,v; at oo (and limit (u_,v_) at —o0). Thus
(u_,v_) and (u,v,) both solve \ju = pu® + fuv?, Aogv = pov® + fu?v. If
we choose o small, u; +v; < o and hence u; = v, = 0. If v does not vanish
identically, v > 0 and \; = u? + Bv?. Hence u(—X\; + u? + $v?) <0 on R
(by the decreasing properties of u and v) and hence " > 0 on R. Thus u is
strictly convex and bounded on R which is impossible. Hence compactness
of nonnegative solutions to (2.16) holds.

|

We proceed to prove Theorem 2.1.

When (3 = 0, it is known that there exists a unique positive solution (u, v)
which is the only non-negative solution for 5 = 0 (except for (u,0) and
(0,9)). Note that (@,v) is nondegenerate for 5 = 0 in E since the system
(2.16) is diagonal and we can use results for scalar equations. The operator
obtained by linearizing the right hand side of (2.16) at (@, ¥) is compact on F,
since (u, v) decays. (Note that the nonlinear mapping itself is not completely
continuous on E.) Hence we can use the degree theory for C? Fredholm maps

([10]). (Note that the map is smooth in E and a number of authors have
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considered similar degrees.) For the moment, we need to consider changing-
sign solutions of (2.16). By a slight variant of the theory in Section 1 of [10],
there is a connected set C' of solutions of (2.16) in E x R in 3 > 0 starting at
(@,v) for f = 0 while is non-compact in F x R or contains another solution
for # = 0. (This is a standard Rabinowitz type continuation result where
we start from a non-degenerate solution rather than from the zero solution).
Moreover, C' can only leave the cone of non-negative functions at (@,0) for
B = ag or at (0,v) for 8 = by, where ay < by are defined by (2.5). To see this,
suppose that (u,,v,) are solutions of (2.16) such that (u,,v,, 3,) converges
to (ug,vo, Bo) in E' x R where u,, changes sign and ug is positive on (0, c0).
Then u,(r,) must be small and r,, must be large whenever u,(r,) < 0, for
large n. Thus any component Z, of {r : u,(r) < 0} must be where r is large
and |u,| + vy,| is small. (Recall that |ug| + |vg] — 0 as 7 — +00.) Hence
— A1+ p1u? + Bv? is negative on Z, and thus, by the equation for u,, Au, < 0
on Z,. This contradicts that u, must have a minimum on Z,. If we only
assumed that 1y was non-negative on [0, o), the maximum principle applied
to the equation for wy implies that either ug = 0 or ug(r) > 0 on [0, ).
Hence we see that C' can only leave the cone of non-negative functions if
there exists solutions (uy,v,) for 3 = B, such that (uy,,v,) — (0,vp) in E
and 3 — [ as n — oo, where u,, v, and vy are positive solutions on [0, ).
(Note that ||uy||L~ and [|vg||L~ can not both be small from the equation
(2.16).) By the first equation, we easily see that Hu:ﬁ must converge to
a positive decreasing solution of —Ah = (=\; + Byv2)h on [0,00), at least
through a subsequence. h must be nontrivial because u,, has its maximum at
zero. Hence By = by. Thus our claim is proved and the branch C continues up
to min(ayg, by) = ag (where we can assume ag < by without loss of generality).

We now note that our nonlinearity is easily seen to be real analytic on F
(in fact it is polynomial). Since C starts from 3 = 0 where there is a unique

and non-degenerate positive solution, Theorem 1 of [11] implies for all § in



BOSE-EINSTEIN CONDENSATES 13

[0, ap) except at isolated points, there are an odd number of non-degenerate
positive solution in the component C' (non-degenerate in E). There is one
minor point here. The results in [12] imply that C is locally connected and
hence we can choose an open neighborhood U of C in F x R containing no
other solutions of our equation except those in C. In fact, the exceptional
points can not accumulate at ag as we see below. Now by Lemma 2.3, it
is easy to see that at § = ag, there is bifurcation from a simple eigenvalue
from the solution (@, 0) (which is a solution for all 5 > 0) in the sense of [8]-
[9]. More precisely, the other solutions near (i, 0, ag) form a real analytic arc
u=u(a),v=a(h+v(a)), = ¢(a) for a small, where « is a scalar variable,
u(0) = %,7(0) = 0,$(0) = a and v(e) is in a complement to the span A in
Cro(RY). Here h > 0 is the principal eigenfunction of —Ah = —Ayh + Bu2h.
There is an analogous bifurcation at (0,v) at 3 = by, where in this case,
B = ¥(a) with ¢ real analytic, 1(0) = by and & is a scalar parameter. We
will prove below that either ¢ () # 0 for small non-zero o and v (&) # 0
for small non-zero & or ¢ and % are constant functions ay = by and there
is an arc A of positive solutions of (2.16) for § = ay joining (a,0) to (0, ).
We refer to this as Claim A and defer its proof to the end of the proof
of Theorem 2.1. We refer to the second possibility as the exceptional case.
If ¢ (a) # 0 for small non-zero o, Theorem 1.17 in [8] (or by [10]) implies
(u(a),v(e)) is an non-degenerate solution for 3 = ¢(«) for small non-zero «
and an analogous result holds for § = ¢(&). If ¢(a) < ag for small positive
«, we have a non-degenerate solution for 3 € (ag,ag — 9). If ¢p(a) > ay, for
small positive «, the argument in Theorem 1 of [11] applies all the way to
agp and we have our claim.

If (@,0) and (0,%) do not belong to the closure of C', Theorem 1 in [11]
implies that we have a non-degenerate positive solution for all 8 > 0 except
at isolated points. If both (@,0) and (0,%) belong to the closure of C' and

we are not in the exceptional case, Theorem 1 in [11] together with our
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remarks above, implies that (except for isolated values of 3), the number of
non-degenerate positive solutions must change by 1 as [ crosses ag and by
1 as [ crosses by (and by an even number as (3 crosses ag if ag = by). Thus
for B > by, there are an odd number of non-degenerate positive solutions
(except for isolated B). If (@,0) is not in the closure of C' but (0,7) is in
the closure of C, the branch C; of positive solutions coming out of (@, 0) at
B = ap, must have an even number of non-degenerate positive solutions for
B < ag (as usual except for isolated () since C; does not continue to 3 = 0.
(Note that the only positive solution for § = 0 lies in C’) Thus C; must
have an odd number of non-degenerate positive solutions for all 3 > aq (as
usual except for isolated ) and we are finished. A similar argument is valid
if (0,7) is in the closure of C' but (,0) is not. Finally in the exceptional
case, the only solutions leaving the set of positive solutions lie in the arc A
which consists of degenerate solutions (since each is non-isolated). These do
not affect the argument in the proof of Theorem 1 in [11] and so, once again
there is a positive non-degenerate solution for all # > 0 except for isolated
B.

Lastly, we prove Claim A. Firstly, note that, by real analyticity, either
¢ is constant or ¢ (a) # 0 for small non-zero «.. Thus if the first possibility
of Claim A fails, then ¢ is constant. By the proof of Theorem 1 in [11],
C = U2, D; where D; for ¢ > 2 is an ¢—dimensional manifold, D; is closed
and the D;’s are disjoint. Since the solution coming out of (a,0) at 5 = ay is
locally an arc, this must lie in D;. By the theory in [11] and [12], at any point
(z, ) of Dy, Dy is locally a finite union of closed arcs W;,i =1, ..., k, which
intersect only at (z,u), (z,4) is an interior point of each arc W; and each
W; can either be parametrized by 3 (for # in (u — §, u+ §) for 6 > 0) or W;
lies in # = p. (Different W; can satisfy a different one of these alternatives.)
By this and compactness, we see that 7—the set of non-negative solutions in

Dy N {B = ag} —consists of a finite number of points and a finite number of
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disjoint arcs joining these points, i.e. a finite graph with an even number of
edges at each vertex except at (u,0) (and (0,) if by = ap). By elementary
graph theory, this is impossible if ay # by and, if ag = by, there is an arc in
T joining (@,0) to (0,7). Since this implies ¢ is constant, we have proved

Claim A and hence proved Theorem 2.1. O

3. NONDEGENERACY IN THE GENERAL CASE

Let (u,v) be the solution of (1.4). In this section, we show that for the
linearization of equation (1.4) around the solution (u,v), the nonradial part
of the kernel has exactly dimension N (thus comprising exactly the transla-

tional modes). This is summarized as follows:

Theorem 3.1. Suppose that (¢,v) € H*(RY) x H*(RY) satisfies the fol-

lowing eigenvalue problem

(3.1) A¢ — M + 3uu’e + Bv’e + 2Buvy = 0,
. A — Xotp + 3uv*th + Burp + 2Buved = 0,

where 3 # 0. Then
(3.2)

(4)e {( 7 ) = N}{< 0) \ 6 =0(r)4 =l }

Proof: We first recall that the eigenvalues of Agn are given by

(3:3) pr=0, iy = ... =pin1 =N =1, pny1 < fingo,--- -

Let e;(#) be the corresponding eigenfunctions, i.e.,
A5N6i+,uiez-:(), Z:1,2,
For any solution (¢,) of (3.1) set

oi(r) = " o(r,0)e;(0) db, (r) = - Wp(r,0)e;(0) db.
Recall that

r2

Ap=Né+
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We obtain the following system

(3.4) Adi — M — i + B’ s + fv*e; + 20uvyy; = 0,
' A — dothi — B54h; + Bpgv®ehi + Buep; 4 2Buvg; = 0,

The proof will be finished by showing the following claims.
Claim 1: If i > N 4 2 then ¢; = ¢; = 0.

Suppose this is not the case. We first multiply (3.4) by u' and ', respec-

tively, where ' = %, and integrate over the ball B, centered at the origin
with radius r. Note that
(3.5) Au' — Mu' + 3puPu’ + fou’ + 20uvd’ = T,

: AV = A" + 3pgv’ + Putv’ + 20uvy’ = 51y

Integration by parts gives

_ o M 2 2\, L
0 - /T(Agﬁz )\1(/51 T2¢z+3,ulu ¢z+ﬁv ¢z)u +/BT Qﬁuvwzu

N—1—u;
(3.6) 0= / (u'@; — diu") + to T hy, b;
4B, B, T
—/ Qﬂuvv’gbi-l—/ 2Buvu ;.
T BT
Similarly, we get
N—1—yu;
(3.7) 0= / Wil — gy + [ LT My,
4B, B, r?

—/ QBuUuIQ/Ji+/ 2V ¢;.

Adding (3.6) and (3.7) we get
0 — / (UI¢; _ ¢iull) +/ (/UI?/J; . wivll)
B, B,

N—-1-p
B

(38)  +

B

u'g; + v'y) = I (r) + L(r) + I;(r),

where I;(r), j = 1,2,3 are defined by the last equality. We now choose

appropriate r and estimate each of the terms I;(r). By definition we have

#(0) = 4}(0) = 0.
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Without loss of generality we assume that there is some r; > 0 such that
¢i(r) < 0for 0 < r < ry and ¢;(r1) = 0. (We choose 71 = oo if ¢; < 0 in
(0,00).) Note that by standard ODE theory ¢%(r1) > 0.

We claim that ;(r) < 0 for r small. Suppose this is not the case. Let
¥i(r) > 0 for r € (0,7r9) for some 7o > 0. If 7y < 71, then we have

/ (V' — ¢iv") > 0,
8B,

N—1—p
Sy >0,
.
By,

/ 25uvu'1/)i <0,
B

T2

/ 2uvv' ¢; > 0.
B

T2

Adding all the above together, we obtain a contradiction to (3.7 ).

If ro > ry, we use (3.6) to get a contradiction.

Therefore ¢;(r) < 0 for r small. This implies that there is some r5 > 0
such that v;(r) < 0 for 0 < r < ry and ¢;(r2) = 0. (We choose 5 = oo if
¥; < 01in (0,00).) Note that necessarily 1.(r2) > 0.

From now on we distinguish three different cases.
Case 1.1: r| = rs.

Set r = r; = ro. We easily calculate

By (3.8) this gives a contradiction.
Case 1.2: 7y < 7y.

We easily calculate I3(ry) < 0 and Iy(rg) < 0. It is more difficult to
evaluate I;(r5). We define

B(r) = Vg (r) = (1) 64 ().
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Then for ro < r < 1y,

Now we use

1 _ )
rN-1 (FV ) = Midi + 3unutes + vy + 2Buvy; = %‘%

1 _ n i 7 ! ! N - ]. !

—TNfl (T‘N Lu )' - \u + 3,u1u2u + ﬂqﬂu + 2Buvy = - u,

and get

' (r) = rV 3 (i — (N — 1))’ — 2r™ Buvn 1 + 26r™ Luv'¢; > 0.
Here we have used the fact that for ro < r < rq, ¥;(r) > 0. In fact, if there
is 79 < r3 < rq1 such that ¢ (r) > 0,1 (r3) = 0. Then similar to before, we use

( 3.7) to deduce a contradiction.
Putting these two facts together we conclude
0> 7V =1 () pi(r1) — pa(ri)u" (1))
— B(r) > D(ry) = |5,;7_”11(7«2).
By (3.8) this gives a contradiction.

Case 1.3: r| < rs.

The proof in this case is similar to Case 1.2. We omit the details.
In conclusion, we have proved that for i > N + 2, ¢;(r) = 1;(r) = 0. This

proves Claim 1.
Claim 2: Fori=2,..,N +1, (¢;,%;) = ¢;(u’,v') for some constant c;.

We have to show that the solution set of
Agi — M + 3 + fvd; + 20uvy; = S5tey,

(3.9) Aty — Mgt + Bpgv®hi + But; + 2Buve; = Ty,
¢i(r), ¥i(r) = 0 as r — +o0

is one-dimensional.

Suppose that (¢;,1);) solve (3.9). We must have

¢i(0) = 1/%'(0) =0.
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Similar to the proof of Claim 1, we see that either ¢; = ¥; = 0 or ¢; <
0,%; < 0 for all r or ¢; > 0,1; > 0 for all r. Since (u',v') satisfies (3.9), by
linearity of (3.9), (é;,;) — c(u',v') also satisfies (3.9). Let ¢y = 278 Then
¢i(1) — cu'(1) = 0. Thus (¢;,%;) = co(u',v"). This proves Claim 2.

Theorem 2.1 follows from Claim 1 and Claim 2. O

Remark: There is an alternative proof of this result for 3 > 0 which may be
useful for generalizations. One can easily show by the variational character-
ization of eigenvalues that the result will follow if we prove that the smallest
eigenvalue of the system (3.9) is zero (by using the variational structure).
Since we can easily show the least eigenvalue of (3.9) has a non-negative
eigenfunction (by showing that replacing a test function (h, k) by (|h/, |k|)
decreases the energy) and since we can use orthogonality to prove that there
cannot be two distinct eigenvalues of the eigenvalue problem for (3.9) hav-
ing non-negative eigenfunctions, zero must be the least eigenvalue of the
eigenvalue problem of (3.9) as claimed. (Note that (—u'(r), —v'(r)) is a

non-negative eigenfunction of (3.9) corresponding to the eigenvalue zero.)

Completion of Proof of Theorem 1.3: Theorem 1.3 follows directly from
Theorem 2.1 and Theorem 3.1. u

4. APPROXIMATE SOLUTIONS AND ENERGY COMPUTATIONS

In this section we introduce some notation and present some preliminary
analysis on approximate solutions.

From now on, we assume that 8 ¢ I U{f,..., Bn,....} as in Theorem 1.3.

Without loss of generality, we may assume that 0 € €2. By the following

rescaling:

(4.1) r=c¢€z, z € Q:={ez € Q},
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equation (1.2) becomes

Au — Mu+ pud + fuv? =0 in Q.
(4.2) Av — Xgv + ppv® + fulv =0 in €,
u,v >0 in Q, u=v=0 on 0f)..

For u,v € H*(Q.) N Hy (), we put
g v)= S1(u,v)
‘Nw )\ Sau,v)
where S) (u,v) = Au—Aju+puud+uv?,  Sy(u,v) = Av—Av+ v+ Buv.

Then solving system (4.2) is equivalent to
(4.3) &(5):Q we HX Q) NHNQ), ve H Q)N H Q).

Associated with problem (4.2) is the following energy functional

(4.4)
522

1
J[u] = 5/ (|Vu|2—|-)\1u2—|-|Vv|2—|-)\zv2)—/Q [4u Uy 1)4] u,v € Hy(S2).

We define an inner product:

(4.5) < (u1,us), (v1,v9) >e= / (u1v1 + ugvy), for u;,v; € L2(,),i = 1,2,

€

and a configuration space:

(4.6) A= {P eQ

duzaQ)>>5}

where ¢ is small.
Let (Uy,Us) be the solution of (1.4) which satisfies Theorem 1.3. For each
= 1,2,, by [35], U; is radially symmetric: U;(y) = U;(Jy|) and strictly
decreasing: U;(r) < 0 for r > 0,7 = |y|. Moreover, we have the following
asymptotic behavior of U;:
(4.7)
Ui(r) = A~ 2e¢ﬂu+o¢», (1) = — A/ e 1+0(»

for r large, where A; > 0 is a constant.

For @ € ), we define U; o to be the unique solution of

(48) Ay — )\1’U, + [/LlUf’ + ﬁUlUQQ]( — Q)) =0in QE, u =0 on BQG
€



BOSE-EINSTEIN CONDENSATES 21

Similarly, we set U, ¢ to be the unique solution of

(4.9)  Av— Ao + [uUs + BULUL)(- — %)) =0in ., v =0 on 0.
Without loss of generality, we may assume that

(4.10) A < As.
We first analyze U; . To this end, set

|.T B Q|) _ Ul,e,Q(

€ €

8

P1,60(x) = Ui(

Then ¢, ¢ ¢ satisfies

).

[z — @

€

(4.11) Av—Xv=01in ., v="U ) on 0€2.

Using (4.7) and modifying the proof in Section 4 of [32], we obtain the

following lemma

Lemma 4.1.

(1)
4.12 —elog i 0(Q) = 24/ Xd(Q,092) as ¢ — 0.
77Q
(2) Let V.(y) = %&;y). Then as € — 0 (up to a subsequence),

V..i(y) = Vi(y), where Vi(y) is a solution of

AV, = \Vi= 0 in RV,
(4.13) { Vi(0)= 1,V; >0 in RV,
(3)
(4.14) sup e_‘/ri(1+”)|y‘1/;,i(y)‘ <C forany 0<o<1.

yer,P

Using (4.1), we obtain the following error and energy estimates.

Lemma 4.2. Assume that QQ € A. Then we have
(1)

(4.15) 1S1(U1,6,0: U2,e,@)| + [92(Ur,6,0, Uz,e,0) | < CP1,60 + #2,6,0)
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(2)

(4.16)  J (U1, Useql = Io + (a1 + 0(1)¢1,60(Q) + (az + 0(1)) 2.0

where Iy = LU +2BU2U% + paUs), a1 = 3 fon (U3 + BUUZ) eV ay =

5 Jan (U3 + BUUR) e,

Proof: (1) Since A\; < Ay, we estimate Sy(U ¢ g, Uz,q) first:

So(Ur,e,0:Useg) = AUz — AUz + ,LL2U§"€,Q + ﬁUie,QUZe,Q
(4.17) = ,U2(U23,6,Q - U3) + ﬁ(UIZ,e,QUQQ,e,Q —U,U3).
The first term in (4.17) can be estimated easily

|U§’,€Q —U3| < CUS 960 < Cpaen(Q)

by Lemma 4.1 (3). Similarly, we can estimate other terms in (4.17) except
the term UZpycq. If Ay = Ay, we have g0 < p10- If A < Ay, we also

have p2 .o < ¢1,¢,0 by comparison principle. In any case, we obtain
U 2,60 < CULP1eq < Op160(Q)-
Similarly, we can estimate Sy (Ui g, Uzq)-
(2) Using the definitions of U; g, we obtain
JdUre@: Uzl = %/Q (M1U13+5U1U22)(Ul—wl,e,o)ﬂ“%/Q (2U5+BUUY) (U —2,,)

1

~7 | U + 2608 U0 + 1)
Q.

1
=1 RN[M1U11+25U12U22+M2U§]

4(Q,09)
€

1 1 )
_5/ [H1U5’+ﬂU1U22]€01,e,Q—§/ (12U + BURUL | 2.e +O(e (2v/A+4) )
Q. o,

By Lemma 4.1 (2), we have

1 1
5/9 [lj’lUf—i_lBUlUQQ]gOl,QQ = <P1,5,Q(Q)§/Q [MlUf'i_ﬂUlUg]‘/e,l

where

[ U2+ UV~ [ P+ SOV = [ U3+ U
Qe RN RN
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by Lemma 4.7 of [32]. Similarly, we have
[ sl + BV U enia = ncal [ U3 + BUUEI™ + o(1)
Q. R

This proves (4.16). O

5. LocALiZED ENERGY METHOD AND PROOF OF THEOREM 1.2

In this section we develop the linear theory which allows us to perform
the finite-dimensional reduction procedure. Here we need the nondegeneracy
result Theorem (1.3).

Fix @) € A. We define the following functions

5.1 Zii= (¥ -1,2,j=1,.., N,
(5.1) j 6sz(5 Z— ) i J

_ | 2 -
(5.2) Z; = ( 7 ) . j=1,2,...,N,

where x(t) is a smooth cut-off function such that x(¢) = 1 for |¢| < 1 and
x(t) =0 for [t| > 2.

We first consider the following linear problem: Let

L ¢ = A¢ - )‘1¢ + (3/1’1U1236,Q + U%g,Q)qﬁ + QBUl,e,QUQ,e,Qw )
A\ AY — My + BuaUs g + Ul 0)¥ + 2BU1e,QUs,,09

Given hy, hy € L*(9,), find a function ( i ) satisfying

¢ h N
Le ( ’lﬁ = h; + Zj:l Cij,
(5.3) 6
< ¢>’Zj>€:0’j:1’m’N and ¢ =1 =0 on 0S),
for some constants ¢;,. =1, ..., N. To this purpose, we define two norms

(5.4) [8ll« = l¢llw2a@e, 1fllx = [[fllzac0),

where g > % is a fixed number.

We have the following result:
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Proposition 5.1. Let ¢ satisfy (5.3). Then for € sufficiently small and
Q € A, we have

(5.5) [6lls + 191l < CUlhallex + llh2ll+)

where C' 1s a positive constant independent of € and Q) € A.

Proof: We follow the proof of Proposition 3.1 of [p.264, [24]]. Arguing by
contradiction, assume that there a sequence (@, ¥, hin, hoy) satisfying (5.3)

such that

(5.6) [[@nlls + [[¥nll« = 1; [[Panllex + [[h2nll = o(1).

To avoid clumsy notations, we omit the dependence on n.
Multiplying (5.3) by Z;, we obtain
(5.7)
N b p
Zc,-<ZZ~,Zj >=—< ( hl ) 7 >6+<L6(¢ ) Z;>j=1,..,N
2
i=1
Since Uj ¢ = U; + O(e‘g) and < Z;,Z; >e=< 71,7, > 6;;, by integration

by parts, we obtain
(5.8) ¢i=o(l),j=1,..,N.

Thus as n — +00, we obtain (¢, 1¥,) — (¢o, %) in CP ., where (o, 1) is

a solution of

Ago — Mo + (31Ut + U3) o + 26U Usthy = 0,
(5.9) Athy — Xotho + (312U3 + U)o + 28U Usghg = 0,
|po| + [2ho| <1,

By Theorem 1.3, ¢9 = 0,1y = 0. This implies by the Lebesgue Dominated

Convergence Theorem that

13U g + U3 @)be + 2BU1,QUs c.q¥ellLa(a.) = 0(1)

By elliptic regularity, ||¢¢|[w2e.) = o(1). Similarly, we obtain ||1)¢||ze(q.) =
o(1). A contradiction. O

By the Fredholm Alternative (see the proof of Proposition 3.2 of [p.267,
[24]]), we also obtain
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Proposition 5.2. There exists ¢¢ > 0 such that for any 0 < € < €, the
following property holds true. Given hy, hy € W4(8,), there exists a unique

pair (¢,1,¢) = (¢, {c;}j=1,..n) such that

(5.10) L. ( i ) = ( Z; ) + 2%,

(8

Moreover, we have

(5.11) <<¢>,Zj>€:0,j:1,...,N, db=1v=0 on Q..

(5.12) 181l + 11l < Cllhalles + llh2lss

for some positive constant C'.

Finally, we solve a nonlinear problem: For ¢ small and for Q € A, we
P16

2,6,Q
1,..., N, the following equation holds true

are going to find a function ( > such that for some constants c;,j =

Se(Ureq + 61,60, Uzeo + B2,6,0) = Dorey a1Zs in €,

(5.13)

< (99 . 2,5=0j=1,..N, 6=1=0omd0..
¢2,€,Q

Using Lemma 4.2 and the Contraction Mapping Principle, similar to the
proof of Proposition 4.2 of [p.268, [24]], we obtain

Proposition 5.3. For Q € A and € sufficiently small, there exists a unique

( zl’@Q ) such that (5.13) holds. Moreover, Q — ( zl’e’Q > is of class C*
2,6,Q 2,6,Q

as a map into W4(Q,), and we have

2
(5.14) Z [9ic.Qllx < Clp1,60(Q) + P2.0(Q))
i=1

for some constant C > 0.



26 E. N. DANCER AND JUNCHENG WEI
6. PROOF OF THEOREM 1.2
In this section, we prove Theorem 1.2.

We first present a reduction lemma. Fix Q € A. Let (¢1,,0, ¢2.,0) be the

solution given by Proposition 5.3. We define a new functional
(6.1) M Q) = JelUrcq + P10 V2@ + d260] - A = R.

Then we have (similar to the proof of Theorem 1.1 of [p.271, [24]])

Lemma 6.1. If Q. is a critical point of M(Q) in A, then (U1 ¢q.+P1.60., Uzeo.+
b2.e.0.) is a critical point of J. and hence a solution to (4.2).

Therefore, the proof of Theorem 1.2 is finished after we have the following

proposition:

Proposition 6.2. For ¢ small, the following minimization problem

(6.2) min{M.(Q) : Q € A}

has a solution Q¢ € A°-the interior of A. Furthermore, d(Q., 0€)) — maxpcq d(P, 052).

Proof: Since J([U ¢ o+1.c,0; Uz e o+ P2.c0] is continuous in @, the minimiza-
tion problem has a solution. Let M,(Q.) be the minimum where Q. € A.
We claim that (), must stay in the interior of A.
We first obtain an asymptotic formula for M(Q). In fact for any @ € A,

we have

Me(Q) = Je[Ul,e,Qa U2,6,Q]

2
+/ (=51[U1,6,0, U2,6,0l91,6,0 — S2[U1,6,0, U2,6,0lP2,,0) + O(Z |ieqll?)

=1

2

(6.3) = I+ Z(ai +0(1))¢ie0(Q)

=1

by Lemma 4.2 and Proposition 5.3.
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First, by choosing @) such that d(Qo, 02) = maxpcq d(P, 052), we obtain

a lower bound for M, :

2

(6.4) M(Q) < I+ (ai +0(1))Pie,00(Qo)
i=1

which, by (6.3) and Lemma 4.1, gives

(6.5) lim d(Q.. 99) > d(Qo, 09).

Proposition 6.2 is thus proved.
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