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Abstract

We establish the existence of stationary states for the following
nonlinear Dirac equation

3
—1 Z apOpu + afu + M(z)u = g(z,|u))u  for z € R?
k=1
u(z) =0 as |z| = oo

with real matrix potential M(z) and super-linearity g(z,|u|)u both
without periodicity assumptions, via variational methods.
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1 Introduction and main results

Of concern is the existence of solutions to the following nonlinear Dirac equa-
tions

3
(L.1) —iZakaku +afu+ M(z)u = g(z, |u))u for z € R?,
' k=1

u(zr) =0 as |z| — oo,



where x = (11, 22,23) € R, u(z) € C*, 9 = B%k’ a is a positive constant,
aq, 0, a3 and [ are 4 X 4 complex matrices (in 2 x 2 blocks):

(I 0 [0 o B
ﬂ_<0 _I>: ak_(o_k 0): k_1:273

(01 (0 —i (1 0
01 = 10 ) 02 = i 0 ) 03 = 0 —1 )

M (z) denotes a 4 x 4 real symmetric matrix valued function, and g € C(R? x
R, R"), R" := [0,00). In physics, M(z) represents the external potential.
See [38].

Problem (1.1) arises in the study of stationary solutions to the nonlinear
Dirac equation which models extended relativistic particles in external fields
and has been used as effective theories in atomic, nuclear and gravitational
physics (see |9, 29, 18, 16]). Its most general form is

with

3
(1.2) —ihOy = ich Yy Oty — mc* By — P(z)y + Gy (z,1)).

k=1

Here ¢ denotes the speed of light, m > 0 is the mass of the electron, i
denotes Planck’s constant, the 4 x 4 real symmetric matrix P(z) stands
for the external field, and the nonlinearity G : R? x C* — R represents a
nonlinear self-coupling. A solution ¢ : R x R® — C* of (1.2), with ¥(¢,-) €
L?(R3,C"), is a wave function which represents the state of a relativistic
electron. Assuming that G satisfies G(x, e%4) = G(z,) for all § € [0, 27],
one is finding solutions of (1.2) with the form (¢, z) = e'% u(z) which may
be regarded as "particle-like solutions" (see [29]): they propagate without
changing their shape and thus have a soliton-like behavior. Then u : R® — C*
satisfies the equation

3
(1.3) —i z pOpu + afu + M(z)u = Gy (x,u) for z € R?
k=1

with a = mc/h, M(z) = P(z)/lic + 01, and Gy(z,u) = Gy(z,u)/fic.
Mathematically, there are new difficulties in using the Calculus of Vari-
ations to find solutions to Problem (1.3). First, the energy functional (see
(1.6) below) is strongly indefinite: it is unbounded from below and all its crit-
ical points have indefinite Morse index. The second difficulty is the lack of
compactness: the Palais-Smale condition is not satisfied due to the unbound-
edness of the domain R3. The combination of the above types of difficulties
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poses a challenge in the Calculus of Variations. As a result, many authors
have developed new methods and techniques to study (1.3). We summarize
the research on the existence (and multiplicity) of solutions to problems of
form (1.3) for particularly the following three cases.

Case 1 — the autonomous system, that is, M = wly (w a constant and I,
the 4 x 4 identity matriz), and G does not depend on z. In [4, 5, 10, 27| the
authors studied the problem with w € (—a,0) and G having the form
(1.4) G(u) = %H(ﬂu) , He C*(R,R) , H(0) =0;here iu = (Bu,u)u,
by using shooting methods. (This is the so-called Soler model [35].) Finkel-
stein et al. [19] considered the nonlinearity G of the form
(1.5) G(u) = Yau|® + bldaul® , Gou = (Bu,0u)u , o= ajaas
with b > 0. In [17] Esteban and Séré treated the equation with G(u) of
form (1.4) under the main additional assumption that H'(s)s > 6 H(s) for
some f > 1, and all s € R. [17] also considered nonlinearities of type (1.5),
however with a weaker growth

G(u) = plau|™ + blacul”, 1 < 1,0 < 3 1,b>0;

they also investigated a more general G(u) growing likely |ul?,p € (2,3), as
lu| — oo.

Case 2 — the periodic system, that is, M (z) and G(x,u) depend periodi-
cally on z. In [7] Bartsch and Ding investigated this case with additionally
M(z) = BV (z),V € C(R*R). They treated functions G(z,u) which may
be superquadratic or asymptotically quadratic in u as |u| — oo and they
obtained infinitely many solutions if G is additionally even in .

Case 8 — non periodic system but éu(x,u) 18 asymptotically linear as
|u| — oo. Recently, in their paper [16] Ding and Ruf considered this case with
either the vector potentials M (z) of Coulomb-type (see (M7) below) or the
scalar potentials of the form M (z) = BV () satisfying roughly lim infj,| . BV (z) >
0. Under suitable assumptions they obtained the existence and multiplicity
of solutions of (1.3)

Now one of the remaining cases is that the potential M (z) depends explic-
itly on x without periodicity assumption and the nonlinear interaction G (z,u)
grows super-quadratically as |u| — co. Indeed, as far as we know there is no
existence results on (1.3) with the Coulomb-type potential (see (M;) below)
and "power-like" interaction |ul?, p > 2 (the so-called Soler model [35]). In
the present paper we consider this case.
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In the following, for convenience, any real function U(z) will be re-
garded as the symmetric matrix U(z)l;. For a symmetric real matrix func-
tion L(z), let A, (z) (resp. Ar(z)) be the minimal (resp. the maximal)
eigenvalue of L(z), inf L := inf )\, (z), supL := sup, A\p(z), |L(z)| :=
max{|A;(z)|, [Ac(z)[}, |L]|eo := esssup, |L(z)|, and L(0co) := limz_ e L()
if and only if |L(z) — L(cc)| — 0 as |z| — oco. For two given symmetric real
matrix functions Li(x) and Lo(z), we write Li(z) < Lo(x) if and only if

geCiig =1 (Li(z) = La(2)) € - £ < 0.

Associated with (1.1) is the following energy functional defined by

(16) Bar(u) = /R (%(—iiak6k+aﬁ+M(x))u.ﬂ—F(:r,u)) da

where ]
F(z,u):= / g(z, s)sds.
0

Let
cur i=inf {@pr(u) : u # 0is a solution of (1.1)}.

A solution uy # 0 with ®,,(ug) = ¢y is called a least energy solution. Let
Sy denote the set of all least energy solutions of (1.1).
We start with the following typical problem:

3
—i Z arOpu + afu + M(2)u = q(x)|ulP>u  forz € R®

(1.7) p

u(z) =0 as |z| — oo
with p € (2,3). We assume
(90) ¢ € C(R3, R) with g(z) > go > 0 for all z where gy := limy|_,0 ¢(y)-
For the vector external potentials we consider firstly the Coulomb-type:

(My) M is a symmetric continuous real 4 x 4-matrix function on R?® \ {0}
with 0 > M(z) > —& where x < 3.

Our first theorem concerns the regularity of solutions to (1.7).

Theorem 1.1. Assume that p € (2,3) and (M,) and (q) are satisfied. Then
equation (1.7) has at least one least energy solution u € WH(R® C*) for all
q > 2. Moreover, Sy is compact in H'(R®, C*).
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Theorem 1.1 applies to the physically relevant case when ¢(z) = 1 and
M (z) is Coulomb potential: M(z) = —=. We refer to Chapter 4 of 38| for

—=
discussions on external fields. The restriction on & is technical. See [7].
Next we consider the following potential:

(M) M is a symmetric continuous real 4 x 4-matrix function on R® with
IM|oo < a, M(z) < M(oo) for all z, and either (i) M(occ) < 0 or
(73) M (00) = meoly a constant.

In what follows, for describing the exponential decay of solutions, we
restrict ourselves to consider the scalar potential M (z) =V (z)8 or M(z) =
V(z), where V € WH*(R3, R). Denote

E(a, M(z)) = (a+V(2)*+if > apdpV(z) if M(z)=V(z)8

k=1

and
E(a, M(z)) = a®> - V(x)* if M(z) = V(z)l,.

We say that £(a, M (z)) is real positive definite at infinity if there exist 7 > 0
and R > 0 such that

R[E(a, M(2))E- €] > 7I€* for all |z| > R and € € C.
Assume

(M3) Either M(x) = V(x)8 or M(z) = V(x)I; with E(a, M(x)) being real
positive definite at infinity.

Conditions (M3) and (M3) are technical conditions which are needed for

concentration-compactness. Note that the Coulomb potential satisfies (Ms)—
(Ms).
Our second theorem concerns the exponential decay of solutions to (1.7).

Theorem 1.2. Assume that p € (2,3) and (Mz) and (qo) are satisfied. Then

(i) Equation (1.7) has at least one least energy solution v € WH4(R®, C*)
for all ¢ > 2;

(it) Sar is compact in H'(R®, C*);

(119) If additionally (M3) holds and q is of W1 then there exist C,c > 0
such that

lu(z)| < Cexp(—clz|) for all z € R?, u € Sy.



Finally, we consider the existence of ground states under more general
nonlinearities of (1.1). Assume

(91) g(z,5) =2 0, g(z,s) = o(s) as s — 0 uniformly in z, and there exist
p € (2,3), ¢ > 0 such that g(z,s) < ei(1 4+ s72);

(g2) there is u > 2 such that 0 < pF(z,u) < g(z, |u|)|ul? if u # 0;

(g3) there is go, € C*(RT,R") with g/_(s) > 0 for s > 0 such that g(z,s) —
Joo(8) as |z| = oo uniformly on bounded sets of s, and g (s) < g(z, )
for all (z, s).

Here g (s) = dgo(s)/ds and Fi(u) := 0'”' Joo(8)s ds.

Conditions (g1)— (g3) are called Ambrosetti-Rabinowitz conditions, which
are assumed in saddle-type critical point theory. In particular, the nonlin-
earity in the so-called Soler model [35] (see (1.4)) satisfies (g1) — (g3)-

Our last theorem gives the existence of ground states.

Theorem 1.3. Let (g1) — (93) and either (M) or (Ms) be satisfied. Then

(i) Equation (1.1) has at least one least energy solution v € WH9(R®, C*)
for all g > 2;

(it) Sar is compact in H'(R®, C*);

(i17) If (My) and (M3) are satisfied and g(z,s) is additionally of class C*
on R® x (0,00), then there exist C,c > 0 such that

lu(z)] < Cexp(—clz|) forallz € R®, u € Sy.

It is clear that Theorems 1.1 and 1.2 are consequences of Theorem 1.3.

Our argument is variational, which can be outlined as follows. The so-
lutions of (1.1) are obtained as critical points of the energy functional ®,,
on the space H'/?(R® C*). ®,, possesses the linking structure, however it
does not satisfy the Palais-Smale condition in general. Thus we consider
certain auxiliary problem related to the "limit equation" of (1.1) which is
autonomous and whose least energy solutions with least energy C are known.
It will be proved that ®,, satisfies the Cerami condition (C). at all levels
¢ < C. We then show that the minimax value £;; based on the linking struc-
ture of ®,, satisfies 0 < £y < C via a recent critical point theorem and
obtain finally the solutions.

For the corresponding nonlinear Schrédinger equation

(1.8) R’Au — V(x)u+ f(u) =0, u€ H'(RY),
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results similar to Theorems 1.2 and 1.3 have been established previously by
Rabinowitz [28| and Sirakov [37]. The existence of spike layer solutions in the
semiclassical limit (i.e., h — 0) has been established under various conditions
of V(x). See [2], [8], [13], [14], [20], [22], |23], |24], [26] and the references
therein. Due to the strong indefinite structure of Dirac operator, our results
in this paper seem to be the first of such for nonlinear Dirac operators.

The paper is organized as follows. In Section 2 we formulate the varia-
tional setting and recall some critical point theorems required. We then in
Section 3 discuss the least energy solutions of the associated limit equation,
in particular, characterize the least energy in three versions (the results of
this section seems useful also for dealing with semiclassical solutions of some
singularly perturbed Dirac equations). And finally, in Section 4 we complete
the proof of the main results.

2 The variational setting

In what follows by |- |, we denote the usual L¢-norm, and (-, )2 the usual L*-
inner product. Let Hy = —i 22:1 a0 + af denote the selfadjoint operator
on L*(R®, C*) with domain D(H,) = H'(R*,C*). For any symmetric real
matrix function M set Hy, := Hy + M with its spectrum and continuous
spectrum denoted by o(Hy,) and o.(H},) respectively.

Lemma 2.1. Let M be a symmetric real matriz function.
1) o(Ho) = o.(Hy) = R\ (—a,0);

2) If M satisfies (M
and o(Hy) CR\

then Hy is selfadjoint with D(Hy) = HY(R®, C*)
—(1 = 2K)a, (1 —2k)a);

3) If M satisfies (M,
and o(Hpy) CR\

then Hyy is selfadjoint with D(Hy) = HY(R?, C)
—a+ |Mlw), a — | M|x).

N N N N

Proof. 1) follows from a standard argument of Fourier analysis.

We now check 2). Setting Vi(z) := &/|z|, it follows from (M) that
|Mul3 < |Veul2. Since a > 0, the Kato’s inequality implies that |Viul3 <
4k2|Vul3 < 4k?|Houl3 (see [12]). Since 2k < 1, it follows from the Kato-
Rellich theorem that H), is selfadjoint. Furthermore,

‘HMU/‘Q Z |H0u|2 — |MU‘2 Z (1 — 2/4,)|H0’U,|2 Z (1 — 2/1)a\u|2,

thus, o(Hy) C R\ (—(1 — 2k)a, (1 — 2k)a).
Similarly, one checks 3) easily. O



It follows from 1) of Lemma 2.1 that the space L? possesses the orthogonal
decomposition:
=L oL, u=u +u"

so that Hy is negative definite (resp. positive definite) in L~ (resp. L™).
Let |Hy| denote the absolute value, |Hy|'/? the squared root, and take F =
D(|Hy|'/?). E is a Hilbert space equipped with the inner product

(u,v) = R(| Ho|""u, | Ho|"/*v)2

and the induced norm |ju|| = (u, u)/?

tion

. E possesses the following decomposi-

E=E " @E" with Ef=FEnL?

orthogonal with respect to both (-, -)2 and (-,-) inner products.
The following lemma can be found in [7] or [15].

Lemma 2.2. E embeds continuously into H'/?(R*,C*), hence, E embeds
continuously into L? for all g € [2, 3] and compactly into LY. for allq € [1, 3).

loc

Assuming (g1) — (g3) are satisfied and either (M) or (Ms) holds, we define
on F the following functional

@1 Bwln) = 5 (P = )+ 5 [ M- w(w)

(NN

where
T(u) = /RBF(:E,U).

Then ®,; € C*(E,R) and a standard argument shows that critical points of
&, are solutions of (1.1).

Using the operator Hjy, one may give ®,, another representation as fol-
lows. Note that, by the 2) and 3) of Lemma 2.1, E = D(|Hy|"/?) with the
equivalent inner product

(u, ) s := R(| Hpr|Y?u, |Hpr|Y?0)4
and norm |[ul| := (u,u)}?. Then as above there is a decomposition
E=E, ®E,

and ®,; can be represented as

(2:2) Car(u) = 5 (w5 = llu”ll3) — ¥ (w).

| =
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In order to find critical points of ®,, we will use the following abstract
theorem which is taken from [6, 15].

Let E be a Banach space with direct sum decomposition £ = X @Y, u =
x + y and corresponding projections Py, Py onto X, Y, respectively. For a
functional ® € C'(E,R) we write ®, = {u € E : ®(u) > a}. Recall that
a sequence (u,) C FE is said to be a (C).sequence (resp. (PS).-sequence)
if ®(u,) — ¢ and (1 + |[us|])®'(un) — O (vesp. ®'(u,) — 0). P is said to
satisfy the (C).-condition (resp. (PS).-condition) if any (C).-sequence (resp.
(PS).-sequence) has a convergent subsequence.

Now we assume that X is separable and reflexive, and we fix a countable
dense subset S C X*. For each s € § there is a semi-norm on E defined by

ps: E =R, ps(u)=|sz)|+|y|| foru=2z+yecXaY.

We denote by 7s the induced topology. Let w* denote the weak*-topology
on E*. Suppose:

(®y) There exists ¢ > 0 such that ||u|| < ¢||Pyul| for all u € ®y.

(®,) For any ¢ € R, &, is Ts-closed, and @' : (®,, Ts) — (E*,w*) is contin-
uous.

(®2) There exists p > 0 with x := inf ®(S,Y) > 0 where S,)Y :={u € Y :
[ull = p}-

The following theorem is a special case of |6, Theorem 3.4|; see also [15,
Theorem 4.3].

Theorem 2.3. Let (®g)—(P2) be satisfied and suppose there are R > p > 0
and e € Y with |le|| = 1 such that sup ®(0Q) < k where Q = {u = = + te :
x € X,t>0,||ul| < R}. Then ® has a (C).-sequence with k < ¢ < sup ¢(Q).

The following lemma is useful to verify (®) (see [6] or [15]).

Lemma 2.4. Suppose ® € C*(E,R) is of the form

Ou) = S (lyll* = ll=]I”) = ¥(w) foru=z+yeE=X0Y

DN —

such that
(i) ¥ e CY(E,R) is bounded from below;

(il) ¥ : (F,Ty) — R is sequentially lower semicontinuous, that is, u, — u
in E implies ¥(u) < liminf ¥(u,);
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(iii) ¥': (B, Tw) = (E*, Ty+) is sequentially continuous.

(iv) v : E = R, v(u) = |[ul|?, is C! and v' : (E,Ty) — (E*, Ty) is
sequentially continuous.

Then ® satisfies (P1).

3 Autonomous equation—limit problem

In this section we study the following autonomous equation

3
(3.1) —iZakﬁku +afu+ (b+ L)u = goo(|u))u for z € R?
' k=1

u(z) -0 as|z| — o0

where g is the function from assumption (gs), b is a real number and L is
a symmetric real constant matrix with

(3.2) be(—a,a) and b—a< L <O.

Without loss of generality we may assume b > 0 because otherwise we con-
sider b = 0 and L = b+ L (which < 0if b < 0) replacing b and L. Remark
that by (3.2) the minimal eigenvalue 0 > A; > b — a, hence

(3.3) IL| <a—b.

In our later application we are interested in the situation b =0 and L = 0 in
the case (My); the situation b = 0 and L = M(00) in the case (i) of (Ms);
and the situation b = my and L = 0 in the case (it) of (Mz). Equation
(3.1) may be regarded as a "limit equation” related to (1.1). The main
consideration services to constructing linking levels of the functional ®,, in
the proof of main results. Although the existence of stationary solutions of
(3.1) is known, we would also like to provide some minimax characterization
of its least energy which seems useful in studying "semiclassical solutions" of
singularly perturbed Dirac equation.

Let Hy, := Hy + b, a selfadjoint operator in L? with D(H,) = H' and
o(Hy) C R\ (—a+b, a+b). We introduce on E = H'/2 the equivalent inner
product

(3.4) (u,0)o := R(H[?u, |Hy|'?v)o
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with the deduced norm ||ul|s := ||Hy|"/?ulo. Note that the decomposition
E = E- ® E™ is also orthogonal with respect to the inner product (-, ), and

[u]|? = [[u®|]? £ bju* ]2 for u* € B
and
(3:5) [ull?2 > (a — b)|ul2.

Setting Fio(u) = Fo(|u|) := 0‘“' Joo(8)s ds, it follows from the assumption
on g, that there is i € (2, u) such that

(3.6) 0 < iFs(u) < goo(|u|)|u* whenever u # 0.

Indeed, one has

goollu[uf? = iFoo() = Jim (g(a, lul)|uf? ~ iF (z,u))

|z| =00
= lim (g(x, ) [ul? — pF(z, u))
I|—00
+ lim (j— @)F(z.u)
|z|—o00
>0

if u # 0. By (3.6), for any 0 > 0 there is ¢5 > 0 such that

(3.7) Fyo(u) > cs|ul® for all ju| > 6;

and, for any € > 0, there exist C,, ¢, > 0 with

(3.8) goo([ul) u] < €lu] + Celul™!

and

(3.9) Foo(u) < eluf® + Celul?

for all u € C*. Moreover, setting Fiy,(u) := % 9oo([u])|ul> = Fo(u), there holds
Frow) > B0 = 2P

Note also that, o := p/(p

— 3, and for any 6 > 0, if |u| > § then
goo([u]) < c5[ulP™? s0 goo(|ul)

2) >
1 < ¢|ul* and

goo(|u|)a — (goo(||Z||3|U| )U _ (goo(|7|j’,L|L)||;j| ) goo(‘u‘)‘UP
ol gl < chgn( )
< cgﬁoo(u)

11



Therefore, for any € > 0 there exist p. > 0 and ¢, > 0 such that
(310)  gool[ul) <eif u[ < p. and goo(Jul) < e.Fo(u)/7 if |ul > p.

Set

and define the functional
1 1 1
Bu(w)i= gl = 5w+ 5 [ O+ D — W)
R3
1 1, _ 1 _
= S = S+ 5 [ D= )

foru=u"+ut € E-@ET.

It follows from the assumption on g, that ®, € C'(E,R) and its critical
points are solutions of (3.1).

By (3.2), (3.7) and (3.9) it is not difficult to verify that ®, possesses the
linking structure, that is, for any finite dimensional subspace Z C E™,

Oy(u) » —o00 asu € E- @ Z, ||u|| — oo,
and there are r > 0 and p > 0 such that
®y|B,ne+ > 0 and Pylop,np+ > p.

Let Ky :== {u € E: ®}(u) = 0} be the critical set of ®,. The following
lemma is an easy consequence of [17] and [7].

Lemma 3.1. K, \ {0} # 0 and Ky C (1,5, W

Denote
cp := inf{®y(u) : u € Ky \ {0}}.

Lemma 3.2. ¢, > 0. In particular, 0 is an isolated critical point of ®y.

Proof. If u € K, one has

Dy (u) = Pp(u) — %@g(u)u = / Fo(u) > 0.

R3

For proving ¢, > 0, assume by contradiction that ¢, = 0. Let u; € K\ {0} be
such that ®(u;) — 0. Then it is not difficult to check that (u;) is bounded.
We can suppose u; — u € K. Then

By (uy) = /RB Fy(uj) — 0.

12



Since 0 = ®}(u;)(u) — u; ), (3.3) and (3.5) imply that

el == [zl =5 + [ ety =5
R3 R3
< itz + [ glushusaf — o
- CL— b ] RS '] ‘] -7 -7

By (3.10) and using Hélder inequality (1/0 +1/0' =1, 0 = p/(p — 2)), one

sees
VRS N —
=) s < + Goo(|uj])ujui —u;
a luj|<pe uj|>pe
< clu e [ Pl ol luf = ;]
2 - Vo
< el +eree( [ o)) lusl:
R3
< cael|ulfy + ey ()7 uyll;
hence 1 < ¢4 + 0(1), a contradiction. O

Remark 3.3. Let S, denote the set of all least energy solutions u with
1u(0)| = |u|o. Remark that as before (4.11) keeps true for u € S, with
independent of z and u € S,. Although we do not know if the least energy
solution of (3.1) is unique up to translation, we can show the following a
substitute (which will not be used for proving our main result):

Lemma 3.4. S, is compact in H'(R3,C*).

Proof. Let u; € S’b with u; = g in H'. Tt is clear that uy € K, and Uj — U
in L] for any ¢ < 5.

We claim first that uy # 0. In fact, suppose up = 0 and u; — 0 in
Then (4.11) implies that u; — 0 in CJ.. But this contradicts with

loc*

quOC.
|13 (0)] = |tj]oe > 0 > 0.

Thus ug # 0 and hence ®y(ug) > ¢p. Since there is no nonzero critical
value of ®; less than ¢, and ug # 0, it is standard to show that ®(u; —ug) —
ey — Pp(uo), Py(u; — ug) — 0, and |lu; — uol|ls — O (see e.g. [15]). Denoting
A= Hy+ b+ L and using the equation for u; and u,,

|A(Uj —up)|o = |goo(\uj\)uj — Yoo (|uo)uol2

< [goo (1) (uj = uo) |2 + |(go0 ([45]) = goo([uol))uo2-

Since |uj|o < C and u; — ug in E,
[ sl 7l = ol < Cls = o =,
R
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and since |ug(z)| — 0 as |z| — oo,

[ o) = (o

) </|x|<R+ /| |>R) (oo 15]) = oo 0] ui* = 0.

Therefore, one sees that |A(u;—ug)|s — 0 which, together with (3.3), implies
|Ho(uj — ug)|2 = 0 i.e., u; = up in H'. This proves the first conclusion. [

Following Ackermann [1], for fixed v € E™, we introduce the functional
o E= — R by
Ou(v) := Bp(u + v)
1 -
=3 <||u||2 —||v|]* + /Rs(b + L)(u+v)u+ v) — Uoo(u+v)
1 1 -
= §(||u||§ —lolly) + 3 / L(u+v)u+v—Ty(u+v).
R3
One has

o), 0] = ol + [ | Lww = ¥+ o)fu,
_ _||w||§+/]Rs wa—/Rs geollu 2+ vD) gy 4 w2

lu+ v|
— [ gwllu+ ol
R3

for all v,w € E~, which implies that ¢,(-) is strictly concave (recalling that
L < 0). Moreover

1
du(v) < 5(llully = IIolly) = =00 as [lv]] — co.

Plainly, ¢, is weakly sequentially upper semicontinuous. Thus there is a
unique strict maximum point h,(u) for ¢,(-), which is also the only critical
point of ¢, on E~ and satisfies:

(3.11) v % hy(u) & By(u+v) < By(u + hy(u))

— (ho(u), w)p + R | L(u + hy(u))w
(3.12) R
= §R/R-°> Joo (|t + hp(w)]) (u + hy(u))w

forallu € ET and v, w € E.
As |1, Lemma 5.6] we have the following
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Lemma 3.5. There hold the following:

(i) hy is R®-invariant, i.e., hy(a * u) = hy(u) where (a x u)(x) = u(z + a)
for all a € R3;

(i1) hy € CY(E*, E7) and hy(0) = 0;
(73i) hy is a bounded map;

(iv) Ifup, — u in ET, then hy(uy) — hy(un—u) — hy(uw) and hy(u,) — hy(u).
The same is true for |hy(u)|3.

Now we define the reduce functional I, : E* — R by

Iy(u) == Qp(u + hy(u))
= Sl = S+ 5 [ D+ B Rufu) = Fos ).
Observe that
Fyu)o = (.0 = (), Kyl + R [ L+ b))+ Fae

—R | goo(lu+ hp(u)])(u+ hy(u))v + b (u)v

R3

= @ (u + hy(u)) (v + hy(v)) (by (3.12))
= (u,v)p — (hp(u), hp(v))s + R | L(u~+ hy(u))v + hy(v)

R3

—R | goo(|u+ hp(u)|)(u+ hy(u))v + hy(v)

R3
for all u,v € E™T, and critical points of I, and ®, are in one to one corre-
spondence via the injective map u — u + hy(u) from ET into E, that is,
letting

K :={ueE": I;(u) =0},
one has

Ky={u+hp(u): uve s}
Next we discuss the mountain pass geometry of functional I,.

Lemma 3.6. [, possesses the mountain pass geometry:

1) There is p > 0 such that inf I,(ET N 0B,) > 0;

2) For any finite dimensional subspace X C E*, I,(u) — —o0 as u €
X, ||lu|| = oo.
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Proof. 1) We have

Bw) = gl = () + 5 [ L+ ha(w)o+ Aufo)
— U (w + hy(w))

1 1
= §||w||§ + 5/ Luww + (<I>b(w + hy(w)) — <I>b(w)) — U (w)
R3
1, 1 _
> —|w|l; + = Luww — ¥ (w)
2 2 Js
L]

1
> Sl = Sl — Wac(w)

for all w € E*. The desired conclusion now follows from (3.3), (3.5) and
(3.9).
2) Let P : L# — X denote the natural projection. Then there is ¢; > 0

such that cl|Pv|l’:j < |v\l’j for all v € LA. Let u € X. One has by (3.3), (3.5)
and (3.7), for any € > 0,

() = gllall = SRR+ 5 [ L+ bufu))u s Bafa)

_ /R Fuo(u + h(w)) .

1 1 .
sllulls = S IR + elu + hy(w)l5 — cclu+ ho(u);

IN

1 1 € .
< §|IUII§ - §|Ih(U)II§ +— bllu + hy(u)lz — crcelulf
1 € 1 € ;
= (5+ =5 ) Iullz = (5 = == Irow)l12 = llull
hence the conclusion is true. O

Lemma 3.2 implies 0 is an isolated critical point of I,. Therefore there is
a v > 0 such that ||w|| > v for all nontrivial critical points w of I,. Let

Nyt i={ue ET\ {0} : I;(u)u =0},

Lemma 3.7. For each v € E* \ {0}, there is a unique t = t(u) > 0 such
that tu € N

Proof. See [1]. We outline its proof as follows. Observe that, if z € E* \ {0}
with I{(z)z = 0, it is not difficult to check

(3.13) I, (2)[z, 2] = (Vy(2)2,2), < 0
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Let now u € ET \ {0}. Setting f(t) = I,(tu) one has f(0) =0, f(¢t) > 0
for t > 0 sufficiently small, and f(t) — —oc as ¢ — oo by Lemma 3.6. Thus
there is t(u) > 0 such that

Iy(t(u)u) = sup Iy(tu).

>0
It is clear that
dIb(tu) ’ 1 ’
o li=tw) = Ly(t(u)u)u = t(—u)Ib(t(u)u)(t(u)u) =0

and consequently by (3.13)

One sees that such ¢(u) > 0 is unique. O

Set
by :=inf{l,(u) : v € N} },

by == inf{I,(u) : u € K \ {0}},

by := inf I t
3 = Inf max s(7(1)),

where
Iy :={y € C([0,1], £) : 7(0) = 0, Ip((1)) < 0}.

Lemma 3.8. ¢, := b; = by = bs.

P?"OOf. We check b1 S bg S bg S bl.

e by < by. This holds because K \ {0} C N,'.

e by < bs. Let (u;) be a Mountain-Pass sequence: I(u;) — bs and
Ii(u;) — 0. It is not difficult to check that (u;) is bounded in E. By the
concentration compactness principle, a standard argument shows that (u;)
is non-vanishing, that is, there exist 7,7 > 0 and (a;) C R* with

limsup/ u|® > .
j—=00  J B (a;)

Set v; := a; * u;. It follows from the invariance of the norm and of the
functional under the x-action that I,(v;) — bs, I;(v;) — 0. Therefore v; — v
in E with v # 0 and I’(v) = 0. Additionally, a standard argument yields that
Iy(v; —v) = by — I(v), I;(v; — v) — 0 and bs — I,(v) > 0 ([15]). Therefore
bg < Ib(U) = b3.
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e by < by. Take U € S and define () := tU(z) for t > 0. Then since
I;(U) = 0 one has t(U) = 1. Then y € T', and

b3 < max ]b(’}’(t)) = ]b(U) = Cp-
t€[0,1]

The proof is completed. O

Let ug € E™ be such that I(ug) < 0, and set

Lo :={y € C([0,1], ET) : 4(0) =0, v(1) = uo}

by == inf I (v(1)).
0= inf max 5(7(1))

Lemma 3.9. There holds by = bs.

Proof. Since I'y C T’y it is clear that b3 < by. Let v € I[',. Then as be-
fore I(ty(1)) and I,(tug) are strictly decreasing for ¢ > 1, and I,(ty(1)) —
—00, Iy(tug) — —oo as t — oco. Let £(s) be a cure in the two-dimensional
subspace span{v(1),uo} jointing v(1) and wgy such that I,(4(s)) < 0 for
1 < s < 2 (such a cure exists because of Lemma 3.6-2)). Define 4(¢) by
4(t) = v(2t) for t € [0,1/2] and #(t) = ¢(2t) for t € [1/2,1]. Then 4 € Ty
and maxeo,1) Ip(Y(t)) = maxyepo,1) Ip(y(t)). Thus by < bs. O

Lemma 3.10. Let u € K be such that I,(u) = ¢, and set E, = E~ & Ru.
Then
sup ®y(w) = Iy(u).

weEE,

Proof. For any w = v + su € E,, by (3.11),
1, o, 1, ., 1 -
Oy(w) = =||sull; — zllvll; + = | Lwv+su)v+su— | Fylv+ su)
2 2 2 R3 R3
< Bp(su+ hp(su)) = Ip(su).
Thus since u € N,

sup y(w) < sup Iy(su) = Iy(u).
wek, 520
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4 Proof of the main result

We are now going to prove the main result. Observe that (g;) and (g3) imply
that

(4.1) F(z,u) > ci|ult for all |u| > 1;

- 1 —2
(42)  Fla,u) = s9(a,u)luf’ = Fla,u) > E=g(x, [u])uf* for all u
i

hence F'(z,u) > 0 if u # 0 and F(z,u) — co as |u| — oo; and

43) o:=-L_>3 (

_ 9(, [ul)u
p—2

] ) < cpF(z,u) for all |u| > 1.
u

By (g2), for |u| > 1, g(z,|u|) < a1|uP™2, so g(z, |u])° ! < as|u|? and conse-
quently

(M=) — gt ) < angto ) < aaF ),
Furthermore, for each ¢ > 0 there is C. > 0 such that
(4.4) l9(z, [ul)ul < elu| + CluP™
and
(4.5) F(x,u) <elul> + C.|ul?

for all (z,u).
Now consider the functional ®,, defined by (2.1), or equivalently (2.2).
Let Kp :={u € E: ®),(u) =0} be the critical set of ®,, and recall that

ey = inf{®y (u) 1 u e K\ {0}}.

Using the same iterative argument of [17, Proposition 3.2] one obtains easily
the following

Lemma 4.1. If u € Ky with [Py (u)| < Cy and |uly < Cs, then, for any
q € [2,00), u € WH(R®) with ||u||w.« < A, where A, depends only on Cy, Cy
and q.
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Let Sy be the set of all least energy solutions u. If u € Sy then @y (u) =
ey and, by (g1) — (g2), a standard argument shows that Sy, is bounded in E,
hence, |uly < O for all u € Sy, some Cy > 0. Therefore, as a consequence
of Lemma 4.1 we see that, for each ¢q € [2, 00), there is A, > 0 such that

(4.6) llullwie < A, for all u € Sy.

This, together with the Sobolev embedding theorem, implies that there is
C > 0 with

(4.7) [u|oo < Co  for all u € Syy.

Lemma 4.2. U, is weakly sequentially lower semicontinuous and P, is
weakly sequentially continuous.

Proof. In virtue of (4.4) and (4.5) the lemma follows easily because E embeds
continuously into L¢(R®, C*) for ¢ € [2, 3] and compactly into L] (R3,C*) for
q € [1, 3) by Lemma 2.2. 0O
Lemma 4.3. There exist r > 0 and p > 0 such that ®pr|p+(u) > 0 and

@M‘S;F > p where Bf ={u € Et: ||lu|| <r} and S ={u e E*: ||u|| =r}.

Proof. We only check the Coulomb potential case because the other case can
be treated similarly. Assume (M) is satisfied. Recall that

Viul3 < 45| Houls = |(2kHo)ul,

thus
[V ?ul3 < [|(26Ho) " ?ul3 = 2k |Ho| ' ul3,
that is
/ T < 2] [ Ho[Y2ul2 = 26]ul?.
RS |Z]
By (M),

— | M(z)u-a < 2&||Ho|*?ul3 = 2k||ul|>.
R3

For u € ET one has

Bur(u) = 5l +5 [ M7= [ Faw

> (3= w)lull = [ P
> (5= %)l = eful} - CuJul
> (L= )l = el - exClul’
so the conclusion follows. =
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For continuing our arguments some further notations are in order. In the
sequel, for the case of (M), the Coulomb-type potential, we consider b = 0
and L = 0 in (3.1), and denote the corresponding functional by

Bofu) = 5 (1" P = 1) = [ Pt

l\DIr—t

the critical set by Ko = {u € F : ®}(u) = 0}, the least energy by Cy =
min{®y(u) : u € Ky \ {0}}, the least energy solution set by Sy = {u € Ky :
®o(u) = Cy}, and the induced map from E* — E~ by he. In the case (My)-
(i) we consider b = 0 and L = M(o0) in (3.1), and denote the functional

by
() 1= 5 (1P = 71?) + 5 [ Mooy~ [ Pt

with the critical set K7, the least energy CI, the least energy solution set 5’1,

and the induced map h; : ET — E~. Similarly in the case of (M,)-(ii) we
take b = my and L = 0 in (3.1), and denote correspondingly

1 N Moo
Burfu) = 5 (a1 = ) + Tl = [ Pl
R3
1 -
= 50 B = ) = [ Pt
R3

(where || - ||, denotes the norm given by (3.4) with b = me,) with notations
Krr, Crr, Sirand hypr. Sometimes, if no confusion arises, we shall write simply
®, IC, C, S and h standing for one of the cases.

Lemma 4.4. There is R > 0 such that, for any e € ET and E, = E~ ® Re,
(4.8) ®p(u) <0 forallue E,\ Bg

Proof. This follows from the following facts: if M satisfies (M;) then

(1P = 1)+ 5 [, My [ Flaw
< S =l ) = [ Pt = @ufa),

P (u) =

[\Dlr—* [\')lr—l

similarly if (M>)-(¢) appears then

Dy (u) < Pr(u) + % /};{3 (M(z) — M(c0))ut < ®r(u)
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and if (M.

)
Bur(u) = 5 (It 1P = o IP) + "2+ 5 [ (= maJui— [ P
P,

R3
1(u) + %[gs (M — moo)ut < ®pr(u),
and ®,, verifies (4.8) by Lemma 3.6 for n = 0,7 and I1. O
Let U, € S’n forn=0,I and I1. Set e=U, and E. = E~ & Re.
Lemma 4.5. We have
d:=sup{®y(u): uve E}<C.

(i7) is satisfied then

IA

Proof. Observe that by Lemma 4.3 and the linking property we have d > p.
Assume (M) is satisfied. Since by (M;), M(z) < 0 and @y (u) < Pg(u)
for all u = v + sUy , and

o (u) = B (v + sUy") < Do(sUg + ho(sUy")) = Co,

hence d < C. Assume by contradiction that d = Cy. Let w; = v+s;Uf € E,
be such that d — = < ®p(w;) — d. It follows from Lemma 4.4 that w, is
bounded and we can assume w; — w in F with v; = v € £~ and s; — s.

It is clear that s > 0 (otherwise there should appear the contradiction that
d =0). Then

d— = < ®y(w;) < Bo(wj) + = M (z)w;w;
j 2 R3

Taking the limit yields Cy < Co + & [rs M (2)w®@ which implies that w = 0,
a contradiction.

Similarly, if (Ms)-(z) holds, for u = v + sU;} € E,, ®p(u) < O7(u) <
®;(sU; + hy(sU;H)) hence d < Cy, and as above

1

Dar(u) < Brfu) + 5 / (M (z) ~ M(oo)u

hence d < Cyp; if (My)-(ii) appears, for u = v + sUf; € E,, ®p(u) <
(b[[(u) S (I)II(SU]_; + h[[(SUI—i})) and

1
Das(u) < B1r(u) + 5 / (M(z) — ma)ui
R3
hence d < C’II. O
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Set
QO = {u = Uu +SU6|— Tu € Eias 2 05 ||U|| < R}’

QI = {UIU_+SUI+: u- EE_,SZOaHUH <R}

and
Qrr={u=u" +sU};: v~ € E7,s>0,|u <R}

Letting @) stand for one of @),,n = 0,1,1I, as a consequence of Lemma 4.5
one has the following

Lemma 4.6. sup ®,,(Q) < C.
We now turn to the analysis on (C), sequences. Firstly we have
Lemma 4.7. Any (C). sequence for ®,s is bounded.

Proof. 1t can be shown along the way of proof of |7, Lemma 7.3| by using
(4.1)-(4.3) together with the representation (2.2) of ®,;. O

In what follows let (z;) denote a (C').-sequence for ®,,. By Lemma 4.7, it
is bounded, hence along a subsequence denoted again by (z;), z; = zu. It is
obvious that z,s is a critical point of ®,,. Moreover there holds the following

Lemma 4.8. Either

(2) zj = zum, or

(i1) ¢ > C and there exist a positive integer £, points zy, - - - ,Z, € K\ {0}, a
subsequence denoted again by (2;), and sequences (ag-) C Z3, such that,
as j — oQ,

— 0,

¢
2 — Zm — Z(a;- * Z;)
i—1

|a}] — oo, |a§-—a§\—)oo if i £k

and
)

i=1

Proof. Remark that, since (z;) is bounded, it is a (PS), sequence. The
proof is well known (see for example Alama-Li [3]), which can be outlined as
follows.

Firstly observe that ¢ > 0 which follows by taking the limit in

1 1 1
Burls) = 5%ul)5 2 (5- ) [ olwlsDls? 20
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Assume (4) is false. It is easy to see that zj 1= z;—zu is a (P.S), sequence
for ® with ¢; = ¢ — ®p/(2p) and 2]1 — (. Note that ® is invariant under the
x-action of R®. A standard argument of concentration compactness principle
implies that there exist a sequence a; € R® with |aj| — oo and a critical
point Z; # 0 of ® satisfying aj * z; — Z; and

®(aj * z;) = ¢ — Pu(zm) — B(z1) > 0.

Since ®pr(zp) > 0 and ®(z;) > C, one sees that ¢ > C.
If a} * zjl — Z; then we are done. Otherwise, repeating the above argu-
ment, after at most finitely many steps we finish the proof. O

As a straight consequence of Lemma 4.8 we have the following
Lemma 4.9. &, satisfies the (C). condition for all ¢ < C.

We now in a position to complete the proof of Theorem 1.3.
Proof of Theorem 1.3. Firstly we prove

Egistence. It is clear that @, checks (@) because of the form (2.2) and
because of F(x,u) > 0. The combination of Lemma 4.2 and Lemma 2.4
implies that ®,, verifies (®;). Lemma 4.3 is nothing but (®;). Lemma 4.4
shows that the linking condition of Theorem 2.3 is satisfied. These, together
with Lemma 4.6, yield a (C), sequence (u;) with ¢ < C for ®,,. Now by
virtue of Lemma 4.9, u; — u so that ®,,(u) = 0 and @, (u) > p.

Along the same lines of proof of Lemma 3.2 it is easy to check that
¢ > 0. Let u; be such that ®y (u;) = car, @, (u;) = 0. Since ¢y < C, we
have u; — u in E with ®y/(u) = ¢y and ', (u) = 0, hence Sy, # 0.

Compactness of Sy. Now we prove that Sy is compact in H'. Let
uj € Syt @pr(uy) = ey and @), (u;) = 0. Hence (u;) is a (C),, sequence.
Since ¢y < C, it follows from Lemma 4.9 that u; — u along a subsequence
in E with clearly u € Sy;. By

Hyu = —M(z)u + g(z, [u|)u
one has

[Ho(u; — u)l2 < |M(u;j — u)l2 + g, [uil)u; — g(-, [ul)ul,
< o(1) + 190 [u[)(wj — w)la + 19, [ugl) — g(; [ul)ula.

Since |uj| < C and u; — u in F,
| ot s =l < Cluy = uf; 0
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and since |u(z)| — 0 as |z| — oo,
[ o s = gt Jlyu = ( [ et ot

Therefore, one sees that |Hy(u; — u)|2 — 0, ie, u; = uin H.

Ezponential decay. Let (g1) — (g93) and (M) — (M3) be satisfied. Assume
g: R x (0,00) = R is of class C'. Write

:—zZak(?k and Hy= D+ af.
k=1

Using the relationship HZ = —A + a? and Hyu = —Mu + g(z, |u|)u one gets
—Au + a*u = Hy(—=Mu + g(=, |u|)u).
Hence there holds
Au = a*u + Hy(Mu) — Ho(g(z, |u|)w)
(4.9) = a’u + D(Mu) + aSMu — Hy(g(z, |u|)u)
=E&(a, M)u+ry(z,u)u
where if M =V 3

3
rva(z,u) = —g(z, |ul) —HZ ( \u\ +gs(x,\u\)§)?[%8k—u]>,
and if M =V

rv(z,u) = —zZakakV-i- 2Vg(z, |ul) + rvg(x, u).
k=1

Letting
ifu#0
sgnu = ¢ |u 7
0 ifu=0,
by the Kato’s inequality ([12]), (4.9) and the real positivity of £(a, M), there
exist R > 0 and 7 > 0 such that

Alu| > R[Au(sgnu)]

=R [5(@, M)u% + TM(x,u)uz]

(4.10) |ul

u
> Tlu|+ R [’I‘M(l‘, u)um]
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for all |z| > R.
Observe that, for f, : R? - R k = 1,2, 3,

, 0 0 /3 fi—ifs
L _ 0 0 fi+if —f
B; '_kz_;akfk_ f3 fi—ify 1 0 2 03
- Hitife  —f3 0 0

is a Hermitian matrix. Applying to fy, = 0g/0xk, g:R[ut/|u|], OV, respec-
tively, one sees plainly that, if M =V

A
R [ra (e, wuris | = —g(a Jul
and if M =V

R [ras(e wurt | = (2 = (o, [u)g(z ul) .

Remark that, by assumption on V' we see £(a, M) € L, and by (4.7),
g(z,|ul) is bounded uniformly in w € Sy. Thus the sub-solution estimate
[36] implies that

(4.11) wunsazgﬂmwwy

with Cy independent of z and u € Sy,.

Since Sy is compact in H!, |u(x)| — 0 as |z| — oo uniformly in u € Sy;.
In fact, if not, then by (4.11) there exist k > 0, u; € Sy and z; € R®
with |z;| — oo such that k < |u;(z;)] < C fBl(wj) |u;|. One may assume
u; = u € Sy in H' and to get

ﬁgc()/ |uj|gco/ |uj—u\+co/ ]
Bi(z;) Bi(z;) Bi(z;)

1/2
< C'( lu; —u|2) +Co/ lu| — 0,
R3 B

1(z5)

a contradiction. Now since g(z,s) — 0 as s — 0 uniformly in z, one may
take 0 < § < 7/2 and R > 0 such that |u(z)| < § and

‘?R [TM(:L‘,U)U%” < g|u|

for all |z| > R,u € Sy. This, together with (4.10), implies

Alu| > 6lu| for all |z| > R,u € Sy.
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Let I'(y) = I'(y,0) be a fundamental solution to —A + ¢ (see, e.g., [30]-[34]).
Using the uniform boundedness, one may choose I' so that |u(y)| < 6T'(y)
holds on |y| = R, all u € Sy;. Let w = |u| — 6. Then

Aw = Alu| — SAT
> 6|u| — 6T
=6(|u| — oT) = dw.

By the maximum principle we can conclude that w(y) < 0 on |y| > R. It is
well known that there is C' > 0 such that T'(y) < C"exp(—v/dy|) on |y| > 1.
We see that

lu(y)| < C exp(—Valyl)

for all y € R?* and all u € Sj;.
The proof is completed.
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