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Abstract

Studies of near periodic patterns in many self-organizing physical and biological systems give rise
to a nonlocal geometric problem in the entire space involving the mean curvature and the Newtonian
potential. One looks for a set in space of the prescribed volume such that on the boundary of the set
the sum of the mean curvature of the boundary and the Newtonian potential of the set, multiplied
by a parameter, is constant. Despite its simple form, the problem has a rich set of solutions and its
corresponding energy functional has a complex landscape. When the parameter is sufficiently large, there
exists a solution that consists of two tori: a larger torus and a smaller torus. Due to the axisymmetry,
the problem is formulated on a half plane. A variant of the Lyapunov-Schmidt procedure is developed
to reduce the problem to minimizing the energy of the set of two exact tori, as an approximate solution,
with respect to their radii. A re-parameterization argument shows that the double tori so obtained
indeed solves the equation of mean curvature and Newtonian potential. One also obtains the asymptotic
formulae for the radii of the tori in terms of the parameter. This double tori set is the first known
disconnected solution.

Key words. double tori, axisymmetry, nonlocal geometric problem, mean curvature, Newtonian po-
tential, approximate solution, Lyapunov-Schmidt reduction, re-parameterization.
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1 Introduction

Near periodic patterns arise in many physical and biological systems as orderly outcomes of self-organization
principles. Examples include morphological phases in block copolymers, animal coats, and skin pigmenta-
tion.

Block copolymers are soft condensed materials that in contrast to crystalline solids are characterized
by fluid-like disorder on the molecular scale and a high degree of order on a longer length scale. A
diblock copolymer molecule is a linear subchain of A-monomers grafted covalently to another subchain of
B-monomers [4, 9]. Because of the repulsion between the unlike monomers, the different type subchains
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tend to segregate, but as they are chemically bonded in chain molecules, segregation of subchains cannot
lead to a macroscopic phase separation. Only a local micro-phase separation occurs: micro-domains rich
in A-monomers and micro-domains rich in B-monomers emerge as a result. These micro-domains form
patterns known as morphological phases. The most common block copolymer morphological phases are
the spherical, the cylindrical, and the lamellar phases.

Morphogenesis is a biological process by which an organism develops its shape. Turing postulated the
presence of chemical signals and physico-chemical processes such as diffusion, activation, and deactivation
in cellular and organismic growth [28]. They control the organized spatial distribution of cells during the
embryonic development of an organism. Common in these pattern-forming systems is that a deviation
from homogeneity has a strong positive feedback on its further increase. On its own, it would lead to an
unlimited increase and spreading. Pattern formation requires in addition a longer ranging confinement of
the locally self-enhancing process.

When a pattern in these morphology and morphogenesis problems consists of disconnected components,
we may break the study of such a pattern into two separate steps. First a single piece of the pattern is
isolated and identified as a solution to a related profile problem where one focuses on the interaction of the
piece with itself. We call such a piece an ansatz. In the second step we place multiple copies of the ansatz
in space and form a set of multiple components, after performing a small modification to each copy. The
shape of each component is mostly determined by the ansatz. The interactions between the different compo-
nents will determine their relative locations and directions in a self-organizing morphology/morphogenesis
pattern.

In recent years several morphology/morphogenesis patterns have been constructed this way. See [22]
for the multiple disc pattern, modeling the cylindrical morphological phase of block copolymers; see [23]
for the multiple ball pattern, modeling the spherical morphological phase; see [11] for the multiple ring
pattern, which often appears on animal skins.

This paper is devoted to a profile problem that is geometric and involves the mean curvature and the
Newtonian potential. Given two parameters m > 0 and v > 0 we look for a set £ in R” and a number A
such that the n-dimensional Lebesgue measure of E is m and on the boundary of E the equation

H(OE) + N (E) = A (1.1)

holds. In (1.1) H(OF) stands for the mean curvature of the boundary of E as an (n — 1)-dimensional
hypersurface or several hypersurfaces, viewed from the side of F, and N is the Newtonian potential
operator. In R3, the case with which this paper is concerned, the Newtonian potential is given by

NE) @) = [

T T—— 1.2
E 4|z —y| 2

The unknown constant A is the Lagrange multiplier associated with the constraint that the volume of E is
m. The problem admits a variational structure. It is the Euler-Lagrange equation of the energy functional

J(B) = ——P(E)+] /E N(E)(z) dx, (1.3)

n—1

defined for the Lebesgue measurable sets whose volume is m. Here P(E) stands for the perimeter of E,
i.e. the (n — 1)-dimensional area of the boundary of E.

The equation (1.1) is derived as the profile problem for the following geometric problem on a bounded
domain. Let D be a bounded domain in R", and a € (0,1) and 7 > 0 be two positive parameters. Find a
subset £ of D and a number X such that the n-dimensional Lebesgue measure of E is a times the Lebesgue
measure of D and on dpF, the part of the boundary of E that is inside D, the equation

H(OpE) +v(=A) " (xg —a) = A (1.4)



holds. If OpFE meets the boundary of D, then they meet perpendicularly. Here yg is the characteristic
function of the set E, i.e. xg(z) = 1if x € E and xg(z) = 0 if z € D\E; the operator (—A)~! is the
inverse of —A which comes with the zero Neumann boundary condition. The equation (1.4) also admits a
variational structure:

JIp(E) = 777[) / (=A) V2 (x g — a)|? da. (1.5)

This functional is defined on subsets E of D whose n-dimensional Lebesgue measure is a times the Lebesgue
measure of D. The perimeter of E relative to D, denoted by Pp(E), is the (n — 1)-dimensional area of the
hypersurface pE, and (—A)~1/2 is the positive square root of the operator (—A)~1.

The equation (1.4) arises from a number of physical and biological pattern formation problems. It
first appeared in [15] as a formal limit of the Ohta-Kawasaki block copolymer theory [16] in the strong
segregation regime. The authors noted in [20] that the functional (1.5) is a I'-limit of the Ohta-Kawasaki
density functional under the I'-convergence theory [6, 14, 13, 12]. This convergence gives a mathematically
precise meaning of (1.4) being a limiting problem of the Ohta-Kawasaki theory. The equation (1.4) is
also connected to the Gierer-Meinhardt system, an activator-inhibitor type reaction-diffusion system for
morphogenesis in cell development [7]. Due to the lack of a variational structure in the Gierer-Meinhardt
system, the connection cannot be interpreted as a I'-convergence property. A formal asymptotic analysis
that reduces the Gierer-Menihardt system to (1.4) may be found in [24].

The equation (1.4) is only solved completely in one dimension, where there are a countable number
of solutions, each of which is a periodic set and each of which is a local minimizer of J [20]. In higher
dimensions progresses have been made [1, 5, 26], but much remains unknown.

An effective way to study (1.4) in higher dimensions is through solutions to the profile equation (1.1).
We explain this approach by an existence result of ours in [23]. The unit ball is a solution to (1.1). This
is because that the unit sphere, the boundary of the unit ball, has constant mean curvature, and the
Newtonian potential of the unit ball is a radially symmetric function with respect to the center of the ball,
o it is also constant on the sphere. The authors showed that on a bounded domain there exists a solution
to (1.4) with a number of components. Each component is close to a small ball. All these approximate
small balls have almost the same radius. The centers of the balls are determined by minimizing a function
that depends only on the domain D. We used the ball, a solution to the profile equation (1.1), as a
building block of the multiple ball pattern solution to (1.4). The self-interaction property of a ball to itself
is contained in the profile problem (1.1). Only the study of the interactions between distinct balls requires
the equation (1.4). Roughly speaking the shape and the size of each component in our self-organizing
problem are determined by the profile equation (1.1); the full problem (1.4) is mainly responsible for the
locations of the components.

In addition to the unit ball, a less trivial solution is a shell, which is a region bounded by two concentric
spheres [19]. It exists when  is sufficiently large. This shell solution is always unstable. Both the ball and
the shell solutions are radially symmetric.

The first non-radially symmetric solution was found by the authors in [25], also for large . It has the
shape of a toroidal tube, as depicted in Figure 1. Define a function f = f() via its inverse

2
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Note that f maps from (0, 00) to (0,00) and

lim f(y) =0. (1.7)

Yoo



_—

b

Figure 1: A single torus solution.

Theorem 1.1 ([25]) When v is large enough, the equation (1.1) admits a solution of volume equal to 1
which is close to a set enclosed by a torus. The torus is obtained by rotating a circle in the yz-plane about
the z-axis. Let p7 be the distance from the center of the circle to the z-axis and ¢7 be the radius of the
circle. Then 2m%pY(q7)? =1 and

lim i =1 and lim 272f%(y)p’ =1
M 70) 5

where the function f is given in (1.6).

Toroidal shaped objects are fascinating and have been observed in many physical systems. Known as
the vortex ring in fluid dynamics, it is a region of rotating fluid where the flow pattern takes on a toroidal
shape [3]. In a quantum fluid, a vortex ring is formed by a loop of poloidal quantized flow pattern. It was
detected in superfluid helium by Rayfield and Reif [18], and more recently in Bose-Einstein condensates
by Anderson, et al, [2].

In a 2004 Science magazine article, Pochan and his collaborators reported the finding of a morphological
phase of toroidal supramolecule assemblies, using a triblock copolymer [17]. They found this phase by
combining dilute solution characteristics critical for both bundling of like-charged biopolymers and block
copolymer micelle formation. The key to toroid versus classic cylinder micelle formation is the interaction
of the negatively charged hydrophilic block of an amphiphilic triblock copolymer with a positively charged
divalent organic counterion. This produces a self-attraction of cylindrical micelles that leads to toroid
formation, a mechanism akin to the toroidal bundling of semiflexible charged biopolymers such as DNA.

In this paper we go one step further beyond Theorem 1.1 to investigate sets of multiple toroidal
components. We prove the existence of a double tori solution, depicted in Figure 2. The solution is close
to the union of two regions, each of which is bounded by a torus. Both tori are axisymmetric about the
z-axis. In the yz-plane, each torus is represented by a circle. The circle of the inner, smaller torus is
centered at (p],0) and the circle of the outer, larger torus is centered at (pj,0) with p] < pJ. Both circles
have approximately the same radius.

The two parameters m and ~ in the problem (1.1) can be reduced to one. We can take m to be any
convenient number. In this paper, without the loss of generality, we assume that m = 2. The case m # 2



Figure 2: A double tori solution.

can be reduced to the case m = 2 by a change of the space variable and a change of v accordingly. Therefore
the problem (1.1) has intrinsically only one parameter, which we take to be ~.
For 0 < P; < P, subject to the constraint P; + P> = 2, define a function

P, wP;
(P, Py) — (ﬁ + TGP0, P, 0)) + 7 PG(Py,0, Py, 0). (1.8)
j=1

In this definition G is a Green’s function given in (2.3) and Gy, given in Lemma 2.1, is the the second term
in the expansion of G about its singularity. We will show later that the function (1.8) attains its minimum
in the interior of its domain. The following is the main result of this paper.

Theorem 1.2 When v is sufficiently large, the profile equation (1.1) admits a solution of volume equal to
2 which is a set of two components. Fach component is close to a region enclosed by a torus. The two tor:
are obtained by rotating two circles in the yz-plane about the z-axis. One circle is centered at (p],0) of
radius q], and the second circle is centered at (p3,0) of radius q3, where 27> 25:1 p}(q})2 = 2. Moreover

¥

q.
lim —2~ =1 and lim 27%f? T =1I;, j=1,2,
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where the function f is given in (1.6) and (I11,113) is a minimum of the function (1.8).

The ball, the shell found in [19], and the single torus found in [25] are all connected sets. The double
tori solution discovered here is the first disconnected solution to (1.1).

The proof of Theorem 1.2 starts with a careful study of the Newtonian potential operator (1.2) in
the cylindrical coordinates. We obtain a three term asymptotic expansion for the kernel function of this
operator, called a Green’s function, around its singularity, Lemma 2.1. Next a set of two exact tori is used
as an approximate solution and inserted into the left side of the equation (1.1), Lemma 3.2. The result
is a quantity, depending on the four radii of the two tori, that differs slightly from a constant. Another



important quantity is the energy of this double tori approximate solution, Lemma 3.3, which again depends
on the four radii of the tori. Once the approximate solution is well understood, particularly the properties
of the linearized operator at the approximate solution, one can use a variant of the Lyapunov-Schmidt
procedure developed by the authors for this type of problems to show that an exact solution will deviate
only slightly from the approximate solution of exact tori, Lemma 5.3. In the last step we determine the
right values of the four radii of the two tori by minimizing the energy of the approximate solution with
respect to the radii, Lemma 6.3. Finally we prove in Lemma 6.4 that the double tori obtained this way
indeed solves the equation (1.1), using a tricky re-parameterization technique. A few remarks are included
in the last section.

2 Green’s function

Axisymmetric objects are best described by the cylindrical coordinates, i.e. = rcoso, y = rsino, and
z = z, so that they are independent of the angle variable ¢. The variables r» and z are in

R% ={(r,2) : 7 >0, z € R}. (2.1)

On an axisymmetric set E the operator N is represented by an integral operator with the kernel being a
Green’s function. More precisely

N(E)(r,z):/EG(r,z,s,t) dsdt (2.2)

where the function G is our Green’s function defined on R? x R? with singularity at (r,z) = (s,t). We
use the same letter, E here, to denote an axisymmetric set in R? and the set in Ri that represents the
axisymmetric set. By (1.2) the Green’s function G may be written as

s [T do
G(r,z,8,t) = — , (r,z s, ). 2.3
( ) Am Jo  \/r2+ 2 —2rscoso + (z — t)2 (r.2) # (1) (2:3)
Moreover for each (s,t) € R? as a function of (r, z), G(-, s,t) satisfies
—AG(-,s,t) — iG( s,t) = 05y in RZ QG(O z,8,t) =0 Vz € R. (2.4)
39 ror » 9y (s,t) + or 3 <y 9
Lemma 2.1 For each (s,t) € R%
G(r, z,s,t)
= i10 ! + Gi(r, 2,s,t)
T 2 Bl —(s0] Y
1 r—s 1
= —1 — 1 t
[0 ) = [COF) e ) R Al
1 1 r—s 1 5(r—s)? —(z—1t)? 1
= 1 — 1
2w Bl = (0l dms Flna) - (0] sz e - (5]
+Gs(r, z,s,t)

where, as functions of (r,z), Gi(-,s,t) € C2,(R%), Ga(-,s,t) € C'llo’ca(R%_), and Gs3(-,s,t) € CZQO’S(R?‘_) for
all v € (0,1).



Proof. Since —%=2log m € C2 (R?) and S(r 3)227;(;‘”2 log \(T,Z)i(s,t)l € CL%(R2), it suffices to
show that Gs(-, s t) € C’lzof(R2 ). Compute
1 1 1 r—s 1 5(r—s)? — (2 —t)? 1
A )= - 1 1
( 7“87") [27r 8 |(r,2) — (s,t)|  47s ©8 |(r,2) = (s,1)] 327 s? & |(r,2) — (s t)\]
1 1 1 1 1
- Al—log— V- (log——
(551t (r,2) — (s,t)y> o (37 o8 (r,2) — (s,t)y>
r—3s 1 1 /r—s 1
A 1 — 1
+ ( irs 8 |(r, 2) — (5,t)|> + 7’87“( drs 08 |(r,2) — (s,t)\)
5(r—s)? —(z—1)2 1 1 /5(r—s)?—(z—1t)? 1
—A 1 — 1
( 32752 0 2) — (s,t)\> rar< 32752 &0, 2) — (s,t)\)
= Oen+ i
&0 2| (r, 2) — (s, )2
B r—s o 1 B (r—s)?
27T5’(T7 Z) - (S7t)|2 amrs & |(T‘, Z) - (Svt)‘ 47TTS|(T5 Z) - (S,t)‘Q
2 ()2
B log n 5(r—s)*—(z—1)
dms? ‘(7’7 Z) - (87 t)’ 87T82|(T7 Z) - (87 t)‘Q
_5(r—s) 1 5(r —s)3 — (2 —t)%(r — s)
16mrs? 8 |(r,2) — (s,1)] 327rs?|(r,z) — (s, 0)]2
Note that the above is d(,4) plus a Cﬁ)c(Ri) function, since
r—s B r—s B (r—s)? 5(r —s)? — (z —t)? c COl(Rz)
27T7’|(T’, Z) - (Sat)P 27TS|(T7 Z) - (Svt)‘Q 471'7’8’(7’7 Z) - (S7t)|2 87T82|(7’, Z) - (Sat)P foc
1 1 1
1 — 1 o (R?
[ e ) e [ O e ) G
5(r —s) 1 9
— 1 no(R
16mrs2 © |(r,2) — (s,1)] € Cloc(Ry)
B(r—s)’ — (2= t)*(r —s) 0112
o (R
orrstne) = (O ¢ Cloe®e)
Here Cl%i (R2) denotes the space of locally Lipschitz continuous functions on R?. Because of (2.4), we
deduce
(—A - W)GS( 5,1) € O (RY).
The elliptic regularity theory [8] implies that Gs(-,s,t) € 012 "UR2). o

Some useful properties of G, G1, G2 and G5 are listed below.

Lemma 2.2 Denote the derivatives of G = G(r,z,s,t) (or G1, Ga, G3) with respect to r, z, s, and t by

D1\G, DG, D3G and D4G respectively.
1. For A >0, G(Ar, Az, s, A\t) = G(r, z, 8, t).
2. Forr # s, DaG(r,0,s,0) =0.

3. Forr >0 and s >0, DaG3(r,0,s,0) = 0.



Proof. Parts 1 and 2 follow directly from (2.3). To prove part 3, we first assume r # s and deduce from
DyG(1,0,5,0) = 0 in part 2 that

1 r—s 1
DaG(r,0,5,0) = =Dy Z:tzo[%l ) = (5.0 drs 8Tl = (5.0)]
5(r—s)? —(z—1)2 1
+ 327s? log |(r,2) — (s, t)d
_ _[_ z—t n (r—s)(z—1t)
2t|(r, 2) — (s, )2 4mws|(r, z) — (s,1)]?
(2—) og 1 _5(r—5)2(z—t)—(z—t)3
167s? |(r,z) = (s,t)] 327s?|(r, 2) — (s, )2  lz=t=0
= 0.

Since Gs(-,s,t) € C2 “(R2), D2G3(r,0,s,0) = 0 remains valid even if r = s.

loc

3 Double tori

Depicted in Figure 2 are two tori in R? described by two circles in R% of (2.1) centered at (p;, 0) with radii
¢j» 7 = 1,2. The two tori are obtained by rotating the circles about the z-axis. We often use shorthand
notations p for (p1,p2) and ¢q for (q1,q2). To specify the range of p and ¢ we first introduce the scaled
variables P; and @); corresponding to p; and g; respectively such that

P

pj = Wé(’ﬁ’ 4 =f(MQj; j=12 (3.1)
where f(7) is given in (1.6), and let
2
={(P,Q) = (P1,P,Q1,Q2) €R*: 0< P <Py, Q1 >0, Q2>0, ¥ PQ3=2} (3.2)
j=1
Here we write P for (Py, P;) and @ for (Q1,Q2). Next we consider a slice of £
Q={PeR?: (P,P,,1,1)eQ}={PcR*: 0< P, <P, P+ P, =2}. (3.3)

It will become clear after Lemma 6.1 why the notations (2 and Q 11 are used. The function (1.8) is defined
on Q 17- We denote this function by Jr; now:

2
Ji(Pu, Py) = Z( + —JG1(PJ,0 Pj,o)) + 1P,G(PL,0, P, 0). (3.4)
j=1

As P, — 1—, P, — 1+ and consequently G(P;,0, P»,0) — oo and hence jH(Pl,Pg) — 00. On the other

hand 1
Gl(Pl,O,Pl, ) Gl(l 07170)_710g?
1
implies B
dJrr(P1,2 — Pp)
dP;

— —o00 as P — 0.



This shows that the global~miniu§nv value of jH is achieved in the interior of ﬁn. Denote the set of the
global minimum points of J;; by Mj;:

M]} = {H = (Hl,Hg) c ﬁ][ : :]V[[(H) = 1n~f (TII(P)} (35)
PeQrr

Now we are ready to specify the range K C Q of (P, Q):
K is a compact subset of Q and a neighborhood of the set {(II;,II9,1,1) : (II3,II3) € MH}. (3.6)

More precisely, K is a compact subset of {2, and the set of the interior points of K, with respect to the
relative topology of Q inherited from the topology of R*, contains {(IIy, I3, 1,1) : (IIy,1l3) € My} as a
subset.

From now on we require that (p, ¢) satisfy the condition

(P,Q) € K, (3.7)
where (P, Q) corresponds to (p,q) via (3.1). When 7 is sufficiently large, we have

O<pr—q <p1<pi+q <p2—q@<p<p+q (3.8)

for all (p,q) under the condition (3.7). We rotate the two circles centered at (p1,0) and (p2,0) of radii ¢;
and g9 respectively in ]R%r about the z-axis, to obtain two tori. The region inside the torus of p; and g; is
denoted by Tj, j = 1,2. By (3.8) the two sets T; and T3 have no intersection. Set T' = T} U Tb.

This double tori set T is used as an approximate solution of (1.1). It should generate a very small
error when inserted into the equation (1.1). Between H(9T) and N (T), the estimation of N (T) is more
involved.

Lemma 3.1 N(T) on Ty is

N(T)(p1 + qliLl cos 01, qlﬁl sin 0y)

2
g
2

1 1 h2
Oga + q% |:7TG3<p1707p170> + Z - Zl] + 7TQ2G(p170 p270)

@ " . i3 .
4p <log )hl cosf + — |:7rp1D1G3(p1, 0,p1,0)h1 + 1—(13] cos 01 + ﬂqlq%DlG(pl, 0, p2,0)hq cos 6,
1

lql* | Ipl
+0 log ,
(P 8 g

where hy € [0,1]; N(T) on Ty is
N(T)(p2 + gahs cos B2, g2ha sin 6)

CI% 1 2 1 h% 2
= 5 IOgg + q2 [WGB(]?Q,O,}?Q’O) + - - Z] + ﬂ-qu(p%O’pl?O)

4
@ ;LS .
TS <log )hz cos by + = [Wp2D1G3(pz,0,p2, 0)ha + 16] cos 02 + 1q2qi D1G (pa, 0, p1, 0) g cos By
2
Iq\ Ip|
+0(5 log ),
Ipl> " |q|

where hy € [0, 1].



N(T1) + N (T»), we start with N (7)) evaluated at a point in the same 7). In the

Proof. Since N(T) =
t) let

Green’s function G(r, z, s,
(T, Z) = (pj + hj COS Gj, hj sin 9]'), (S, t)

[0,q;4], so both (r,z) and (s,t) are points in the the same T;. To simplify notations, we

= (pj + pj coswj, p; sinw) (3.9)

where hj, p; €
temporarily drop the subscript j. Then

N (Tj)(pj + hjcosb;,hjsing;) = N(Tj)(p+ hcosf, hsind)
q 27
/ G(p+ hcosf,hsin®,p+ pcosw, psinw)p dwdp
_ / /27r 1 1 [1_hcos9—pcosw
\/h2 + p? — 2hpcos(f — w) 2(p+ pcosw)

5(hcosf — pcosw)? —(hSin@—PSinw)2] dwd
16(p + pcosw)? pawar

q 27
+/ Gs(p+ hcosf,hsin®,p + pcosw, psinw)p dwdp
0o Jo

2s + 1652

= I+1I (3.10)
where I and I7 in (3.10) are given by the two integrals above.
Because of the scaling property
1[ r—s 5(7"—3)2—(z—t)2} (3.11)

1
Gs(A\r, Az, As, \t) = G3(r, z, 8,t) — o log " 1—
T

which follows from Lemma 2.2 part 1 and Lemma 2.1, I becomes
_710g / /2” hcosf — pcosw+5(hcos€—pcosw)2—(hsinﬂ—psinw)Q}pdwdp
16(p + pcosw)?

11 =
2(p+ pcosw)

h h
+/ G3(1+—cos0 —sin 6, 1+7cosw Bsmw)pdwdp
0o Jo p b p p
(3.12)

= [I;+ 11

where II; and II;; are given by the two integrals above.

We introduce the scaled variables h and p by
(3.13)

h=qh, p=qp.

2

Then I becomes
5(hcosf — peosw)? — (hsinf — psinw) b dwdp

o q210g1/1 2”[1_Bcosc9ﬁcosw
2r " qJo Jo 2(p/q + peosw) 16(p/q + pcosw)?

1 ﬁcos@—,ﬁcosw

[ "~ 2(p/q + peosw)

q2 1 r2r
+27 / / log —
TJo Jo \/h2 + p2 — 2hpcos(f — w)

A oA } o . - P 2
5(hcos — pcosw)? - (hsin® — psinw) }ﬁdwdﬁ
16(p/q + pcosw)?

= I;+1Ij; (3.14)

10



where I and Ij; are the two integrals above.
Combining I7 and II; we find

LI = q lo / /27r hcosf — pcosw 5(30050—,6008(.0)2—A(l}sing—[)sinw)ﬁ[)dwdﬁ
2(p/q+ peosw) 16(p/q + pcosw)
_ P [A+B+c} (3.15)
2m
where

A = / / pdwdp = 7
B - // hcosf — pcoswpd dp
2(p/q + pcosw)
2
_ 49 7 _ 5 FARP 5 — M4 i
= 3 // hcosH pcosw+0(p)>pdwdp 2phcoséH—O( 5)

o = /1/ 5(hcos® — peosw)? — (hsin — psinw)?
B 16(p/q + pcosw)?

3

q2
pdwdp = O( ).

This shows

2 3 . 4
II+IIIZ%logg—Z—p(logg)hcosﬁ+0(;—2log§) (3.16)

The term I;; must be estimated carefully. We write

2m 7 A
hcos@ — pcosw
I = 1 1-— 1
"= o / [ s 2p/q T peosw) (3.17)
h2 + p2 — 2hpcos(f — w)
5(hcos @ — pcosw)? —(hsmG—ﬁsinw)ﬁAdwdA
16(p/q + pcosw)? pawap
2 ~ ~ ~
- [A+ B+ c] (3.18)
2
where
N 27
A = / / log pdwdp
\/h2 —2hp COS(9 w)
. 27 7 .
B - / / log hcos 6 Apcoswﬁdwdﬁ
\/h2 +p? — 2hpcos(9 w) 2(p/a + peosw)
27 5 2 _ (} Aain )2 2
~ 5(hcosf — peosw)? — (hsinf — psinw)? ) q
¢ / e 16(p/q T f cosw)? pdwdp = OCz).
\/h2 — 2hpcos(f — w)
To study A and B we need the trigonometric series
1 2. A" cos nw
log ———— = _— 3.19
TR > (3.19)

11



for 5 € [0, 1]; see [27]. One consequence of (3.19) is that

2m A R N
1 _
/ log —= - dw = { 377 }Og}f li [j i Z (3.20)
0 \/h2+f)2—2hﬁcos(9—w) Temiosp M p =
which implies that
_ h _ 1 1 h?
A= 27r/ (log h)pdp — 27r/ (log p)pdp = 27r(7 - 7) (3.21)
0 A 4 4
Regarding B we write
" 2T .
B = / / log hcos 0p dwdp
\/h2 +p? — 2hpcos(0 w)
2w
/ / log pcoswpdwdp
\/h2 + p% — 2hpcos(f — w)
q
+0(=
( p2)
~ — q2
= Bi+ Bt 0(5) (3.22)
where By and By are given by the two integrals above.
Using (3.20) again, we derive
- h - 1 ) PR
By = _4 [/ (=27 logh)hcosfpdp —I—/ (—27log p)h cos G[)dp} ™ cos@(— — —). (3.23)
2ptJo h P 4 4

For Eg we note that

" 2T
By, = / / log pcoswp dwdp
\/h2 2h,0 cos(f — w)

pcos(0 — w) cosbpdwdp

2m
/ / log
2 \/h2 +p% — 2hp cos(f — w)

psin(f — w) sin 0p dwdp

27
/ / log
2p \/h2 +p2 — 2hp cos(f — w)

pcos(f — w) cos Op dwdp.

2m
/ / log
2 \/h2 + p2 — 2hpcos(d — w)

To reach the last line, we have used the fact that

2m
/ / log psin(f — w)sin0p dwdp = 0,
\/h2 — 2hpcos(0 — w)

12



which follows from the absence of sinnw terms in (3.19). Another consequence of (3.19) is

2m 1
/ log —= - cos(f — w) dw
0 \/h2 + p% —2hpcos(f — w)
2 1
= / log cos w dw
0 V14 3% —2Bcosw
. Lif p<h
= Beos’wdw = nf where 3= ) (3.24)
0 B p>h
Therefore .
h o4 17 73
~  7q P 2 . h .o N h h
By = — = 0d - Odp| = —cosf| = — — .25
2 229[/0 hp cos er/iL [)p cos p} " cos (2 4) (3.25)
Following (3.23) and (3.25) we deduce
2
5_ 7423 q
B=—h 0+ 0(=). 3.26
it coso+ 0(%) (3.26)
By (3.18), (3.21), and (3.26) we find
1 iLQ q3 R q4
= (2B L 0T 307
n=9\7-7 + 16ph 0059+O(p2) ( )

The estimation of I is straightforward. Because Gs(-,-, s,t) is in CQ’O‘(Ri) and D2G3(1,0,1,0) =0
according to Lemma 2.2 part 3,

[T Loem q: q: . q. T ot
I = q G3(1+ =hcos@,=hsinf,1 + =pcosw, —psinw)p dwdp
0 Jo p p p p

1 27
_ q2/ / [G3(1,0,1,0)+D1G3(1,o,1,0)]%hcose+DQG3(1,0,1,0)]%hSm9
0 0

7

+D3G3(1,0,1,0)L peosw + DaGs(1,0, 1,0)gﬁsinw +0(5
p

)] pdedp

1 27 q; q4
_ qg/ / [03(1,0,1,0)+D1G3(1»0,1’0)5’10059]’””’”0(?)
0 0

3 X 4
= 7¢G3(1,0,1,0) + %Dng(l, 0,1,0)7 cos 6 + O(Z%). (3.28)

We now combine (3.16), (3.27), and (3.28) to conclude that, for j = 1,2,

2 2
; . 1 h*
N(T5)(p; + hj cos 05, by sin ) = qglog’q’? 0|5 — 7 +7G5(1,0,1,0)
j
3 3 73
4q; ( Pi\; q; hj «
- log—)h'cosﬁ-—i——[f—i—ﬂDng 1,0,1,0 h~] cosb;
4p] q] J J p] 16 ( ) J J
9 i
+0(=5 log =). (3.29)
P

Note that we have restored the subscript j.
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Next we consider N (71) on Th.

q1 2w
N (T1)(p2 + ha cosba, hosinfy) = / G(p2 + ha cos by, hasin B2, p1 + p1 coswi, p1 sinwy ) p1 dwidpy
o Jo

(3.30)
where hgy € [0, g2]. For this we only need to expand
G (p2 + ha cos s, ho sin Oy, p1 + p1 coswi, p1 sinwy )
= G(p27 07]71, 0) + DlG(p27 0,p17 O)hQ COs 92 + DzG(pz, 0,p1, )hg sin 02
2
+D3G(p2,0,p1,0)p1 coswr + DasG(p2,0,p1,0)p1 sinw + O( ;q|2)
Since DyG(p2,0,p1,0) = 0 (Lemma 2.2 part 2), it follows that
4
N (T1)(p2 + hg cos O, hy sin ) = 712G (p2, 0, p1,0) + 7¢2qaD1G(p2, 0, p1, 0)ha cos By + O( ;q;Q). (3.31)
Similarly N (75) on T} is
4
N (T3)(p1 4 hy cos by, hy sin6y) = mgaG(p1, 0, p2,0) + 7q1¢5D1G(p1, 0, pa, O)hl costh + O(+—5 g ). (3.32)

P>
By (3.29) and (3.32) we deduce that N (T) on T} is

N(T)(p1 + hy cos by, hysinby)

~

Q% 4! ol h% 2
= E 10g — + q1 [Z - Z + 7TG3(17 07 17 O):| + WQQG(pl,O,an 0)
Q1
h3 .
(l g—)hl cosfy + — { +mD1G3(1,0, l,O)hl] cos B + 7rq1q2D1G(p1,O p2,0)hy cos by
Cdpy 16

4

+odd la” | Ip\) (3.33)

AT
for hy € [0,¢1]. And similarly N (T') on T is

N(T)(p2 + ha cos by, ha sin 6s)
1

G, p h3
- 52 log — + Q§ [Z - Zz + 7TG3(17 07 17 O)i| + WQ%G@% prl; 0)
q2

@ iz3 .
4p (1 g—)hg cosfy + == [16 + 7D1G3(1,0, 1,0)h2] cos 0 +7rq2q1D1G(p2,0 p1,0)hs cos by
2

4
+0(|Q|21 og 121y (3.34)
> Il
for hy € [0, ¢2]. Since
1 1 1 1
G3(pj707pj70) = G3(1707 170) - %logg and pJD1G3(p]707pJ70) = D1G3(1)O’ 170) + E logg

by (3.11), the lemma follows from (3.33) and (3.34).
We insert T into the left side of the equation H(OFE) + YN (FE) = X and see how much it deviates from
a constant.
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Lemma 3.2 On 90T}

cos 01

(H(@T) + WN(T)) (p1 + g1 cos b1, q1 sin by)
1
2q1

2
1
+ O(%) + V{qil lOg —+ Wq%G3(pla Oapla 0) + Wq%G(pla Oap23 0)
2p Pi 2 Taq

3 1 3 1
—élq?l<log —) cos 01 + 571 [ﬂplDng(pl, 0,p1,0) + T cos 01 + 7rq1q2D1G(p1, 0, p2,0) cos 0;
1 1

Iq\4 Ip|
+0 ;
(% 1)}

on 0Ty

cos 0

< (OT) +yN(T )(p2+qzcosﬁz,qzsin92)
1
2

2
1
9 + O(%) + V{qi IOg — + WQSG?)(an 07]92, 0) + WQ%G(p% Oaplv 0)
P2 p3 2 T

3

3 1
—q—2<log —) cos 0y + o] [WP2D1G3(P27 0,p2,0) +
4p2 15 P2

lq* I
+0(( o8 )

1
6 cos 09 + 7T(]2q1D1G(p2, 0, p1,0) cos Oy

Proof. The mean curvature of the torus 07 at (r,z) = (p; + g; cos§;, g; sin ;) is given by

. 1/1 cos 0; 1 cos 0; q
]

Lemma 3.2 follows from (3.35) and Lemma 3.1.
We proceed to estimate J(T).

Lemma 3.3

2 2

m°pjq
E 2m°piq; + [ E (W Pid; log*Jr 4J ) +2m°p;q;G1(p;, 0, pg,0)>
=1

7j=1
4
+47°p143 3G (p1, 0, pa, )} +O(’yyl|j|2 logm)
Proof. The perimeter of T' is
2
= 4n’pjq, (3.36)

which is the sum of the area of 977 and the area of 0T5.
The nonlocal part of J(T') is 4 times

om /T N(T) rdrds. (3.37)
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Regarding (3.37) we first consider

q1 2w
2 [ N(T)rdrdz = 277/ / N(T)(p1 + hy cos by, hysinby)(p1 + hy cosby) hidhidh,. (3.38)
Ty 0

By Lemma 3.1, on T}

2 1 1 R
N(T)(p1 + hicosbyi,hysinby) = q—llog —+ ¢ [ﬁGg(pl,O,pl,O) 4+ - — 712]
2 q 4 4q;
+7TQ%G(p1707p27 0)
3 1\ 3 h h3
—q—l(log —)—cos@l + = [WplDng(pl,O p1,0)— ! + 13 cos 01
4py @/ q @1 16qy

Iqu4 |
)

h1
—i—ﬂqlq%DlG(phO,pg,O)acos€ +O(‘ z g‘q| i

Therefore (3.38) becomes

N(T)(r,z) rdrdz

T

q1 2 q2 1 5 1 h2
= 27r/ / {—1 log — + ¢] (7TG3(p1, 0,p1,0) + — 12>] (p1 + hicosBy) hidfdhy
o Jo L2 T 4 4q?

q 2w
—|—27r/ / ﬂng(pl, 0,p2,0)(p1 + hy cos61) hidbrdhy

3

a 2” 1\ h hy hy
+27 g—)—cos 0+ — (WplDng(pl,(),pl,O)— + 73’) cos 91]
4171 a/ q @ 16qy

P1 + hl CcOs 91) h1d01dhy

q1 21 h 4
—1—277‘/ / 71'(]1(]2D1G(p1, 0, p2, O)Z cos 61 (p1 + hy cos ) hidhidfy + O( |’q|’2 log ‘ql)
_ 2. 4 1 3, .4 3, 22 |Q‘4 Ip|
= Tp1g) logqfl + 27°p1¢1 G3(p1,0, p1,0) + 27°p1g7 42 G(p1, 0, p2, 0) + 0(‘ |21 r |)
I SR | 3, 4 |Q\4 Ip|
= mp1g) Iqufl +27°p1gi G1(p1, 0, p1,0) + 27°p1ai 3G (p1, 0, pa, )+O(‘ E log ]q|) (3.39)
where the last line follows from Gs(p,0,p,0) = G1(p,0,p,0), a consequence of Lemma 2.1.
Similarly
N(T)(r,z) rdrdz
T
_ o2 g4y 3, 4 lgl* | Il
= T P2gy logq—Q + 27°paga G1(p2, 0, p2,0) + 27° 25 47 G(p2, 0, 1, )+O(‘ |21 g |q|)' (3.40)

From (3.36), (3.39), (3.40), and the symmetry p1G(p1,0,p2) = p2G(p2,0,p1,0), one finds J(T'). o

4 Perturbation

The solution we will construct is a union of two sets enclosed by two approximate tori. To describe an
approximate torus we need a way to perturb the exact double torus 7. Note that T} is specified by p; and
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¢;- Let u1 = ui(61) and ugz = uz(f2) be two 27-periodic functions. In the rz-plane Ri define the sets

Ej = U {(pj + hj COSGJ‘, h]’ sin9j) : hj S [O,Uj(ej)]}, j = 1, 2; E= E1 U Eg. (41)
9]'6[0,27'(']

One then rotates F about the z-axis and obtains a set in R? which is a perturbation of 7. This axisymmetric
set in R? is again denoted by E, if no confusion exists. For this definition to be meaningful we will ensure

Uj(ej) > 0, Wj S [0, 27‘(’]. (4.2)
The perfect tori 77 and 75 introduced earlier are described by constant functions:
u;(0;) = g5, V05 € [0,27]. (4.3)

For a perturbed torus F; the variable u; generally depends on 6;.
In terms of u; and us the energy of E is given by

2 T
J(E) = ;W/: (pj + u;(0;) cos Qj)\/(u;-(ﬁj))z + u?(Qj) df; + ’}/7T/E /E G(r, z, s,t)rdsdtdrdz  (4.4)

where the set F in the double integral is in Ri.
The volume of a perturbed torus is given by

2 pu;(05)
27T/ rdrdz = 277/ / o (pj + pjcosB;)pidp;db;
E 0o Jo

J
2 cpiu(0;)  ud (0,
:mj Wﬂﬂ+ﬁﬂmﬂ%.
0

2 3

The volume constraint |Eq| + |E2| = 2 requires that

2 27 02 0 3 0.
2271'/ [pjujz( ) + uj; ) cos Gj}dej =2 (4.5)
j=1 70

The equation (4.5) is a nonlinear constraint on u; and wug. It is often more convenient to work with a
different set of variables. Let

2 3
MW@=%+K%3 (4.6)
Define Vj = U5 (Gj) by

Now both u; and v; can be used to described the perturbed torus F;. Since u; of a perturbed torus
E; corresponds to g; of an unperturbed torus 7} and g¢; is the radius of a cross section of T}, we call u;
the radius variable. Since 27 fo% vj(0;) df; is the volume of Ej, we call v; the volume variable. In terms
of the volume variable the unperturbed torus 7} is described by

g2 3 cosf;
W@:%J%3ﬁwﬁmm. (4.8)

Note that unlike (4.3) the function ¢; in (4.8) is not constant. The advantage of using v; is that the
constraint (4.5) is simplified to a linear condition

2 21
Z%/W@WFQ (4.9)
=1 70
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on the volume variables v; and vs.

Let us also denote the inverse of A where v = A(u, a,b), as a function of p with o and b held fixed, by
i = B(v,a,b) such that

u;j(0;) = B(v;(0;),0;,p;). (4.10)
Let us write the half of the area of the perturbed torus E; as
2w
/
o [ 000000 0, (411)
where the Lagrangian L; is given by
L;j(v,v,a) = (pj + pcos a)\/ 12 + p2. (4.12)

In (4.12) (v,v,a) and (g, i, o) transfer according to the following rules.

:[1’ l/ /)’Au(l'haapj) +Aa(u7aapj)

po| =\ v |=| Alwap) : (4.13)
a a a

v ,U I)BV(V,()Z,pj)—i-Ba(V,(X,pj)

v |—= 1| p | =1 Blv,op;) . (4.14)
o a a

We use the shorthand notation v for v; and ve, and write J(v) for the energy of the perturbed double
tori E described by the volume variables v; and vs:

2 2
= Z/ Lj(v}(65),v(05),6;) db; +’y7r/ G(r, z, s, t)r dsdtdrdz. (4.15)
j=1"0

v E’U

Here the set in Ri described by v; and vs is denoted by FE,,.
The variation of J in the direction of ¢ is given by

2

2
ZQW v;)(0)¢5(0;) db; +~> 2w ; N;(v)(05)¢;(0;) db;. (4.16)

Jj=1

L

In (4.16) the mean curvature H; is now an operator on the volume variable v; and the Newtonian potential
N is an operator on both v; and vy. Taking the constraint (4.9) into consideration, we deduce that at a
critical point of J the system of equations

Hy(0)(6) + NG (0)(0;) = A, j = 1.2, (4.17)

holds. Let us introduce the operator S = (S1,S2) so that

8;(0) = H; (v;) + YN (v %Z[ ) + 4N, =12 (4.18)

7j=1
Note that a bar over a function denotes its average over [0, 27], i.e.

1 2w
2m Jo

H;(vj) = H;(v;)(0;) db;. (4.19)
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Then (4.17) is equivalent to
S(v) = 0. (4.20)

When specifying the domain and the target space of S, we make use of the mirror symmetry of the
sought after solution with respect to the horizontal xy-plane in addition to the axisymmetry with respect
to the z-axis. Set

2 2m
X = {(v1,v9) : vj € H*(SY),v; >0, v;(0;) = v;j(21 —6;), (j =1,2), 2#2/ vj(0)do; = 2}. (4.21)
j=1""

Note that in this definition v1 is a function of #; and wvs is a function of #,, where 61 and 65 are different
variables. The target space is

2 2w
Y =A{(y,42) : yj € L*(SY), y;(0) = y;(2m — 0;), (j =1,2), 27TZ/0 y;(0)do; = 0} (4.22)
=1

where y; is a function of #; and y» is a function of 6. The conditions v;(6;) = v;(2r — 6;) and y;(0;) =

y;j(2mr—6;) in (4.21) and (4.22) impose a mirror symmetry with respect to the zy-plane. This symmetry will

greatly simplify the proof of Theorem 1.2. See the appendix for more discussion on the mirror symmetry.
The norm of ), denoted by ||y|z2, is given by

lyllzz = (lyn2agsr) + lylZagse)) /2, where y = (y1,32).

Here we have identified the interval [0, 27] with the unit circle S*. Similarly the norm in X is denoted by
Joll 2 o
[0l 2 = ([[o1llg2g1y + o2l sry) 7

A 27-periodic function is regarded as a function on S'. Here H?(S') is the Sobolev space of twice weakly
differentiable L? functions with L2-integrable first and second order derivatives on the circle S!.

5 Reduction

We fix the parameters p; and ¢; satisfying the condition (3.7) in this section. The exact double tori T of
the radii p; and ¢; is described by the volume variable ¢ = (11, 2). The linearized operator of S at ¥ is
the operator

S'W): X' =Y. (5.1)
Here X’ is the domain of §’(v)) given by

2 2T
X' ={(¢1,02) : ¢j € H(S'), ¢;(0;) = ¢5(2m = 0;), (j =1,2), 2”2/0 ¢j(0;)do; =0} (5.2)
=1

A subspace of X’ plays an important role. Let

2T 27
X ={(¢1,2) € X': ¢j(0;) cosb; df; = ¢j(0;)d; =0, j=1,2}. (5.3)
0 0
Similarly define a subspace of Y:
27 27
Ve ={(y1,92) €V /0 y;(0;) cosb; db; = /0 y;(05)do; =0, j=1,2}. (5.4)

The orthogonal projection from ) to Y. is denoted by II so that X} = IIX" and Y, = 1.
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Lemma 5.1 There exists C' > 0 independent of p, ¢ and ~y such that

6]z < Cp~V2|IS ()| 2

for all ¢ € X.. Moreover the operator IS’ (v)) is one-to-one and onto from X. to Y.

Proof. The proof is similar to that of [25, Lemma 4.1]. The key here is to identify I1S’(¢) as the sum
of a dominant operator £ and a negligible operator £. On X7 the dominant part £ = (L1, L2) is given by

L16 = =V (] + 61), La6 = —v2py* (8 + 62). (5.5)
Two families of eigenvalues exist: \@pi/ 2 (n?—1) (n=2,3,4,...) corresponding to eigenvectors (cosnfy, 0),
and ﬂpé/Q(nQ —1) (n = 2,3,4,...) corresponding to (0, cosnfz). The statement in the lemma holds true

if 118’ (1) were £. However since IIS(¢)) = £+ £ and £ is small compared to £, the lemma is also true for
IS(¥). g

The second Fréchet derivative of S is estimated in the next lemma. We omit the proof since it is similar
to that of [22, Lemma 3.2].

Lemma 5.2 There exists C' > 0 independent of p, ¢ and ~y such that

18" (0)(61, @)l 2 < CP'? |1 || 2|62 2

for all v near v, in the sense ||v — Y| g2 < 5||¢| g2, and all ¢1, 2 € X',

The nonlinear operator S maps from a neighborhood of 1 in X to ). An element ¢ exists in X, such
that
S (w + 50)(91) = Ay + Bjcosbtq, 82(1/1 + (,0)(92) = Ay + By cos by (5.6)

for some Ay, Ay, By, B2 € R. The equations in (5.6) may be written as

IIS(¢) + ¢) = 0. (5.7)

The last equation may be solved by a contraction mapping argument with the help of Lemmas 5.1 and
5.2. The proof is essentially the same as that of [25, Lemma 5.1], hence we omit.

Lemma 5.3 There exists ¢ € X! such that ¢ solves (5.7) and ||¢|| g2 < CfO(y) where C is a sufficiently
large constant independent of .

We remark that (5.7) is solved for each given (p, q) satisfying (3.7). The parameters p and ¢ are held
fixed in this section. In the next section we will vary p and gq.
6 Minimization

We prove Theorem 1.2 in this section. From now on we emphasize dependences on p and ¢ now and denote
the exact double tori T" by T'(p,q), which is describe by the volume variable ¥(-,p,q). By Lemma 5.3
there exists (-, p, q) € X/ such that IIS(¢¥(-, p,q) + ¢(-,p,q)) = 0, i.e. (5.6) holds. In this section we find
particular p and ¢ denoted by p? and ¢” such that S(¢(-,p?,¢”) + (-, p7,4q")) = 0.

Let us denote the set specified by the volume variable ¥(-, p, q) + (-, p,q) by E(p,q)-

Lemma 6.1 J(E(p,q)) = J(T(p,q)) + O(f* (7).
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The proof of this lemma, which we omit, is similar to that of [25, Lemma 6.1]. The quantity J(E(p,q))
may also be expressed in terms of the scaled variables P; and @; defined in (3.1).

Lemma 6.2

1 2 Q4 2 Q4 1 PQ4 Q
J(E(p,q)) = f;[PQ] 2 [ X (7 log 5+ ]16]+ LG (P;,0,P3,0))

7=1
1 PLQ?Q2G(P,, 0, P, )] +O(f(v)).

Proof. Use Lemmas 3.3 and 6.1 and the formulas

1 1
G(Ar, Az, A8, At) = G(r, z,8,t), Gi(Ar,\z, As,A\t) = G1(r, 2, 8,t) — 7 log ¥ O (6.1)

Lemma 6.2 gives the first two orders of the expansion of J(E(p,q)) with respect to v. Recall Q from
(3.2), and introduce two functions J; and Jr; defined on €:

IPQ) = Y (PQ+—57), (6.2
j=1
2. P P,Q%  nP;

P = Y (L4 2+ T 61 (P0. P 0)) + e PLQIGRG(PL 0. P 0). (63)

j=1

Denote the set of the minimum points of J; in Q by My:

M] = {(Pa Q) e JI(Pa Q) = inf JI(P,7Q,)}' (64)
(P,Q")eqQ
Since P Q Q2
j 1 3
2 4 2 > p.O?(2
PQ+ =52 = P (g + ) = hai(3)
and the equality is achieved if @); = 1, the constraint Z =1 PJQJ2 = 2 implies that
Mp={(P,Q)eQ: @=(1,1)} (6.5)

On the set My, Jr(P,(1,1)) = 3. Recall

~ P
Ti1(P) = Jii(P =S (16 2JG1(Pj,O,Pj,O))+7TP1G(P1,0,P2,0)
Jj=1

from (1.8) and (3.4) for P € €7, and also M;; from (3.5), the set of the minimum points of Jj;.
We view J(E(p,q)) as a function of (P, Q) € K, where K is given in (3.6), through the set E(p, q) and
the scaling (3.1). The next lemma shows that J(E(p, q)) is minimized at an interior point of K.

Lemma 6.3 Let (P7,Q7) be a minimum of J(E(p,q)) in K. Suppose that (P7,Q7) — (P>, Q%) as
v — 00, possibly along a subsequence. Then P € MH and Q> = (1,1). Hence (P7,Q") is an interior
point of K if v is sufficiently large.
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Proof. We write J (P, Q) for J(E(p,q)) in this proof. Lemma 6.2 shows that for (P,Q) € K,
1

J(PQ) = f()

J1(P,Q) + 2 (1) Jrr(P,Q) + O(f°(7))- (6.6)
Then as v — o0,

fNIT(P?,Q7) — Ji(P*,Q%) and f(7)J(P%,(1,1)) = Jr(P%,(1,1)),

possibly along a subsequence. Since J(P7, Q") < J(P>,(1,1)), we deduce J; (P>, Q%) < Jr(P*,(1,1)).
Therefore (P>, Q%) € My, ie. Q*° = (1,1).
Note that the minimum value of J; is 3. Next we compare

3 3 1 Y 2
hvrgg.gfm(f(v)ﬂp Q%) — 3)

1
f3(7)

(JI(PV, Q) - 3) + I (P, Q%)

= liminf [
y—00

(JI(PW, Q) - 3) + Jr(P7,Q7) + O(fgy)

)

(JI(P”Y, Q) — 3) + T (P™)
with

. 1
Jim s (P07 (1) - 3)
. 1
= lim [W<JI(H, (1,1)) — 3) - Jp(IL (1,1)) + Of
= Ju(IL(1,1)) = Jp (1)

f3(7))
v

where I is any point in M. Because J(P7, Q") < J(II, (1,1)),

nvrggfﬁ;w@f(ﬁ,m) - 3) + Jrr(P*) < Jp(10).

Since 3 is the minimum value of Jj,

o 1
hWH_lélgf W (JI(PA/a QV) - 3) >0,

and consequently jH(POO) < jH(H). Since IT is a minimum of jH, P> is also a minimum.
Let p7 and ¢ be the radii corresponding to PY and Q" through (3.1). Before completing the proof of
Theorem 1.2, the last thing we need to show is that E(p?,q”) solves (1.1).

Lemma 6.4 The set described by ¥(-,p7,q") + (-, 07, q") satisfies the equation (1.1), i.e. S(Y(-,p?,q")+
@(.’p’)’,q'y)) =0.

Proof. Since IIS(1) + ¢) = 0, there exist Ay and By in R (k = 1,2) such that

Se(¥(-,p,q) +¢(,p,q)) = Ag + By cos . (6.7)
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The constants Ay and By, depend on (p, ¢). When (p,q) is (p7, ¢”) these constants are denoted by A] and
B,Z respectively. We will prove the lemma by showing that

Al =A) =B] =Bj =0. (6.8)
Introduce a new variable m = (my, mo) where m; = 2772qu]2‘ (j = 1,2) is the volume of T}, and treat
J(E(p,q)) as a function of m and p instead of p and ¢. The original constraint on p and ¢ now becomes a

constraint on m: mj + mg = 2. We write J(m,p) for J(E(p,q)), and differentiate J(m,p) with respect
to m;. Since J(m,p) depends on m only through ¢ + ¢,

2T . .
0J (m, p) _ ZQW H (W5 + 05) O(Y; + %)dQ +722ﬂ- 0 M(w+¢)8(¢]+@J)d9j

8mk 8mk = 8mk

- Zzw/ (83000 = M+ ) L2 g,

where we have written

2
No+o) =33 [+ ) +7Nj(¢+<p)]
=1

for short. Since fo% V;(05)do; = Tpiq; = 2, fzﬂ gil df; = 0 Tapi(0;)do; = 5= if k= j and =0
if k # j. Also by the definition of X! where ¢ belongs, fOQW g:;; do; = azk OZW ©;(0;)df; = 5= = 0.
Consequently

9J(m.p)  _ Zzﬂ/ ( (0 + o) — (¢+¢))Md9j

omy, Omy,

= Z 27 S (v + )(dgnz%) df; — X + @)

8 . .
= Z 27‘('/0 (Aj + Bj CoS 9J>(¢8]77—;:0]) d@j — )\(w + QO)

2 2T . .
= ZQW/O Bjcosﬁj(Wdﬁj—i—Ak—)\(w—i-@)-

mg

Note that ¢ € X implies that ¢; L cos#;. Hence

‘9“7””9 22/ Bcoseg%de A= AW+ ).

Because v (6;) = 5% + L5 = 21 ¢ 55t/ cos
9J (m,p) my?
= By + Ay — A .
O g kAR AUES)

Let (m?,p") be a minimum of 7 (m, p) corresponding to (p”,q”). Under the constraint mj +mgq = 2, there
exists a Lagrange multiplier n € R such that

(mk)1/2

Y v - —
23/27(p k)3/2Bk + A —A=n k=12 (6.9)
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We have denoted A(¢ + ¢) at (m?,p?) simply by .
Next we compute %. This is a more complicated story. The quantity J(m,p) depends on p in
two ways. First it depends on 1 4+ ¢ which in turn depends on p. Second since (p;,0) is the center of a
coordinate system from which J is defined, the functional J depends directly on p; as parameters. The
crucial step here is to use the coordinate system centered at the fixed point pj. to re-parameterize the sets
originally described by the coordinate system centered at nearby p;, an idea first used by Ren and Wei in
[22, 21]. Under the new coordinate system 7 (m,p) will depend on p indirectly, only through the variables
that describe the sets. This re-parameterization operatlon can be done when p; is close to p Let us call
the polar coordinate systems centered at p; and p the pj-coordinate system and the p coordlnate system
respectively. We need to make transformations between the two.

The rest of the proof requires very precise notations for functions and their derivatives. Let us write
vj = V;(0;,p) for the function v¢; + ¢;, emphasizing its dependence on p. Here V; is a volume variable
describing a component of the set E, under the p;-coordinate system. Denote the corresponding radius
variable by u; = U;(6;,p), which is also under the pj-coordinates. Note that functions are now denoted by
capital letters and their dependent variables are denoted by the corresponding lower case letters. The same
set under the p}—coordinates is described either by a radius variable u; = Uj(n;, p), or a volume variable

v = TN/j(nj, p). Functions denoted by letters with a tilde are under the pjv-—coordinates, while the functions
denoted by letters without a tilde are under the p;-coordinates. The two sets of variables are connected
through the following transformation rule

pj +U;j(0;,p)cos; = p;-’ + U cos n; (6.10)
Uj(Bj,p) sinGj = 17]' SiIl77j (611)
These two equations implicitly define two functions X; and Y; such that u; = X;(0;,p) and n; = Y;(0;,p).

Note that p” is fixed and not considered as a variable. We also need the inverse of Y}, with respect
to 6, which we denote by 6; = Z;(n;,p) such that n; = Y;(Z;(n;,p),p). Now we are ready to define

;= Uj(ns, p): N
uj = Uj(nj, p) = X;(Z;j(nj, p), p)- (6.12)

Under the p;.y—coordinates, J(m,p) depends on p only through V. Standard variational calculations
show that

85””’ 2271'/ ( )—)\(V) Jdnj Z% >§Zid”ﬂ‘- (6.13)

The last equality of (6.13) follows from the fact

2T a1/ 2T .
ov; 3/‘ om; (6.14)

=5 Vidnj=
o Opk Y

Opg, 27 Opy, -

Our main task now is to find % at (m,p) = (m?,p?). For clarity we sometimes denote differentiation
by the D-notation. For example we write

aV;(n;,p)

= Dyt Vni,p). 1
O k+1V (nj,p) (6.15)

Here py, is the (k + 1)-th variable of ‘7j and Dy 1 denotes differentiation with respect to this variable.
Since

Y772 773 ,
7o p;U; N U? cosnj
J 2 3 )
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aV;(nj,p) aU;(n;,p) '

AT 72
oo (p;Uj(nj,p) + Us (nj, p) cos n;) o (6.16)
We start with M in (6.16). By (6.12)
0U;(n;,p) _ 0X;(Z;(n;,p),p
GHIRSICIURIN) = D1X;(Zj(nj, p),p)Dr+1Z;(nj, p) + D1 X;3(Zj(mj, p),p).  (6.17)
Opy, Opy,
By implicit differentiation
Dy41Y;(6;,p)
Dyi1Zi(n;,p) = — —2F1270 B 6.18
The derivatives of X; and Yj are calculated from the transformations (6.10) and (6.11). Let
F]](aj,aj,nj,p) Uj(&j,p) Singj—ﬂj Sin’nj 0

In this definition p} are constants, not variables. Then implicit differentiation of (6.19) yields

1
< DlXj Dk+1Xj > _ ( D'y DsI'y ) DqT'y Dk+3F] >
D\Y; Dpi1Y; Dol'yp DsTyp D'y Dpyslys

_ _< — Ccos 1) ujsmnj) 1( So~ cos0; — Ujsinb; 6]k+6 . cos b, )

—sinn; —u;cosn; aUJ

a0, s1n9 + Uj cos 0; oo sin 0;
—cosn; —sinmn;
= - sinn; __cosmj
uj U

Hereéjkzlifj—kand—()ifjaék:
Since our goal is to evaluate 9% oo Vo at (m,p) = (m?,p7), where = n and U(6,p?) = U(n, p?), we deduce

8UJ . . . 8UJ' .
= cost; —Ujsin®;  dj + on cos 0 >

gg sinf; + Uj cos 0; %sm@

oU,;(0;, ,
D1 X; Dy X; %jw Oj cos 0 + #
DY Di..Y: ‘ I 1 sin 6 . (6.20)
1Y k+115 (m,p)=(m7,p7) 95k T; (aj,pv)
By (6.18) and (6.20), (6.17) becomes
oU; DyU;(0;,p") sin 6;
—7 =9 I + 0, cos0; + Dy1U;(05,p7). 6.21
Op |y =y~ Uy (05, p7) 7 el (05, 27) (6:21)
Returning to the volume variable, we deduce, from (6.16),
aV; . ) D1U;sin 6,
— = (plU; + U? cos 8;) |6 ——2—2 + 01, cos 0 + Dy41U;j 6.22
B (mp=io gy~ L3V U5 0503) U; g ! (6:22)
We single out the leading order term in (6.22) to obtain
v,
— = p;jq; (05 cos 0 +o(1)). (6.23)

Opy; | (m,p)=(m? p7)
Dlljl_]" is
small. The fact that Dy4,U; is small can be proved in a way similar to the proof of [22, Lemma 4. 2] or
that of [21, Lemma 7.3].

To reach (6.23) note that U;(6;,p”) is a small perturbation of the constant qj by Lemma 5.3, so
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Consider (6.13) at (m,p) = (m?,pY). On the one hand, since (m?,p?) minimizes J,

aJ (m?,p7)

=0.
Opk

On the other hand, since S;(V (-,p7)) = Al + Bj cos 0, by (6.13) and (6.14)

7, pY) V(0. oY
0 (m ,p ZQW B7cosejmd9j.
J Opy,

We obtain the key equations

2 27 7
Yy B / w dn; =0, k=1,2. (6.24)
7 0 Opy,

.

Combining (6.23) and (6.24) we find
Zp] ¢ (6pm+0(1))B] =0, k=1,2. (6.25)

Since (6.25) is a non-singular linear homogeneous system for B;-Y when + is sufficiently large,
B} =B] =0. (6.26)
Finally with (6.26) we go back to (6.9) to deduce that
Al —X=n, k=1,2,

ie. A] = XA+ nis independent of k. Therefore Sp(V (-, p7)) = A+1n, k=1,2. Since S(V(-,p?)) € Y where
each member satisfies the condition 22:1 fOQW yi(0) db, = 0 according to (4.22), we must have A +n = 0,
ie.

A = A =o. (6.27)
This proves (6.8).

7 Discussion

Stability. It is not yet known whether the single torus solution found in [25] is stable, i.e. whether it is
a local minimizer of J among all sets of the unit volume. However among axisymmetric sets of the unit
volume, the single torus solution is in a sense stable. The double tori solution constructed in this paper
is different. Even within the class of axisymmetric sets, the double tori solution is still unstable. Let us
consider a configuration of two perfect tori, both axisymmetric about the z axis. In the (r, z)-plane Ri
suppose one is represented by a circle centered at (p1,21) of radius ¢; and the other by a circle centered
at (p2, z2) of radius ¢ga. Denote the union of the two regions bounded by the tori by T'(p, g, z). Similar to
Lemma 3.3 one finds
2 mpiqt
J(T(p,q, = 2277 Pjd; + [Z (F P4} log* —

J=1

+27°p;4;G1(pj, 25, 1) Zj))

7|q|4 ‘1 ‘ (7.1)

+47T3P1Q%Q§G(pla 21, P2, 22):| + O
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In (7.1) Gi(pj, 2j,pj, %) is independent of z;, but G(p1, 21, p2, 22) is decreasing in |21 — 22| which can be
seen from (2.3). If we take the double tori solution and move one torus up and one torus down in the
z-direction, the energy becomes smaller. This implies that even in the class of axisymmetric sets, the
double tori solution cannot be a local minimizer of J.

Mirror symmetry. We have imposed the mirror symmetry about the xy-plane on all sets in this paper;
namely in (4.21) we required v;(0;) = vj(27 — 6;) for all §; € S'. This mirror symmetry prevents sets
from moving in the z-direction, in contrast to the argument above. Consequently we were able to find the
double tori solution by minimizing J(F(p, q)) with respect to (p,q). This procedure actually implies that
the double tori solution is stable in the class of axisymmetric and mirror symmetric sets. If we do not
impose mirror symmetry and work with sets only with axisymmetry, then we cannot find the double tori
solution simply by minimization. We will have to (1) make an approximate solution T'(p,q, z) with two
tori of radii ¢; centered at (pj, z;) in R?, (2) improve T(p, q,z) to E(p,q, z) that solves the equations

Sj(v) = Aj + Bj COSGJ‘ + Cj sinej, j=12 (72)

and (3) employ a mini-max type argument to find a saddle point (p?,¢",2") at which the constants A,
Bj and Cj all vanish.
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