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Abstract

Studies of near periodic patterns in many self-organizing physical and biological systems give rise
to a nonlocal geometric problem in the entire space involving the mean curvature and the Newtonian
potential. One looks for a set in space of the prescribed volume such that on the boundary of the set
the sum of the mean curvature of the boundary and the Newtonian potential of the set, multiplied
by a parameter, is constant. Despite its simple form, the problem has a rich set of solutions and its
corresponding energy functional has a complex landscape. When the parameter is sufficiently large, there
exists a solution that consists of two tori: a larger torus and a smaller torus. Due to the axisymmetry,
the problem is formulated on a half plane. A variant of the Lyapunov-Schmidt procedure is developed
to reduce the problem to minimizing the energy of the set of two exact tori, as an approximate solution,
with respect to their radii. A re-parameterization argument shows that the double tori so obtained
indeed solves the equation of mean curvature and Newtonian potential. One also obtains the asymptotic
formulae for the radii of the tori in terms of the parameter. This double tori set is the first known
disconnected solution.

Key words. double tori, axisymmetry, nonlocal geometric problem, mean curvature, Newtonian po-
tential, approximate solution, Lyapunov-Schmidt reduction, re-parameterization.
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1 Introduction

Near periodic patterns arise in many physical and biological systems as orderly outcomes of self-organization
principles. Examples include morphological phases in block copolymers, animal coats, and skin pigmenta-
tion.

Block copolymers are soft condensed materials that in contrast to crystalline solids are characterized
by fluid-like disorder on the molecular scale and a high degree of order on a longer length scale. A
diblock copolymer molecule is a linear subchain of A-monomers grafted covalently to another subchain of
B-monomers [4, 9]. Because of the repulsion between the unlike monomers, the different type subchains
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tend to segregate, but as they are chemically bonded in chain molecules, segregation of subchains cannot
lead to a macroscopic phase separation. Only a local micro-phase separation occurs: micro-domains rich
in A-monomers and micro-domains rich in B-monomers emerge as a result. These micro-domains form
patterns known as morphological phases. The most common block copolymer morphological phases are
the spherical, the cylindrical, and the lamellar phases.

Morphogenesis is a biological process by which an organism develops its shape. Turing postulated the
presence of chemical signals and physico-chemical processes such as diffusion, activation, and deactivation
in cellular and organismic growth [28]. They control the organized spatial distribution of cells during the
embryonic development of an organism. Common in these pattern-forming systems is that a deviation
from homogeneity has a strong positive feedback on its further increase. On its own, it would lead to an
unlimited increase and spreading. Pattern formation requires in addition a longer ranging confinement of
the locally self-enhancing process.

When a pattern in these morphology and morphogenesis problems consists of disconnected components,
we may break the study of such a pattern into two separate steps. First a single piece of the pattern is
isolated and identified as a solution to a related profile problem where one focuses on the interaction of the
piece with itself. We call such a piece an ansatz. In the second step we place multiple copies of the ansatz
in space and form a set of multiple components, after performing a small modification to each copy. The
shape of each component is mostly determined by the ansatz. The interactions between the different compo-
nents will determine their relative locations and directions in a self-organizing morphology/morphogenesis
pattern.

In recent years several morphology/morphogenesis patterns have been constructed this way. See [22]
for the multiple disc pattern, modeling the cylindrical morphological phase of block copolymers; see [23]
for the multiple ball pattern, modeling the spherical morphological phase; see [11] for the multiple ring
pattern, which often appears on animal skins.

This paper is devoted to a profile problem that is geometric and involves the mean curvature and the
Newtonian potential. Given two parameters m > 0 and γ > 0 we look for a set E in R

n and a number λ
such that the n-dimensional Lebesgue measure of E is m and on the boundary of E the equation

H(∂E) + γN (E) = λ (1.1)

holds. In (1.1) H(∂E) stands for the mean curvature of the boundary of E as an (n − 1)-dimensional
hypersurface or several hypersurfaces, viewed from the side of E, and N is the Newtonian potential
operator. In R

3, the case with which this paper is concerned, the Newtonian potential is given by

N (E)(x) =

∫

E

dy

4π|x − y| . (1.2)

The unknown constant λ is the Lagrange multiplier associated with the constraint that the volume of E is
m. The problem admits a variational structure. It is the Euler-Lagrange equation of the energy functional

J (E) =
1

n − 1
P(E) +

γ

2

∫

E
N (E)(x) dx, (1.3)

defined for the Lebesgue measurable sets whose volume is m. Here P(E) stands for the perimeter of E,
i.e. the (n − 1)-dimensional area of the boundary of E.

The equation (1.1) is derived as the profile problem for the following geometric problem on a bounded
domain. Let D be a bounded domain in R

n, and a ∈ (0, 1) and γ > 0 be two positive parameters. Find a
subset E of D and a number λ such that the n-dimensional Lebesgue measure of E is a times the Lebesgue
measure of D and on ∂DE, the part of the boundary of E that is inside D, the equation

H(∂DE) + γ(−∆)−1(χE − a) = λ (1.4)
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holds. If ∂DE meets the boundary of D, then they meet perpendicularly. Here χE is the characteristic
function of the set E, i.e. χE(x) = 1 if x ∈ E and χE(x) = 0 if x ∈ D\E; the operator (−∆)−1 is the
inverse of −∆ which comes with the zero Neumann boundary condition. The equation (1.4) also admits a
variational structure:

JD(E) =
1

n − 1
PD(E) +

γ

2

∫

D
|(−∆)−1/2(χE − a)|2 dx. (1.5)

This functional is defined on subsets E of D whose n-dimensional Lebesgue measure is a times the Lebesgue
measure of D. The perimeter of E relative to D, denoted by PD(E), is the (n− 1)-dimensional area of the
hypersurface ∂DE, and (−∆)−1/2 is the positive square root of the operator (−∆)−1.

The equation (1.4) arises from a number of physical and biological pattern formation problems. It
first appeared in [15] as a formal limit of the Ohta-Kawasaki block copolymer theory [16] in the strong
segregation regime. The authors noted in [20] that the functional (1.5) is a Γ-limit of the Ohta-Kawasaki
density functional under the Γ-convergence theory [6, 14, 13, 12]. This convergence gives a mathematically
precise meaning of (1.4) being a limiting problem of the Ohta-Kawasaki theory. The equation (1.4) is
also connected to the Gierer-Meinhardt system, an activator-inhibitor type reaction-diffusion system for
morphogenesis in cell development [7]. Due to the lack of a variational structure in the Gierer-Meinhardt
system, the connection cannot be interpreted as a Γ-convergence property. A formal asymptotic analysis
that reduces the Gierer-Menihardt system to (1.4) may be found in [24].

The equation (1.4) is only solved completely in one dimension, where there are a countable number
of solutions, each of which is a periodic set and each of which is a local minimizer of J [20]. In higher
dimensions progresses have been made [1, 5, 26], but much remains unknown.

An effective way to study (1.4) in higher dimensions is through solutions to the profile equation (1.1).
We explain this approach by an existence result of ours in [23]. The unit ball is a solution to (1.1). This
is because that the unit sphere, the boundary of the unit ball, has constant mean curvature, and the
Newtonian potential of the unit ball is a radially symmetric function with respect to the center of the ball,
so it is also constant on the sphere. The authors showed that on a bounded domain there exists a solution
to (1.4) with a number of components. Each component is close to a small ball. All these approximate
small balls have almost the same radius. The centers of the balls are determined by minimizing a function
that depends only on the domain D. We used the ball, a solution to the profile equation (1.1), as a
building block of the multiple ball pattern solution to (1.4). The self-interaction property of a ball to itself
is contained in the profile problem (1.1). Only the study of the interactions between distinct balls requires
the equation (1.4). Roughly speaking the shape and the size of each component in our self-organizing
problem are determined by the profile equation (1.1); the full problem (1.4) is mainly responsible for the
locations of the components.

In addition to the unit ball, a less trivial solution is a shell, which is a region bounded by two concentric
spheres [19]. It exists when γ is sufficiently large. This shell solution is always unstable. Both the ball and
the shell solutions are radially symmetric.

The first non-radially symmetric solution was found by the authors in [25], also for large γ. It has the
shape of a toroidal tube, as depicted in Figure 1. Define a function f = f(γ) via its inverse

γ =
2

f3 log 1
2π2f3

. (1.6)

Note that f maps from (0,∞) to (0,∞) and

lim
γ→∞

f(γ) = 0. (1.7)
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Figure 1: A single torus solution.

Theorem 1.1 ([25]) When γ is large enough, the equation (1.1) admits a solution of volume equal to 1
which is close to a set enclosed by a torus. The torus is obtained by rotating a circle in the yz-plane about
the z-axis. Let pγ be the distance from the center of the circle to the z-axis and qγ be the radius of the
circle. Then 2π2pγ(qγ)2 = 1 and

lim
γ→∞

qγ

f(γ)
= 1 and lim

γ→∞
2π2f2(γ)pγ = 1

where the function f is given in (1.6).

Toroidal shaped objects are fascinating and have been observed in many physical systems. Known as
the vortex ring in fluid dynamics, it is a region of rotating fluid where the flow pattern takes on a toroidal
shape [3]. In a quantum fluid, a vortex ring is formed by a loop of poloidal quantized flow pattern. It was
detected in superfluid helium by Rayfield and Reif [18], and more recently in Bose-Einstein condensates
by Anderson, et al, [2].

In a 2004 Science magazine article, Pochan and his collaborators reported the finding of a morphological
phase of toroidal supramolecule assemblies, using a triblock copolymer [17]. They found this phase by
combining dilute solution characteristics critical for both bundling of like-charged biopolymers and block
copolymer micelle formation. The key to toroid versus classic cylinder micelle formation is the interaction
of the negatively charged hydrophilic block of an amphiphilic triblock copolymer with a positively charged
divalent organic counterion. This produces a self-attraction of cylindrical micelles that leads to toroid
formation, a mechanism akin to the toroidal bundling of semiflexible charged biopolymers such as DNA.

In this paper we go one step further beyond Theorem 1.1 to investigate sets of multiple toroidal
components. We prove the existence of a double tori solution, depicted in Figure 2. The solution is close
to the union of two regions, each of which is bounded by a torus. Both tori are axisymmetric about the
z-axis. In the yz-plane, each torus is represented by a circle. The circle of the inner, smaller torus is
centered at (pγ

1 , 0) and the circle of the outer, larger torus is centered at (pγ
2 , 0) with pγ

1 < pγ
2 . Both circles

have approximately the same radius.
The two parameters m and γ in the problem (1.1) can be reduced to one. We can take m to be any

convenient number. In this paper, without the loss of generality, we assume that m = 2. The case m 6= 2
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Figure 2: A double tori solution.

can be reduced to the case m = 2 by a change of the space variable and a change of γ accordingly. Therefore
the problem (1.1) has intrinsically only one parameter, which we take to be γ.

For 0 < P1 < P2 subject to the constraint P1 + P2 = 2, define a function

(P1, P2) →
2∑

j=1

(Pj

16
+

πPj

2
G1(Pj , 0, Pj , 0)

)
+ πP1G(P1, 0, P2, 0). (1.8)

In this definition G is a Green’s function given in (2.3) and G1, given in Lemma 2.1, is the the second term
in the expansion of G about its singularity. We will show later that the function (1.8) attains its minimum
in the interior of its domain. The following is the main result of this paper.

Theorem 1.2 When γ is sufficiently large, the profile equation (1.1) admits a solution of volume equal to
2 which is a set of two components. Each component is close to a region enclosed by a torus. The two tori
are obtained by rotating two circles in the yz-plane about the z-axis. One circle is centered at (pγ

1 , 0) of
radius qγ

1 , and the second circle is centered at (pγ
2 , 0) of radius qγ

2 , where 2π2
∑2

j=1 pγ
j (qγ

j )2 = 2. Moreover

lim
γ→∞

qγ
j

f(γ)
= 1 and lim

γ→∞
2π2f2(γ)pγ

j = Πj , j = 1, 2,

where the function f is given in (1.6) and (Π1, Π2) is a minimum of the function (1.8).

The ball, the shell found in [19], and the single torus found in [25] are all connected sets. The double
tori solution discovered here is the first disconnected solution to (1.1).

The proof of Theorem 1.2 starts with a careful study of the Newtonian potential operator (1.2) in
the cylindrical coordinates. We obtain a three term asymptotic expansion for the kernel function of this
operator, called a Green’s function, around its singularity, Lemma 2.1. Next a set of two exact tori is used
as an approximate solution and inserted into the left side of the equation (1.1), Lemma 3.2. The result
is a quantity, depending on the four radii of the two tori, that differs slightly from a constant. Another
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important quantity is the energy of this double tori approximate solution, Lemma 3.3, which again depends
on the four radii of the tori. Once the approximate solution is well understood, particularly the properties
of the linearized operator at the approximate solution, one can use a variant of the Lyapunov-Schmidt
procedure developed by the authors for this type of problems to show that an exact solution will deviate
only slightly from the approximate solution of exact tori, Lemma 5.3. In the last step we determine the
right values of the four radii of the two tori by minimizing the energy of the approximate solution with
respect to the radii, Lemma 6.3. Finally we prove in Lemma 6.4 that the double tori obtained this way
indeed solves the equation (1.1), using a tricky re-parameterization technique. A few remarks are included
in the last section.

2 Green’s function

Axisymmetric objects are best described by the cylindrical coordinates, i.e. x = r cos σ, y = r sinσ, and
z = z, so that they are independent of the angle variable σ. The variables r and z are in

R
2
+ = {(r, z) : r > 0, z ∈ R}. (2.1)

On an axisymmetric set E the operator N is represented by an integral operator with the kernel being a
Green’s function. More precisely

N (E)(r, z) =

∫

E
G(r, z, s, t) dsdt (2.2)

where the function G is our Green’s function defined on R
2
+ × R

2
+ with singularity at (r, z) = (s, t). We

use the same letter, E here, to denote an axisymmetric set in R
3 and the set in R

2
+ that represents the

axisymmetric set. By (1.2) the Green’s function G may be written as

G(r, z, s, t) =
s

4π

∫ 2π

0

dσ√
r2 + s2 − 2rs cos σ + (z − t)2

, (r, z) 6= (s, t). (2.3)

Moreover for each (s, t) ∈ R
2
+ as a function of (r, z), G(·, s, t) satisfies

−∆G(·, s, t) − ∂

r∂r
G(·, s, t) = δ(s,t) in R

2
+,

∂

∂r
G(0, z, s, t) = 0 ∀z ∈ R. (2.4)

Lemma 2.1 For each (s, t) ∈ R
2
+

G(r, z, s, t)

=
1

2π
log

1

|(r, z) − (s, t)| + G1(r, z, s, t)

=
1

2π
log

1

|(r, z) − (s, t)| −
r − s

4πs
log

1

|(r, z) − (s, t)| + G2(r, z, s, t)

=
1

2π
log

1

|(r, z) − (s, t)| −
r − s

4πs
log

1

|(r, z) − (s, t)| +
5(r − s)2 − (z − t)2

32πs2
log

1

|(r, z) − (s, t)|
+G3(r, z, s, t)

where, as functions of (r, z), G1(·, s, t) ∈ Cα
loc(R

2
+), G2(·, s, t) ∈ C1,α

loc (R2
+), and G3(·, s, t) ∈ C2,α

loc (R2
+) for

all α ∈ (0, 1).
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Proof. Since − r−s
4πs log 1

|(r,z)−(s,t)| ∈ Cα
loc(R

2
+) and 5(r−s)2−(z−t)2

32πs2 log 1
|(r,z)−(s,t)| ∈ C1,α

loc (R2
+), it suffices to

show that G3(·, s, t) ∈ C2,α
loc (R2

+). Compute

(−∆ − 1

r∂r
)
[ 1

2π
log

1

|(r, z) − (s, t)| −
r − s

4πs
log

1

|(r, z) − (s, t)| +
5(r − s)2 − (z − t)2

32πs2
log

1

|(r, z) − (s, t)|
]

= −∆
( 1

2π
log

1

|(r, z) − (s, t)|
)
− 1

r∂r

( 1

2π
log

1

|(r, z) − (s, t)|
)

+∆
(r − s

4πs
log

1

|(r, z) − (s, t)|
)

+
1

r∂r

(r − s

4πs
log

1

|(r, z) − (s, t)|
)

−∆
(5(r − s)2 − (z − t)2

32πs2
log

1

|(r, z) − (s, t)|
)
− 1

r∂r

(5(r − s)2 − (z − t)2

32πs2
log

1

|(r, z) − (s, t)|
)

= δ(s,t) +
r − s

2πr|(r, z) − (s, t)|2

− r − s

2πs|(r, z) − (s, t)|2 +
1

4πrs
log

1

|(r, z) − (s, t)| −
(r − s)2

4πrs|(r, z) − (s, t)|2

− 1

4πs2
log

1

|(r, z) − (s, t)| +
5(r − s)2 − (z − t)2

8πs2|(r, z) − (s, t)|2

−5(r − s)

16πrs2
log

1

|(r, z) − (s, t)| +
5(r − s)3 − (z − t)2(r − s)

32πrs2|(r, z) − (s, t)|2 .

Note that the above is δ(s,t) plus a Cα
loc(R

2
+) function, since

r − s

2πr|(r, z) − (s, t)|2 − r − s

2πs|(r, z) − (s, t)|2 − (r − s)2

4πrs|(r, z) − (s, t)|2 +
5(r − s)2 − (z − t)2

8πs2|(r, z) − (s, t)|2 ∈ C0,1
loc (R2

+)

1

4πrs
log

1

|(r, z) − (s, t)| −
1

4πs2
log

1

|(r, z) − (s, t)| ∈ Cα
loc(R

2
+)

−5(r − s)

16πrs2
log

1

|(r, z) − (s, t)| ∈ Cα
loc(R

2
+)

5(r − s)3 − (z − t)2(r − s)

32πrs2|(r, z) − (s, t)|2 ∈ C0,1
loc (R2

+).

Here C0,1
loc (R2

+) denotes the space of locally Lipschitz continuous functions on R
2
+. Because of (2.4), we

deduce

(−∆ − 1

r∂r
)G3(·, s, t) ∈ Cα

loc(R
2
+).

The elliptic regularity theory [8] implies that G3(·, s, t) ∈ C2,α
loc (R2

+).
Some useful properties of G, G1, G2 and G3 are listed below.

Lemma 2.2 Denote the derivatives of G = G(r, z, s, t) (or G1, G2, G3) with respect to r, z, s, and t by
D1G, D2G, D3G and D4G respectively.

1. For λ > 0, G(λr, λz, λs, λt) = G(r, z, s, t).

2. For r 6= s, D2G(r, 0, s, 0) = 0.

3. For r > 0 and s > 0, D2G3(r, 0, s, 0) = 0.
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Proof. Parts 1 and 2 follow directly from (2.3). To prove part 3, we first assume r 6= s and deduce from
D2G(r, 0, s, 0) = 0 in part 2 that

D2G3(r, 0, s, 0) = −D2

∣∣∣
z=t=0

[ 1

2π
log

1

|(r, z) − (s, t)| −
r − s

4πs
log

1

|(r, z) − (s, t)|

+
5(r − s)2 − (z − t)2

32πs2
log

1

|(r, z) − (s, t)|
]

= −
[
− z − t

2π|(r, z) − (s, t)|2 +
(r − s)(z − t)

4πs|(r, z) − (s, t)|2

−(z − t)

16πs2
log

1

|(r, z) − (s, t)| −
5(r − s)2(z − t) − (z − t)3

32πs2|(r, z) − (s, t)|2
]
z=t=0

= 0.

Since G3(·, s, t) ∈ C2,α
loc (R2

+), D2G3(r, 0, s, 0) = 0 remains valid even if r = s.

3 Double tori

Depicted in Figure 2 are two tori in R
3 described by two circles in R

2
+ of (2.1) centered at (pj , 0) with radii

qj , j = 1, 2. The two tori are obtained by rotating the circles about the z-axis. We often use shorthand
notations p for (p1, p2) and q for (q1, q2). To specify the range of p and q we first introduce the scaled
variables Pj and Qj corresponding to pj and qj respectively such that

pj =
Pj

2π2f2(γ)
, qj = f(γ)Qj , j = 1, 2 (3.1)

where f(γ) is given in (1.6), and let

Ω = {(P, Q) = (P1, P2, Q1, Q2) ∈ R
4 : 0 < P1 < P2, Q1 > 0, Q2 > 0,

2∑

j=1

PjQ
2
j = 2}. (3.2)

Here we write P for (P1, P2) and Q for (Q1, Q2). Next we consider a slice of Ω:

Ω̃II = {P ∈ R
2 : (P1, P2, 1, 1) ∈ Ω} = {P ∈ R

2 : 0 < P1 < P2, P1 + P2 = 2}. (3.3)

It will become clear after Lemma 6.1 why the notations Ω and Ω̃II are used. The function (1.8) is defined
on Ω̃II . We denote this function by J̃II now:

J̃II(P1, P2) =
2∑

j=1

(Pj

16
+

πPj

2
G1(Pj , 0, Pj , 0)

)
+ πP1G(P1, 0, P2, 0). (3.4)

As P1 → 1−, P2 → 1+ and consequently G(P1, 0, P2, 0) → ∞ and hence J̃II(P1, P2) → ∞. On the other
hand

G1(P1, 0, P1, 0) = G1(1, 0, 1, 0) − 1

2π
log

1

P1

implies

dJ̃II(P1, 2 − P1)

dP1
→ −∞ as P1 → 0.
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This shows that the global minium value of J̃II is achieved in the interior of Ω̃II . Denote the set of the
global minimum points of J̃II by M̃II :

M̃II = {Π = (Π1, Π2) ∈ Ω̃II : J̃II(Π) = inf
P∈eΩII

J̃II(P )}. (3.5)

Now we are ready to specify the range K ⊂ Ω of (P, Q):

K is a compact subset of Ω and a neighborhood of the set {(Π1, Π2, 1, 1) : (Π1, Π2) ∈ M̃II}. (3.6)

More precisely, K is a compact subset of Ω, and the set of the interior points of K, with respect to the
relative topology of Ω inherited from the topology of R

4, contains {(Π1, Π2, 1, 1) : (Π1, Π2) ∈ M̃II} as a
subset.

From now on we require that (p, q) satisfy the condition

(P, Q) ∈ K, (3.7)

where (P, Q) corresponds to (p, q) via (3.1). When γ is sufficiently large, we have

0 < p1 − q1 < p1 < p1 + q1 < p2 − q2 < p2 < p2 + q2 (3.8)

for all (p, q) under the condition (3.7). We rotate the two circles centered at (p1, 0) and (p2, 0) of radii q1

and q2 respectively in R
2
+ about the z-axis, to obtain two tori. The region inside the torus of pj and qj is

denoted by Tj , j = 1, 2. By (3.8) the two sets T1 and T2 have no intersection. Set T = T1 ∪ T2.
This double tori set T is used as an approximate solution of (1.1). It should generate a very small

error when inserted into the equation (1.1). Between H(∂T ) and N (T ), the estimation of N (T ) is more
involved.

Lemma 3.1 N (T ) on T1 is

N (T )(p1 + q1ĥ1 cos θ1, q1ĥ1 sin θ1)

=
q2
1

2
log

1

q1
+ q2

1

[
πG3(p1, 0, p1, 0) +

1

4
− ĥ2

1

4

]
+ πq2

2G(p1, 0, p2, 0)

− q3
1

4p1

(
log

1

q1

)
ĥ1 cos θ1 +

q3
1

p1

[
πp1D1G3(p1, 0, p1, 0)ĥ1 +

ĥ3
1

16

]
cos θ1 + πq1q

2
2D1G(p1, 0, p2, 0)ĥ1 cos θ1

+O(
|q|4
|p|2 log

|p|
|q| ),

where ĥ1 ∈ [0, 1]; N (T ) on T2 is

N (T )(p2 + q2ĥ2 cos θ2, q2ĥ2 sin θ)

=
q2
2

2
log

1

q2
+ q2

2

[
πG3(p2, 0, p2, 0) +

1

4
− ĥ2

2

4

]
+ πq2

1G(p2, 0, p1, 0)

− q3
2

4p2

(
log

1

q2

)
ĥ2 cos θ2 +

q3
2

p2

[
πp2D1G3(p2, 0, p2, 0)ĥ2 +

ĥ3
2

16

]
cos θ2 + πq2q

2
1D1G(p2, 0, p1, 0)ĥ2 cos θ2

+O(
|q|4
|p|2 log

|p|
|q| ),

where ĥ2 ∈ [0, 1].
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Proof. Since N (T ) = N (T1) +N (T2), we start with N (Tj) evaluated at a point in the same Tj . In the
Green’s function G(r, z, s, t) let

(r, z) = (pj + hj cos θj , hj sin θj), (s, t) = (pj + ρj cos ωj , ρj sinωj) (3.9)

where hj , ρj ∈ [0, qj ], so both (r, z) and (s, t) are points in the the same Tj . To simplify notations, we
temporarily drop the subscript j. Then

N (Tj)(pj + hj cos θj , hj sin θj) = N (Tj)(p + h cos θ, h sin θ)

=

∫ q

0

∫ 2π

0
G(p + h cos θ, h sin θ, p + ρ cos ω, ρ sin ω)ρ dωdρ

=

∫ q

0

∫ 2π

0

1

2π
log

1√
h2 + ρ2 − 2hρ cos(θ − ω)

[
1 − h cos θ − ρ cos ω

2(p + ρ cos ω)

+
5(h cos θ − ρ cos ω)2 − (h sin θ − ρ sinω)2

16(p + ρ cos ω)2

]
ρ dωdρ

+

∫ q

0

∫ 2π

0
G3(p + h cos θ, h sin θ, p + ρ cos ω, ρ sinω)ρ dωdρ

= I + II (3.10)

where I and II in (3.10) are given by the two integrals above.
Because of the scaling property

G3(λr, λz, λs, λt) = G3(r, z, s, t) − 1

2π
log

1

λ

[
1 − r − s

2s
+

5(r − s)2 − (z − t)2

16s2

]
(3.11)

which follows from Lemma 2.2 part 1 and Lemma 2.1, II becomes

II = − 1

2π
log

1

p

∫ q

0

∫ 2π

0

[
1 − h cos θ − ρ cos ω

2(p + ρ cos ω)
+

5(h cos θ − ρ cos ω)2 − (h sin θ − ρ sinω)2

16(p + ρ cos ω)2

]
ρ dωdρ

+

∫ q

0

∫ 2π

0
G3(1 +

h

p
cos θ,

h

p
sin θ, 1 +

ρ

p
cos ω,

ρ

p
sinω)ρ dωdρ

= III + IIII (3.12)

where III and IIII are given by the two integrals above.
We introduce the scaled variables ĥ and ρ̂ by

h = qĥ, ρ = qρ̂. (3.13)

Then I becomes

I =
q2

2π
log

1

q

∫ 1

0

∫ 2π

0

[
1 − ĥ cos θ − ρ̂ cos ω

2(p/q + ρ̂ cos ω)
+

5(ĥ cos θ − ρ̂ cos ω)2 − (ĥ sin θ − ρ̂ sin ω)2

16(p/q + ρ̂ cos ω)2

]
ρ̂ dωdρ̂

+
q2

2π

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

[
1 − ĥ cos θ − ρ̂ cos ω

2(p/q + ρ̂ cos ω)

+
5(ĥ cos θ − ρ̂ cos ω)2 − (ĥ sin θ − ρ̂ sinω)2

16(p/q + ρ̂ cos ω)2

]
ρ̂ dωdρ̂

= II + III (3.14)
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where II and III are the two integrals above.
Combining II and III we find

II + III =
q2

2π
log

p

q

∫ 1

0

∫ 2π

0

[
1 − ĥ cos θ − ρ̂ cos ω

2(p/q + ρ̂ cos ω)
+

5(ĥ cos θ − ρ̂ cos ω)2 − (ĥ sin θ − ρ̂ sinω)2

16(p/q + ρ̂ cos ω)2

]
ρ̂ dωdρ̂

=
q2

2π
log

p

q

[
A + B + C

]
(3.15)

where

A =

∫ 1

0

∫ 2π

0
ρ̂ dωdρ̂ = π

B =

∫ 1

0

∫ 2π

0
− ĥ cos θ − ρ̂ cos ω

2(p/q + ρ̂ cos ω)
ρ̂ dωdρ̂

= − q

2p

∫ 1

0

∫ 2π

0

(
ĥ cos θ − ρ̂ cos ω + O(

q

p
)
)
ρ̂ dωdρ̂ = −πq

2p
ĥ cos θ + O(

q2

p2
)

C =

∫ 1

0

∫ 2π

0

5(ĥ cos θ − ρ̂ cos ω)2 − (ĥ sin θ − ρ̂ sin ω)2

16(p/q + ρ̂ cos ω)2
ρ̂ dωdρ̂ = O(

q2

p2
).

This shows

II + III =
q2

2
log

p

q
− q3

4p

(
log

p

q

)
ĥ cos θ + O(

q4

p2
log

p

q
) (3.16)

The term III must be estimated carefully. We write

III =
q2

2π

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

[
1 − ĥ cos θ − ρ̂ cos ω

2(p/q + ρ̂ cos ω)
(3.17)

+
5(ĥ cos θ − ρ̂ cos ω)2 − (ĥ sin θ − ρ̂ sinω)2

16(p/q + ρ̂ cos ω)2

]
ρ̂ dωdρ̂

=
q2

2π

[
Ã + B̃ + C̃

]
(3.18)

where

Ã =

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

ρ̂ dωdρ̂

B̃ = −
∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

ĥ cos θ − ρ̂ cos ω

2(p/q + ρ̂ cos ω)
ρ̂ dωdρ̂

C̃ =

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

5(ĥ cos θ − ρ̂ cos ω)2 − (ĥ sin θ − ρ̂ sinω)2

16(p/q + ρ̂ cos ω)2
ρ̂ dωdρ̂ = O(

q2

p2
).

To study Ã and B̃ we need the trigonometric series

log
1

|1 − βeiω| =
∞∑

n=1

βn cos nω

n
(3.19)
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for β ∈ [0, 1]; see [27]. One consequence of (3.19) is that

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

dω =

{
−2π log ĥ if ρ̂ < ĥ

−2π log ρ̂ if ρ̂ ≥ ĥ
(3.20)

which implies that

Ã = −2π

∫ ĥ

0
(log h̃)ρ̂ dρ̂ − 2π

∫ 1

ĥ
(log ρ̃)ρ̂ dρ̂ = 2π

(1

4
− ĥ2

4

)
(3.21)

Regarding B̃ we write

B̃ = − q

2p

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

ĥ cos θρ̂ dωdρ̂

+
q

2p

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

ρ̂ cos ωρ̂ dωdρ̂

+O(
q2

p2
)

= B̃1 + B̃2 + O(
q2

p2
) (3.22)

where B̃1 and B̃2 are given by the two integrals above.
Using (3.20) again, we derive

B̃1 = − q

2p

[ ∫ ĥ

0
(−2π log ĥ)ĥ cos θρ̂ dρ̂ +

∫ 1

ĥ
(−2π log ρ̂)ĥ cos θρ̂ dρ

]
=

πq

p
cos θ

( ĥ3

4
− ĥ

4

)
. (3.23)

For B̃2 we note that

B̃2 =
q

2p

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

ρ̂ cos ωρ̂ dωdρ̂

=
q

2p

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

ρ̂ cos(θ − ω) cos θρ̂ dωdρ̂

+
q

2p

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

ρ̂ sin(θ − ω) sin θρ̂ dωdρ̂

=
q

2p

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

ρ̂ cos(θ − ω) cos θρ̂ dωdρ̂.

To reach the last line, we have used the fact that

q

2p

∫ 1

0

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

ρ̂ sin(θ − ω) sin θρ̂ dωdρ̂ = 0,

12



which follows from the absence of sinnω terms in (3.19). Another consequence of (3.19) is

∫ 2π

0
log

1√
ĥ2 + ρ̂2 − 2ĥρ̂ cos(θ − ω)

cos(θ − ω) dω

=

∫ 2π

0
log

1√
1 + β2 − 2β cos ω

cos ω dω

=

∫ 2π

0
β cos2 ω dω = πβ where β =





ρ̂

ĥ
if ρ̂ < ĥ

ĥ
ρ̂ if ρ̂ ≥ ĥ

(3.24)

Therefore

B̃2 =
πq

2p

[ ∫ ĥ

0

ρ̂

ĥ
ρ̂2 cos θ dρ̂ +

∫ 1

ĥ

ĥ

ρ̂
ρ̂2 cos θ dρ̂

]
=

πq

2p
cos θ

( ĥ

2
− ĥ3

4

)
(3.25)

Following (3.23) and (3.25) we deduce

B̃ =
πq

8p
ĥ3 cos θ + O(

q2

p2
). (3.26)

By (3.18), (3.21), and (3.26) we find

III = q2
(1

4
− ĥ2

4

)
+

q3

16p
ĥ3 cos θ + O(

q4

p2
). (3.27)

The estimation of IIII is straightforward. Because G3(·, ·, s, t) is in C2,α(R2
+) and D2G3(1, 0, 1, 0) = 0

according to Lemma 2.2 part 3,

IIII = q2

∫ 1

0

∫ 2π

0
G3(1 +

q

p
ĥ cos θ,

q

p
ĥ sin θ, 1 +

q

p
ρ̂ cos ω,

q

p
ρ̂ sinω)ρ̂ dωdρ̂

= q2

∫ 1

0

∫ 2π

0

[
G3(1, 0, 1, 0) + D1G3(1, 0, 1, 0)

q

p
ĥ cos θ + D2G3(1, 0, 1, 0)

q

p
ĥ sin θ

+D3G3(1, 0, 1, 0)
q

p
ρ̂ cos ω + D4G3(1, 0, 1, 0)

q

p
ρ̂ sin ω + O(

q2

p2
)
]
ρ̂ dωdρ̂

= q2

∫ 1

0

∫ 2π

0

[
G3(1, 0, 1, 0) + D1G3(1, 0, 1, 0)

q

p
ĥ cos θ

]
ρ̂ dωdρ̂ + O(

q4

p2
)

= πq2G3(1, 0, 1, 0) +
πq3

p
D1G3(1, 0, 1, 0)ĥ cos θ + O(

q4

p2
). (3.28)

We now combine (3.16), (3.27), and (3.28) to conclude that, for j = 1, 2,

N (Tj)(pj + hj cos θj , hj sin θj) =
q2
j

2
log

pj

qj
+ q2

j

[1

4
−

ĥ2
j

4
+ πG3(1, 0, 1, 0)

]

−
q3
j

4pj

(
log

pj

qj

)
ĥj cos θj +

q3
j

pj

[ ĥ3
j

16
+ πD1G3(1, 0, 1, 0)ĥj

]
cos θj

+O(
q4
j

p2
j

log
pj

qj
). (3.29)

Note that we have restored the subscript j.

13



Next we consider N (T1) on T2.

N (T1)(p2 + h2 cos θ2, h2 sin θ2) =

∫ q1

0

∫ 2π

0
G(p2 + h2 cos θ2, h2 sin θ2, p1 + ρ1 cos ω1, ρ1 sinω1)ρ1 dω1dρ1

(3.30)
where h2 ∈ [0, q2]. For this we only need to expand

G(p2 + h2 cos θ2, h2 sin θ2, p1 + ρ1 cos ω1, ρ1 sin ω1)

= G(p2, 0, p1, 0) + D1G(p2, 0, p1, 0)h2 cos θ2 + D2G(p2, 0, p1, 0)h2 sin θ2

+D3G(p2, 0, p1, 0)ρ1 cos ω1 + D4G(p2, 0, p1, 0)ρ1 sinω1 + O(
|q|2
|p|2 ).

Since D2G(p2, 0, p1, 0) = 0 (Lemma 2.2 part 2), it follows that

N (T1)(p2 + h2 cos θ2, h2 sin θ2) = πq2
1G(p2, 0, p1, 0) + πq2

1q2D1G(p2, 0, p1, 0)ĥ2 cos θ2 + O(
|q|4
|p|2 ). (3.31)

Similarly N (T2) on T1 is

N (T2)(p1 + h1 cos θ1, h1 sin θ1) = πq2
2G(p1, 0, p2, 0) + πq1q

2
2D1G(p1, 0, p2, 0)ĥ1 cos θ1 + O(

|q|4
|p|2 ). (3.32)

By (3.29) and (3.32) we deduce that N (T ) on T1 is

N (T )(p1 + h1 cos θ1, h1 sin θ1)

=
q2
1

2
log

p1

q1
+ q2

1

[1

4
− ĥ2

1

4
+ πG3(1, 0, 1, 0)

]
+ πq2

2G(p1, 0, p2, 0)

− q3
1

4p1

(
log

p1

q1

)
ĥ1 cos θ1 +

q3
1

p1

[ ĥ3
1

16
+ πD1G3(1, 0, 1, 0)ĥ1

]
cos θ1 + πq1q

2
2D1G(p1, 0, p2, 0)ĥ1 cos θ1

+O(
|q|4
|p|2 log

|p|
|q| ), (3.33)

for h1 ∈ [0, q1]. And similarly N (T ) on T2 is

N (T )(p2 + h2 cos θ2, h2 sin θ2)

=
q2
2

2
log

p2

q2
+ q2

2

[1

4
− ĥ2

2

4
+ πG3(1, 0, 1, 0)

]
+ πq2

1G(p2, 0, p1, 0)

− q3
2

4p2

(
log

p2

q2

)
ĥ2 cos θ2 +

q3
2

p2

[ ĥ3
2

16
+ πD1G3(1, 0, 1, 0)ĥ2

]
cos θ2 + πq2q

2
1D1G(p2, 0, p1, 0)ĥ2 cos θ2

+O(
|q|4
|p|2 log

|p|
|q| ), (3.34)

for h2 ∈ [0, q2]. Since

G3(pj , 0, pj , 0) = G3(1, 0, 1, 0) − 1

2π
log

1

pj
and pjD1G3(pj , 0, pj , 0) = D1G3(1, 0, 1, 0) +

1

4π
log

1

pj

by (3.11), the lemma follows from (3.33) and (3.34).
We insert T into the left side of the equation H(∂E) + γN (E) = λ and see how much it deviates from

a constant.
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Lemma 3.2 On ∂T1

(
H(∂T ) + γN (T )

)
(p1 + q1 cos θ1, q1 sin θ1)

=
1

2q1
+

cos θ1

2p1
+ O(

q1

p2
1

) + γ
{q2

1

2
log

1

q1
+ πq2

1G3(p1, 0, p1, 0) + πq2
2G(p1, 0, p2, 0)

− q3
1

4p1

(
log

1

q1

)
cos θ1 +

q3
1

p1

[
πp1D1G3(p1, 0, p1, 0) +

1

16

]
cos θ1 + πq1q

2
2D1G(p1, 0, p2, 0) cos θ1

+O(
|q|4
|p|2 log

|p|
|q| )

}
;

on ∂T2

(
H(∂T ) + γN (T )

)
(p2 + q2 cos θ2, q2 sin θ2)

=
1

2q2
+

cos θ2

2p2
+ O(

q2

p2
2

) + γ
{q2

2

2
log

1

q2
+ πq2

2G3(p2, 0, p2, 0) + πq2
1G(p2, 0, p1, 0)

− q3
2

4p2

(
log

1

q2

)
cos θ2 +

q3
2

p2

[
πp2D1G3(p2, 0, p2, 0) +

1

16

]
cos θ2 + πq2q

2
1D1G(p2, 0, p1, 0) cos θ2

+O(
|q|4
|p|2 log

|p|
|q| )

}
.

Proof. The mean curvature of the torus ∂Tj at (r, z) = (pj + qj cos θj , qj sin θj) is given by

H(∂Tj)(pj + qj cos θj , qj sin θj) =
1

2

( 1

qj
+

cos θj

pj + qj cos θj

)
=

1

2qj
+

cos θj

2pj
+ O(

qj

p2
j

). (3.35)

Lemma 3.2 follows from (3.35) and Lemma 3.1.
We proceed to estimate J (T ).

Lemma 3.3

J (T ) =
2∑

j=1

2π2pjqj +
γ

2

[ 2∑

j=1

(
π2pjq

4
j log

1

qj
+

π2pjq
4
j

4
+ 2π3pjq

4
j G1(pj , 0, pj , 0)

)

+4π3p1q
2
1q

2
2G(p1, 0, p2, 0)

]
+ O(

γ|q|4
|p|2 log

|p|
|q| )

Proof. The perimeter of T is

P(T ) =
2∑

j=1

4π2pjqj , (3.36)

which is the sum of the area of ∂T1 and the area of ∂T2.
The nonlocal part of J (T ) is γ

2 times

2π

∫

T
N (T ) rdrdz. (3.37)
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Regarding (3.37) we first consider

2π

∫

T1

N (T ) rdrdz = 2π

∫ q1

0

∫ 2π

0
N (T )(p1 + h1 cos θ1, h1 sin θ1)(p1 + h1 cos θ1)h1dθ1dh1. (3.38)

By Lemma 3.1, on T1

N (T )(p1 + h1 cos θ1, h1 sin θ1) =
q2
1

2
log

1

q1
+ q2

1

[
πG3(p1, 0, p1, 0) +

1

4
− h2

1

4q2
1

]

+πq2
2G(p1, 0, p2, 0)

− q3
1

4p1

(
log

1

q1

)h1

q1
cos θ1 +

q3
1

p1

[
πp1D1G3(p1, 0, p1, 0)

h1

q1
+

h3
1

16q3
1

]
cos θ1

+πq1q
2
2D1G(p1, 0, p2, 0)

h1

q1
cos θ1 + O(

|q|4
|p|2 log

|p|
|q| ).

Therefore (3.38) becomes

2π

∫

T1

N (T )(r, z) rdrdz

= 2π

∫ q1

0

∫ 2π

0

[q2
1

2
log

1

q1
+ q2

1

(
πG3(p1, 0, p1, 0) +

1

4
− h2

1

4q2
1

)]
(p1 + h1 cos θ1)h1dθ1dh1

+2π

∫ q1

0

∫ 2π

0
πq2

2G(p1, 0, p2, 0)(p1 + h1 cos θ1)h1dθ1dh1

+2π

∫ q1

0

∫ 2π

0

[
− q3

1

4p1

(
log

1

q1

)h1

q1
cos θ1 +

q3
1

p1

(
πp1D1G3(p1, 0, p1, 0)

h1

q1
+

h3
1

16q3
1

)
cos θ1

]

(p1 + h1 cos θ1)h1dθ1dh1

+2π

∫ q1

0

∫ 2π

0
πq1q

2
2D1G(p1, 0, p2, 0)

h1

q1
cos θ1(p1 + h1 cos θ1)h1dh1dθ1 + O(

|q|4
|p|2 log

|p|
|q| )

= π2p1q
4
1 log

1

q1
+ 2π3p1q

4
1G3(p1, 0, p1, 0) + 2π3p1q

2
1q

2
2G(p1, 0, p2, 0) + O(

|q|4
|p|2 log

|p|
|q| )

= π2p1q
4
1 log

1

q1
+ 2π3p1q

4
1G1(p1, 0, p1, 0) + 2π3p1q

2
1q

2
2G(p1, 0, p2, 0) + O(

|q|4
|p|2 log

|p|
|q| ) (3.39)

where the last line follows from G3(p, 0, p, 0) = G1(p, 0, p, 0), a consequence of Lemma 2.1.
Similarly

2π

∫

T2

N (T )(r, z) rdrdz

= π2p2q
4
2 log

1

q2
+ 2π3p2q

4
2G1(p2, 0, p2, 0) + 2π3p2q

2
2q

2
1G(p2, 0, p1, 0) + O(

|q|4
|p|2 log

|p|
|q| ). (3.40)

From (3.36), (3.39), (3.40), and the symmetry p1G(p1, 0, p2) = p2G(p2, 0, p1, 0), one finds J (T ).

4 Perturbation

The solution we will construct is a union of two sets enclosed by two approximate tori. To describe an
approximate torus we need a way to perturb the exact double torus Tj . Note that Tj is specified by pj and
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qj . Let u1 = u1(θ1) and u2 = u2(θ2) be two 2π-periodic functions. In the rz-plane R
2
+ define the sets

Ej =
⋃

θj∈[0,2π]

{(pj + hj cos θj , hj sin θj) : hj ∈ [0, uj(θj)]}, j = 1, 2; E = E1 ∪ E2. (4.1)

One then rotates E about the z-axis and obtains a set in R
3 which is a perturbation of T . This axisymmetric

set in R
3 is again denoted by E, if no confusion exists. For this definition to be meaningful we will ensure

uj(θj) > 0, ∀θj ∈ [0, 2π]. (4.2)

The perfect tori T1 and T2 introduced earlier are described by constant functions:

uj(θj) = qj , ∀θj ∈ [0, 2π]. (4.3)

For a perturbed torus Ej the variable uj generally depends on θj .
In terms of u1 and u2 the energy of E is given by

J (E) =
2∑

j=1

π

∫ 2π

0
(pj + uj(θj) cos θj)

√
(u′

j(θj))2 + u2
j (θj) dθj + γπ

∫

E

∫

E
G(r, z, s, t)r dsdtdrdz (4.4)

where the set E in the double integral is in R
2
+.

The volume of a perturbed torus is given by

2π

∫

Ej

rdrdz = 2π

∫ 2π

0

∫ uj(θj)

0
(pj + ρj cos θj)ρjdρjdθj

= 2π

∫ 2π

0

[pju
2
j (θj)

2
+

u3
j (θj)

3
cos θj

]
dθj .

The volume constraint |E1| + |E2| = 2 requires that

2∑

j=1

2π

∫ 2π

0

[pju
2
j (θj)

2
+

u3
j (θj)

3
cos θj

]
dθj = 2. (4.5)

The equation (4.5) is a nonlinear constraint on u1 and u2. It is often more convenient to work with a
different set of variables. Let

A(µ, α, b) =
bµ2

2
+

µ3 cos α

3
. (4.6)

Define vj = vj(θj) by
vj(θj) = A(uj(θj), θj , pj), j = 1, 2. (4.7)

Now both uj and vj can be used to described the perturbed torus Ej . Since uj of a perturbed torus
Ej corresponds to qj of an unperturbed torus Tj and qj is the radius of a cross section of Tj , we call uj

the radius variable. Since 2π
∫ 2π
0 vj(θj) dθj is the volume of Ej , we call vj the volume variable. In terms

of the volume variable the unperturbed torus Tj is described by

ψj(θj) =
pjq

2
j

2
+

q3
j cos θj

3
, ∀θj ∈ [0, 2π]. (4.8)

Note that unlike (4.3) the function ψj in (4.8) is not constant. The advantage of using vj is that the
constraint (4.5) is simplified to a linear condition

2∑

j=1

2π

∫ 2π

0
vj(θj) dθj = 2 (4.9)

17



on the volume variables v1 and v2.
Let us also denote the inverse of A where ν = A(µ, α, b), as a function of µ with α and b held fixed, by

µ = B(ν, α, b) such that
uj(θj) = B(vj(θj), θj , pj). (4.10)

Let us write the half of the area of the perturbed torus Ej as

π

∫ 2π

0
Lj(v

′
j(θj), vj(θj), θj) dθj (4.11)

where the Lagrangian Lj is given by

Lj(ν̇, ν, α) = (pj + µ cos α)
√

µ̇2 + µ2. (4.12)

In (4.12) (ν̇, ν, α) and (µ̇, µ, α) transfer according to the following rules.




µ̇
µ
α


 →




ν̇
ν
α


 =




µ̇Aµ(µ, α, pj) + Aα(µ, α, pj)
A(µ, α, pj)
α


 , (4.13)




ν̇
ν
α


 →




µ̇
µ
α


 =




ν̇Bν(ν, α, pj) + Bα(ν, α, pj)
B(ν, α, pj)
α


 . (4.14)

We use the shorthand notation v for v1 and v2, and write J (v) for the energy of the perturbed double
tori E described by the volume variables v1 and v2:

J (v) =
2∑

j=1

∫ 2π

0
Lj(v

′
j(θj), vj(θj), θj) dθj + γπ

∫

Ev

∫

Ev

G(r, z, s, t)r dsdtdrdz. (4.15)

Here the set in R
2
+ described by v1 and v2 is denoted by Ev.

The variation of J in the direction of φ is given by

dJ (v + ǫφ)

dǫ

∣∣∣
ǫ=0

=
2∑

j=1

2π

∫ 2π

0
Hj(vj)(θj)φj(θj) dθj + γ

2∑

j=1

2π

∫ 2π

0
Nj(v)(θj)φj(θj) dθj . (4.16)

In (4.16) the mean curvature Hj is now an operator on the volume variable vj and the Newtonian potential
Nj is an operator on both v1 and v2. Taking the constraint (4.9) into consideration, we deduce that at a
critical point of J the system of equations

Hj(vj)(θj) + γNj(v)(θj) = λ, j = 1, 2, (4.17)

holds. Let us introduce the operator S = (S1,S2) so that

Sj(v) = Hj(vj) + γNj(v) − 1

2

2∑

j=1

[
Hj(vj) + γNj(v)

]
, j = 1, 2. (4.18)

Note that a bar over a function denotes its average over [0, 2π], i.e.

Hj(vj) =
1

2π

∫ 2π

0
Hj(vj)(θj) dθj . (4.19)

18



Then (4.17) is equivalent to
S(v) = 0. (4.20)

When specifying the domain and the target space of S, we make use of the mirror symmetry of the
sought after solution with respect to the horizontal xy-plane in addition to the axisymmetry with respect
to the z-axis. Set

X = {(v1, v2) : vj ∈ H2(S1), vj > 0, vj(θj) = vj(2π − θj), (j = 1, 2), 2π
2∑

j=1

∫ 2π

0
vj(θ) dθj = 2}. (4.21)

Note that in this definition v1 is a function of θ1 and v2 is a function of θ2, where θ1 and θ2 are different
variables. The target space is

Y = {(y1, y2) : yj ∈ L2(S1), yj(θj) = yj(2π − θj), (j = 1, 2), 2π
2∑

j=1

∫ 2π

0
yj(θ) dθj = 0} (4.22)

where y1 is a function of θ1 and y2 is a function of θ2. The conditions vj(θj) = vj(2π − θj) and yj(θj) =
yj(2π−θj) in (4.21) and (4.22) impose a mirror symmetry with respect to the xy-plane. This symmetry will
greatly simplify the proof of Theorem 1.2. See the appendix for more discussion on the mirror symmetry.

The norm of Y, denoted by ‖y‖L2 , is given by

‖y‖L2 = (‖y1‖2
L2(S1) + ‖y2‖2

L2(S2))
1/2, where y = (y1, y2).

Here we have identified the interval [0, 2π] with the unit circle S1. Similarly the norm in X is denoted by
‖v‖H2 :

‖v‖H2 = (‖v1‖2
H2(S1) + ‖v2‖2

H2(S1))
1/2.

A 2π-periodic function is regarded as a function on S1. Here H2(S1) is the Sobolev space of twice weakly
differentiable L2 functions with L2-integrable first and second order derivatives on the circle S1.

5 Reduction

We fix the parameters pi and qi satisfying the condition (3.7) in this section. The exact double tori T of
the radii pi and qi is described by the volume variable ψ = (ψ1, ψ2). The linearized operator of S at ψ is
the operator

S ′(ψ) : X ′ → Y. (5.1)

Here X ′ is the domain of S ′(ψ) given by

X ′ = {(φ1, φ2) : φj ∈ H2(S1), φj(θj) = φj(2π − θj), (j = 1, 2), 2π
2∑

j=1

∫ 2π

0
φj(θj) dθj = 0}. (5.2)

A subspace of X ′ plays an important role. Let

X ′
∗ = {(φ1, φ2) ∈ X ′ :

∫ 2π

0
φj(θj) cos θj dθj =

∫ 2π

0
φj(θj) dθj = 0, j = 1, 2}. (5.3)

Similarly define a subspace of Y:

Y∗ = {(y1, y2) ∈ Y :

∫ 2π

0
yj(θj) cos θj dθj =

∫ 2π

0
yj(θj) dθj = 0, j = 1, 2}. (5.4)

The orthogonal projection from Y to Y∗ is denoted by Π so that X ′
∗ = ΠX ′ and Y∗ = ΠY.
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Lemma 5.1 There exists C > 0 independent of p, q and γ such that

‖φ‖H2 ≤ Cp−1/2‖ΠS ′(ψ)φ‖L2

for all φ ∈ X ′
∗. Moreover the operator ΠS ′(ψ) is one-to-one and onto from X ′

∗ to Y∗.

Proof. The proof is similar to that of [25, Lemma 4.1]. The key here is to identify ΠS ′(ψ) as the sum
of a dominant operator L and a negligible operator L̃. On X ′

∗ the dominant part L = (L1,L2) is given by

L1φ = −
√

2p
1/2
1 (φ′′

1 + φ1), L2φ = −
√

2p
1/2
2 (φ′′

2 + φ2). (5.5)

Two families of eigenvalues exist:
√

2p
1/2
1 (n2−1) (n = 2, 3, 4, ...) corresponding to eigenvectors (cos nθ1, 0),

and
√

2p
1/2
2 (n2 − 1) (n = 2, 3, 4, ...) corresponding to (0, cos nθ2). The statement in the lemma holds true

if ΠS ′(ψ) were L. However since ΠS(ψ) = L+ L̃ and L̃ is small compared to L, the lemma is also true for
ΠS(ψ).

The second Fréchet derivative of S is estimated in the next lemma. We omit the proof since it is similar
to that of [22, Lemma 3.2].

Lemma 5.2 There exists C > 0 independent of p, q and γ such that

‖S ′′(v)(φ1, φ2)‖L2 ≤ Cp1/2‖φ1‖H2‖φ2‖H2

for all v near ψ, in the sense ‖v − ψ‖H2 < 1
2‖ψ‖H2, and all φ1, φ2 ∈ X ′.

The nonlinear operator S maps from a neighborhood of ψ in X to Y. An element ϕ exists in X ′
∗ such

that
S1(ψ + ϕ)(θ1) = A1 + B1 cos θ1, S2(ψ + ϕ)(θ2) = A2 + B2 cos θ2 (5.6)

for some A1, A2, B1, B2 ∈ R. The equations in (5.6) may be written as

ΠS(ψ + ϕ) = 0. (5.7)

The last equation may be solved by a contraction mapping argument with the help of Lemmas 5.1 and
5.2. The proof is essentially the same as that of [25, Lemma 5.1], hence we omit.

Lemma 5.3 There exists ϕ ∈ X ′
∗ such that ϕ solves (5.7) and ‖ϕ‖H2 ≤ Cf6(γ) where C is a sufficiently

large constant independent of γ.

We remark that (5.7) is solved for each given (p, q) satisfying (3.7). The parameters p and q are held
fixed in this section. In the next section we will vary p and q.

6 Minimization

We prove Theorem 1.2 in this section. From now on we emphasize dependences on p and q now and denote
the exact double tori T by T (p, q), which is describe by the volume variable ψ(·, p, q). By Lemma 5.3
there exists ϕ(·, p, q) ∈ X ′

∗ such that ΠS(ψ(·, p, q) + ϕ(·, p, q)) = 0, i.e. (5.6) holds. In this section we find
particular p and q denoted by pγ and qγ such that S(ψ(·, pγ , qγ) + ϕ(·, pγ , qγ)) = 0.

Let us denote the set specified by the volume variable ψ(·, p, q) + ϕ(·, p, q) by E(p, q).

Lemma 6.1 J (E(p, q)) = J (T (p, q)) + O(f11(γ)).
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The proof of this lemma, which we omit, is similar to that of [25, Lemma 6.1]. The quantity J (E(p, q))
may also be expressed in terms of the scaled variables Pj and Qj defined in (3.1).

Lemma 6.2

J (E(p, q)) =
1

f(γ)

2∑

j=1

[
PjQj +

PjQ
4
j

2

]
+ γf2(γ)

[ 2∑

j=1

(PjQ
4
j

4
log

1

Qj
+

PjQ
4
j

16
+

πPjQ
4
j

2
G1(Pj , 0, Pj , 0)

)

+πP1Q
2
1Q

2
2G(P1, 0, P2, 0)

]
+ O(f5(γ)).

Proof. Use Lemmas 3.3 and 6.1 and the formulas

G(λr, λz, λs, λt) = G(r, z, s, t), G1(λr, λz, λs, λt) = G1(r, z, s, t) − 1

2π
log

1

λ
. (6.1)

Lemma 6.2 gives the first two orders of the expansion of J (E(p, q)) with respect to γ. Recall Ω from
(3.2), and introduce two functions JI and JII defined on Ω:

JI(P, Q) =
2∑

j=1

(
PjQj +

PjQ
4
j

2

)
, (6.2)

JII(P, Q) =
2∑

j=1

(PjQ
4
j

4
log

1

Qj
+

PjQ
4
j

16
+

πPjQ
4
j

2
G1(Pj , 0, Pj , 0)

)
+ πP1Q

2
1Q

2
2G(P1, 0, P2, 0). (6.3)

Denote the set of the minimum points of JI in Ω by MI :

MI = {(P, Q) ∈ Ω : JI(P, Q) = inf
(P ′,Q′)∈Ω

JI(P
′, Q′)}. (6.4)

Since

PjQj +
PjQ

4
j

2
= PjQ

2
j

( 1

Qj
+

Q2
j

2

)
≥ PjQ

2
j

(3

2

)

and the equality is achieved if Qj = 1, the constraint
∑2

j=1 PjQ
2
j = 2 implies that

MI = {(P, Q) ∈ Ω : Q = (1, 1)}. (6.5)

On the set MI , JI(P, (1, 1)) = 3. Recall

J̃II(P ) = JII(P, (1, 1)) =
2∑

j=1

(Pj

16
+

πPj

2
G1(Pj , 0, Pj , 0)

)
+ πP1G(P1, 0, P2, 0)

from (1.8) and (3.4) for P ∈ Ω̃II , and also M̃II from (3.5), the set of the minimum points of J̃II .
We view J (E(p, q)) as a function of (P, Q) ∈ K, where K is given in (3.6), through the set E(p, q) and

the scaling (3.1). The next lemma shows that J (E(p, q)) is minimized at an interior point of K.

Lemma 6.3 Let (P γ , Qγ) be a minimum of J (E(p, q)) in K. Suppose that (P γ , Qγ) → (P∞, Q∞) as

γ → ∞, possibly along a subsequence. Then P∞ ∈ M̃II and Q∞ = (1, 1). Hence (P γ , Qγ) is an interior
point of K if γ is sufficiently large.
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Proof. We write J (P, Q) for J (E(p, q)) in this proof. Lemma 6.2 shows that for (P, Q) ∈ K,

J (P, Q) =
1

f(γ)
JI(P, Q) + γf2(γ)JII(P, Q) + O(f5(γ)). (6.6)

Then as γ → ∞,

f(γ)J (P γ , Qγ) → JI(P
∞, Q∞) and f(γ)J (P∞, (1, 1)) → JI(P

∞, (1, 1)),

possibly along a subsequence. Since J (P γ , Qγ) ≤ J (P∞, (1, 1)), we deduce JI(P
∞, Q∞) ≤ JI(P

∞, (1, 1)).
Therefore (P∞, Q∞) ∈ MI , i.e. Q∞ = (1, 1).

Note that the minimum value of JI is 3. Next we compare

lim inf
γ→∞

1

γf3(γ)

(
f(γ)J (P γ , Qγ) − 3

)

= lim inf
γ→∞

[ 1

γf3(γ)

(
JI(P

γ , Qγ) − 3
)

+ JII(P
γ , Qγ) + O(

f3(γ)

γ
)
]

= lim inf
γ→∞

1

γf3(γ)

(
JI(P

γ , Qγ) − 3
)

+ JII(P
∞, Q∞)

= lim inf
γ→∞

1

γf3(γ)

(
JI(P

γ , Qγ) − 3
)

+ J̃II(P
∞)

with

lim
γ→∞

1

γf3(γ)

(
f(γ)J (Π, (1, 1)) − 3

)

= lim
γ→∞

[ 1

γf3(γ)

(
JI(Π, (1, 1)) − 3

)
+ JII(Π, (1, 1)) + O(

f3(γ)

γ
)
]

= JII(Π, (1, 1)) = J̃II(Π)

where Π is any point in M̃II . Because J (P γ , Qγ) ≤ J (Π, (1, 1)),

lim inf
γ→∞

1

γf3(γ)

(
JI(P

γ , Qγ) − 3
)

+ J̃II(P
∞) ≤ J̃II(Π).

Since 3 is the minimum value of JI ,

lim inf
γ→∞

1

γf3(γ)

(
JI(P

γ , Qγ) − 3
)
≥ 0,

and consequently J̃II(P
∞) ≤ J̃II(Π). Since Π is a minimum of J̃II , P∞ is also a minimum.

Let pγ and qγ be the radii corresponding to P γ and Qγ through (3.1). Before completing the proof of
Theorem 1.2, the last thing we need to show is that E(pγ , qγ) solves (1.1).

Lemma 6.4 The set described by ψ(·, pγ , qγ)+ϕ(·, pγ , qγ) satisfies the equation (1.1), i.e. S(ψ(·, pγ , qγ)+
ϕ(·, pγ , qγ)) = 0.

Proof. Since ΠS(ψ + ϕ) = 0, there exist Ak and Bk in R (k = 1, 2) such that

Sk(ψ(·, p, q) + ϕ(·, p, q)) = Ak + Bk cos θk. (6.7)

22



The constants Ak and Bk depend on (p, q). When (p, q) is (pγ , qγ) these constants are denoted by Aγ
k and

Bγ
k respectively. We will prove the lemma by showing that

Aγ
1 = Aγ

2 = Bγ
1 = Bγ

2 = 0. (6.8)

Introduce a new variable m = (m1, m2) where mj = 2π2pjq
2
j (j = 1, 2) is the volume of Tj , and treat

J (E(p, q)) as a function of m and p instead of p and q. The original constraint on p and q now becomes a
constraint on m: m1 + m2 = 2. We write J (m, p) for J (E(p, q)), and differentiate J (m, p) with respect
to mj . Since J (m, p) depends on m only through ψ + ϕ,

∂J (m, p)

∂mk
=

2∑

j=1

2π

∫ 2π

0
Hj(ψj + ϕj)

∂(ψj + ϕj)

∂mk
dθj + γ

2∑

j=1

2π

∫ 2π

0
Nj(ψ + ϕ)

∂(ψj + ϕj)

∂mk
dθj

=
2∑

j=1

2π

∫ 2π

0

(
Sj(ψ + ϕ) − λ(ψ + ϕ)

)∂(ψj + ϕj)

∂mk
dθj

where we have written

λ(ψ + ϕ) =
1

2

2∑

j=1

[
Hj(ψj + ϕj) + γNj(ψ + ϕ)

]

for short. Since
∫ 2π
0 ψj(θj) dθj = πpjq

2
j =

mj

2π ,
∫ 2π
0

∂ψj

∂mk
dθj = ∂

∂mk

∫ 2π
0 ψj(θj) dθj = 1

2π if k = j and = 0

if k 6= j. Also by the definition of X ′
∗ where ϕ belongs,

∫ 2π
0

∂ϕj

∂mk
dθj = ∂

∂mk

∫ 2π
0 ϕj(θj) dθj = ∂0

∂mk
= 0.

Consequently

∂J (m, p)

∂mk
=

2∑

j=1

2π

∫ 2π

0

(
Sj(ψ + ϕ) − λ(ψ + φ)

)∂(ψj + ϕj)

∂mk
dθj

=
2∑

j=1

2π

∫ 2π

0
Sj(ψ + ϕ)

∂(ψj + ϕj)

∂mk
dθj − λ(ψ + ϕ)

=
2∑

j=1

2π

∫ 2π

0
(Aj + Bj cos θj)

∂(ψj + ϕj)

∂mk
dθj − λ(ψ + ϕ)

=
2∑

j=1

2π

∫ 2π

0
Bj cos θj

∂(ψj + ϕj)

∂mk
dθj + Ak − λ(ψ + ϕ).

Note that ϕ ∈ X ′
∗ implies that ϕj ⊥ cos θj . Hence

∂J (m, p)

∂mk
=

2∑

j=1

2π

∫ 2π

0
Bj cos θj

∂ψj

∂mk
dθj + Ak − λ(ψ + ϕ).

Because ψj(θj) =
pjq2

j

2 +
q3

j cos θj

3 =
mj

2π + 1
3( 1

2π2pj
)3/2m

3/2
j cos θj ,

∂J (m, p)

∂mk
=

m
1/2
k

23/2πp
3/2
k

Bk + Ak − λ(ψ + ϕ).

Let (mγ , pγ) be a minimum of J (m, p) corresponding to (pγ , qγ). Under the constraint m1 +m2 = 2, there
exists a Lagrange multiplier η ∈ R such that

(mγ
k)1/2

23/2π(pγ
k)3/2

Bγ
k + Aγ

k − λ = η, k = 1, 2. (6.9)
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We have denoted λ(ψ + ϕ) at (mγ , pγ) simply by λ.

Next we compute ∂J (m,p)
∂pk

. This is a more complicated story. The quantity J (m, p) depends on p in
two ways. First it depends on ψ + ϕ which in turn depends on p. Second since (pj , 0) is the center of a
coordinate system from which J is defined, the functional J depends directly on pj as parameters. The
crucial step here is to use the coordinate system centered at the fixed point pγ

j to re-parameterize the sets
originally described by the coordinate system centered at nearby pj , an idea first used by Ren and Wei in
[22, 21]. Under the new coordinate system J (m, p) will depend on p indirectly, only through the variables
that describe the sets. This re-parameterization operation can be done when pj is close to pγ

j . Let us call
the polar coordinate systems centered at pj and pγ

j the pj-coordinate system and the pγ
j -coordinate system

respectively. We need to make transformations between the two.
The rest of the proof requires very precise notations for functions and their derivatives. Let us write

vj = Vj(θj , p) for the function ψj + ϕj , emphasizing its dependence on p. Here Vj is a volume variable
describing a component of the set Ev under the pj-coordinate system. Denote the corresponding radius
variable by uj = Uj(θj , p), which is also under the pj-coordinates. Note that functions are now denoted by
capital letters and their dependent variables are denoted by the corresponding lower case letters. The same
set under the pγ

j -coordinates is described either by a radius variable ũj = Ũj(ηj , p), or a volume variable

ṽj = Ṽj(ηj , p). Functions denoted by letters with a tilde are under the pγ
j -coordinates, while the functions

denoted by letters without a tilde are under the pj-coordinates. The two sets of variables are connected
through the following transformation rule

pj + Uj(θj , p) cos θj = pγ
j + ũj cos ηj (6.10)

Uj(θj , p) sin θj = ũj sin ηj (6.11)

These two equations implicitly define two functions Xj and Yj such that ũj = Xj(θj , p) and ηj = Yj(θj , p).
Note that pγ is fixed and not considered as a variable. We also need the inverse of Yj , with respect
to θj , which we denote by θj = Zj(ηj , p) such that ηj = Yj(Zj(ηj , p), p). Now we are ready to define

ũj = Ũj(ηj , p):

ũj = Ũj(ηj , p) = Xj(Zj(ηj , p), p). (6.12)

Under the pγ
j -coordinates, J (m, p) depends on p only through Ṽ . Standard variational calculations

show that

∂J (m, p)

∂pk
=

2∑

j=1

2π

∫ 2π

0

(
Sj(Ṽ ) − λ(Ṽ )

)∂Ṽj

∂pk
dηj =

2∑

j=1

2π

∫ 2π

0
Sj(Ṽ )

∂Ṽj

∂pk
dηj . (6.13)

The last equality of (6.13) follows from the fact

∫ 2π

0

∂Ṽj

∂pk
dηj =

∂

∂pk

∫ 2π

0
Ṽj dηj =

∂mj

2π∂pk
= 0. (6.14)

Our main task now is to find
∂ eVj

∂pk
at (m, p) = (mγ , pγ). For clarity we sometimes denote differentiation

by the D-notation. For example we write

∂Ṽj(ηj , p)

∂pk
= Dk+1Ṽ (ηj , p). (6.15)

Here pk is the (k + 1)-th variable of Ṽj and Dk+1 denotes differentiation with respect to this variable.
Since

Ṽj =
pγ

j Ũ2
j

2
+

Ũ3
j cos ηj

3
,
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∂Ṽj(ηj , p)

∂pk
= (pγ

j Ũj(ηj , p) + Ũ2
j (ηj , p) cos ηj)

∂Ũj(ηj , p)

∂pk
. (6.16)

We start with
∂ eUj(ηj ,p)

∂pk
in (6.16). By (6.12)

∂Ũj(ηj , p)

∂pk
=

∂Xj(Zj(ηj , p), p)

∂pk
= D1Xj(Zj(ηj , p), p)Dk+1Zj(ηj , p) + Dk+1Xj(Zj(ηj , p), p). (6.17)

By implicit differentiation

Dk+1Zj(ηj , p) = −Dk+1Yj(θj , p)

D1Yj(θj , p)
. (6.18)

The derivatives of Xj and Yj are calculated from the transformations (6.10) and (6.11). Let

[
ΓI(θj , ũj , ηj , p)

ΓII(θj , ũj , ηj , p)

]
:=

[
pj + Uj(θj , p) cos θj − pγ

j − ũj cos ηj

Uj(θj , p) sin θj − ũj sin ηj

]
=

[
0
0

]
. (6.19)

In this definition pγ
j are constants, not variables. Then implicit differentiation of (6.19) yields

(
D1Xj Dk+1Xj

D1Yj Dk+1Yj

)
= −

(
D2ΓI D3ΓI

D2ΓII D3ΓII

)−1 (
D1ΓI Dk+3ΓI

D1ΓII Dk+3ΓII

)

= −
(

− cos ηj ũj sin ηj

− sin ηj −ũj cos ηj

)−1
(

∂Uj

∂θj
cos θj − Uj sin θj δjk +

∂Uj

∂pk
cos θj

∂Uj

∂θj
sin θj + Uj cos θj

∂Uj

∂pk
sin θj

)

= −
(

− cos ηj − sin ηj
sin ηj

euj
− cos ηj

euj

) (
∂Uj

∂θj
cos θj − Uj sin θj δjk +

∂Uj

∂pk
cos θj

∂Uj

∂θj
sin θj + Uj cos θj

∂Uj

∂pk
sin θj

)
.

Here δjk = 1 if j = k and = 0 if j 6= k.

Since our goal is to evaluate ∂ eV
∂pk

at (m, p) = (mγ , pγ), where θ = η and Ũ(θ, pγ) = U(η, pγ), we deduce

(
D1Xj Dk+1Xj

D1Yj Dk+1Yj

) ∣∣∣
(m,p)=(mγ ,pγ)

=

(
∂Uj(θj ,pγ)

∂θj
δjk cos θj +

∂Uj(θj ,pγ)
∂pk

1 −δjk
sin θj

Uj(θj ,pγ)

)
. (6.20)

By (6.18) and (6.20), (6.17) becomes

∂Ũj

∂pk

∣∣∣
(m,p)=(mγ ,pγ)

= δjk
D1Uj(θj , p

γ) sin θj

Uj(θj , pγ)
+ δjk cos θj + Dk+1Uj(θj , p

γ). (6.21)

Returning to the volume variable, we deduce, from (6.16),

∂Ṽj

∂pk

∣∣∣
(m,p)=(mγ ,pγ)

= (pγ
j Uj + U2

j cos θj)
[
δjk

D1Uj sin θj

Uj
+ δjk cos θj + Dk+1Uj

]
. (6.22)

We single out the leading order term in (6.22) to obtain

∂Ṽj

∂pk

∣∣∣
(m,p)=(mγ ,pγ)

= pγ
j qγ

j (δjk cos θj + o(1)). (6.23)

To reach (6.23) note that Uj(θj , p
γ) is a small perturbation of the constant qγ

j by Lemma 5.3, so
D1Uj

Uj
is

small. The fact that Dk+1Uj is small can be proved in a way similar to the proof of [22, Lemma 4.2] or
that of [21, Lemma 7.3].
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Consider (6.13) at (m, p) = (mγ , pγ). On the one hand, since (mγ , pγ) minimizes J ,

∂J (mγ , pγ)

∂pk
= 0.

On the other hand, since Sj(Ṽ (·, pγ)) = Aγ
j + Bγ

j cos θj , by (6.13) and (6.14)

∂J (mγ , pγ)

∂pk
=

2∑

j=1

2π

∫ 2π

0
Bγ

j cos θj
∂Ṽj(θj , p

γ)

∂pk
dθj .

We obtain the key equations

2∑

j=1

Bγ
j

∫ 2π

0
cos θj

∂Ṽj(θj , p
γ)

∂pk
dηj = 0, k = 1, 2. (6.24)

Combining (6.23) and (6.24) we find

2∑

j=1

pγ
j qγ

j (δjkπ + o(1))Bγ
j = 0, k = 1, 2. (6.25)

Since (6.25) is a non-singular linear homogeneous system for Bγ
j when γ is sufficiently large,

Bγ
1 = Bγ

2 = 0. (6.26)

Finally with (6.26) we go back to (6.9) to deduce that

Aγ
k − λ = η, k = 1, 2,

i.e. Aγ
k = λ + η is independent of k. Therefore Sk(V (·, pγ)) = λ + η, k = 1, 2. Since S(V (·, pγ)) ∈ Y where

each member satisfies the condition
∑2

k=1

∫ 2π
0 yk(θk) dθk = 0 according to (4.22), we must have λ + η = 0,

i.e.
Aγ

1 = Aγ
2 = 0. (6.27)

This proves (6.8).

7 Discussion

Stability. It is not yet known whether the single torus solution found in [25] is stable, i.e. whether it is
a local minimizer of J among all sets of the unit volume. However among axisymmetric sets of the unit
volume, the single torus solution is in a sense stable. The double tori solution constructed in this paper
is different. Even within the class of axisymmetric sets, the double tori solution is still unstable. Let us
consider a configuration of two perfect tori, both axisymmetric about the z axis. In the (r, z)-plane R

2
+

suppose one is represented by a circle centered at (p1, z1) of radius q1 and the other by a circle centered
at (p2, z2) of radius q2. Denote the union of the two regions bounded by the tori by T (p, q, z). Similar to
Lemma 3.3 one finds

J (T (p, q, z)) =
2∑

j=1

2π2pjqj +
γ

2

[ 2∑

j=1

(
π2pjq

4
j log

1

qj
+

π2pjq
4
j

4
+ 2π3pjq

4
j G1(pj , zj , pj , zj)

)

+4π3p1q
2
1q

2
2G(p1, z1, p2, z2)

]
+ O(

γ|q|4
|p|2

∣∣∣ log
|q|
|p|

∣∣∣). (7.1)
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In (7.1) G1(pj , zj , pj , zj) is independent of zj , but G(p1, z1, p2, z2) is decreasing in |z1 − z2| which can be
seen from (2.3). If we take the double tori solution and move one torus up and one torus down in the
z-direction, the energy becomes smaller. This implies that even in the class of axisymmetric sets, the
double tori solution cannot be a local minimizer of J .

Mirror symmetry. We have imposed the mirror symmetry about the xy-plane on all sets in this paper;
namely in (4.21) we required vj(θj) = vj(2π − θj) for all θj ∈ S1. This mirror symmetry prevents sets
from moving in the z-direction, in contrast to the argument above. Consequently we were able to find the
double tori solution by minimizing J (E(p, q)) with respect to (p, q). This procedure actually implies that
the double tori solution is stable in the class of axisymmetric and mirror symmetric sets. If we do not
impose mirror symmetry and work with sets only with axisymmetry, then we cannot find the double tori
solution simply by minimization. We will have to (1) make an approximate solution T (p, q, z) with two
tori of radii qj centered at (pj , zj) in R

2
+, (2) improve T (p, q, z) to E(p, q, z) that solves the equations

Sj(v) = Aj + Bj cos θj + Cj sin θj , j = 1, 2, (7.2)

and (3) employ a mini-max type argument to find a saddle point (pγ , qγ , zγ) at which the constants Aj ,
Bj and Cj all vanish.
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