ON THE FRACTIONAL LANE-EMDEN EQUATION

JUAN DAVILA, LOUIS DUPAIGNE, AND JUNCHENG WEI

ABSTRACT. We classify solutions of finite Morse index of the fractional Lane-
Emden equation
(—A)u = [ulP~ u  in R™.

1. INTRODUCTION

Fix an integer n > 1 and let pg(n) denote the classical Sobolev exponent:
‘oo ifn<2
ps(n) =4 n+2
n—
A celebrated result of Gidas and Spruck [2020,20] asserts that there is no positive

solution to the Lane-Emden equation

(1.1) — Au = |[ulP"tu in R",

ifn>3

whenever p € (1,pg(n)). For p = pg(n), the same equation is known to have
(up to translation and rescaling) a unique positive solution, which is radial and
explicit (see Caffarelli-Gidas-Spruck [44,4]). Let now p.(n) > pg(n) denote the
Joseph-Lundgren exponent:

+oo ifn <10
= J— 2_ JR—
pe(n) (n—2)*—4n+8y/n—-1 ifn > 11
(n —2)(n —10)

This exponent can be characterized as follows: for p > pg(n), the explicit singular
solution wus(x) = A\xﬁp% is unstable if and only if p < p.(n). It was proved by
Farina [1818,18] that (1.1) has no nontrivial finite Morse index solution whenever
1 <p <pe(n), p# ps(n).

Through blow-up analysis, such Liouville-type theorems imply interior regularity
for solutions of a large class of semilinear elliptic equations: they are known to be
equivalent to universal estimates for solutions of

(1.2) — Lu = f(z,u,Vu) in ),

where L is a uniformly elliptic operator with smooth coefficients, the nonlinearity
f scales like |u[P~tu for large values of u, and Q is an open set of R™. For precise
statements, see the work of Polacik, Quittner and Souplet [2626,26] in the subcrit-
ical setting, as well as its adaptation to the supercritical case by Farina and two of
the authors [1111,11].

In the present work, we are interested in understanding whether similar results
hold for equations involving a nonlocal diffusion operator, the simplest of which
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is perhaps the fractional laplacian. Given s € (0, 1), the fractional version of the
Lane-Emden equation® reads

(1.3) (—=A)*u = [ulP"'u  in R™.
Here we have assumed that u € C??(R"), o > s and
u(y)l
1.4 / I gy < e,
) o T )75

so that the fractional laplacian of u

(—A)°u(z) := A, s e m dy

is well-defined (in the principal-value sense) at every point € R™. The normalizing

so1 D mE2s) )
constant A, s = i—/;u(ﬂ(%s)l is of the order of s(1 — s) as s converges to either 0

or 1.

The aforementioned classification results of Gidas-Spruck and Caffarelli-Gidas-
Spruck have been generalized to the fractional setting (see Y. Li [2424, 24] and
Chen-Li-Ou [88,8]). The corresponding fractional Sobolev exponent is given by

‘oo ifn<2s

ps(n) =< n+2s
n—2s

if n > 2s

Our main result is the following Liouville-type theorem for the fractional Lane-
Emden equation.

Theorem 1.1. Assume that n > 1 and 0 < s < 0 < 1. Let u € C?**(R") N
LY(R™, (1 + |y|)"T25dy) be a solution to (1.3) which is stable outside a compact set
i.e. there exists Ry > 0 such that for every p € CL(R™ \ Bg,),

(15) p [P o < el
o If1 <p<ps(n) orifps(n) <p and

D(% — 50)0(s + %) N [(nt2s)2
pF( s )]_"(n_QS, s ) I\(n425)2’

p—1 2 p—1

(1.6)

then u = 0;
e Ifp=ps(n), then u has finite energy i.e.

oy = [ TP <o

If in addition u is stable, then in fact u = 0.
Remark 1. For p > pg(n), the function
(1.7) us(z) = Al| 71

LUnlike local diffusion operators, local elliptic regularity for equations of the form (1.2) where
this time L is the generator of a general Markov diffusion, cannot be captured from the sole
understanding of the fractional Lane-Emden equation. For example, further investigations will be
needed for operators of Lévy symbol 9(§) = fsnfl |w - €]2° u(dw), where y is any finite symmetric
measure on the sphere S?~ 1.
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where
A1y n — 2s _ 2s
2 p—1
and where
(1.8) Aa) = 22 ECEEDCEA)

F( n72if2a )F( n72i+2a )

is a singular solution to (1.3) (see the work by Montenegro and two of the authors
[1212,12] for the case s = 1/2, and the work by Fall [1616; 16, Lemma 3.1] for the
general case). In virtue of the following Hardy inequality (due to Herbst [2222,22])

2

R < 2
An,S - |x‘25 dfl; —_ ||¢H S(R")
with optimal constant given by

(n—ZQs )2

Apo =2 —A——
F(T2)2

ug is unstable if only if (1.6) holds. Let us also mention that regular radial solutions
in the case s = 1/2 were constructed by Chipot, Chlebik ad Shafrir [99,9]. Recently,
Harada [2121,21] proved that for s = 1/2, condition (1.6) is the dividing line for
the asymptotic behavior of radial solutions to (1.3), extending thereby the classical
results of Joseph and Lundgren [2323,23] to the fractional Lane-Emden equation
in the case s = 1/2. A similar technique as in [99, 9] allows us to show that the
condition (1.6) is optimal. Indeed we have:

Theorem 1.2. Assume p > ps(n) and that (1.6) fails. Then there are radial
smooth solutions uw > 0 with u(r) — 0 as r — oo of (1.3) that are stable.

It is by now standard knowledge that the fractional laplacian can be seen as a
Dirichlet-to-Neumann operator for a degenerate but local diffusion operator in the
higher-dimensional half-space Rﬁ“:

Theorem 1.3 ([2828,282525,2555,5]). Take s € (0,1), 0 > s and u € C*?(R") N
LYR™, (1 + y))"*2dy). For X = (x,t) € R, let
u(X) = 8 P(X, y)uly) dy,
where
P(X,y) = pus t7]X —y| 702
and pn s s chosen so that [, P(X,y) dy = 1. Then, u € C*(R}") n C(RYM),
t'=230,u € C(R™) and

V- (t'7%Va) =0 in R,
u=u on 8Rﬁ+1,
- }gr(l) 172500 = Ko(—A)*u on ORH,
where
(1.9) k)

Rs = 92s—1T(3)”
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Applying Theorem 1.3 to a solution of the fractional Lane-Emden equation, we
end up with the equation

{ V- (t'"7*Va) =0 in R

1.10
(1.10) — }in% t'7250,0 = Kilu|P " a on ORI

An essential ingredient in the proof of Theorem 1.1 is the following monotonicity
formula

Theorem 1.4. Take a solution to (1.10) u € C*R’™) N CR}™) such that
t1=259,u € C(RY). For zo € ORYT, A > 0, let

E(’l_l,71‘0; A) =

1 3
A2 B -n 7/ #1725V a)? dedt — —= / jafP* de
2 JRrH B+ (20,0) P+ 1 Jori Bt (o)

+ A2s%fn71 S /
P+ 1 Japn+1(zga)nrnH?

72542 do.

Then, E is a nondecreasing function of \. Furthermore,

_ N\ 2
dE _ Azsg—ﬂ—nﬂ/ (1-2s ((’)u + 2s u) do
d\ 6B"+1(x0,/\)ﬁRi+l or pP— 1r

Remark 2. In the above, B"*1(x¢, \) denotes the euclidean ball in R"*! centered at
xo of radius A, o the n-dimensional Hausdorff measure restricted to 9B (g, \),
r = |X| the euclidean norm of a point X = (z,t) € R}, and 0, = V- £ the
corresponding radial derivative.

An analogous monotonicity formula has been derived by Fall and Felli [1717,17]
to obtain unique continuation results for fractional equations. Previously, Caffarelli
and Silvestre derived an Almgren quotient formula for the fractional laplacian in
[55,5] and Caffarelli, Roquejoffre and Savin [66,6] obtained a related monotonicity
formula to study regularity of nonlocal minimal surfaces. Another monotonicity
formula for fractional problems was obtained by Cabré and Sire [33,3] and used by
Frank, Lenzmann and Silvestre [1919,19].

The proof of Theorem 1.1 follows an approach used in our earlier work with Kelei
Wang [1313,13] (see also [2929,29]). First we derive suitable energy estimate (Sec-
tion 2) and handle the critical and subcritical cases (Section 3). In Section 4 we give
a proof of the monotonicity formula Theorem 1.4. Then we use the monotonicity
formula and a blown-down analysis (Section 6) to reduce to homogeneous singular
solutions. We exclude the existence of stable homogeneous singular solutions in the
optimal range of p (Section 5). Finally we prove Theorem 1.2 in Section 7.

2. ENERGY ESTIMATES

Lemma 2.1. Let u be a solution to (1.3). Assume that u is stable outside some
ball By C R™. Letn € C(R"\ By,) and for x € R™, define

o=y
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Then,
P de Ll g < 25 [ pda
Rn P HR™) = p—1 Jgn '
Proof. Multiply (1.3) by un?. Then,
/ |u[PT1n? do :/ (=A)uun? d
n Rn
_ 2 _ 2
Aus [ [ (00 = 0 =01,

|z —y[nF2e

2
_ Ans u? ()0 () — u(@)uly)(n*(x) + n°(y)) + u*(@)n* ()
) / " / n

|z —y|nt2s

dx dy

_ Ans (u(@)n(x) — u(y)n(y))® = (n(x) = n(y))*u(@)u(y)
) / N / "

o =y

X)) — 2u T)u

|z —y|"t2e

dx dy

Using the inequality 2ab < a® + b?, we deduce that

Ans
(2.2) el ey = [l do < 2= [ g s

n

Since u is stable, we deduce that

o= [ WptPar< e [ dpa

Going back to (2.2), it follows that

1 A
oy + [P do < 225 [ g ds

Lemma 2.2. For m >n/2 and x € R", let

23) @)=+ and g = [

Then, there exists a constant C = C(n,s,m) > 0 such that

(n(z) =n(®)*

o — g

n

(2.4) C 1+ 22) F < p) <C(1+2?) *

Proof. Let us prove the upper bound first. Since p is a continuous function, we
may always assume that |z| > 1. Split the integral

/ (n(z) —n(y))?

o — g

—S8

dy

in the regions |z — y| < |z|/2, |z|/2 < |z — y| < 2|z|, and |z — y| > 2|z|. When
|z =yl < fxl/2,

m

n(z) = n(y)| < C(1+ [22)~"F |z — y|.

So,

_ 2
/ (77(35) nin)) dy < C(l =+ |x|2)—m—1 |:1: _ y|2—n—2$ dy
le—yl<lzl/2 1T —yl" > o —y|<zl /2

<C+ )™ <C+aP) 0.
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When |z]/2 < |z — y| < 2|z|,

/lw/2§|w—ys2|w o —gperzs W = Clel / (n(@)® +1(y)*) dy

ly|<2]z]
< C|x‘—n—2S(|$|—2m+n + 1) < C(l =+ |$|2)—L2‘—s’

where we used the assumption m > . When |z —y| > 2|z|, then |y| > |z| and
n(y) < C(1+ |z[*)~™/2. Then,

(n(z) —n(y))? 2y 1
—dySC(1+|xl)m/ s dy
/|my|>2|m| |z —y[nF2 lo—y|>2l| 1T — Y|P+
<O+ [af)™™ < O+ |2]?) "%

Let us turn to the lower bound. Again, we may always assume that |z| > 1. Then,

(n(y) — n())? [\ 2 o—m/202
p(z) > /Imm_yws w=(13) /y<1/2(n(y) 222 gy

and the estimate follows. O

Corollary 2.3. Let m > n/2, n given by (2.3), R> Ro > 1, ¥ € C*°(R™) be such
that 0 <y <1, ¢ =0 on By and ¢ =1 on R™\ By. Let

(2.5) nR@)n(;)w(;’o) nd pla) = [ (m(e) = )

|z —y[n+2e

There ezists a constant C = C(n, s, m, Ry) > 0 such that for all |z| > 3Ry

pr(z) < Cn (%)2 ||~ ("+29) 4 =25, (%)

Proof. Fix x such that |z| > 3Ry. Using the definition of ng and Young’s inequality,
we have

! @[ (¢ () - () dy+/ww( v )z(n(;’%)n(%))Q y

Z < hadl i
QPR(‘W) =N R ‘m — y|n+25 RO ‘Jf — y|n+25 Y
2 1 (n (%) —n (%)’
<n (*) / dy + / d
R BSRO |$ _ y|n+23 " |Jf _ y|n+2s
T\ 2 T
< el —(n+2s) —2s e
—C”(R) 21 1 ”(R)
and the result follows. O

Lemma 2.4. Let u be a solution of (1.3) which is stable outside a ball By, . Take

pr as in Corollary 2.5 with m € (5,5 + S(pTH)) Then, there exists a constant

C =C(n,s,m,p, Ry) > 0 such that for all R > 3Ry,

/ u?prdr < C (/ u?pr dx + R”2S§+i> .

3Rg

Proof. By Corollary 2.3, if R > |z| > 3Ry, then
pr(z) < C(lz] "% + R™%)
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and so

/ pr(@)F Inp(z) 7T do < CRM 5.

7 \Binr,
Similarly, if |z] > R > 3Ry, then
222
pR(.T) < CR_2S (1 + R2>

and so

prl o ptl T 2 = 2 5—1—"—1)71

pr(x)7inR(z)” 7T < CR™*F <1+|R|2)

Since m € (%, 2 + sH), we have p2m1 — nd2s ZH < —% and so

PR(x)%ﬁR( )51 do < CR™ 2035
R™\ By,
Now,
/ w’pr dm:/ w’pr d:c—i—/ U PRUR”“ n};%-%—l da
" 3R R™\B3g,
0

9 1.2 ﬁ ptl 4 27:
S/ u’pr dr + (/ ulPT R daf) (/ pE MR dﬂ?)
;’lRO n n
2
1 P
< / u’pg dz + CR2551 P (/ u[P % da:)
n R’n
3R

By a standard approximation argument, Lemma 2.1 remains valid with n = ng and
p = pgr and so the result follows. (]

Lemma 2.5. Assume that p # 2425 Let u be a solution to (1.3) which is stable

outside a ball By, =~ and u its extension, solving (1.10). Then, there exists a constant
C = C(n,p, s, Ro,u) > 0 such that

/ t' 2542 dadt < C
Bn+1

for any R > 3Ry.
Proof. According to Theorem 1.3,

t25
u(x,t :pn_s/ u(z —— dz
R P

so that
t28

a(x,t)? < pp.s /n U(Z)z(

|z — 2[2 4 £2) "%

So,

R
t
/ 172502 daxdt Spn,s/ u(z)? / pEey dt | dzdx
Bt || <R,z€R™ 0 (Jz—22+1t2) 2

< C’/ u?(z) {(|m — z|2)_%+1_S —(Jz — 2>+ Rz)_EH_S} dzdx
|z|<R,z€R™
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Split this last integral according to | — z| < 2R or |z — z| > 2R. Then,

/| |<R|z—2|<2R u?(2) {(|9C - Z|2)7%+17S - (|:r -2+ R2)7%+175} dzdr <

/ u?(z) (lz — z|2)_%+1_s dzdz < CR*1—9) / u?(z) dz <
|z|<R,|lz—z|<2R

n+1
B3R

p—1
2 T
CR20-9) pr1,2 )\ —5iT <
[u[P" g r >

Bt

2
CR¥1=a)+nie (/ u?(2)pr(2) dZ) " < CRM21-9)-35

where we used Hélder’sin equality, then Lemma 2.1 and then Lemma 2.4. For the
region |z — z| > 2R, the mean-value inequality implies that

/| o T = )T (o o BT dado <
T|SR,|x—2z|2

CRQ/ u?(2)]x — 2|72 dade < CR"+2/ u?(2)]z| (29 4z
|e|<R,|z—z|>2R 21> R

< CRQ/ u?p dz < CR”+2(1_S)_174%1,
[2|>R

where we used again Corollary 2.3 in the penultimate inequality and Lemma 2.4 in
the last one. (]

Lemma 2.6. Let u be a solution to (1.3) which is stable outside a ball Bf, —and
@ its extension, solving (1.10). Then, there exists a constant C = C(n,p, s,u) > 0
such that

. p+1
/ 72|\ val? d dt +/ ufP* de < CRM2 0T
BrtlAR™ 1L
R +

n+tl n+t1
BET'NoRY

Proof. The LPt! estimate follows from Lemmata 2.1 and 2.4. Now take a cut-off
function € CH(R7T!) such that n = 1 on R} N (BRH\ ngol) and n = 0 on
Bgoﬂ U (R BygY), and multiply equation (1.10) by @n?. Then,

Iis/ |a|Ptn? de = / t'=2{va - V(an®)} dxdt
ORTH Ry

(2.6) :/ A @) - w2V dedr.
Ry

Since u is stable outside Bg:l, so is @ and we deduce that

1

7/ 1725V (an)|? dx dt z/ t' =2 {|V(an)|? — @?|Vn|?} dzdt.
p Rn+1 Rn+1
+ +

In other words,

(2.7) p /R )

n+1
+

17255 |Vn|* dx dt 2/ 1725V (an) |? de dt,
Ry

where i + = = 1. We then apply Lemma 2.5. (]

1
P
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3. THE SUBCRITICAL CASE

In this section, we prove Theorem 1.1 for 1 < p < pg(n).

Proof. Take a solution u which is stable outside some ball Bf . Apply Lemma

2.4 and let R — 4o0. Since p < pg(n), we deduce that u € H*(R™) N LP(R™).
Multiplying the equation (1.3) by u and integrating, we deduce that

(3.1) L = oy

while multiplying by u* given for A > 0 and = € R” by
ut(x) = u(\x)

yields

/ |u\p*1u/\:/ (—A)s/zu(—A)s/2u/\:)\s/ ww?,

where w = (—A)*/?u. Following Ros-Oton and Serra [2727,27], we use the change
of variable y = v/ Az to deduce that

)\S/ ww dr = N5 / wY Mt/ VA dy

Hence,

i pt+1 |u|PHL -
_p+1 n ‘ul - nxvp"_l - "("U/| u)xVu:
d -1, d 2s—n VX, 1/V
ulP" = = A2 wY w dy =
A=1JR" dX|y_, N

dx
25s—mn 5  d VA AN g 28—
2 /an’dA /“’w dy = —5—|
In the last equality, we have used the fact that w € C1(R"), as follows by elliptic
regularity. We have just proved the following Pohozaev identity

—2
i Pt = 222
p+ 1 R™ 2 (R™)

For p < ps(n), the above identity together with (3.1) force u = 0. For p = pg(n), we
are left with proving that there is no stable nontrivial solution. Since u € H*(R"™),
we may apply the stability inequlatiy (1.5) with test function ¢ = u, so that

p [l <l

This contradicts (3.1) unless u = 0. O
In the following sections, we present several tools to study the supercritical case.

|uHi[s(Rn)

A=1

4. THE MONOTONICITY FORMULA

In this section, we prove Theorem 1.4.
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Proof. Since the equation is invariant under translation, it suffices to consider the
case where the center of the considered ball is the origin zg = 0. Let

Ey(u; ) =

—12
(4.1) )\23%_” / tl_Qstxdt _/ Lm‘pﬂdx
Rpampt 2 ory iy Pt 1

For X € R’™, let also

(4.2) U(X;A) = ArTa(AX).

Then, U satisfies the three following properties: U solves (1.10),
(4.3) Ei(u; A) = Eq (U3 1),

and, using subscripts to denote partial derivatives,

2
(4.4) AUy = —>U 41U,
p—1

Differentiating the right-hand side of (4.3), we find

dE
—L@n) = / t172VU - VU, dz dt — ms/ |UIP~tUy da.
dX RyTIAB;T ORI By

Integrating by parts and then using (4.4),

dE
L@\ = / 120, Uy do
d\ 0By AR
2s

= )\/ =203 do — / t1=25UUy, do
oBp T AR =1 Jopptinmrntt

= )\/ H-202 dg — —° / 1202 do
oBy AR p—1 \Jopptinrrtt

Scaling back, the theorem follows. O

A

5. HOMOGENEOUS SOLUTIONS

Theorem 5.1. Let 4 be a stable homogeneous solution of (1.10). Assume that

p> 122 gnd

(5.1) pr(% — pfl)F(s + pil) N INEE=DNE
P T(EE — o) T(22)2

Then, u = 0.

Proof. Take standard polar coordinates in RT‘lz X = (z,t) = rf, where r = | X]|
and 6 = % Let 6, = ﬁ denote the component of # in the ¢ direction and
St ={X eR}™ :r =1, 6; >0} denote the upper unit half-sphere.

Step 1. Let @ be a homogeneous solution of (1.10) i.e. assume that for some

¥ e C*(SY),
a(X) =77 Tp(0).
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Then,

(5.2) / 01252 4+ / 6125 — / P+,
s s asn

where K is given by (1.9) and
2 2
0= i (n —2s — i > .
p—1 p—1
Indeed, since @ solves (1.10) and is homogeneous, v solves

— div(0]7**V) + 801>y =0 on ST
— Jim 017209, ¢ = ks~ 1p  on OST,

(5.3)

Multiplying (5.3) by ¢ and integrating, (5.2) follows.
Step 2. For all p € C*(5%),

2
-2
64w [ Wi [ 9125|w?+(” ) o202
osn sn 2 st

By definition, @ is stable if for all ¢ € C} (Rf_"’l),

(5.5) ﬁsp/ P62 da g/ 12|V g2 dadt
ORY T Ry

Choose a standard cut-off function 7. € C}(R%) at the origin and at infinity i.e.
X(e,1/6) (1) < Me(r) < X(e/2,2/¢)(r). Let also ¢ € Ct (S%), apply (5.5) with

G(X) =r T n(r)p(0)  for X € RP,
and let € — 0. Inequality (5.4) follows.

Step 3. For a € (0, 252%), z € R™ \ {0}, let

V() = 2| = e

and U, its extension, as defined in Theorem 1.3. Then, 9, is homogeneous i.e. there
exists ¢, € C2(S7) such that for X € R\ {0},

“tah0(6).

n—2

Ta(X)=7r""2
In addition, for all ¢ € C*(S7),

2
(5.6) / 9}—25v¢|2+<(n_28> a2>/ 01252
S 2 S

n
+

) / ot / o122
OSi S

n
+

n
+
2

¥
\va
(%)
Indeed, according to Fall [1616; 16, Lemma 3.1], 0, is homogeneous. Using the
calculus identity stated by Fall-Felli in [1717; 17, Lemma 2.1], we get

2
—div(0] "**V¢a) + ((n — 28) - a2> 01 *¢o =0 on ST

(5.7) 2

o« =1 ondS}.
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Multiply equation (5.7) by ¢?/¢., integrate by parts, apply the calculus identity

2
v¢a v(ﬁi |V<p|2 -

and recall from Fall [1616; 16, Lemma 3.1] that

¢2

7l

B %ir% 120,5, = roA(Q)|z]” n=2e ta2s
1

where A(«) is given by (1.8).
Step 4. For a € (0, %5%)
(5.8) $o < ¢ on ST,

Indeed, on S%,

n — 2s 2 n—2s 2
diV(9}2SV¢0)=<2 ) 01700 > (( 5 ) —a2> 01> o

S0 ¢ is a sub-solution of (5.7). By the maximum principle, the conclusion follows.
Step 5. End of proof. Fix a € (0, 252%) given by

n — 2s 2s
2 p—1

2
n—2s 9 2s 2s
— = —2— =
( 2 ) ¢ p—l(n ’ p—1> ’

where [ is the constant appearing in (5.3).
Use the stability inequality (5.4) with ¢ = %:

1 1—2s Yoo ? n—2s ? 1-2s [ Yo ?
(59) “Sp/asﬂ'” </s¢"’1 () () A (%)

Note that a particular case of the identity (5.6) is
(5.10)

— 2s
/ 01 23|v |2 < ) 9%—25:()02 :/QsAn,s <P2+/ 0%—23(253
st o5t ;

Using (5.10) (with ¢ = 'M’O), (5.9) becomes
¥
°(&)

¢Oz
USing again the ldenllly (1)46), we deduce ‘ha,‘

wop [P < e - Ma) [0t [CouR s [ ol
o5% n sn

asy

so that

2

7()

2

v [ WP < m [ 0te [ o
oS oSy i

S3 ¥ St

By (5.8), we deduce that
2

-2
o [t s [ vt [ o
asn asn "
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Comparing with (5.2), it follows that

(5.11) -1 [ WS G- Ma)) [0
asn asn

But from (5.2) and (5.6)

/ WP = M) [ 02
osT oS%

Combined with (5.11), we find that
AMa)p < Aps
unless ¥ = 0. (]

6. BLOW-DOWN ANALYSIS

Proof of Theorem 1.1. Assume that p > pg(n). Take a solution u of (1.3) which is
stable outside the ball of radius Ry and let @ be its extension solving (1.10).
Step 1. limy_ . E(@,0;\) < +o0.
Since E is nondecreasing, it suffices to show that F(u,0;\) is bounded. Write
E = E, + E,, where E; is given by (4.1) and
Ba(u ) = N5 o |
p+1 Jopn+i0n) R+

By Lemma 2.6, F; is bounded. Since F is nondecreasing,

7242 do

1 2 .
E(u; M) < X/ E(u;t) dt < C + /\25%1—”—1/ =252
A

- By Ry
Applying Lemma 2.5, we deduce that E is bounded.

Step 2. There exists a sequence \; — +oo such that (@*?) converges weakly in
HE (R #123dxdt) to a function .
This follows from the fact that (#*) is bounded in H}

loe (REF £1723dzdt) by
Lemma 2.6.

Step 3. 4 is homogeneous
To see this, apply the scale invariance of F, its finiteness and the monotonicity
formula: given Ry > Ry > 0,

0 = llin E(ﬁ,)\zRg)—E(ﬂ,)\lRl)
= lim E(@;Ry) — E(@;Ry)
1—+00
s AN\ 2
> l,iminf/ t1_28r2”+1’451< 25wt +8UA1> dx dt
i——+00 (Bg;rl\B;Irl)nRiJrl pfl r or
_ _ 2
> / t1—2sr2n+p‘“1< 25 W_i_auoo) d dt
(Bg;rl\B;;rl)ﬂRi+l p— 1 r or

Note that in the last inequality we only used the weak convergence of () to a™
in HY (R} ¢1725dzdt). So,
2s a*™® ou

— + =0 a.e. in R7TL
p—1r or ' +




14 J. DAVILA, L. DUPAIGNE, AND J. WEI

And so, u* is homogeneous.

Step 4. u* =0

Simply apply Theorem 5.1.
Step 5. (@) converges strongly to zero in H' (BT \ B+ #1725dxdt) and (u)
converges strongly to zero in LPT1(BRTT\ B2FY) for all R > € > 0. Indeed, by
Steps 2 and 3, (@) is bounded in H} (R™';#1=25dxdt) and converges weakly to
0. It follows that (a"¢) converges strongly to 0 in L? (R'}™';#1725dzdt). Indeed,

by the standard Rellich-Kondrachov theorem and a diagonal argument, passing to
a subsequence we obtain

/ 1725 |aM |2 dzdt — 0,
RYTIN(BET\A)

as i — oo, for any Bptt = BT (0) € R"*! and A of the form A = {(z,t) € errﬂ :
0 <t <r/2}, where R,r > 0. By [1515; 15, Theorem 1.2],

1—-2s51-X;|2 2 1-2s =i |2
/ R t—°la / R |V
RYTNBIT (2) RYTNBIT ()

for any z € OR*!, |z| < R, with a uniform constant C. Covering B! N A with
half balls B (z) "R}, 2 € OR} ' with finite overlap, we see that

/ 1 $1=2s g 2 2/ 1 #1-25 |yt |2
BEtnA BEtinA

and from this we conclude that (i) converges strongly to 0in L2, (R #1725dzdt).
Now, using (2.7), (@*) converges strongly to 0 in H} (R \ {0};¢!72%dzdt)
and by (2.6), the convergence also holds in LT (R™ \ {0}).
Step 6. u=0.
Indeed,

v 2
El(a;/\):El(ﬂA;l):/ -2 VO /
Rn+1 Bn+1 2 P

— @ Pt e
Rn+1 Bn+1 p—|—1

:/ pr-2s Ve P —drdt — / —_|a* P dz+
RMHI BRI 2 orTHAprt P+ 1

2
tl—Qs |vu | dx dt — / |u>\|p+1dx
2 o

/R:“ms?“\Bs“ Ry FINB BT P 1

v 2
= " BT E (@ he) + / AL / [t
R ABPI\BrH 2 oR™TINBI I\ B P + 1

_ggptl Vat|?
< C:Sn 2sp_1 +/ t1725| ‘ dr dt — / |u)\|p+1d1,
R NB A\ Br ! 2 orTHnpptiprtt P+ 1

Letting A — 400 and then € — 0, we deduce that limy_ 1, E1(u; A) = 0. Using
the monotonicity of F,
1 /2

E(u; M) < — E(t) dt < sup Fi + CA IS T
AJa [(A,2)] BByt
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and so limy_, 1o F(@;A) = 0. Since u is smooth, we also have E(u;0) = 0. Since
FE is monotone, ¥ = 0 and so # must be homogeneous, a contradiction unless
u=0. O

7. CONSTRUCTION OF RADIAL ENTIRE STABLE SOLUTIONS

Let @5 denote the extension of the singular solution u, (1.7) to R’ defined by
w.(0) = [ PCXyut) dy

Let B denote the unit ball in R"*! and for A > 0, consider
div (t'"*Vu) =0 in BT ARG
(7.1) w= i, ondB''N RT’I

- 1%ir%(tl_zsut) =keu? on B N {t =0}
Take A € (0,1). Since uy is a positive supersolution of (7.1), there exists a minimal
solution u = wy. By minimality, the family (u)) is nondecreasing and ) is axially
symmetric, that is, ux(x,t) = ux(r,t) with r = |z|] € [0,1]. In addition, for a fixed
value A € (0,1), uy is bounded, as can be proved by the truncation method of
[11,1], see also [1010,10] and radially decreasing by the moving plane method (see
[77,7] for a similar setting). From now on let us assume that pg(n) < p and
F(%—pfl)l"(s—i—pfl) I(242s)2

Prar(= — =) ~ r(E=2)?

p—1 2 p—1

which means that the singular solution ug is stable. Then, uy T us as A T 1, using
the classical convexity argument in [22,2] (see also Section 3.2.2 in [1414, 14]). Let
A; T1and

mj = [Ju,|[Le = ux, (0), Rj=m

so that m;, R; — oo as j — o0o. Set

vj(z) = m;luAj (z/Rj).

Then 0 < v; < 1is a bounded solution of
div (' 72*Vv;) =0 in Bt NRY
Vj = )\jﬂs on 8B}7§J1 n Ri-‘rl

- }ii]%(tl_%(vj)t) = Ksvf  on B}gl N {t=0}.
Moreover v; < g in Bz,jl AR and v;(0) = 1. Using elliptic estimates we find

. —n+1
(for a subsequence) that (v;) converges uniformly on compact sets of RTF to a

function v that is axially symmetric and solves
{ div (£ 725Vv) = 0 in R

—}in(l)(tl_zsvt) =ksv?  on R" x {0}.

Moreover 0 < v < 1, v(0) = 1 and v < @,. This v restricted to R” x {0} is a radial,
bounded, smooth solution of (1.3) and from v < @, we deduce that v is stable.
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