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Abstract We study positive solutions of the equation e2Au — u + untr = 0,
where n = 3,4,5, and € > 0 is small, with Neumann boundary condition in a
smooth bounded domain 2 C R™. We prove that, along some sequence {¢;} with
€; — 0, there exists a solution with an interior bubble at an innermost part of the
domain and a boundary layer on the boundary 9f2.

1. INTRODUCTION AND STATEMENT OF THE RESULT

In recent years, there have been many works devoted to the study of the following
singularly perturbed Neumann problem:

ou
5—0 on 0N

where 2 is a smooth bounded domain in R", p > 1 and € > 0 is small. Problem
(1.1) arises in the study of many reaction-diffusion systems in chemistry or biology,
see[12] and the references therein for backgrounds and progress up to 2004.

When p < Z—fg, it is known that there are many solutions with point condensa-
tions in the interior or on the boundary: for example, Gui and Wei [7] proved that
given any two positive integers ly,ls, there are solutions to (1.1) with [; interior
spikes and I boundary spikes. Lin, Ni and Wei [8] showed that there are at least

W number of interior spikes solutions. When p = 2£2 it is known that non-

(1.1) E2Au—u+u? =0, u>0 in Q,

n—2’
constant solutions exist for € small enough [2], and the least energy solution blows
up, as € — 0, at a point which maximizes the mean curvature of the boundary[1].
Higher energy solutions have also been exhibited, blowing up at one [13] or several
(separated) boundary points [5][19].

However, the question of existence of interior blow-up solutions is still open.
It is proved in [4], [6] and [14] that there are no interior bubble solutions.

In another direction, Malchiodi and Montenegro [10] proved that there exists
solution concentrating on the whole boundary along some sequence {¢;} — 0. This
boundary layer solution exists for any p > 1 and for any smooth bounded domain
Q.
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When Q = B;(0),p = 22, Wei and Yan [18] have built up an interior bubble
solution on the top of the boundary layer solution, at least when the dimension
n = 3,4, 5. The solutions constructed in [18] are radially symmetric. In this paper,
we consider general smooth bounded domain case and establish the same result.

Namely, we consider the following equation

52Au—u+n(n—2)u:_irg =0 in

(12) u>0 in Q,
%=0 on Of.

Let d, = dist(z,09), where dist is the distant function in the general meaning,
and Q) = {y| % € 0}. Let dg = max,ecqd,. For given positive numbers v and
o < g5 small enough, let

any—20  andg+2e
€

(1.3) M,={a€Q d, >~} AeEA:=(e = ,e” = )

where a, =28 ifn=3,5,as=Ffand 1 —-c<fB<1+0.

In [10], it is proved that along £; — 0 (1.2) has a boundary layer solution W,
which is uniformly bounded and concentrating on 9. Asymptotically, it can be
proved (Lemma 2.2)

1 d 1-o0)d
w} < W, (z) < C, exp{_%
i J

(1.4) C1exp{— }
where C,C> are positive numbers.

From now on, we always consider a € M., and the sequence ¢; as in [10]. We
omit index j for simplicity.

By suitable rescaling, (1.2) becomes

Au—(Ae)2u+nn—2u—2 =0 in Q,,
(15) u > 0 in Q)‘,
% =0 on 90,.
We set
n42
(1.6) Salu] == Au — (Ae)Pu+n(n — 2)ui ™’
and
1 —2)2 2n
(1.7) Jafu] = 5/ (|Vul® + (Ae)%u?) — %/ uil™®.
Qx Qx
We recall that, according to [3], the functions
(1.8) Uax = ( A "5 A>0, a€eR"

e e
1+ X2z —al?
are the only solutions to the problem

n42

Au+n(n —2)u»-2 =0, u>0 in R"

The main result in this paper is:
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Theorem 1.1. Let n = 3,4,5 and 2 C R" be a smooth bounded domain. Then
there exist a sequence €; — 0 and a sequence of solution u.; of (1.2) with following
properties:

(1) u; has a local mazimum point a.,, such that

ae; — ag € Q, dasl_—>d9 as Jj — o0;

(2) ue; = sjnT_U

Qejy

A, (@) + We, + o(1) where A, ~ exp{%;(l)daij }. As a con-

sequence, u; (ae;) ~ (/\Ejsj)nT_2 and u.; — 0 for any x € M,\B;s(a.;), where § is
any small positive number, and u., blows up at ay.

The paper is organized as follows: In section 2, we construct suitable approximate
solution W and study its properties. In section 3, we solve the linear problem
at W in a finite-codimensional space. Then in section 4, we are able to solve
the nonlinear problem in that space. In section 5, we study the remaining finite-
dimensional problem and prove Theorem 1.1. The proof of Lemma 2.3 may be
found in Appendix.

Throughout the paper, the letter C' will denote various constant independent of
€ and A.

2. APPROXIMATE SOLUTION

In this section, we construct suitable approximate solutions. Let W, be the
solution of (1.2) constructed in [10]. First, we need to study the properties of W.
Following Remark 5.2 on page 138 in[10], we have the following lemma:

Lemma 2.1. Consider the following eigenvalue problem :
EAp =Y +n(n—-2)W =), ¢ e H(Q).
If (e, pie), % # 0 is a solution of the above problem, then we have |p.| > Ce™ 1.

From Lemma 2.1, we obtain

4
Corollary 2.1. The linearized operator L () := e2At) — ) +n(n — 2)W" >4 is
an invertible operator from H?() to L?(QQ). Furthermore, we have

4

91l Loe () < Ce™ |2 A¢ — ¢ + n(n — )W 9| oo ()
where a > n + 1 is a fized constant.
Proof. Using Lemma 2.1, we have

1920 < Ce'"|le* Ay — p + n(n — )W 2| 2 -
Observe that

1AV L2) < e ?(le?A¢ — ¢ +n(n — )W 29|12 (0) + Ce ™[9] L2(q)-
Hence
_4

9]l m20) < CllAY| L2 +C| 1Y |lr20) < Ce™ MM ||e2Ap—pp+n(n—2)Wo || 12(0).
By a bootstrapping argument, we get the desired result. O

The decay rate of W, can also be estimated.
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Lemma 2.2. It holds

1 dg 1-o0)d,
ﬂ} < W.,(z) < C, exp{_%
J J

(2.1) C exp{— }-

Proof. Let hs . be the unique solution of
(2.2) eAhye — (1 —0)*hy =0in Q, hy = 1 on 9.
By the vanishing visocity method ([9]), we have

_ (1—oto(1))dy

(2.3) hoe ~ e
Since W, > C on 012, and e2AW, — W, < 0, by comparison principle, we obtain
(2.4) Cho,o(w) < W.(a).

On the other hand, from ([10]), we see that

W. —w(“)n(@) = ¢ = o(1)

€
where n(z) = 1 for d, < 8,n(x) = 0 for d; > 2§ and w is the solution of the problem
—w" fw=wrs, w>0 in R', w(z) >0 as |z = +oo.
Now ¢. satisfies
EAg. — ¢ +0(g.) +0(e ) =0

in Q and ¢. = o(1) on 99Q. By comparison principle again, we have
(2.5) 6:] <07 Chye.

Combining (2.4) and (2.5), we obtain the lemma. O

Next we consider a linear Neumann problem which can be viewed as a projection
of U, a,\

n42
AVyr—e WVor+n(n—2)U'° =0 in Q,
(2.6) 6V7
“X _ 0 on o1,
ov
where U, » is defined as in (1.8).
Define
Wl(y) = /\_nT_ZVa,)\(%L
(2.7 Cnen y
Wa(y) := (e) = We(3),  Wi=Wi+We
By maximum principle, 0<W; <Ug1 where £ = Aa.
When n = 3, let
1 _lz—al
(2.8) V(@) =Uan(@) — ———(1—€e" < ) + @an(z).
Az|z — q
Then @, »(z) satisfies
1
52A90a,,\ —@ar—Ugn+———— = 0 in Q,
Az|z —q
0pan O 1 _le—al
: —(Ugr————(10 - < = Q.
% +6V<U’)‘ )\§|:c—a|( e )) 0 on &
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By the estimates in [16], we get

s dT“})

1 1 |z—a dg
2.9 ar| =0 + —gemmax{Te,
(2.9) |PaAl (52/\3(1+/\|m—a|) Y
Using (2.7) and (2.9), we have
1 ly—¢l
PAWh (y) =Uea(y) — —— (1 — e~ 5%
(2.10) 1 1 max{le=t
+ 0| =5 RIS *
XA+ |y—¢§) e
If |y — &| > od, A, then using (2.10) we have
i 1 1 —max{ly—fl, d_a}
(2.11) W1 (y)| —O</\2 +6/\e > )
Moreover, by similar computation if |y — &| > od, A,
1 1 y— a
|6AW1(y)| =0 (E + We_ max{l “El’ d?}>a
1 1 y— a
|6§W1(y)| =0 (F + We_ max{l >‘5E|’ d?}> .
When n = 4,5,
(2.12) Wi(y) = Uealy) = A% (a(%) + ps(2),

where @, (z) satisfies
{ AQOQ —6_2(,02 +€_2Ua,)\ = 0 in 9,

Opa
E = 0 on 69,

and p3(x) satisfies

{ Apz —e2p3 = 0 in Q,
6903 6[]t), A
Fos _ Taa Q.
ov v " 9
Similar to estimates in Lemma A.1 of [17] we have
C n_2
< , - o).
ol S e =00
Hence
Wiy) = Uga(y) — a(y) — #3(y)
where

C - 1
THly =&

lg2(y)| < O]

If |y — &| > ad, A, we get
(2.13) [Wi(y)| < Ce™3A—"F2
By similar computation if |y — £| > odgA,

|83 ()] :O(W)'

(2.14) |OWW1(y)| < Ce3 7+, |6§W1(y)| < Ce 3™,
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Next we define two Sobolev norms. Let

n—2+oc nt240

lpll« = sup (L+ |y =€) 2 o), [Iflles = sup X+ |y =€) 2 [f(w)l
yEQN yEQ

In the Appendix, we shall prove

Lemma 2.3. There hold
Bnte

ISAIW ] an < A5
[02SAW ]l < CA~ 25

Bnto+2
OASA[W]|[ss <CX 72,
o15) 10xSA W10 <

where B, =1 if n =3 and B, =2 if n = 4,5. Furthermore, when n = 3, we have

3 _—
(216 JAW] =J\[Ws] + /R3 Us: + e J e Us, — (Bs + o(1))(he)~Be %"
+ 6_1)\_16_:a El.
When n = 4,5,
_2n
ORI /R UGT + (A +o(1) () 2 A)"

_n—2 dg

— (Bn +0(1))(Ae)™"F e~ 5 4 e IA2E,
with By = O(1), FE3 =o0(1) and
WEL =0\Y), 83EL =0(\7?), OEy=o0(\"1), 0iEy=o0(\"?)

where 1 —o < < 1+ 0,4A,, B, are positive numbers and m =1 ifn =4, m =0
ifn=25.

3. FINITE-DIMENSIONAL REDUCTION: A LINEAR PROBLEM

Following the general strategy as in [16]-[17], we first consider the linearized
problem at W, and we solve it in a finite-codimensional subspace. Namely, we
equip H'(Q,) with the scalar product

(u,v)r = Vu - Vo + (Ae) 2uv.
Qa
Let 7(r) be a smooth cut-off function such that 5(r) =1 for r < td,A and n(r) = 0
for r > 1d,\ where r = |y — ¢|, then |Dn| < CA~! and |D?p| < CA~2. Define
(W) (W)

Yo = — Y, = —= 1< <n.
0 N |A_1, i € > n

Setting
Zo = —AYy+ (Ae) %Yo, Zi=—-AYi+(e)%;, 1<i<n,
then
1Zo] < C(0) (1 +Jy— -2) + (ae)~F),
|Zi| < C((l Yy — &) 4 (AE)JTH).
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Now we consider the following problem: h € L°°(2)) being given, find a function
¢ satisfying

Ap— () 2p+n(n+2Wr=¢=h+Y cZ in Q,

=0
(3.1)
% =0 on 900y,
ov
(Zi,$) =0 0<i<n

for some ¢;’s.
In this section, we shall prove

Proposition 3.1. There exist eg > 0 and a constant C' > 0, independent of € and
dy, \ satisfying (1.3), such that for all € < &g and h € L>()), problem (3.1) has
a unique solution ¢ = Ly(h) and

ILA(R) [+ < Ce™[[R]|xx, leil < Ce™®[|hl]

where a is defined as Corollary 2.1. Moreover, the map Ly (h) is C? with respect to
A and the L -norm, and

3:2) IO La(M)l« < Ce™ A7 |hlls,  [1ORLa(B)]« < Ce™ A7 ||s
First we state two lemmas, whose proof is similar to Appendix A.3 of [17].
Lemma 3.1. The Green function G(x,y) of
AG(z,y) — (Ne) 2G(z,y) +0, =0 in Qy,
%—f =0 on 00y
has the following decay property
G(a,y)| < Clo — |2,

Lemma 3.2. Let u satisfy

Au—Xe)2u = f in
% =0 on 0Ny,
e @)
x
u <C — .
| (y)| = = |m—y|”*2
Moreover,
llull« < CIIF |-

Proof of Proposition 3.1: We argue by contradiction. Suppose there exist se-
quences of €5, \j, ¢c;, he; such that ||¢c; ||« = 1, he; ||+ = 0(e%). For simplicity, we
omit the index j.

Multiplying the first equation in (3.1) by Y; and integrating on €, then for
ji=1...,n.
(33) Y eilZiY)) = (AY; = (Ae) %Y + n(n — )WY}, 6.) — (he, V).

i
On the one hand,
(Zo,Yo) = [IYo|2 = 70 + (1),

(3.4) (Zi,Ys) = Yill2 = i + 0(1), 1<i<n,

(Zi,Yj) = o(1), i # ]
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where 7;,0 < i < n are positive numbers.
On the other hand, compute directly,
(35)  (AY;—(Ae) Y] +n(n - 2W Y, 6.) = ofe®[|¢.]l) = o),

(e, Y5)] SCIIhEII**/ (L+ly—€) "5 (A +ly—e) "7
(3.6) Qs

+ () 7F) = Ollhelun) = o).
Hence using (3.3) — (3.6), we get
(3.7 c; = o(e®) as € —0.
Since ||¢c||« = 1, elliptic theory shows that along some subsequence the functions

0 (y) = ¢ (y — &) converge uniformly in any compact subset of R" to a nontrivial
solution of

—-A¢ =n(n—2)Ug> .

Since |¢| < C(1 + |y|)~ "2, a bootstrap argument leads to |¢| < C(1 + |y[)2~".
As a consequence of [15], ¢ can be written as

n—2 ~ 6U0,1
2 Upi+y-VUoa) + Zaz oy

i=1

(3-8) ¢ = ao(

According to Lebsgue’s Dominate Convergence Theorem, (Z;, ¢.) = 0 yields
Jpn —A(%F2U0,1 +y-VUo1)p =0,
Jan —A%R2$ =0, 1<i<n,
fRnV‘ag;;l -V g;f =0, i# .
Using (3.4), (3.7) and (3.8) we know a}s solve a homogeneous quasidiagonal linear

system, which yields a; =0, 0<i<n.So ¢:(y—& =0 inCL_ ().
If |y — €| < 1d, ), using Lemma 3.2 we can obtain

9l < ClIWm=2 e |l + Cllhellax + Cl| 3 ciZil| o,

(L+]y—€N" 7 |Wazg.| < c<1+|y—£|)"*3“<|wl|f+|Wz|n‘+2>|¢s|
< C(l+4ly—g)ie 1%l

(1

+C(1+ [y — E)2(Ne) 2 57 da g ..

Since the first term on the right hand is dominated by (1 + |y — &|)72||#c ||« if
ly — &| > odyX and goes uniformly to zero in any ball Br(£) which, through the
choice of R, can be made as small as desired.

It ly - ¢ > %da)\, let 1. be such that

{ Awa - 572¢5 =0 in Rn\Ba,id‘ﬂ
¢5 =1 on 6Ba,%da .
By the following transformation ¢, = e_hTE, we see that h. satisfies
eAhe —|[Vh+1 =0 in R"\B,1,,,
h&- = 0 on 6Ba,ida .
The solutions to the limit problem |VA[?> = 1 are Cy + C2(—1da +r). By the method
of viscosity solutions, we conclude that h. — r — %da ase — 0.
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Consider the function ¢. = ¢. — dip. (45%) with d = ¢ (2d,A) ~ X~ "2
in the x coordinate we have

52Aq§5 — &E +n(n+ 2)W€mq35 =g

where g = (Ae)2h(A\z)—n(n+2) ((EHT_QVLL,,\—I-WG) = —ng)q?s—n(mz)dwgm ..
Now we estimate term by term.

. Then

‘ _ n+4240o n— 2+0
(Ae)’[h(Az)| < ()\E)Z(1+|y—£|) > IAllee = 0o(e*) (X + |y =€)~ ;
n(n+2)(*7 Vo + W) =2 — W ||d| < (2|VaA|" 2 +6 z IVaAI" W) (|6e + dibe])
< CEN7 452
(L Iy = €)™ "5* el + A"
) = o=,
n(n + 2)dWi .| < CA=" T2y (Wi | < Ce= T8 )\=>32 _ p(eo))\— 2732
Using Corollary 2.1 we have
~ n— 2+a
||¢6||L°°(QA\BE)%MG) <o)X +y =&
Thus
n—2+4 ~
sup  (1+[y—¢&]) 2 sup  (|¢e| +dipe) = o(1),
yEQ)‘\BE,%)\da yEQ)\\BE,%)\da
ie. ||¢|l« = o(1), contradiction.
Now we set

H:{¢€H1(QA)7<ZZ'7¢):OJ OSZSH}
equipped with the scalar product (-,-)x. Problem(3.1) is equivalent to finding ¢ € H
such that

(6,0)r = (n(n+2)W2¢+h,0) Ve H
that is

¢ =Tx(¢) +h

h depending linearly on h, and T being a compact operator in H. Fredholm’s
alternative ensures the existence of a unique solution, provided that the kernel of
Id — Ty is reduced to 0. We notice that ¢ € Ker(Id — T)) solves (3.1) with A = 0.
Thus by the first part estimate we know that ||@||« = o(1) as £ goes to zero. As
Ker(Id —T)) is a vector space, Ker(Id — T)) = {0}. This completes the proof of
the first part of Proposition 3.1.

The smoothness of Ly with respect to A is a consequence of the smoothness of T
and h. Inequalities (3.2) are obtained differentiating (3.1), writing the derivatives
of ¢ with respect to A as a linear combination of the Z] and an orthogonal part, and
estimating each term using the first part of the Proposition 3.1- see[11] for detailed
computations. O

4. FINITE-DIMENSIONAL REDUCTION: A NONLINEAR PROBLEM

In this section, we turn our attention to the nonlinear problem which we solve in
the finite-codimensional subspace orthogonal to the Z;’s with n = 3,4,5. Let Sy[u]
be as defined at (1.6). Then (1.5) is equivalent to

ou

(41) S)\[u] =0 in Q)\, (VAN ;7é 0, 5

=0 on 90,.
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Indeed, if u satisfies (4.1) maximum principle ensures that u > 0 in Q) and (1.5) is
satisfied. Observe that

S\ +6] = AW + 6) — ) 2(W + @) + nln — 2)(W + ¢
may be written as
SA[W + @] = Ad — (X&) 24+ n(n+ 2Wr=2 ¢ + R* + n(n — 2)Nx(¢)
with

(4.2) Nx(¢) = (W +¢)]7" = Wn=2 —

and
= S\[W] = AW — (Ae) 2W + n(n — 2)W =2

We now consider the following nonlinear problem: find ¢ such that for some numbers
c’s,

(4.3)
A¢—()\5)72¢+n(n+2)Wﬁ¢:— —n(n —2)Nx(¢ +chi in Q,,
0
6—?:0 on 0%,

Lemma 4.1. There exists a constant C' independent of €, \,& such that

if [|9ll« <

(4.4) N5 ()]lxx < CA~ 3|8
and if ||¢]||* < 2 2 ,j =1,2, then
(4.5) INA($1) = Na($2)[lex < CA™F |1 — o]
Proof.
INA(@)| < C(W|"=2 |62 + 4] 2)
(4.6) < C(IWh[+=2 |9 + [Wa| 522 |62 + |g|7-2)
= _[1 + I2 + _[3

where Iy, I, I3 are defined as the last equality. Then

(L+]y— )2 < ClgIPA+ 1y — €D TF (1 + |y — €)~°*"
< Cll¢ll?,

(L+]y =€) T L < ClIgIP(+ ly — €D TF~ (Ne) ™
< Cll¢ll?,

n+ +o n+ +o n— 2+a n42

(I+ly—¢D~ =2

(1+ly =< I < Ol (1 + [y - &)
< Cllglli.

Using (4.6), (4.7) we get (4.4).
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Using (4.2) we get
Nx(¢1) — Nx(¢2) = 9y Na(n)(¢1 — ¢2)
where n =t + (1 — t)2,0 <t <1, and

2 o nt2

n+2 o 4 6=n 4
Oy N = |5 (W )2 — gt = O+ + [n]=%2).

Hence
n42+0

(1+ Iy = )5 [Na(61) = Ma()| < Ol = o1+ Iy = D> O% "

6=m
+ W5 ]+ |72 = T+ T+
where Jq, J2, J3 are defined as the last equality. Then

(4.8)

6—n—o

Ji < Cllnll(+ly — €)T5 (L + [y — €)™ llgs — ¢all
< O |1 — dall.,
T < Cllnll(1+ |y — €)°75" (A) ™" (|1 — ]l
(4.9) < O F |1 — doll.,
Js < C(1+ [y — €D2(161]7 + 12| 72)lI61 — o2l
< OB T + gall7) g1 = bl
< CA*ET"H% — ¢2|+-
Using (4.8), (4.9) we get (4.5). O

By Proposition 3.1, Lemma 2.3, Lemma 4.1 and contraction mapping , we drive
the following main result:

Proposition 4.1. There exists a constant C, independent of €, A, & such that prob-
lem (4.3) has a unique solution ¢x¢ = ¢(g, X, §) with

_ Bn+§
lprells <CA™T=.
Moreover, A — ¢y ¢ is C* with respect to the L -norm and
_ Bnt+g+2 5 _ Bntg+4
(4.10) I0xdrells <CA™ 2, I0xdaells <CA™ 2

Proof. We consider the map Ay from
Bnt$

F={se B\ | I4ll. < OA- 277}
to HY(Q,), defined as
Ax(¢) = —La(n(n — 2)Nx(¢) + R*)

where C is a large number, to be determined later and Ly is given by Proposition
3.1. We note that finding a solution ¢ to problem(4.3) is equivalent to finding a
fixed point of Aj.

V¢ € F, Proposition 3.1 gives us

[AX@ll« < ILA@A@)lx + IR |+ < Ce™*(INA(B) s + [[BMlax)
ﬁn
|

Bnte Bntd

< Ce A B ||g||s + Ce oA 25 < OAF||¢||s + CA~ =
Let C' = 2C and ¢ small enough, then Ay sends F into itself.




12 LIPING WANG AND JUNCHENG WEI

On the other hand, Ay is a contraction map. Indeed, for ¢; and ¢ in F, we
have

IA(@1) = Ax(@)ll. - < Ce™®[[Na(é1) = Na(2)l|s
< Ce* A~ Ig1 = hall. < Lligr — oo,

which implies that A, has a unique fixed point in F.
In order to prove that A — ¢, ¢ is C?, we remark that if we set for n € F,

(4.11) B(A\, &) =0+ La(n(n — 2)Nx(¢) + RY),
then ¢y ¢ is defined as B(A, &, ¢x¢) = 0.
We have

O B(A; & )[0] = 6 + n(n — 2)LA(08, N (1))

Using Proposition 3.1, we write

LA @0, Nx)Il+ - < Ce™2 |60, Nx(m)llan < Ce™[I0[I1(1 + |y — &)~
< CAE |-

n— 2+a'

Oy Nx() ||+«

Consequently, 9,B(},&,n) is invertible with uniformly bounded inverse. Then the
fact that X — @y ¢ is C? follows from the fact that (\,n) — Lx(N:(n)) is C? and
implicit function theorem.

Finally, let us show how estimate (4.10) may be obtained. Differentiating (4.11)
with respect to A, we find

Onbre = — (0, BN E dx6)) ((3AL/\)(N/\(¢A,§) + RY) + La((OaN2)(4r¢)) + L/\(axRA))-

Using Proposition 3.1, we have
Bn+3+2

IOALA) (Na(dre) + BM[l« < Ceox ! (||N>\(<75,\ s H IR lw) < CX- 72,
[(OANA) (dre)l < C|(W+¢A§)" T W - —W" 2 ¢l [0V
< CW =5 pr e |OAW | + [gx.e| 72 [OAW | := Hi + Ha

where Hy, Hy are defined as the last equality.

e+l = )T < Cllgnelle™(L+ly = EDP(1+ ly = )=~
+(Ae)" ") (Ne) " < OX- Pt a
Just as the above, we get
—a g+2 2 —a 2 _ Pntg+2
e | Holl.. < » LAY < Cem AR e < CATT 2

which implies the first part of (4.10).

The second derivatives of ¢, ¢ with respect to A may be estimated in the same
way. This concludes the proof of Proposition 4.1. a
5. PROOF OF THEOREM 1.1

Let us define a reduced energy functional as
(5.1) I.(\,a) = Jh[W + éa¢]-
Then we state:

Proposition 5.1. The function u = W + @y ¢ is a solution to problem (1.2) if and
only if (\,a) is a critical point of I. (), a).
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The proof is similar to those of Proposition 5.1 in [16], [17]. We omit it.
In view of Proposition 5.1, to prove Theorem 1.1, we have to find a critical point
of I.(\,a). First we establish a C? expansion of I.(\,a).

Proposition 5.2. For € sufficiently small, we have

_ [ nW]+etA3D, n=3,
(52) IE()‘a a) - { J)‘[W] + 671/\72D2 n= 4, 5.

with D1 = O(1), D3 = o(1) and
8AD1 = O()\_l), 8§D1 = O()\_2), 8)‘D2 = O()\_l), 6/2\D2 = O(/\_z).

Proof. Actually, in view of (5.1) and the fact that J,[W + éx¢][¢xre] = 0 yields
1
LA a) = N[W] = AW + dre] — A [W] = —/ InW + threl[dne, Prcltdt
0

1 4
=- / [ (V6rc + 0) 263 ¢ —nln + 207 + 16,072 )

_4

1
= —‘/0 /Q (n(n+2) (Wﬁ — (W +t¢’\a§);_2)¢i,§ +R)‘¢)"€

+n(n - Q)NA(%,&)%,&)tdt-

Ifn=4,5,
/ R érel < CIRM luellénclls / (1+ ]y — )+
(5.3) 2, 2,
_ 240 245 —1\—2
<ON AT = o(e"IA2),
(5.4)

/ INA(@r6)brel < C/ (W12 |oagl® + [drel77)
Qx Qy

6—n _6—n _ 3(n—2+0)
S (Wil=2 +e)™ = )(A+ly—€D7" = lIonell
A

_2n_ )

Ol [ @iy —gh o)
Qi

242

<CX 2

min{3,.2%;} — 0(571)\72),

(5.5) n(n+2) /QA |Wﬁ - (W+t¢/\,6)ﬁ|¢2 < C/Q)\(|W|%|¢|3 + |¢)\7§|%)

=o(e'2A7?).
Using (5.3) — (5.5) we get the second part of (5.2).
If n = 3, since |[R* < C((Ae) A+ ly — &)™ + (Xe) (1 + |y — £])71), then

| 1B6nel < Cllonell [ (o) M1+ Iy =)™ + o)t ly - ) 1)
Qx

Qx
1+ %
<CA T (Xe) "t = oA E).
The other two terms is the same as (5.4) and (5.5). Hence we get (5.2).
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Differentiating (5.3) with respect to A, by the similar computation the estimates
of D;,i = 1,2 hold for the first and second derivatives with respect to A. This

concludes the proof of Proposition 5.2. O
since
-2 2n_ -2 2 2n_ 2n_
JA[WQ] — m/ WEn—Q _ (n ) / WEn—z — Efn(n _ 2)/ Wsn—Q
2 Q 2 Q Q

which has no relation with A or a. According to Lemma 2.3 and Proposition 5.2 we
have the following corollary:

Corollary 5.1. When n =3, noticing [p, U5, = %,

A
27 (B3 + 0(1)) 3 1 Bdg

2 a a
L(\a) = JA[W2]+/ Us i+ o= (Bato(D)(he) 2o 40 A Te P e A1),
R3

ol = e 2 A2 2¢ ¢ + O(S_IA_Qe_d?“ +5—1)\_g),
1 B 1)) 11 _pda i
KRI. = /\_36(4” - W)\fsie_ﬁg )+ O(s_lA_3e_d? +5—1)\—%)_
When n = 4,5,

L(\a)= JAWal+ (0 —2) [ Ugi® + 252(A, + o(1))(Ae)"2(In A)™

_n=2 _ Bdg

—(Bn+o(1))(Xe)” 2 e = +0(e 1A 72),

AL = —(n = 2)(An + o)A (V)™ = )

+ (n— 2)(1;" + o) A"Bem e 5 L O(e7 NP,
&1, = 3(n— 2)(An + o)A ((lnA)™ — 27

_ n(n - 2)(‘43" + 0(1))A_nT+2€_nT_2€_ﬁ:a + O(E—IA—4)

wherem=1ifn=4andm=0 ifn=>5.

Proof of Theorem 1.1: When n =3, let \g = (M%‘;(U)Zs_lewsda € A, then

T+ o(1)
—— #0.
e 7
The implicit functions theorem provides us, for & small enough, with a C'-map
a € M, — X a), such that

RI: [a=ro=

4 1)\2 28dq
OI(Aa),a) =0, Aa) = (%"()) eleZ5 ¢ A
3
Then by Corollary 5.1
_32 28dqg 28dg
LO@,a) = Rl + [ U, = ghe ™ o ofem ),
R3 ’ 871'

Obviously, there exists a maximum point a. of I.(A(a),a) and a. — ag ase — 0
where ag satisfies do, = maxaenr, da, i-e. (A(a:),a.) is a critical point of I (A, a).

When n = 4,5, using the same discussion as n = 3, we find I (), a) has a critical
2+40(1)
Teme:Pd
(6—n)e

point (A(a.), a.) where A(a.) ~ e *< and a. = ag as € — 0.
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Let uy(z) = (A(@:)e) "5 (Wi (Aa2)a) + Wa(A(@:)2) + bx(any ra. (A(a:)2))., then
ue(x) has all properties in Theorem 1.1. O

6. APPENDIX
Proof of Lemma 2.3: Using (1.5), we have
(6.1) ISA[W]| < C|Wi |72 Wy + C|Wa| 72 Wy + C|Us1 |72 Wy — Ug.u.
When n = 3, using (2.8) and (2.11),
|Ue |71 — (L+ly—€P) 20e) < CA+y—&) A%,
If |y — &| > oAd,, then

SN <Oy - g) A

WiWs| <CA 2+ Le-
c y—¢l 5+c 1to
= )(Ae) P <O+ [y —¢)TF ATE

WaWi| <CA 2+ e
If |y — £| < 0Ad,, then

1 _(1-0)%dg
|VV1W@|<ZC(1+Wy EP) 2 (Ne) e«
1+o
+ __)\__
(6.2) Cl+y— ﬂ)l s
W”Wﬂ<0ﬂ+w )72 (Ne)Pem T -
_oge it
CA+y—&) =z A =.
Using (6.1), (6.2), the first part of (2.15) holds for n = 3.
When n = 4,5,
|Ug |72 Wi — Ug,| < 0<1 +ly — €A TIATIT (L + [y — €))7
(63) n+2+a 240

Cl+ly—¢&D AT
If |y—¢&| > oMd,, then

4 n—2 nt2+te 24
W2 Wal < C0&)™ "7 (L4 ly =€) < C(L+ [y =€)~ ™52,

n+2+0 2+0

W2 W| < CQe) " <CO+[y—¢) A
If |y—¢& <oMd,, then
W Wl < 0<1+ [y =€) 00) e

n+2+o 240

Ly —gl) "3 A
64 Cl+y—¢&f) s
m”2Wn<cu+w €))7 (he)2e moa

_ni24o | _ 240

Cl+ly=¢)~ 2 A7

since 45 > 2.
Using (6.1), (6.3), (6.4), the first part of (2.15) holds for n =4, 5.
Differentiating (1.6) with respect to A and by the similar computation , (2.15)
holds for n = 3,4, 5.
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Now we compute Jy[W]. By the definition of Jy[W], we have

[W] J,\[Wl + WQ] = J,\[Wl] + J)\[WQ] + TL(TL — 2) W2" *Wh

Qx
6.5 —2)2 2n_ 2 2n
(6:5) _(n2 )/Q((W1+W2)"‘2_ W
A

= A [Wh] + In[W2] — I,

n42

where
2n

2 on 2n_ _2n_ nt2
n, = &2 fn ((Wl +Wo)n=2 — W2 =Wy = 2B WS W — 2T"QWf'_WW)

2) Jo, n2"2W7W =Ix1i+ Ixo-

Since W; satisfies

n42

AWy — (X&) 2Wi +n(n—2)U77> =0  in Q,
W, =0 on 00,

ov
then
n(n — 2 nt2 n —2)? 2n
J)\[Wl] — ( ) / U€n1_2 W1 _ ( ) / Wln—2.
2 Q)\ ’ 2 QA
First we consider the case n = 3.
LW = 2 fgA Wi—3 fm wy
= %fg U§1U§1+W1 Ugl zfQ U51+W1 Ug,l)e
fQ 1+ 3 fQA UE 1 Wl UE )73 fo 3fQA Ugal(Wl -

+0(fm UL, (W1 = Ue)> + fyy, (W1 — Ug1)® )
= Jo, U1 =3 Jo, Ud1(Wi = Ue) + 0<f9A U (Wi —Uga)” + Jo,

Compute directly,
fm U£6,1 = [ro U01+0 -3,
_% fQA U§5,1(W1 —Uega) = % fRS 5]05,1 +0(e™ "\
O(fq, Ug1(W1 = Uga)?* + Jo, (Wi = Ug,1)) = 0(6_1/\_16_Ta)-
Hence

3 da.
(6.6) I [Wi] = /Rs Ups + 5(,\5)—1 /Rs Upy+ 0" A Te™ ).

By direct computation, we get

Nlw

15

La=—e? | W2, +0( W2V +e7t | W2VE) =0('A~
2 Q ’ Qx Qx

On the other hand,

Io=3 WoWy = 32 / W ( V5>\d:c
Qax

(6.7) :35—5/ Ws(x)Vf/\dm+36_%/ W (2)V;) \da
|z—a|<od ’ |lz—al|>0d, ’

= (Bs +0o(1))(Ae)"2e % + O A "le )

where fisfixedand 1—oc < < 1+o0.
Using (6.5) — (6.7) , (2.16) holds for n = 3.

Ue,1)

(W — Ug,l)G)-

_da
=),

_da
B )
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When n = 4,5, using (6.5), we have
n(n —2)
2 Qs

n—3 2n_
+ O(/ U51—2 (Wi = Uga)? +/ (W1 — U£,1|"‘2)-
Q)‘ QA
Now compute term by term.

-2 [ UG =m-2 [ UG o0,

Qax

nt2
TA[W1] = (n—2 / U - UFL (W - Ugy)

(6.8)

-2 nt2 i
_%/ Ul (Wi = Uga) = _n(T/ Ury" (Vax = Ua,)
Q

1
5/ AUa,A(Va,/\ - Ua,)\)
Q

n42

1 n+2
= — / Ua,A(AVa,)\ + n(n - 2)Uan,;2)

= —5_2/ ax T O( e7IA7?)
= (4, +o(1)(Ae)2(In \)™ + O(e~*A7?)

where A, is positive, m=1ifn=4and m=0if n = 5.

4
/ Ul (W —Uga)? = O(s*ﬁ/\ﬂl/ 1+y— gl)—2n+4)
Qax Qs
(69) — 0(8_1)\_n+2)’
[ -0 ot
Qx
Using (6.8), (6.9) we get
2n_
(610) JA[Wl] = (n - 2)/ UOT:I2 + (An + 0(1))()\5)—2(11,1 /\)m + 0(6_1)\_2)‘
Rn
Similarly, we have

D = O WAl W2 + [Wal52772) = 0(e™A7>),
Qx

IA,zzn(n_z)/ R A PEE s
Qx

)\ a,\
n—2 n42
(6.11) :n(n—2)/s‘TW( o)V, dw
n+2
n(n — 2)e= W Va"A2+0( e'A7?)

= (B, + o(1 ))()\s)*Tef <+ 0@EIA?

where 3 is defined as before and B,, is positive. According to (6.5), (6.8)—(6.11),
(2.16) holds for n = 4, 5.

Differentiating (6.5) with respect to A and by the similar computation, the es-
timates of F;,i = 1,2 hold for the first and second derivatives with respect to .
This concludes the proof of Lemma, 2.3. O
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