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Abstract. — We consider minimal surfaces M which are complete, embedded and
have finite total curvature in R3, and bounded, entire solutions with finite Morse index
of the Allen-Cahn equation ∆u+f(u) = 0 in R3. Here f = −W ′ with W bistable and

balanced, for instance W (u) = 1
4
(1− u2)2. We assume that M has m ≥ 2 ends, and

additionally that M is non-degenerate, in the sense that its bounded Jacobi fields are
all originated from rigid motions (this is known for instance for a Catenoid and for the
Costa-Hoffman-Meeks surface of any genus). We prove that for any small α > 0, the
Allen-Cahn equation has a family of bounded solutions depending on m−1 parameters
distinct from rigid motions, whose level sets are embedded surfaces lying close to the
blown-up surface Mα := α−1M , with ends possibly diverging logarithmically from
Mα. We prove that these solutions are L∞-non-degenerate up to rigid motions, and
find that their Morse index coincides with the index of the minimal surface. Our
construction suggests parallels of De Giorgi conjecture for general bounded solutions
of finite Morse index.
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1. Introduction and main results

1.1. The Allen-Cahn equation and minimal surfaces. — The Allen-Cahn
equation in RN is the semilinear elliptic problem

∆u + f(u) = 0 in RN , (1.1)

where f(s) = −W ′(s) and W is a “double-well potential”, bi-stable and balanced,
namely

W (s) > 0 if s 6= 1,−1, W (1) = 0 = W (−1), W ′′(±1) = f ′(±1) =: σ2
± > 0.

(1.2)
A typical example of such a nonlinearity is

f(u) = (1− u2)u for W (u) =
1
4
(1− u2)2, (1.3)

while we will not make use of the special symmetries enjoyed by this example.
Equation (1.1) is a prototype for the continuous modeling of phase transition phe-

nomena. Let us consider the energy in a subregion region Ω of RN

Jα(v) =
∫

Ω

α

2
|∇v|2 +

1
4α

W (v),

whose Euler-Lagrange equation is a scaled version of (1.1),

α2∆v + f(v) = 0 in Ω . (1.4)

We observe that the constant functions u = ±1 minimize Jα. They are idealized as two
stable phases of a material in Ω. It is of interest to analyze stationary configurations
in which the two phases coexist. Given any subset Λ of Ω, any discontinuous function
of the form

v∗ = χΛ − χΩ\Λ (1.5)
minimizes the second term in Jε. The introduction of the gradient term in Jα makes
an α-regularization of u∗ a test function for which the energy gets bounded and
proportional to the surface area of the interface M = ∂Λ, so that in addition to min-
imizing approximately the second term, stationary configurations should also select
asymptotically interfaces M that are stationary for surface area, namely (general-
ized) minimal surfaces. This intuition on the Allen-Cahn equation gave important
impulse to the calculus of variations, motivating the development of the theory of
Γ-convergence in the 1970’s. Modica [27] proved that a family of local minimizers uα

of Jα with uniformly bounded energy must converge in suitable sense to a function
of the form (1.5) where ∂Λ minimizes perimeter. Thus, intuitively, for each given
λ ∈ (−1, 1), the level sets [vα = λ], collapse as α → 0 onto the interface ∂Λ. Similar
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result holds for critical points not necessarily minimizers, see [23]. For minimizers
this convergence is known in very strong sense, see [2, 3].

If, on the other hand, we take such a critical point uα and scale it around an
interior point 0 ∈ Ω, setting uα(x) = vα(αx), then uα satisfies equation (1.1) in an
expanding domain,

∆uα + f(uα) = 0 in α−1Ω
so that letting formally α → 0 we end up with equation (1.1) in entire space. The
“interface” for uα should thus be around the (asymptotically flat) minimal surface
Mα = α−1M . Modica’s result is based on the intuition that if M happens to be a
smooth surface, then the transition from the equilibria −1 to 1 of uα along the normal
direction should take place in the approximate form uα(x) ≈ w(z) where z designates
the normal coordinate to Mα. Then w should solve the ODE problem

w′′ + f(w) = 0 in R, w(−∞) = −1, w(+∞) = 1 . (1.6)
This solution indeed exists thanks to assumption (1.2). It is strictly increasing and
unique up to constant translations. We fix in what follows the unique w for which∫

R
t w′(t)2 dt = 0 . (1.7)

For example (1.3), we have w(t) = tanh
(
t/
√

2
)
. In general w approaches its limits at

exponential rates,

w(t)− ±1 = O( e−σ±|t| ) as t → ±∞ .

Observe then that
Jα(uα) ≈ Area (M)

∫

R
[
1
2
w′2 + W (w)]

which is what makes it plausible that M is critical for area, namely a minimal surface.

The above considerations led E. De Giorgi [9] to formulate in 1978 a celebrated
conjecture on the Allen-Cahn equation (1.1), parallel to Bernstein’s theorem for min-
imal surfaces: The level sets [u = λ] of a bounded entire solution u to (1.1), which is
also monotone in one direction, must be hyperplanes, at least for dimension N ≤ 8.
Equivalently, up to a translation and a rotation, u = w(x1). This conjecture has been
proven in dimensions N = 2 by Ghoussoub and Gui [13], N = 3 by Ambrosio and
Cabré [1], and under a mild additional assumption by Savin [34]. A counterexample
was recently built for N ≥ 9 in [10, 11], see also [6, 24]. See [12] for a recent survey
on the state of the art of this question.

The assumption of monotonicity in one direction for the solution u in De Giorgi
conjecture implies a form of stability, locally minimizing character for u when com-
pactly supported perturbations are considered in the energy. Indeed, if Z = ∂xN

u > 0,
then the linearized operator L = ∆ + f ′(u), satisfies maximum principle. This im-
plies stability of u, in the sense that its associated quadratic form, namely the second
variation of the corresponding energy,

Q(ψ, ψ) :=
∫
|∇ψ|2 − f ′(u)ψ2 (1.8)
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satisfies Q(ψ,ψ) > 0 for all ψ 6= 0 smooth and compactly supported. Stability is
a basic ingredient in the proof of the conjecture dimensions 2, 3 in [1, 13], based
on finding a control at infinity of the growth of the Dirichlet integral. In dimension
N = 3 it turns out that ∫

B(0,R)

|∇u|2 = O(R2) (1.9)

which intuitively means that the embedded level surfaces [u = λ] must have a finite
number of components outside a large ball, which are all “asymptotically flat”. The
question whether stability alone suffices for property (1.9) remains open. More gener-
ally, it is believed that this property is equivalent to finite Morse index of the solution
u (which means essentially that u is stable outside a bounded set). The Morse index
m(u) is defined as the maximal dimension of a vector space E of compactly supported
functions such that

Q(ψ, ψ) < 0 for all ψ ∈ E \ {0}.
Rather surprisingly, basically no examples of finite Morse index entire solutions of

the Allen-Cahn equation seem known in dimension N = 3. Great progress has been
achieved in the last decades, both in the theory of semilinear elliptic PDE like (1.1)
and in minimal surface theory in R3. While this link traces back to the very origins of
the study of (1.1) as discussed above, it has only been partially explored in producing
new solutions.

In this paper we construct a new class of entire solutions to the Allen-Cahn equation
in R3 which have the characteristic (1.9), and also finite Morse index, whose level
sets resemble a large dilation of a given complete, embedded minimal surface M ,
asymptotically flat in the sense that it has finite total curvature, namely∫

M

|K| dV < +∞

where K denotes Gauss curvature of the manifold, which is also non-degenerate in a
sense that we will make precise below.

As pointed out by Dancer [7], Morse index is a natural element to attempt classi-
fication of solutions of (1.1). Beyond De Giorgi conjecture, classifying solutions with
given Morse index should be a natural step towards the understanding of the structure
of the bounded solutions of (1.1). Our main results show that, unlike the stable case,
the structure of the set of solutions with finite Morse index is highly complex. On the
other hand, we believe that our construction contains germs of generality, providing
elements to extrapolate what may be true in general, in analogy with classification of
embedded minimal surfaces We elaborate on these issues in §12.

1.2. Embedded minimal surfaces of finite total curvature. — The theory
of embedded, minimal surfaces of finite total curvature in R3, has reached a notable
development in the last 25 years. For more than a century, only two examples of
such surfaces were known: the plane and the catenoid. The first nontrivial example
was found in 1981 by C. Costa, [4, 5]. The Costa surface is a genus one minimal
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surface, complete and properly embedded, which outside a large ball has exactly three
components (its ends), two of which are asymptotically catenoids with the same axis
and opposite directions, the third one asymptotic to a plane perpendicular to that
axis. The complete proof of embeddedness is due to Hoffman and Meeks [18]. In
[19, 21] these authors generalized notably Costa’s example by exhibiting a class of
three-end, embedded minimal surface, with the same look as Costa’s far away, but
with an array of tunnels that provides arbitrary genus k ≥ 1. This is known as the
Costa-Hoffman-Meeks surface with genus k.

Many other examples of multiple-end embedded minimal surfaces have been found
since, see for instance [25, 36] and references therein. In general all these surfaces
look like parallel planes, slightly perturbed at their ends by asymptotically logarith-
mic corrections with a certain number of catenoidal links connecting their adjacent
sheets. In reality this intuitive picture is not a coincidence. Using the Eneper-
Weierstrass representation, Osserman [31] established that any embedded, complete
minimal surface with finite total curvature can be described by a conformal diffeo-
morphism of a compact surface (actually of a Riemann surface), with a finite number
of its points removed. These points correspond to the ends. Moreover, after a conve-
nient rotation, the ends are asymptotically all either catenoids or plane, all of them
with parallel axes, see Schoen [35]. The topology of the surface is thus characterized
by the genus of the compact surface and the number of ends, having therefore “finite
topology”.

1.3. Main results. — In what follows M designates a complete, embedded minimal
surface in R3 with finite total curvature (to which below we will make a further
nondegeneracy assumption). As pointed out in [22], M is orientable and the set
R3 \ M has exactly two components S+, S−. In what follows we fix a continuous
choice of unit normal field ν(y), which conventionally we take it to point towards S+.

For x = (x1, x2, x3) = (x′, x3) ∈ R3, we denote

r = r(x) = |(x1, x2)| =
√

x2
1 + x2

2.

After a suitable rotation of the coordinate axes, outside the infinite cylinder r <
R0 with sufficiently large radius R0, then M decomposes into a finite number m of
unbounded components M1, . . . , Mm, its ends. From a result in [35], we know that
asymptotically each end of Mk either resembles a plane or a catenoid. More precisely,
Mk can be represented as the graph of a function Fk of the first two variables,

Mk = { y ∈ R3 / r(y) > R0, y3 = Fk(y′) }
where Fk is a smooth function which can be expanded as

Fk(y′) = ak log r + bk + bik
yi

r2
+ O(r−3) as r → +∞, (1.10)

for certain constants ak, bk, bik, and this relation can also be differentiated. Here

a1 ≤ a2 ≤ . . . ≤ am ,

m∑

k=1

ak = 0 . (1.11)
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The direction of the normal vector ν(y) for large r(y) approaches on the ends that of
the x3 axis, with alternate signs. We use the convention that for r(y) large we have

ν(y) =
(−1)k

√
1 + |∇Fk(y′)|2 (∇Fk(y′) , −1 ) if y ∈ Mk. (1.12)

Let us consider the Jacobi operator of M

J (h) := ∆Mh + |A|2h (1.13)

where |A|2 = −2K is the Euclidean norm of the second fundamental form of M . J
is the linearization of the mean curvature operator with respect to perturbations of
M measured along its normal direction. A smooth function z(y) defined on M is
called a Jacobi field if J (z) = 0. Rigid motions of the surface induce naturally some
bounded Jacobi fields: Associated to respectively translations along coordinates axes
and rotation around the x3-axis, are the functions

z1(y) = ν(y) · ei, y ∈ M, i = 1, 2, 3,

z4(y) = (−y2, y1, 0) · ν(y), y ∈ M. (1.14)
We assume that M is non-degenerate in the sense that these functions are actually

all the bounded Jacobi fields, namely

{ z ∈ L∞(M) / J (z) = 0 } = span { z1, z2, z3, z4 } . (1.15)

We denote in what follows by J the dimension (≤ 4) of the above vector space.

This assumption, expected to be generic for this class of surfaces, is known in some
important cases, most notably the catenoid and the Costa-Hoffmann-Meeks surface
which is an example of a three ended M whose genus may be of any order. See
Nayatani [29, 30] and Morabito [28]. Note that for a catenoid, z04 = 0 so that
J = 3. Non-degeneracy has been used as a tool to build new minimal surfaces for
instance in Hauswirth and Pacard [17], and in Pérez and Ros [33]. It is also the basic
element, in a compact-manifold version, to build solutions to the small-parameter
Allen-Cahn equation in Pacard and Ritoré [32].

In this paper we will construct a solution to the Allen Cahn equation whose zero
level sets look like a large dilation of the surface M , with ends perturbed logarithmi-
cally. Let us consider a large dilation of M ,

Mα := α−1M.

This dilated minimal surface has ends parameterized as

Mk,α = { y ∈ R3 / r(αy) > R0, y3 = α−1Fk(αy′) } .

Let β be a vector of given m real numbers with

β = (β1, . . . , βm),
m∑

i=1

βi = 0 . (1.16)

Our first result asserts the existence of a solution u = uα defined for all sufficiently
small α > 0 such that given λ ∈ (−1, 1), its level set [uα = λ] defines an embedded
surface lying at a uniformly bounded distance in α from the surface Mα, for points
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with r(αy) = O(1), while its k-th end, k = 1, . . . ,m, lies at a uniformly bounded
distance from the graph

r(αy) > R0, y3 = α−1 Fk(αy′) + βk log |αy′| . (1.17)

The parameters β must satisfy an additional constraint. It is clear that if two ends
are parallel, say ak+1 = ak, we need at least that βk+1 − βk ≥ 0, for otherwise the
ends would eventually intersect. Our further condition on these numbers is that these
ends in fact diverge at a sufficiently fast rate. We require

βk+1 − βk > 4 max {σ−1
− , σ−1

+ } if ak+1 = ak . (1.18)

Let us consider the smooth map

X(y, z) = y + zν(αy), (y, t) ∈ Mα × R. (1.19)

x = X(y, z) defines coordinates inside the image of any region where the map is
one-to-one. In particular, let us consider a function p(y) with

p(y) = (−1)kβk log |αy′|+ O(1), k = 1, . . . ,m,

and β satisfying βk+1 − βk > γ > 0 for all k with ak = ak+1. Then the map X is
one-to-one for all small α in the region of points (y, z) with

|z − q(y)| < δ

α
+ γ log(1 + |αy′|)

provided that δ > 0 is chosen sufficiently small.

Theorem 1. — Let N = 3 and M be a minimal surface embedded, complete with fi-
nite total curvature which is nondegenerate. Then, given β satisfying relations (1.16)
and (1.18), there exists a bounded solution uα of equation (1.1), defined for all suffi-
ciently small α, such that

uα(x) = w(z − q(y)) + O(α) for all x = y + zν(αy), |z − q(y)| < δ

α
, (1.20)

where the function q satisfies

q(y) = (−1)kβk log |αy′|+ O(1) y ∈ Mk,α, k = 1, . . . , m.

In particular, for each given λ ∈ (−1, 1), the level set [uα = λ] is an embedded surface
that decomposes for all sufficiently small α into m disjoint components (ends) outside
a bounded set. The k-th end lies at O(1) distance from the graph

y3 = α−1 Fk(αy) + βk log |αy′|.

The solution predicted by this theorem depends, for fixed α, on m parameters.
Taking into account the constraint

∑m
j=1 βj = 0 this gives m − 1 independent pa-

rameters corresponding to logarithmic twisting of the ends of the level sets. Let us
observe that consistently, the combination β ∈ Span {(a1, . . . , am)} can be set in cor-
respondence with moving α itself, namely with a dilation parameter of the surface.
We are thus left with m − 2 parameters for the solution in addition to α. Thus, be-
sides the trivial rigid motions of the solution, translation along the coordinates axes,
and rotation about the x3 axis, this family of solutions depends exactly on m − 1
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“independent” parameters. Part of the conclusion of our second result is that the
bounded kernel of the linearization of equation (1.1) about one of these solutions is
made up exactly of the generators of the rigid motions, so that in some sense the
solutions found are L∞-isolated, and the set of bounded solutions nearby is actually
m− 1 + J-dimensional. A result parallel to this one, in which the moduli space of the
minimal surface M is described by a similar number of parameters, is found in [33].

Next we discuss the connection of the Morse index of the solutions of Theorem 1 and
the index of the minimal surface M , i(M), which has a similar definition relative to
the quadratic form for the Jacobi operator: The number i(M) is the largest dimension
for a vector spaced E of compactly supported smooth functions in M with∫

M

|∇k|2 dV −
∫

M

|A|2k2 dV < 0 for all k ∈ E \ {0}.

We point out that for complete, embedded surfaces, finite index is equivalent to finite
total curvature, see [16] and also §7 of [22] and references therein. Thus, for our
surface M , i(M) is indeed finite. Moreover, in the Costa-Hoffmann-Meeks surface it
is known that i(M) = 2l − 1 where l is the genus of M . See [29], [30] and [28].

Our second result is that the Morse index and non-degeneracy of M are transmitted
into the linearization of equation (1.1).

Theorem 2. — Let uα the solution of problem (1.1) given by Theorem 1. Then for
all sufficiently small α we have

m(uα) = i(M).

Besides, the solution is non-degenerate, in the sense that any bounded solution of

∆φ + f ′(uα)φ = 0 in R3

must be a linear combination of the functions Zi, i = 1, 2, 3, 4 defined as

Zi = ∂iuα, i = 1, 2, 3, Z4 = −x2∂1uα + x1∂2uα.

We will devote the rest of this paper to the proofs of Theorems 1 and 2.

2. The Laplacian near Mα

2.1. The Laplace-Betrami Operator of Mα. — Let D be the set

D = {y ∈ R2 / |y| > R0}.
We can parameterize the end Mk of M as

y ∈ D 7−→ y := Yk(y) = yiei + Fk(y)e3 . (2.1)

and Fk is the function in (1.10). In other words, for y = (y′, y3) ∈ Mk the coodinate
y is just defined as y = y′. We want to represent ∆M–the Laplace-Beltrami operator
of M–with respect to these coordinates. For the coefficients of the metric gij on Mk

we have
∂yiYk = ei + O

(
r−1

)
e3
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so that
gij(y) = 〈∂iYk, ∂jYk〉 = δij + O

(
r−2

)
, (2.2)

where r = |y|. The above relations “can be differentiated” in the sense that differ-
entiation makes the terms O(r−j) gain corresponding negative powers of r. Then we
find the representation

∆M =
1√

det gij

∂i(
√

det gij gij∂j) = ∆y + O(r−2)∂ij + O(r−3) ∂i on Mk . (2.3)

The normal vector to M at y ∈ Mk k = 1, . . . , m, corresponds to

ν(y) = (−1)k 1√
1 + |∇Fk(y)|2 ( ∂iFk(y)ei − e3 ) , y = Yk(y) ∈ Mk

so that
ν(y) = (−1)ke3 + αkr−2 yiei + O(r−2) , y = Yk(y) ∈ Mk . (2.4)

Let us observe for later reference that since ∂iν = O(r−2), then the principal curva-
tures of M , k1, k2 satisfy kl = O(r−2). In particular, we have that

|A(y)|2 = k2
1 + k2

2 = O(r−4). (2.5)

To describe the entire manifold M we consider a finite number N ≥ m + 1 of local
parametrizations

y ∈ Uk ⊂ R2 7−→ y = Yk(y), Yk ∈ C∞(Ūk), k = 1, . . . , N. (2.6)
For k = 1, . . . , m we choose them to be those in (2.1), with Uk = D, so that Yk(Uk) =
Mk, and Ūk is bounded for k = m + 1, . . . , N . We require then that

M =
N⋃

k=1

Yk(Uk).

We remark that the Weierstrass representation of M implies that we can actually take
N = m+1, namely only one extra parametrization is needed to describe the bounded
complement of the ends in M . We will not use this fact. In general, we represent for
y ∈ Yk(Uk),

∆M = a0
ij(y)∂ij + b0

i (y)∂i, y = Yk(y), y ∈ Uk, (2.7)

where a0
ij is a uniformly elliptic matrix and the index k is not made explicit in the

coefficients. For k = 1, . . . ,m we have

a0
ij(y) = δij + O(r−2), b0

i = O(r−3), as r(y) = |y| → ∞. (2.8)

The parametrizations set up above induce naturally a description of the expanded
manifold Mα = α−1M as follows. Let us consider the functions

Ykα : Ukα := α−1Uk → Mα, y 7→ Ykα(y) := α−1Yk(αy), k = 1, . . . , N. (2.9)

Obviously we have

Mα =
N⋃

k=1

Ykα(Ukα).
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The computations above lead to the following representation for the operator ∆Mα
:

∆Mα
= a0

ij(αy)∂ij + b0
i (αy)∂i, y = Ykα(y), y ∈ Ukα, (2.10)

where a0
ij , b0

i are the functions in (2.7), so that for k = 1, . . . , m we have

a0
ij = δij + O(r−2

α ), b0
i = O(r−3

α ), as rα(y) := |αy| → ∞. (2.11)

2.2. The Euclidean Laplacian near Mα. — We will describe in coordinates
relative to Mα the Euclidean Laplacian ∆x, x ∈ R3, in a setting needed for the proof
of our main results. Let us consider a smooth function h : M → R, and the smooth
map Xh defined as

Xh : Mα × R→ R3, (y, t) 7−→ Xh(y, t) := y + (t + h(αy) ) ν(αy) (2.12)

where ν is the unit normal vector to M . Let us consider an open subset O of Mα×R
and assume that the map Xh|O is one to one, and that it defines a diffeomorphism
onto its image N = Xh(O). Then

x = Xh(y, t), (y, t) ∈ O,

defines smooth coordinates to describe the open set N in R3. Moreover, the maps

x = Xh(Ykα(y) , t), (y, t) ∈ (Ukα × R) ∩ O, k = 1, . . . , N,

define local coordinates (y, t) to describe the region N . We shall assume in addition
that for certain small number δ > 0, we have

O ⊂ {(y, t) / |t + h(αy)| < δ

α
log(2 + rα(y) ) }. (2.13)

We have the validity of the following expression for the Euclidean Laplacian oper-
ator in N .

Lemma 2.1. — For x = Xh(y, t), (y, t) ∈ O with y = Ykα(y), y ∈ Ukα, we have the
validity of the identity

∆x = ∂tt + ∆Mα − α2[(t + h)|A|2 + ∆Mh]∂t − 2α a0
ij ∂jh∂it +

α(t + h) [a1
ij∂ij − 2α a1

ij ∂ih∂jt + α b1
i (∂i − α∂ih∂t) ] +

α3(t + h)2b1
3∂t + α2[ a0

ij + α(t + h)a1
ij ]∂ih∂jh∂tt . (2.14)

Here, in agreement with (2.10), ∆Mα = a0
ij(αy)∂ij + b0

i (αy)∂i.

The functions a1
ij, b1

i , b1
3 in the above expressions appear evaluated at the pair

(αy, α(t + h(αy)), while the functions h, ∂ih, ∆Mh, |A|2, a0
ij, b0

i are evaluated at αy
In addition, for k = 1, . . . , m, l = 0, 1,

al
ij = δijδ0l + O(r−2

α ), bl
i = O(r−3

α ), b1
3 = O(r−6

α ) ,

as rα(y) = |αy| → ∞, uniformly in their second variables. The notation ∂jh refers
to ∂j [h ◦ Yk].
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We postpone proof of this fact for the appendix. The proof actually yields that
the coefficients a1

ij and b1
i can be further expanded as follows:

a1
ij = a1

ij(αy, 0) + α(t + h) a
(2)
ij (αy, α(t + h)) =: a1,0

ij + α(t + h)a2
ij ,

with a
(2)
ij = O(r−3

α ), and similarly

b1
j = b1

j (αy, 0) + α(t + h) b
(2)
j (αy, α(t + h)) =: b1,0

j + α(t + h)b2
j ,

with b
(2)
j = O(r−4

α ). As an example of the previous formula, let us compute the
Laplacian of a function that separates variables t and y, that will be useful in §3 and
§11.

Lemma 2.2. — Let v(x) = k(y) ψ(t) . Then the following holds.

∆xv = kψ′′ + ψ ∆Mαk − α2[(t + h)|A|2 + ∆Mh] k ψ′ − 2α a0
ij ∂jh∂ik ψ′ +

α(t + h) [a1,0
ij ∂ijkψ − 2α a1,0

ij ∂jh∂ik ψ′ + α(b1,0
i ∂ik ψ − αb1,0

i ∂ih k ψ′) ] +

α2(t + h)2 [a2
ij∂ijkψ − 2α a2

ij ∂jh∂ik ψ′ + α(b2
i ∂ik ψ − αb2

i ∂ih k ψ′) ] +

α3(t + h)2b1
3 k ψ′ + α2[ a0

ij + α(t + h)a1
ij ]∂ih∂jh k ψ′′ . (2.15)

3. Approximation of the solution and preliminary discussion

3.1. Approximation of order zero and its projection. — Let us consider a
function h and setsO andN as in §2.2. Let x = Xh(y, t) be the coordinates introduced
in (2.12). At this point we shall make a more precise assumption about the function
h. We need the following preliminary result whose proof we postpone for §6.2.

We consider a fixed m-tuple of real numbers β = (β1, . . . , βm) such that
m∑

i=1

βj = 0. (3.1)

Lemma 3.1. — Given any real numbers β1, . . . , βm satisfying (3.1), there exists a
smooth function h0(y) defined on M such that

J (h0) = ∆Mh0 + |A|2h0 = 0 in M,

h0(y) = (−1)jβj log r + θ as r →∞ in Mj for all y ∈ Mj ,

where θ satisfies
‖θ‖∞ + ‖r2Dθ‖∞ < +∞ . (3.2)
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We fix a function h0 as in the above lemma and consider a function h in the form

h = h0 + h1.

We allow h1 to be a parameter which we will adjust. For now we will assume that for
a certain constant K we have

‖h1‖L∞(M) + ‖(1 + r2)Dh1‖L∞(M) ≤ Kα . (3.3)

We want to find a solution to

S(u) := ∆xu + f(u) = 0.

We consider in the region N the approximation

u0(x) := w(t) = w(z − h0(αy)− h1(αy))

where z designates the normal coordinate to Mα. Thus, whenever βj 6= 0, the level
sets [u0 = λ] for a fixed λ ∈ (−1, 1) departs logarithmically from the end α−1Mj

being still asymptotically catenoidal, more precisely it is described as the graph

y3 = (α−1aj + βj) log r + O(1) as r →∞.

Note that, just as in the minimal surface case, the coefficients of the ends are balanced
in the sense that they add up to zero.

It is clear that if two ends are parallel, say aj+1 = aj , we need at least that
βj+1− βj ≥ 0, for otherwise the ends of this zero level set would eventually intersect.
We recall that our further condition on these numbers is that these ends in fact diverge
at a sufficiently fast rate:

βj+1 − βj > 4 max {σ−1
− , σ−1

+ } if aj+1 = aj . (3.4)

We will explain later the role of this condition. Let us evaluate the error of approxi-
mation S(u0). Using Lemma 2.2 and the fact that w′′ + f(w) = 0, we find

S(u0) := ∆xu0 + f(u0) =

−α2[|A|2h1 + ∆Mh1]w′ +

−α2|A|2 tw′ + 2 α2a0
ij ∂ih0∂jh0 w′′ +

α2 a0
ij (2∂ih0∂jh1 + ∂ih1∂jh1 ) w′′+

2α3(t + h0 + h1)a1
ij ∂i(h0 + h1)∂j(h0 + h1)w′′+

α3(t + h0 + h1)b1
i ∂i(h0 + h1)w′ + α3(t + h0 + h1)3b1

3w
′ (3.5)

where the formula above has been broken into “sizes”, keeping in mind that h0 is
fixed while h1 = O(α). Since we want that u0 be as close as possible to be a solution
of (1.1), then we would like to choose h1 in such a way that the quantity (3.5) be as
small as possible. Examining the above expression, it does not look like we can do
that in absolute terms. However part of the error could be made smaller by adjusting
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h1. Let us consider the “L2-projection” onto w′(t) of the error for each fixed y, given
by

Π(y) :=
∫ ∞

−∞
S(u0)(y, t)w′(t) dt

where for now, and for simplicity we assume the coordinates are defined for all t, the
difference with the integration is taken in all the actual domain for t produces only
exponentially small terms in α−1. Then we find

Π(y) = α2(∆Mh1 + h1|A|2)
∫ ∞

−∞
w′2dt + α3∂i(h0 + h1)

∫ ∞

−∞
b1
i (t + h0 + h1)w′

2
dt +

α3∂i(h0+h1)∂j(h0+h1)
∫ ∞

−∞
(t+h0+h)a1

ijw
′′w′dt+α3

∫ ∞

−∞
(t+h0+h1)3b1

3w
′2dt (3.6)

where we have used
∫∞
−∞ tw′2 dt =

∫∞
−∞ w′′w′ dt = 0 to get rid in particular of the

terms of order α2.

Making all these “projections” equal to zero amounts to a nonlinear differential
equation for h of the form

J (h1) = ∆Mh1 + h1|A(y)|2 = G0(h1) y ∈ M (3.7)

where G0 is easily checked to be a contraction mapping of small constant in h1, in the
ball radius O(α) with the C1 norm defined by the expression in the left hand side of
inequality (3.3). This is where the nondegeneracy assumption on the Jacobi operator
J enters, since we would like to invert it, in such a way to set up equation (3.7) as a
fixed point problem for a contraction mapping of a ball of the form (3.3).

3.2. Improvement of approximation. — The previous considerations are not
sufficient since even after adjusting optimally h, the error in absolute value does not
necessarily decrease. As we observed, the “large” term in the error,

−α2|A|2tw′ + α2a0
ij∂ih0∂jh0 w′′

did not contribute to the projection. In order to eliminate, or reduce the size of
this remaining part O(α2) of the error, we improve the approximation through the
following argument. Let us consider the differential equation

ψ′′0 (t) + f ′(w(t))ψ0(t) = tw′(t),

which has a unique bounded solution with ψ0(0) = 0, given explicitly by the formula

ψ0(t) = w′(t)
∫ t

0

w′(t)−2

∫ s

−∞
sw′(s)2ds .

Observe that this function is well defined and it is bounded since
∫∞
−∞ sw′(s)2ds = 0

and w′(t) ∼ e−σ±|t| as t → ±∞, with σ± > 0. Note also that ψ1(t) = 1
2 tw′(t) solves

ψ′′1 (t) + f ′(w(t))ψ1(t) = w′′(t) .

We consider as a second approximation

u1 = u0 + φ1, φ1(y, t) := α2|A(αy)|2ψ0(t)− α2a0
ij∂ih0∂jh0(αy)ψ1(t) . (3.8)
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Let us observe that

S(u0 + φ) = S(u0) +∆xφ + f ′(u0)φ + N0(φ), N0(φ) = f(u0 + φ)− f(u0)− f ′(u0)φ .

We have that

∂ttφ1 + f ′(u0)φ1 = α2|A(αy)|2tw′ − α2a0
ij∂ih0∂jh0(αy) w′′ .

Hence we get that the largest remaining term in the error is canceled. Indeed, we
have

S(u1) = S(u0)− (2α2a0
ij∂ih0∂jh0 w′′ − α2|A(αy)|2tw′) + [∆x − ∂tt]φ1 + N0(φ1).

Since φ1 has size of order α2, a smooth dependence in αy and it is of size O(r−2
α e−σ|t|)

using Lemma 2.2, we readily check that the “error created”

[∆x − ∂tt]φ1 + N0(φ1) := −α4 ( |A|2tψ′0 − a0
ij∂ih0∂jh0 tψ′1 )∆h1 + R0

satisfies

|R0(y, t)| ≤ Cα3(1 + rα(y))−4e−σ|t|.

Hence we have eliminated the h1-independent term O(α2) that did not contribute to
the projection Π(y), and replaced it by one smaller and with faster decay. Let us be
slightly more explicit for later reference. We have

S(u1) := ∆u1 + f(u1) =

−α2[|A|2h1 + ∆Mh1] w′ + α2 a0
ij (∂ih0∂jh1 + ∂ih1∂jh0 + ∂ih1∂jh1 ) w′′

−α4 ( |A|2tψ′0 − a0
ij∂ih0∂jh0 tψ′1 )∆Mh1 + 2α3(t + h)a1

ij ∂ih∂jhw′′ + R1 (3.9)

where

R1 = R1(y, t, h1(αy),∇Mh1(αy))

with

|DıR1(y, t, ı, )|+ |DR1(y, t, ı, )|+ |R1(y, t, ı, )| ≤ Cα3(1 + rα(y))−4e−σ|t|

and the constant C above possibly depends on the number K of condition (3.3).

The above arguments are in reality the way we will actually solve the problem:
two separate, but coupled steps are involved: (1) Eliminate the parts of the error
that do not contribute to the projection Π and (2) Adjust h1 so that the projection
Π becomes identically zero.
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3.3. The condition of diverging ends. — Let us explain the reason to introduce
condition (3.4) in the parameters βj . To fix ideas, let us assume that we have two
consecutive planar ends of M , Mj and Mj+1, namely with aj = aj+1 and with
d = bj+1 − bj > 0. Assuming that the normal in Mj points upwards, the coordinate
t reads approximately as

t = x3 − α−1bj − h near Mjα, t = α−1bj+1 − x3 − h near Mj+1α.

If we let h0 ≡ 0 both on Mjα and Mj+1α which are separated at distance d/α, then
a good approximation in the entire region between Mjα and Mj+1α that matches the
parts of w(t) coming both from Mj and Mj+1 should read near Mj approximately as

w(t) + w(α−1d− t)− 1.

When computing the error of approximation, we observe that the following additional
term arises near Mjα:

E := f( w(t) + w(α−1d− t)− 1 ) − f(w(t))− f(w(α−1d− t) ) ∼
∼ [f ′(w(t))− f ′(1) ] ( w(α−1d− t)− 1 ) .

Now in the computation of the projection of the error this would give rise to
∫ ∞

−∞
[ f ′(w(t))− f ′(1) ] ( w(α−1d− t) − 1 ) w′(t) dt ∼ c∗e−σ+

d
α .

where c∗ 6= 0 is a constant. Thus equation (3.7) for h1 gets modified with a term which
even though very tiny, it has no decay as |y| → +∞ on Mj , unlike the others involved
in the operator G0 in (3.7). That terms eventually dominates and the equation for
h1 for very large r would read in Mj as

∆Mh1 ∼ e−
σ
α 6= 0,

which is inconsistent with the assumption that h is bounded. Worse yet, its solution
would be quadratic thus eventually intersecting another end. This nuisance is fixed
with the introduction of h0 satisfying condition (3.4). In that case the term E created
above will now read near Mjα as

E ∼ Ce−σ+
d
α e−(βj+1−βj) log rα e−σ|t| = O(e−

σ
α r−4

α e−σ|t|)

which is qualitatively of the same type of the other terms involved in the computation
of the error.

3.4. The global first approximation. — The approximation u1(x) in (3.2) will
be sufficient for our purposes, however it is so far defined only in a region of the type
N which we have not made precise yet. Since we are assuming that Mα is connected,
the fact that Mα is properly embedded implies that R3 \Mα consists of precisely two
components S− and S+. Let us use the convention that ν points in the direction of
S+. Let us consider the function H defined in R3 \Mα as

H(x) :=
{

1 if x ∈ S+

−1 if x ∈ S−
. (3.10)
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Then our approximation u1(x) approaches H(x) at an exponential rate O(e−σ±|t|) as
|t| increases. The global approximation we will use consists simply of interpolating u1

with H sufficiently well-inside R3 \Mα through a cut-off in |t|. In order to avoid the
problem described in §3.3 and having the coordinates (y, t) well-defined, we consider
this cut-off to be supported in a region y-dependent that expands logarithmically in
rα. Thus we will actually consider a region Nδ expanding at the ends, thus becoming
wider as rα → ∞ than the set Nα

δ previously considered, where the coordinates are
still well-defined.

We consider the open set O in Mα × R defined as

O = { (y, t) ∈ Mα×R, |t+h1(αy)| < δ

α
+ 4 max {σ−1

− , σ−1
+ } log(1+rα(y)) =: ρα(y) }

(3.11)
where δ is small positive number. We consider the the region N =: Nδ of points x of
the form

x = Xh(y, t) = y + (t + h0(αy) + h1(αy)) ν(αy), (y, t) ∈ O,

namely Nδ = Xh(O). The coordinates (y, t) are well-defined in Nδ for any sufficiently
small δ: indeed the map Xh is one to one in O thanks to assumption (3.4) and the
fact that h1 = O(α). Moreover, Lemma 2.1 applies in Nδ.

Let η(s) be a smooth cut-off function with η(s) = 1 for s < 1 and = 0 for s > 2.
and define

ηδ(x) :=
{

η( |t + h1(αy)| − ρα(y)− 3) if x ∈ Nδ ,
0 if x 6∈ Nδ

(3.12)

where ρα is defined in (3.11). Then we let our global approximation w(x) be simply
defined as

w := ηδu1 + (1− ηδ)H (3.13)

where H is given by (3.10) and u1(x) is just understood to be H(x) outside Nδ.

Since H is an exact solution in R3 \Mδ, the global error of approximation is simply
computed as

S(w) = ∆w + f(w) = ηδS(u1) + E (3.14)

where

E = 2∇ηδ∇u1 + ∆ηδ(u1 −H) + f(ηδu1 + (1− ηδ)H) ) − ηδf(u1) .

The new error terms created are of exponentially small size O(e−
σ
α ) but have in

addition decay with rα. In fact we have

|E| ≤ Ce−
δ
α r−4

α .

Let us observe that |t + h1(αy)| = |z − h0(αy)| where z is the normal coordinate to
Mα, hence ηδ does not depend on h1, in particular the term ∆ηδ does involves second
derivatives of h1 on which we have not made assumptions yet.
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4. The proof of Theorem 1

The proof of Theorem 1 involves various ingredients whose detailed proofs are fairly
technical. In order to keep the presentation as clear as possible, in this section we
carry out the proof, skimming it from several (important) steps, which we state as
lemmas or propositions, with complete proofs postponed for the subsequent sections.

We look for a solution u of the Allen Cahn equation (1.1) in the form

u = w + ϕ (4.1)

where w is the global approximation defined in (3.13) and ϕ is in some suitable sense
small. Thus we need to solve the following problem

∆ϕ + f ′(w)ϕ = −S(w)−N(ϕ) (4.2)

where
N(ϕ) = f(w + ϕ)− f(w)− f ′(w)ϕ.

Next we introduce various norms that we will use to set up a suitable functional
analytic scheme for solving problem (4.2). For a function g(x) defined in R3, 1 < p ≤
+∞, µ > 0, and α > 0 we write

‖g‖p,µ,∗ := sup
x∈R3

(1 + r(αx))µ‖g‖Lp(B(x,1)), r(x′, x3) = |x′| .

On the other hand, given numbers µ ≥ 0, 0 < σ < min{σ+, σ−}, p > 3, and
functions g(y, t) and φ(y, t) defined in Mα × R we consider the norms

‖g‖p,µ,σ := sup
(y,t)∈Mα×R

rα(y)µ eσ|t|
(∫

B((y,t),1)

|f |p dVα

) 1
p

. (4.3)

Consistently we set

‖g‖∞,µ,σ := sup
(y,t)∈Mα×R

rα(y)µ eσ|t| ‖f‖L∞(B((y,t),1)) (4.4)

and let
‖φ‖2,p,µ,σ := ‖D2φ‖p,µ,σ + ‖Dφ‖∞,µ,σ + ‖φ‖∞,µ,σ . (4.5)

We consider also for a function g(y) defined in M the Lp-weighted norm

‖f‖p,β :=
(∫

M

|f(y)|p (1 + |y|β )p dV (y)
)1/p

= ‖ (1 + |y|β) f ‖Lp(M) (4.6)

where p > 1 and β > 0.

We assume in what follows, that for a certain constant K > 0 and p > 3 we have
that the parameter function h1(y) satisfies

‖h1‖∗ := ‖h1‖L∞(M) + ‖(1 + r2)Dh1‖L∞(M) + ‖D2h1‖p,4− 4
p
≤ Kα . (4.7)

Next we reduce problem (4.2) to solving one qualitatively similar (equation (4.20)
below) for a function φ(y, t) defined in the whole space Mα × R.
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4.1. Step 1: the gluing reduction. — We will follow the following procedure.
Let us consider again η(s), a smooth cut-off function with η(s) = 1 for s < 1 and = 0
for s > 2, and define

ζn(x) :=
{

η( |t + h1(αy)| − δ
α + n) if x ∈ Nδ

0 if x 6∈ Nδ
. (4.8)

We look for a solution ϕ(x) of problem (4.2) of the following form

ϕ(x) = ζ2(x)φ(y, t) + ψ(x) (4.9)

where φ is defined in entire Mα×R, ψ(x) is defined in R3 and ζ2(x)φ(y, t) is understood
as zero outside Nδ.

We compute, using that ζ2 · ζ1 = ζ1,

S(w + ϕ) = ∆ϕ + f ′(w)ϕ + N(ϕ) + S(w) =

ζ2 [∆φ + f ′(u1)φ + ζ1(f ′(u1) + H(t))ψ + ζ1N(ψ + φ) + S(u1) ] +

∆ψ − [ (1− ζ1)f ′(u1) + ζ1H(t) ]ψ +

(1− ζ2)S(w) + (1− ζ1)N(ψ + ζ2φ) + 2∇ζ1∇φ + φ∆ζ1 (4.10)
where H(t) is any smooth, strictly negative function satisfying

H(t) =
{

f ′(+1) if t > 1 ,
f ′(−1) if t < −1 .

Thus, we will have constructed a solution ϕ = ζ2φ + ψ to problem (4.2) if we require
that the pair (φ, ψ) satisfies the following coupled system

∆φ+ f ′(u1)φ + ζ1(f ′(u1)−H(t))ψ + ζ1N(ψ +φ)+S(u1) = 0 for |t| < δ

α
+3 (4.11)

∆ψ + [ (1− ζ1)f ′(u1) + ζ1H(t) ]ψ +

(1− ζ2)S(w) + (1− ζ1)N(ψ + ζ2φ) + 2∇ζ1∇φ + φ∆ζ1 = 0 in R3 . (4.12)

In order to find a solution to this system we will first extend equation (4.11) to
entire Mα × R in the following manner. Let us set

B(φ) = ζ4[∆x − ∂tt −∆y,Mα ] φ (4.13)
where ∆x is expressed in (y, t) coordinates using expression (2.14) and B(φ) is

understood to be zero for |t + h1| > δ
α + 5. The other terms in equation (4.11) are

simply extended as zero beyond the support of ζ1. Thus we consider the extension of
equation (4.11) given by

∂ttφ + ∆y,Mαφ + B(φ) + f ′(w(t))φ = −S̃(u1)
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−{[f ′(u1)− f ′(w)]φ + ζ1(f ′(u1)−H(t))ψ + ζ1N(ψ + φ)} in ∈ Mα × R, (4.14)

where we set, with reference to expression (3.9),

S̃(u1) = −α2[|A|2h1 + ∆Mh1] w′ + α2 a0
ij (2∂ih0∂jh1 + ∂ih1∂jh1 )w′′

−α4 ( |A|2tψ′0−a0
ij∂ih0∂jh0 tψ′1 )∆h1 + ζ4 [α3(t+h)a1

ij ∂ih∂jhw′′+R1(y, t) ] (4.15)

and, we recall
R1 = R1(y, t, h1(αy),∇Mh1(αy))

with

|DıR1(y, t, ı, )|+ |DR1(y, t, ı, )|+ |R1(y, t, ı, )| ≤ Cα3(1 + rα(y))−4e−σ|t|. (4.16)

In summary S̃(u1) coincides with S(u1) if ζ4 = 1 while outside the support of ζ4,
their parts that are not defined for all t are cut-off.

To solve the resulting system (4.12)-(4.14), we find first solve equation (4.12) in ψ
for a given φ a small function in absolute value. Noticing that the potential [ (1 −
ζ1)f ′(u1) + ζ1H(t) ] is uniformly negative, so that the linear operator is qualitatively
like ∆ − 1 and using contraction mapping principle, a solution ψ = Ψ(φ) is found
according to the following lemma, whose detailed proof we carry out in §7.1.2.

Lemma 4.1. — For all sufficiently small α the following holds. Given φ with
‖φ‖2,p,µ,σ ≤ 1, there exists a unique solution ψ = Ψ(φ) of problem (4.12) such that

‖ψ‖X := ‖D2ψ‖p,µ,∗ + ‖ψ‖p,µ,∗ ≤ Ce−
σδ
α . (4.17)

Besides, Ψ satisfies the Lipschitz condition

‖Ψ(φ1)−Ψ(φ2)‖X ≤ C e−
σδ
α ‖φ1 − φ2‖2,p,µ,σ . (4.18)

Thus we replace ψ = Ψ(φ) in the first equation (4.11) so that by setting

N(φ) := B(φ) + [f ′(u1)− f ′(w)]φ + ζ1(f ′(u1)−H(t))Ψ(φ) + ζ1N(Ψ(φ) + φ), (4.19)

our problem is reduced to finding a solution φ to the following nonlinear, nonlocal
problem in Mα × R.

∂ttφ + ∆y,Mαφ + f ′(w)φ = −S̃(u1)− N(φ) in Mα × R. (4.20)

Thus, we concentrate in the remaining of the proof in solving equation (4.20). As
we hinted in §3.2, we will find a solution of problem (4.20) by considering two steps:
(1) “Improving the approximation”, roughly solving for φ that eliminates the part
of the error that does not contribute to the “projections”

∫
[S̃(U1) + N(φ)]w′(t)dt,

which amounts to a nonlinear problem in φ, and (2) Adjust h1 in such a way that the
resulting projection is actually zero. Let us set up the scheme for step (1) in a precise
form.
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4.2. Step 2: Eliminating terms not contributing to projections. — Let us
consider the problem of finding a function φ(y, t) such that for a certain function c(y)
defined in Mα, we have

∂ttφ + ∆y,Mα
φ = −S̃(u1)− N(φ) + c(y)w′(t) in Mα × R,∫

R
φ(y, t)w′(t) dt = 0, for all y ∈ Mα .

(4.21)

Solving this problem for φ amounts to “eliminating the part of the error that does not
contribute to the projection” in problem (4.20). To justify this phrase let us consider
the associated linear problem in Mα × R

∂ttφ + ∆y,Mαφ + f ′(w(t))φ = g(y, t) + c(y)w′(t), for all (y, t) ∈ Mα × R,
∫ ∞

−∞
φ(y, t)w′(t) dt = 0, for all y ∈ Mα .

(4.22)

Assuming that the corresponding operations can be carried out, let us multiply the
equation by w′(t) and integrate in t for fixed y. We find that

∆y,Mα

∫

R
φ(y, t) w′ dt +

∫

R
φ(y, t) [w′′′ + f ′(w)w′] dt =

∫

R
g w′ + c(y)

∫

R
w′2 .

The left hand side of the above identity is zero and then we find that

c(y) = −
∫
R g(y, t)w′dt∫
R w′2dt

, (4.23)

hence a φ solving problem (4.22). φ precisely solves or eliminates the part of g which
does not contribute to the projections in the equation ∆φ + f ′(w)φ = g, namely the
same equation with g replaced by g̃ given by

g̃(y, t) = g(y, t)−
∫
R f(y, ·)w′∫
R w′2

w′(t) . (4.24)

The term c(y) in problem (4.21) has a similar role, except that we cannot find it so
explicitly.

In order to solve problem (4.21) we need to devise a theory to solve problem (4.22)
where we consider a class of right hand sides g with a qualitative behavior similar to
that of the error S(u1). As we have seen in (4.15), typical elements in this error are of
the type O((1 + rα(y))−µe−σ|t|), so this is the type of functions g(y, t) that we want
to consider. This is actually the motivation to introduce the norms (4.3), (4.4) and
(4.5). We will prove that problem (4.22) has a unique solution φ which respects the
size of g in norm (4.3) up to its second derivatives, namely in the norm (4.5). The
following fact holds.

Proposition 4.1. — Given p > 3, µ ≥ 0 and 0 < σ < min{σ−, σ+}, there exists a
constant C > 0 such that for all sufficiently small α > 0 the following holds. Given
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f with ‖g‖p,µ,σ < +∞, then Problem (4.22) with c(y) given by (4.23), has a unique
solution φ with ‖φ‖∞,µ,σ < +∞. This solution satisfies in addition that

‖φ‖2,p,µ,σ ≤ C‖g‖p,µ,σ . (4.25)

We will prove this result in §5 . After Proposition 4.1, solving Problem (4.21) for
a small φ is easy using the small Lipschitz character of the terms involved in the
operator N(φ) in (4.19) and contraction mapping principle. The error term S̃(u1)
satisfies

‖S̃(u1) + α2∆h1w
′‖p,4,σ ≤ Cα3. (4.26)

Using this, and the fact that N(φ) defines a contraction mapping in a ball center zero
and radius O(α3) in ‖ ‖2,p,4,σ, we conclude the existence of a unique small solution
φ to problem (4.21) whose size is O(α3) for this norm. This solution φ turns out to
define an operator in h1 φ = Φ(h1) which is Lipschitz in the norms ‖ ‖∗ appearing in
condition (4.7). In precise terms, we have the validity of the following result, whose
detailed proof we postpone for §7.2.

Proposition 4.2. — Assume p > 3, 0 ≤ µ ≤ 3, 0 < σ < min{σ+, σ−}. There exists
a K > 0 such that problem (7.8) has a unique solution φ = Φ(h1) such that

‖φ‖2,p,µ,σ ≤ Kα3 .

Besides, Φ has a Lipschitz dependence on h1 satisfying (4.7) in the sense that

‖Φ(h1)− Φ(h2)‖2,p,µ,σ ≤ Cα2‖h1 − h2‖∗. (4.27)

4.3. Step 3: Adjusting h1 to make the projection zero. — In order to con-
clude the proof of the theorem, we have to carry out the second step, namely adjusting
h1, within a region of the form (4.7) for suitable K in such a way that the “projec-
tions” are identically zero, namely making zero the function c(y) found for the solution
φ = Φ(h1) of problem (4.21). Using expression (4.23) for c(y) we find that

c(y)
∫

R
w′2 =

∫

R
S̃(u1)w′ dt +

∫

R
N(Φ(h1) ) w′ dt . (4.28)

Now, setting c∗ :=
∫
R w′2dt and using same computation employed to derive for-

mula (3.6), we find from expression (4.15) that
∫

R
S̃(u1)(y, t)w′(t) dt = −c∗ α2(∆Mh1 + h1|A|2) + c∗α2G1(h1)

where

c∗G1(h1) = −α2 ∆h1 ( |A|2
∫

R
tψ′0w

′ dt− a0
ij∂ih0∂jh0

∫

R
tψ′1w

′ dt ) +

α ∂i(h0 + h1)∂j(h0 + h1)
∫

R
ζ4(t + h)a1

ijw
′′w′ dt + α−2

∫

R
ζ4 R1(y, t, h1,∇Mh1 )w′ dt

(4.29)
and we recall that R1 is of size O(α3) in the sense (4.16). Thus, setting

c∗G2(h1) := α−2

∫

R
N(Φ(h1) ) w′ dt, G(h1) := G1(h1) + G2(h1), (4.30)
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we find that the equation c(y) = 0 is equivalent to the problem

J (h1) = ∆Mh1 + |A|2h1 = G(h1) in M. (4.31)

Therefore, we will have proven Theorem 1 if we find a function h1 defined on M
satisfying constraint (4.7) for a suitable K that solves equation (4.31). Again, this
is not so direct since the operator J has a nontrivial bounded kernel. Rather than
solving directly (4.31), we consider first a projected version of this problem, namely
that of finding h1 such that for certain scalars c1, . . . , cJ we have

J (h1) = G(h1) +
J∑

i=1

ci

1 + r4
ẑi in M,

∫

M

ẑih

1 + r4
dV = 0, i = 1, . . . J. (4.32)

Here ẑ1, ..., ẑJ is a basis of the vector space of bounded Jacobi fields.

In order to solve problem (4.32) we need a corresponding linear invertibility theory.
This leads us to consider the linear problem

J (h) = f +
J∑

i=1

ci

1 + r4
ẑi in M,

∫

M

ẑih

1 + r4
dV = 0, i = 1, . . . J. (4.33)

Here ẑ1, ..., ẑJ are bounded, linearly independent Jacobi fields, and J is the dimension
of the vector space of bounded Jacobi fields.

We will prove in §6.1 the following result.

Proposition 4.3. — Given p > 2 and f with ‖f‖p,4− 4
p

< +∞, there exists a unique
bounded solution h of problem (4.33). Moreover, there exists a positive number C =
C(p,M) such that

‖h‖∗ := ‖h‖∞ + ‖ (1 + |y|2)Dh‖∞ + ‖D2h ‖p,4− 4
p
≤ C‖f‖p,4− 4

p
. (4.34)

Using the fact that G is a small operator of size O(α) uniformly on functions h1

satisfying (4.7), Proposition 4.3 and contraction mapping principle yield the following
result, whose detailed proof we carry out in §8.

Proposition 4.4. — Given p > 3, there exists a number K > 0 such that for all
sufficiently small α > 0 there is a unique solution h1 of problem (4.32) that satisfies
constraint (4.7).
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4.4. Step 3: Conclusion. — At the last step we prove that the constants ci found
in equation (4.32) are in reality all zero, without the need of adjusting any further
parameters but rather as a consequence of the natural invariances of the of the full
equation. The key point is to realize what equation has been solved so far.

First we observe the following. For each h1 satysfying (4.7), the pair (φ, ψ) with
φ = Φ(h1), ψ = Ψ(φ), solves the system

∆φ+ f ′(u1)φ + ζ1(f ′(u1)−H(t))ψ + ζ1N(ψ +φ)+S(u1) = c(y)w′(t) for |t| < δ

α
+3

∆ψ + [ (1− ζ1)f ′(u1) + ζ1H(t) ]ψ +

(1− ζ2)S(w) + (1− ζ1)N(ψ + ζ2φ) + 2∇ζ1∇φ + φ∆ζ1 = 0 in R3 .

Thus setting

ϕ(x) = ζ2(x)φ(y, t) + ψ(x), u = w + ϕ ,

we find from formula (4.10) that

∆u + f(u) = S(w + ϕ) = ζ2c(y)w′(t) .

On the other hand choosing h1 as that given in Proposition 4.4 which solves problem
(4.32), amounts precisely to making

c(y) = c∗α2
J∑

i=1

ci
ẑi(αy)

1 + rα(y)4

for certain scalars ci. In summary, we have found h1 satisfying constraint (4.7) such
that

u = w + ζ2(x)Φ(h1) + Ψ(Φ(h1) ) (4.35)

solves the equation

∆u + f(u) =
J∑

j=1

c̃i

1 + r4
α

ẑi(αy)w′(t) (4.36)

where c̃i = c∗α2ci. Testing equation (4.36) against the generators of the rigid motions
∂iu i = 1, 2, 3, −x2∂1u + x1∂2u, and using the balancing formula for the minimal
surface and the zero average of the numbers βj in the definition of h0, we find a
system of equations that leads us to ci = 0 for all i, thus conclude the proof. We will
carry out the details in §9.

In sections §5-9 we will complete the proofs of the intermediate steps of the program
designed in this section.
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5. The linearized operator

In this section we will prove Proposition 4.1. At the core of the proof of the stated
a priori estimates is the fact that the one-variable solution w of (1.1) is nondegenerate
in L∞(R3) in the sense that the linearized operator

L(φ) = ∆yφ + ∂ttφ + f ′(w(t))φ, (y, t) ∈ R3 = R2 × R,

is such that the following property holds.

Lemma 5.1. — Let φ be a bounded, smooth solution of the problem

L(φ) = 0 in R2 × R. (5.1)

Then φ(y, t) = Cw′(t) for some C ∈ R.

Proof. — We begin by reviewing some known facts about the one-dimensional oper-
ator L0(ψ) = ψ′′ + f ′(w)ψ. Assuming that ψ(t) and its derivative decay sufficiently
fast as |t| → +∞ and defining ψ(t) = w′(t)ρ(t), we get that

∫

R
[|ψ′|2 − f ′(w)ψ2] dt =

∫

R
L0(ψ)ψ dt =

∫

R
w′2|ρ′|2 dt,

therefore this quadratic form is positive unless ψ is a constant multiple of w′. Using
this and a standard compactness argument we get that there is a constant γ > 0 such
that whenever

∫
R ψw′ = 0 with ψ ∈ H1(R) we have that

∫

R
( |ψ′|2 − f ′(w)ψ2 ) dt ≥ γ

∫

R
( |ψ′|2 + |ψ|2 ) dt. (5.2)

Now, let φ be a bounded solution of equation (5.1). We claim that φ has exponential
decay in t, uniform in y. Let us consider a small number σ > 0 so that for a certain
t0 > 0 and all |t| > t0 we have that

f ′(w) < −2σ2.

Let us consider for ε > 0 the function

gε(t, y) = e−σ(|t|−t0) + ε

2∑

i=1

cosh(σyi)

Then for |t| > t0 we get that

L(gδ) < 0 if |t| > t0.

As a conclusion, using maximum principle, we get

|φ| ≤ ‖φ‖∞ gε if |t| > t0,

and letting ε → 0 we then get

|φ(y, t)| ≤ C‖φ‖∞e−σ|t| if |t| > t0 .

Let us observe the following fact: the function

φ̃(y, t) = φ(y, t)−
(∫

R
w′(ζ)φ(y, ζ) dζ

)
w′(t)∫
R w′2
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also satisfies L(φ̃) = 0 and, in addition,
∫

R
w′(t) φ̃(y, t) dt = 0 for all y ∈ R2. (5.3)

In view of the above discussion, it turns out that the function

ϕ(y) :=
∫

R
φ̃2(y, t) dt

is well defined. In fact so are its first and second derivatives by elliptic regularity of φ,
and differentiation under the integral sign is thus justified. Now, let us observe that

∆yϕ(y) = 2
∫

R
∆yφ̃ · φ̃ dt + 2

∫

R
|∇yφ̃|2

and hence

0 =
∫

R
(L(φ̃) · φ̃)

=
1
2
∆yϕ−

∫

R
|∇yφ̃|2 dz −

∫

R
( |φ̃t|2 − f ′(w)φ̃2 ) dt .

(5.4)

Let us observe that because of relations (5.3) and (5.2), we have that
∫

R
( |φ̃t|2 − f ′(w)φ̃2 ) dt ≥ γϕ.

It follows then that

1
2
∆yϕ− γϕ ≥ 0.

Since ϕ is bounded, from maximum principle we find that ϕ must be identically equal
to zero. But this means

φ(y, t) =
(∫

R
w′(ζ)φ(y, ζ) dζ

)
w′(t)∫
R w′2

. (5.5)

Then the bounded function

g(y) =
∫

R
wζ(ζ)φ(y, ζ) dζ

satisfies the equation

∆yg = 0, in R2. (5.6)

Liouville’s theorem implies that g ≡ constant and relation (5.5) yields φ(y, t) = Cw′(t)
for some C. This concludes the proof.
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5.1. A priori estimates. — We shall consider problem (4.22) in a slightly more
general form, also in a domain finite in y-direction. For a large number R > 0 let us
set

MR
α := {y ∈ Mα / r(αy) < R}

and consider the variation of Problem (4.22) given by

∂ttφ + ∆y,Mα
φ + f ′(w(t))φ = g(y, t) + c(y)w′(t) in MR

α × R,

φ = 0, on ∂MR
α × R,

∫ ∞

−∞
φ(y, t) w′(t) dt = 0 for all y ∈ MR

α ,

(5.7)

where we allow R = +∞ and

c(y)
∫

R
w′2dt = −

∫

R
g(y, t)w′ dt .

We begin by proving a priori estimates.

Lemma 5.2. — Let us assume that 0 < σ < min{σ−, σ+} and µ ≥ 0. Then there
exists a constant C > 0 such that for all small α and all large R, and every solution
φ to Problem (5.13) with ‖φ‖∞,µ,σ < +∞ and right hand side g satisfying ‖g‖p,µ,σ <
+∞ we have

‖D2φ‖p,µ,σ + ‖Dφ‖∞,µ,σ + ‖φ‖∞,µ,σ ≤ C‖g‖p,µ,,σ. (5.8)

Proof. — For the purpose of the a priori estimate, it clearly suffices to consider the
case c(y) ≡ 0. By local elliptic estimates, it is enough to show that

‖φ‖∞,µ,σ ≤ C‖g‖p,µ,σ. (5.9)

Let us assume by contradiction that (5.9) does not hold. Then we have sequences
α = αn → 0, R = Rn →∞, gn with ‖gn‖p,µ,σ → 0, φn with ‖φn‖∞,µ,σ = 1 such that

∂ttφn + ∆y,Mαφn + f ′(w(t))φn = gn in MR
α × R,

φn = 0 on ∂MR
α × R,

∫ ∞

−∞
φn(y, t)w′(t) dt = 0 for all y ∈ MR

α .

(5.10)

Then we can find points (yn, tn) ∈ MR
α × R such that

e−σ|tn|(1 + r(αnyn))µ |φn(yn, tn)| ≥ 1
2
.

We will consider different possibilities. We may assume that either rα(yn) = O(1)
or rα(yn) → +∞.
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5.1.1. Case r(αnyn) bounded.— We have αnyn lies within a bounded subregion of
M , so we may assume that

αnyn → ỹ0 ∈ M.

Assume that ỹ0 ∈ Yk(Uk) for one of the local parametrization of M . We consider
ỹn, ỹ0 ∈ Uk with Yk(ỹn) = αnyn, Yk(ỹ0) = ỹ0.

On α−1
n Yk(Uk), Mα is parameterized by Yk,αn(y) = α−1

n Yk(αny), y ∈ α−1
n Uk. Let

us consider the local change of variable,

y = α−1ỹn + y.

5.1.2. Subcase tn bounded. — Let us assume first that |tn| ≤ C. Then, setting

φ̃n(y, t) := φ̃n(α−1ỹn + y, t),

the local equation becomes

a0
ij(ỹn + αny)∂ij φ̃n + αnb0

j (ỹn + αny)∂j φ̃n + ∂ttφ̃n + f ′(w(t))φ̃n = g̃n(y, t)

where g̃n(y, t) := gn(ỹn + αy, t). We observe that this expression is valid for y well-
inside the domain α−1Uk which is expanding to entire R2. Since φ̃n is bounded, and
g̃n → 0 in Lp

loc(R2), we obtain local uniform W 2,p-bound. Hence we may assume,
passing to a subsequence, that φ̃n converges uniformly in compact subsets of R3 to a
function φ̃(y, t) that satisfies

a0
ij(ỹ)∂ij φ̃ + ∂ttφ̃ + f ′(w(t))φ̃ = 0 .

Thus φ̃ is non-zero and bounded. After a rotation and stretching of coordinates, the
constant coefficient operator a0

ij(ỹ)∂ij becomes ∆y. Hence Lemma 5.1 implies that,
necessarily, φ̃(y, t) = Cw′(t). On the other hand, we have

0 =
∫

R
φ̃n(y, t) w′(t) dt −→

∫

R
φ̃(y, t) w′(t) dt as n →∞.

Hence, necessarily φ̃ ≡ 0. But we have (1 + r(αnyn))µ |φ̃n(0, tn)| ≥ 1
2 , and since tn

and r(αnyn) were bounded, the local uniform convergence implies φ̃ 6= 0. We have
reached a contradiction.

5.1.3. Subcase tn unbounded. — If yn is in the same range as above, but, say, tn →
+∞, the situation is similar. The variation is that we define now

φ̃n(y, t) = eσ(tn+t)φn(α−1
n yn + y, tn + t), g̃n(y, t) = eσ(tn+t)gn(α−1

n yn + y, tn + t).

Then φ̃n is uniformly bounded, and g̃n → 0 in Lp
loc(R3). Now φ̃n satisfies

a0
ij(yn + αny) ∂ij φ̃n + ∂ttφ̃n + αnbj(yn + αny) ∂j φ̃n

−2σ ∂tφ̃n + (f ′(w(t + tn) + σ2) φ̃n = g̃n.

We fall into the limiting situation

a∗ij ∂ij φ̃ + ∂ttφ̃ − 2σ ∂tφ̃ − (σ2
+ − σ2) φ̃ = 0 in R3 (5.11)
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where a∗ij is a positive definite, constant matrix and φ̃ 6= 0. But since, by hypothesis
σ2

+ − σ2 > 0, maximum principle implies that φ̃ ≡ 0. We obtain a contradiction.

5.1.4. Case r(αnyn) → +∞.— In this case we may assume that the sequence αnyn di-
verges along one of the ends, say Mk. Considering now the parametrization associated
to the end, y = ψk(y), given by (2.1), which inherits that for Mαn,k, y = α−1

n ψk(αny).
Thus in this case a0

ij(ỹn + αny) → δij , uniformly in compact subsets of R2.

5.1.5. Subcase tn bounded. — Let us assume first that the sequence tn is bounded
and set

φ̃n(y, t) = (1 + r(ỹn + αny))µ φn(α−1
n ỹn + y, tn + t).

Then

∂j(r−µ
αn

φ̃n) = −µα r−µ−1∂jrφ̃ + r−µ∂j φ̃

∂ij(r−µ
αn

φ̃n) = µ(µ + 1)α2r−µ−2∂ir∂jrφ− µα2r−µ−1∂ijrφ̃− µαr−µ−1∂jr∂iφ̃

+r−µ∂ij φ̃− µαr−µ−1∂ir∂j φ̃ .

Now ∂ir = O(1), ∂ijr = O(r−1), hence we have

∂j(r−µ
αn

φ̃n) = r−µ
[
∂j φ̃ + O(αr−1

α )φ̃
]

,

∂ij(r−µ
αn

φ̃n) = r−µ
α

[
∂ij φ̃ + O(αr−1

α )∂iφ̃ + O(α2r−2
α )φ̃

]
,

and the equation satisfied by φ̃n has therefore the form

∆yφ̃n + ∂ttφ̃n + o(1)∂ij φ̃n + o(1) ∂j φ̃n + o(1) φ̃n + f ′(w(t))φ̃n = g̃n.

where φ̃n is bounded, g̃n → 0 in Lp
loc(R3). From elliptic estimates, we also get uniform

bounds for ‖∂j φ̃n‖∞ and ‖∂ij φ̃n‖p,0,0. In the limit we obtain a φ̃ 6= 0 bounded,
solution of

∆yφ̃ + ∂ttφ̃ + f ′(w(t))φ̃ = 0,

∫

R
φ̃(y, t) w′(t) dt = 0 , (5.12)

a situation which is discarded in the same way as before if φ̃ is defined in R3. There is
however, one more possibility which is that r(αnyn)−Rn = O(1). In such a case we
would see in the limit equation (5.12) satisfied in a half-space, which after a rotation
in the y-plane can be assumed to be

H = {(y, t) ∈ R2 × R / y2 < 0 }, with φ(y1, 0, t) = 0 for all (y1, t) ∈ R2.

By Schwarz’s reflection, the odd extension of φ̃, which achieves for y2 > 0,
φ̃(y1, y2, t) = −φ̃(y1,−y2, t), satisfies the same equation, and thus we fall into one of
the previous cases, again finding a contradiction.
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5.1.6. Subcase tn unbounded. — Let us assume now |tn| → +∞. If tn → +∞ we
define

φ̃n(y, t) = (1 + r(ỹn + αny))µ etn+t φn(α−1
n ỹn + y, tn + t).

In this case we end up in the limit with a φ̃ 6= 0 bounded and satisfying the equation

∆yφ̃ + ∂ttφ̃ − 2σ ∂tφ̃ − (σ2
+ − σ2) φ̃ = 0

either in entire space or in a Half-space under zero boundary condition. This implies
again φ̃ = 0, and a contradiction has been reached that finishes the proof of the a
priori estimates.

5.2. Existence: conclusion of proof of Proposition 4.1. — Let us prove now
existence. We assume first that g has compact support in Mα × R.

∂ttφ + ∆y,Mαφ + f ′(w(t))φ = g(y, t) + c(y)w′(t) in MR
α × R,

φ = 0, on ∂MR
α × R,

∫ ∞

−∞
φ(y, t)w′(t) dt = 0 for all y ∈ MR

α ,

(5.13)

where we allow R = +∞ and

c(y)
∫

R
w′2dt = −

∫

R
g(y, t)w′ dt .

Problem (5.13) has a weak formulation which is the following. Let

H = {φ ∈ H1
0 (MR

α × R) /

∫

R
φ(y, t) w′(t) dt = 0 for all y ∈ MR

α } .

H is a closed subspace of H1
0 (MR

α ×R), hence a Hilbert space when endowed with its
natural norm,

‖φ‖2H =
∫

MR
α

∫

R
( |∂tφ|2 + |∇Mαφ|2 − f ′(w(t)φ2 ) dVα dt .

φ is then a weak solution of Problem (5.13) if φ ∈ H and satisfies

a(φ, ψ) :=
∫

MR
α ×R

(∇Mαφ · ∇Mαψ − f ′(w(t)) φψ ) dVα dt =

−
∫

MR
α ×R

g ψ dVα dt for all ψ ∈ H.

It is standard to check that a weak solution of problem (5.13) is also classical provided
that g is regular enough. Let us observe that because of the orthogonality condition
defining H we have that

γ

∫

MR
α ×R

ψ2 dVα dt ≤ a(ψ,ψ) for all ψ ∈ H.

Hence the bilinear form a is coercive in H, and existence of a unique weak solution
follows from Riesz’s theorem. If g is regular and compactly supported, ψ is also
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regular. Local elliptic regularity implies in particular that φ is bounded. Since for
some t0 > 0, the equation satisfied by φ is

∆φ + f ′(w(t)) φ = c(y)w′(t), |t| > t0, y ∈ MR
α , (5.14)

and c(y) is bounded, then enlarging t0 if necessary, we see that for σ < min{σ+, σ−},
the function v(y, t) := Ce−σ|t|+εeσ|t| is a positive supersolution of equation (5.14), for
a large enough choice of C and arbitrary ε > 0. Hence |φ| ≤ Ce−σ|t|, from maximum
principle. Since MR

α is bounded, we conclude that ‖φ‖p,µ,σ < +∞. From Lemma 5.2
we obtain that if R is large enough then

‖D2φ‖p,µ,σ + ‖Dφ‖∞,µ,σ + ‖φ‖∞,µ,σ ≤ C‖g‖p,µ,σ (5.15)

Now let us consider Problem (5.13) for R = +∞, allowed above, and for ‖g‖p,µ,σ <
+∞. Then solving the equation for finite R and suitable compactly supported gR,
we generate a sequence of approximations φR which is uniformly controlled in R by
the above estimate. If gR is chosen so that gR → g in Lp

loc(Mα ×R) and ‖gR‖p,µ,σ ≤
C‖g‖p,µ,σ, We obtain that φR is locally uniformly bounded, and by extracting a
subsequence, it converges uniformly locally over compacts to a solution φ to the full
problem which respects the estimate (4.25). This concludes the proof of existence,
and hence that of the proposition.

6. The Jacobi operator

We consider this section the problem of finding a function h such that for certain
constants c1, . . . , cJ ,

J (h) = ∆Mh + |A|2h = f +
J∑

j=1

ci

1 + r4
ẑi in M, (6.1)

∫

M

ẑih

1 + r4
= 0, i = 1, . . . , J (6.2)

and prove the result of Proposition 4.3. We will also deduce the existence of Jacobi
fields of logarithmic growth as in Lemma 3.1. We recall the definition of the norms
‖ ‖p,β in (4.6).

Outside of a ball of sufficiently large radius R0, it is natural to parameterize each
end of M , y3 = Fk(y1, y2) using the Euclidean coordinates y = (y1, y2) ∈ R2. The
requirement in f on each end amounts to f̃ ∈ Lp(B(0, 1/R0)) where

f̃(y) := |y|−4f(|y|−2y) . (6.3)

Indeed, observe that

‖f̃‖p
Lp(B(0,1/R0))

=
∫

B(0,1/R0)

|y|−4p| f(|y|−2y) |p dy =
∫

R2\B(0,R0)

|y|4(p−1)|f(y)|p dy .

In order to prove the proposition we need some a priori estimates.
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Lemma 6.1. — Let p > 2. For each R0 > 0 sufficiently large there exists a constant
C > 0 such that if

‖f‖p,4− 4
p

+ ‖h‖L∞(M) < +∞
and h solves

∆Mh + |A|2h = f, y ∈ M, |y| > R0 ,

then

‖h‖L∞(|y|>2R0) + ‖ |y|2Dh‖L∞(|y|>2R0) + ‖ |y|4− 4
p D2h‖Lp(|y|>2R0) ≤

C [ ‖f‖p,4− 4
p

+ ‖h‖L∞(R0<|y|<3R0) ] .

Proof. — Along each end Mk of M , ∆M can be expanded in the coordinate y as

∆M = ∆ + O(|y|−2)D2 + O(|y|−3)D.

A solution of h of equation (6.1) satisfies

∆Mh + |A|2h = f, |y| > R0

for a sufficiently large R0. Let us consider a Kelvin’s transform

h(y) = h̃(y/|y|2).
Then we get

∆h(y) = |y|−4(∆h̃)(y/|y|2) .

Besides

O(|y|−2)D2h(y) + O(|y|−3)Dh(y) = O(|y|−6)D2h̃(y/|y|2) + O(|y|−5)Dh̃(y/|y|2) .

Hence

(∆Mh)(y/|y|2) = |y|4
[
∆h̃(y) + O(|y|2)D2h̃(y) + O(|y|)Dh̃(y)

]
.

Then h̃ satisfies the equation

∆h̃ + O(|y|2)D2h̃ + O(|y|)Dh̃ + O(1)h = f̃(y), 0 < |y| < 1
R0

where f̃ is given by (6.3). The operator above satisfies maximum principle in B(0, 1
R0

)
if R0 is fixed large enough. This, the fact that h̃ is bounded, and Lp-elliptic regularity
for p > 2 in two dimensional space imply that

‖h̃‖L∞(B(0,1/2R0)) + ‖Dh̃‖L∞(B(0,1/2R0)) + ‖D2h̃‖Lp(B(0,1/2R0)) ≤

C[‖f̃‖Lp((B(0,1/R0)) + ‖h̃‖L∞(1/3R0<|y|<1/R0)] ≤

C [ ‖f‖p,4− 4
p

+ ‖h‖L∞(B(R0<|y|<3R0)) ] .

Let us observe that

‖h̃‖L∞(B(0,1/2R0)) = ‖h‖L∞(|y|>2R0),

‖Dh̃‖L∞(B(0,1/2R0)) = ‖ |y|2 Dh‖L∞(|y|>2R0).
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Since
|D2h(y)| ≤ C( |y|−4 |D2h̃( |y|−2y)|+ |y|−3|Dh̃( |y|−2y)| )

then

|y|4− 4
p |D2h(y)| ≤ C( |y|−4/p|D2h̃( |y|−2y)|+ |y|− 4

p−1|Dh̃(|y|−2y)| ).
Hence ∫

|y|>2R0

|y|4p−4|D2h|pdy ≤

C(
∫

B(0,1/2R0)

|D2h̃(y)|p dy + ‖Dh̃‖p
L∞(B(0,1/2R0))

∫

|y|>2R0

|y|−4−pdy ).

It follows that

‖h‖L∞(|y|>2R0) + ‖ |y|2Dh‖L∞(|y|>2R0) + ‖ |y|4− 4
p D2h‖Lp(|y|>2R0) ≤

C [ ‖f‖p,4− 4
p

+ ‖h‖L∞(B(R0<|y|<3R0)) ] .

Since this estimate holds at each end, the result of the lemma follows, after possibly
changing slightly the value R0.

Lemma 6.2. — Under the conditions of Lemma 6.1, assume that h is a bounded
solution of Problem (6.1)-(6.2). Then the a priori estimate (4.34) holds.

Proof. — Let us observe that this a priori estimate in Lemma 6.1 implies in particular
that the Jacobi fields ẑi satisfy

∇ẑi(y) = O(|y|−2) as |y| → +∞.

Using ẑi as a test function in a ball B(0, ρ) in M we obtain∫

∂B(0,ρ)

(h∂ν ẑi − ẑi∂ν ẑi) +
∫

|y|<ρ

(∆M ẑi + |A|2ẑi)h =

∫

|y|<ρ

fẑi +
J∑

j=1

cj

∫

M

ẑiẑj

1 + r4
.

Since the boundary integral in the above identity is of size O(ρ−1) we get
∫

M

fẑi +
J∑

j=1

cj

∫

M

ẑiẑj

1 + r4
= 0 (6.4)

so that in particular

|cj | ≤ C‖f‖p,4− 4
p

for all j = 1, . . . , J. (6.5)

In order to prove the desired estimate, we assume by contradiction that there are
sequences hn, fn with ‖hn‖∞ = 1 and ‖fn‖p,4− 4

p
→ 0, such that

∆Mhn + |A|2hn = fn +
J∑

j=1

cn
i ẑi

1 + r4
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∫

M

hnẑi

1 + r4
= 0 for all i = 1, . . . , J.

Thus according estimate (6.5), we have that cn
i → 0. From Lemma 6.1 we find

‖hn‖L∞(|y|>2R0) ≤ C[o(1) + ‖hn‖L∞(B(0,3R0))] .

The latter inequality implies that

‖hn‖L∞(B(0,3R0)) ≥ γ > 0.

Local elliptic estimates imply a C1 bound for hn on bounded sets. This implies
the presence of a subsequence hn which we denote the same way such that hn → h
uniformly on compact subsets of M , where h satisfies

∆Mh + |A|2h = 0 .

h is bounded hence, by the nondegeneracy assumption, it is a linear combination of
the functions ẑi. Besides h 6= 0 and satisfies∫

M

hẑi

1 + r4
= 0 for all i = 1, . . . , J .

The latter relations imply h = 0, hence a contradiction that proves the validity of the
a priori estimate.

6.1. Proof of Proposition 4.3. — Thanks to Lemma 6.2 it only remains to prove
existence of a bounded solution to problem (6.1)-(6.2). Let f be as in the statement
of the proposition. Let us consider the Hilbert space H of functions h ∈ H1

loc(M)
with

‖h‖2H :=
∫

M

|∇h|2 +
1

1 + r4
|h|2 < +∞ ,

∫

M

1
1 + r4

hẑi = 0 for all i = 1, . . . , J .

Problem (6.1)-(6.2) can be formulated in weak form as that of finding h ∈ H with
∫

M

∇h∇ψ − |A|2hψ = −
∫

M

fψ for all ψ ∈ H .

In fact, a weak solution h ∈ H of this problem must be bounded thanks to elliptic
regularity, with the use of Kelvin’s transform in each end for the control at infinity.
Using that |A|2 ≤ Cr−4, Riesz representation theorem and the fact that H is com-
pactly embedded in L2((1+r4)−1dV ) (which follows for instance by inversion at each
end), we see that this weak problem can be written as an equation of the form

h− T (h) = f̃

where T is a compact operator in H and f̃ ∈ H depends linearly on f . When f = 0,
the a priori estimates found yield that necessarily h = 0. Existence of a solution then
follows from Fredholm’s alternative. The proof is complete.
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6.2. Jacobi fields of logarithmic growth. The proof of Lemma 3.1. — We
will use the theory developed above to construct Jacobi fields with logarithmic growth
as r → +∞, whose existence we stated and use to set up the initial approximation
in Lemma 3.1. One of these Jacobi fields is the generator of dilations of the surface,
z0(y) = y ·ν(y). We will prove next that there are another m−2 linearly independent
logarithmically growing Jacobi fields.

Let us consider an m-tuple of numbers β1, . . . , βm with
∑

j βj = 0, and any smooth
function p(y) in M such that on each end Mj we have that for sufficiently large
r = r(y),

p(y) = (−1)jβj log r(y), y ∈ Mj

for certain numbers β1, . . . , βm that we will choose later. To prove the result of Lemma
3.1 we need to find a solution h0 of the equation J (h0) = 0 of the form h0 = p + h
where h is bounded. This amounts to solving

J (h) = −J (p) . (6.6)

Let us consider the cylinder CR = {x ∈ R3 / r(x) < R} for a large R. Then
∫

M∩CR

J (p) z3dV =
∫

M∩CR

J (z3)z3dV +
∫

∂CR∩M

(z3∂np− p∂nz3) dσ(y) .

Hence ∫

M∩CR

J (p) z3dV =
m∑

j=1

∫

∂CR∩Mj

(z3∂np− p∂nz3) dσ(y) .

Thus using the graph coordinates on each end, we find
∫

M∩CR

J (p) z3dV =

m∑

j=1

(−1)j

[
βj

R

∫

|y|=R

ν3dσ(y) − βj log R

∫

|y|=R

∂rν3dσ(y)

]
+ O(R−1).

We have that, on each end Mj ,

ν3(y) =
(−1)j

√
1 + |∇Fk(y)|2 = (−1)j + O(r−2), ∂rν3(y) = O(r−3).

Hence we get ∫

M∩CR

J (p) z3dV = 2π

m∑

j=1

βj + O(R−1) .

It is easy to see, using the graph coordinates that J (p) = O(r−4) and it is hence
integrable. We pass to the limit R → +∞ and get

∫

M

J (p) z3dV = 2π

m∑

j=1

βj = 0 . (6.7)
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We make a similar integration for the remaining bounded Jacobi fields. For zi =
νi(y) i = 1, 2 we find
∫

M∩CR

J (p) z2dV =
m∑

j=1

(−1)j

[
βj

R

∫

|y|=R

ν2dσ(y) − βj log R

∫

|y|=R

∂rν2dσ(y)

]
+O(R−1).

Now, on Mj ,

ν2(y) =
(−1)j

√
1 + |∇Fk(y)|2 = (−1)jaj

xi

r2
+ O(r−3), ∂rν2(y) = O(r−2).

Hence ∫

M

J (p) zidV = 0 i = 1, 2.

Finally, for z4(y) = (−y2, y1, 0) · ν(y) we find on Mj ,

(−1)jz4(y) = −y2∂2Fj + y1∂1Fj = bj1
y2

r2
− bj2

y1

r2
+ O(r−2), ∂rz4 = O(r−2)

and hence again ∫

M

J (p) z4dV = 0 .

From the solvability theory developed, we can then find a bounded solution to the
problem

J (h) = −J (p) +
J∑

j=1

qcj ẑj .

Since
∫

M
J (p)zidV = 0 and hence

∫
M
J (p)ẑidV = 0, relations (6.4) imply that

ci = 0 for all i.
We have thus found a bounded solution to equation (6.6) and the proof is concluded.

Remark 6.1. — Observe that, in particular, the explicit Jacobi field z0(y) = y ·ν(y)
satisfies that

z(y) = (−1)jaj log r + O(1) for all y ∈ Mj

and we have indeed
∑

j aj = 0. Besides this one, we thus have the presence of another
m − 2 linearly independent Jacobi fields with |z(y)| ∼ log r as r → +∞, where m is
the number of ends.

These are in reality all Jacobi fields with exact logarithmic growth. In fact if
J (z) = 0 and

|z(y)| ≤ C log r , (6.8)
then the argument in the proof of Lemma 6.1 shows that the Kelvin’s inversion z̃(y)
as in the proof of Lemma 6.2 satisfies near the origin ∆z̃ = f̃ where f̃ belongs to any
Lp near the origin, so it must equal a multiple of log |y| plus a regular function. It
follows that on Mj there is a number βj with

z(y) = (−1)jβj log |y|+ h
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where h is smooth and bounded. The computations above force
∑

j βj = 0. It follows
from Lemma 3.1 that then z must be equal to one of the elements there predicted plus
a bounded Jacobi field. We conclude in particular that the dimension of the space of
Jacobi fields satisfying (6.8) must be at most m− 1+ J , thus recovering a fact stated
in Lemma 5.2 of [33].

7. Reducing the gluing system and solving the projected problem

In this section we prove Lemma 4.1, which reduces the gluing system (4.12)-(4.14)
to solving the nonlocal equation (4.20) and prove Proposition 4.2 on solving the
nonlinear projected problem (4.21), in which the basic element is linear theory stated
in Proposition 4.1. In what follows we refer to notation and objects introduced in
§4.1, §4.2.

7.1. Reducing the gluing system. — Let us consider equation (4.12) in the
gluing system (4.12)-(4.14),

∆ψ−Wα(x)ψ+(1−ζ2)S(w)+(1−ζ1)N(ψ+ζ2φ)+2∇ζ1∇φ+φ∆ζ1 = 0 in R3 (7.1)

where
Wα(x) := [ (1− ζ1)f ′(u1) + ζ1H(t) ] .

7.1.1. Solving the linear outer problem. — We consider first the linear problem

∆ψ −Wα(x)ψ + g(x) = 0 in R3 (7.2)

We observe that globally we have 0 < a < Wα(x) < b for certain constants a and b.
In fact we can take a = min{σ2

−, σ2
+} − τ for arbitrarily small τ > 0.

We consider for the purpose the norms for 1 < p ≤ +∞,

‖g‖p,µ := sup
x∈R3

(1 + r(αx))µ‖g‖Lp(B(x,1)), r(x′, x3) = |x′| .

Lemma 7.1. — Given p > 3, µ ≥ 0, there is a C > 0 such that for all sufficiently
small α and any g with ‖g‖p,µ < +∞ there exists a unique ψ solution to Problem
(7.2) with ‖ψ‖∞,µ < +∞. This solution satisfies in addition,

‖D2ψ‖p,µ + ‖ψ‖∞,µ ≤ C‖g‖p,µ. (7.3)

Proof. — We claim that the a priori estimate

‖ψ‖∞,µ ≤ C‖g‖p,µ (7.4)

holds for solutions ψ with ‖ψ‖∞,µ < +∞ to problem (7.2) with ‖g‖p,µ < +∞ provided
that α is small enough. This and local elliptic estimates in turn implies the validity
of (7.3). To see this, let us assume the opposite, namely the existence αn → 0, and
solutions ψn to equation (7.2) with ‖ψn‖∞,µ = 1, ‖gn‖p,µ → 0. Let us consider a
point xn with

(1 + r(αnxn))µψn(xn) ≥ 1
2



THE ALLEN CAHN EQUATION AND MINIMAL SURFACES IN R3 37

and define

ψ̃n(x) = (1 + r(αn(xn + x))µψn(xn + x), g̃n(x) = (1 + r(αn(xn + x))µgn(xn + x),

W̃n(x) = Wαn
(xn + x).

Then, similarly to what was done in the previous section, we check that the equation
satisfied by ψ̃n has the form

∆ψ̃n − W̃n(x)ψ̃n + o(1)∇ψ̃n + o(1)ψ̃n = g̃n.

ψ̃n is uniformly bounded. Then elliptic estimates imply L∞-bounds for the gradient
and the existence of a subsequence uniformly convergent over compact subsets of R3

to a bounded solution ψ̃ 6= 0 to an equation of the form

∆ψ̃ −W∗(x)ψ̃ = 0 in R3

where 0 < a ≤ W∗(x) ≤ b. But maximum principle makes this situation impossible,
hence estimate (7.4) holds.

Now, for existence, let us consider g with ‖g‖p,µ < +∞ and a collection of approx-
imations gn to g with ‖gn‖∞,µ < +∞, gn → g in Lp

loc(R3) and ‖gn‖p,µ ≤ C‖g‖p,µ.
The problem

∆ψn −Wn(x)ψn = gn in R3

can be solved since this equation has a positive supersolution of the form
Cn(1+r(αx) )−µ, provided that α is sufficiently small, but independently of n. Let us
call ψn the solution thus found, which satisfies ‖ψn‖∞,µ < +∞. The a priori estimate
shows that

‖D2ψn‖p,µ + ‖ψn‖∞,µ ≤ C‖g‖p,µ.

and passing to the local uniform limit up to a subsequence, we get a solution ψ to
problem (7.2), with ‖ψ‖∞,µ < +∞. The proof is complete.

7.1.2. The proof of Lemma 4.1. — Let us call ψ := Υ(g) the solution of Problem
(7.2) predicted by Lemma 7.1. Let us write Problem (7.1) as fixed point problem in
the space X of W 2,p

loc -functions ψ with ‖ψ‖X < +∞,

ψ = Υ(g1 + K(ψ) ) (7.5)

where

g1 = (1− ζ2)S(w) + 2∇ζ1∇φ + φ∆ζ1 , K(ψ) = (1− ζ1)N(ψ + ζ2φ) .

Let us consider a function φ defined in Mα × R such that ‖φ‖2,p,µ,σ ≤ 1. Then,

| 2∇ζ1∇φ + φ∆ζ1 | ≤ Ce−σ δ
α (1 + r(αx))−µ‖φ‖2,p,µ,σ.

We also have that ‖S(w)‖p,µ,σ ≤ Cα3, hence

|(1− ζ2)S(w)| ≤ Ce−σ δ
α (1 + r(αx))−µ

and
‖g1‖p,µ ≤ Ce−σ δ

α .

Let consider the set
Λ = {ψ ∈ X / ‖ψ‖X ≤ Ae−σ δ

α },
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for a large number A > 0. Since

|K(ψ1)−K(ψ2) | ≤ C(1− ζ1) sup
t∈(0,1)

|tψ1 + (1− t)ψ2 + ζ2φ| |ψ1 − ψ2| ,

we find that
‖K(ψ1)−K(ψ2) ‖∞,µ ≤ C e−σ δ

α ‖ψ1 − ψ2 ‖∞,µ

while ‖K(0)‖∞,µ ≤ C e−σ δ
α . It follows that the right hand side of equation (7.5)

defines a contraction mapping of Λ, and hence a unique solution ψ = Ψ(φ) ∈ Λ
exists, provided that the number A in the definition of Λ is taken sufficiently large
and ‖φ‖2,p,µ,σ ≤ 1. In addition, it is direct to check the Lipschitz dependence of Ψ
(4.18) on ‖φ‖2,p,µ,σ ≤ 1.

Thus, we replace replace ψ = Ψ(φ) into the equation (4.14) of the gluing system
(4.12)-(4.14) and get the (nonlocal) problem,

∂ttφ + ∆y,Mαφ = −S̃(u1)− N(φ) in Mα × R (7.6)

where

N(φ) := B(φ) + [f ′(u1)− f ′(w)]φ︸ ︷︷ ︸
N1(φ)

+ ζ1(f ′(u1)−H(t))Ψ(φ)︸ ︷︷ ︸
N2(φ)

+ ζ1N(Ψ(φ) + φ)︸ ︷︷ ︸
N3(φ)

, (7.7)

which is what we concentrate in solving next.

7.2. Proof of Proposition 4.2. — We recall from §4.2 that Proposition 4.2 refers
to solving the projected problem

∂ttφ + ∆y,Mαφ = −S̃(u1)− N(φ) + c(y)w′(t) in Mα × R,∫

R
φ(y, t)w′(t) dt = 0, for all y ∈ Mα,

(7.8)

and then adjust h1 so that c(y) ≡ 0. Let φ = T (g) be the linear operator providing
the solution in Proposition 4.1. Then Problem (7.8) can be reformulated as the fixed
point problem

φ = T (−S̃(u1)− N(φ) ) =: T (φ), ‖φ‖2,p,µ,σ ≤ 1 (7.9)

which is equivalent to

φ = T (−S̃(u1) + α2∆h1 w′ − N(φ) ), ‖φ‖2,p,µ,σ ≤ 1, (7.10)

since the term added has the form ρ(y)w′ which thus adds up to c(y)w′. The reason
to absorb this term is that because of assumption (4.7), ‖α2∆h1 w′‖p,4,σ = O(α3− 2

p )
while the remainder has a priori size slightly smaller, O(α3).
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7.2.1. Lipschitz character of N. — We will solve Problem (7.10) using contraction
mapping principle, so that we need to give account of a suitable Lipschitz property
for the operator T . We claim the following.

Claim. We have that for a certain constant C > 0 possibly depending on K in
(4.7) but independent of α > 0, such that for any φ1, φ2 with

‖φl‖2,p,µ,σ ≤ Kα3,

‖N(φ1)− N(φ2)‖p,µ+1,σ ≤ C α ‖φ1 − φ2‖2,p,µ,σ (7.11)
where the operator N is defined in (7.7).

We study the Lipschitz character of the operator N through analyzing each of its
components. Let us start with N1. This is a second order linear operator with
coefficients of order α plus a decay of order at least O(r−1

α ). We recall that B = ζ2B
where in coordinates

B = (f ′(u1)− f ′(w))− α2[(t + h1)|A|2 + ∆Mh1]∂t − 2α a0
ij∂jh∂it +

α(t + h) [a1
ij∂ij − α a1

ij( ∂jh∂it + ∂ih∂jt) + α(b1
i ∂i − αb1

i ∂ih∂t) ) ] +

α3(t + h)2b1
3∂t + α2[ a0

ij + α(t + h)a1
ij) ]∂ih∂jh∂tt (7.12)

where, we recall,

a1
ij = O(r−2

α ), a1
ij = O(r−2

α ), b1
i = O(r−3

α ), b3
i = O(r−6

α ),

f ′(u1)− f ′(w) = O(α2r−2
α e−σ|t|) ∂jh = O(r−1

α ), |A|2 = O(r−4
α ) .

We claim that
‖N1(φ)‖p,µ+1,σ ≤ C α ‖φ‖2,p,µ,σ. (7.13)

The only term of N1(φ) that requires a bit more attention is α2(∆h1)(αy)∂tφ . We
have ∫

B((y,t),1)

|α2(∆h1)(αz)∂tφ|p dVα(z) dτ ≤

C α2p‖∂tφ‖L∞(B((y,t),1) (1+rα(y) )−4p+4

∫

B((y,t),1)

|(1+rα(z) )4−
4
p (∆h1)(αz)|p |dVα(z) ≤

C α2p−2‖∆h1‖p
Lp(M)e

−pσ|t|(1 + rα(y))−pµ−4p+4‖∇φ‖∞,µ,σ,

and hence in particular for p ≥ 3,

‖α2(∆h1)(αy)∂tφ‖p,µ+2,σ ≤ C α2− 2
p ‖h1‖∗ ‖φ‖2,p,µ,σ ≤ C α3− 2

p ‖φ‖2,p,µ,σ.

Let us consider now functions φl with

‖φl‖2,p,µ,σ ≤ 1, l = 1, 2.

Now, according to Lemma 4.1, we get that

‖N2(φ1)− N2(φ2)‖p,µ,σ ≤ C e−σ δ
α ‖φ1 − φ2‖p,µ,σ . (7.14)

Finally, we also have that
|N3(φ1)− N3(φ2) | ≤
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Cζ1 sup
t∈(0,1)

|t(Ψ(φ1) + φ1) + (1− t)(Ψ(φ2) + φ2)| [ |φ1 − φ2|+ |Ψ(φ1)−Ψ(φ2)|] ,

hence

‖N3(φ1)−N3(φ2)‖p,2µ,σ ≤ C ( ‖φ1‖∞,µ,σ +‖φ2‖∞,µ,σ +e−σ δ
α ) ‖φ1−φ2‖∞,µ,σ. (7.15)

From (7.13), (7.14) and (7.15), inequality (7.11) follows. The proof of the claim is
concluded.

7.2.2. Conclusion of the proof of Proposition 4.2. — The first observation is that
choosing µ ≤ 3, we get

‖S̃(u1) + α2∆h1w
′‖p,µ,σ ≤ Cα3. (7.16)

Let us assume now that φ1, φ2 ∈ Bα where

Bα = {φ / ‖φ‖2,p,µ,σ ≤ Kα3}
where K is a constant to be chosen. Then we observe that for small α

‖N(φ)‖p,µ+1,σ ≤ Cα4, for all φ ∈ Bα,

where C is independent of K. Then, from relations (7.16)-(7.15) we see that if K is
fixed large enough independent of α, then the right hand side of equation (7.5) defines
an operator that applies Bα into itself, which is also a contraction mapping of Bα

endowed with the norm ‖ ‖p,µσ, provided that µ ≤ 3. We conclude, from contraction
mapping principle, the existence of φ as required.

The Lipschitz dependence (4.27) is a consequence of series of lengthy but straight-
forward considerations of the Lipschitz character in h1 of the operator in the right
hand side of equation (7.5) for the norm ‖ ‖∗ defined in (4.34). Let us recall expres-
sion (7.12) for the operator B, and consider as an example, two terms that depend
linearly on h1:

A(h1, φ) := α a0
ij ∂jh1∂itφ .

Then
|A(h1, φ)| ≤ Cα|∂jh1| |∂itφ .

Hence

‖A(h1, φ)‖p,µ+2,σ ≤ Cα‖(1 + r2
α) ∂jh1‖∞ ‖∂itφ ‖p,µ,σ ≤ Cα4‖h1‖∗ ‖φ‖2,p,µ,σ.

Similarly, for A(φ, h1) = α2∆Mh1 ∂tφ we have

|A(φ, h1) | ≤ Cα2|∆Mh1(αy)| (1 + rα)−µe−σ|t|‖φ‖2,p,µ,σ .

Hence
‖α2∆Mh1 ∂tφ ‖p,µ+2,σ ≤ Cα5− 2

p ‖h1‖∗ ‖φ‖2,p,µ,σ.

We should take into account that some terms involve nonlinear, however mild depen-
dence, in h1. We recall for instance that a1

ij = a1
ij(αy, α(t+h0 +h1)). Examining the

rest of the terms involved we find that the whole operator N produces a dependence
on h1 which is Lipschitz with small constant, and gaining decay in rα,

‖N(h1, φ)− N(h2, φ)‖p,µ+1,σ ≤ Cα2‖h1 − h2‖∗ ‖φ‖2,p,µ,σ. (7.17)
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Now, in the error term
R = −S̃(u1) + α2∆h1w

′,

we have that
‖R(h1)−R(h2)‖p,3,σ ≤ C α2 ‖h1 − h2‖∗ . (7.18)

To see this, again we go term by term in expansion (4.15). For instance the linear
term α2 a0

ij∂ih0∂jh1 w′′. We have

|α2 a0
ij ∂ih0∂jh1| ≤ C α2 (1 + rα)−3 e−σ|t| ‖h1‖∗

so that
‖α2 a0

ij ∂ih0 ∂jh1‖p,3,σ ≤ C α2 ‖h1‖∗,
the remaining terms are checked similarly.

Combining estimates (7.17), (7.18) and the fixed point characterization (7.5) we
obtain the desired Lipschitz dependence (4.27) of Φ. This concludes the proof.

8. The reduced problem: proof of Proposition 4.4

In this section we prove Proposition 4.4 based on the linear theory provided by
Proposition 4.3 Thus, we want to solve the problem

J (h1) = ∆Mh1 + h1|A|2 = G(h1) +
J∑

i=1

ci

1 + r4
ẑi in M , (8.1)

∫

M

h1ẑi

1 + r4
dV = 0 for all i = 1, · · · , J ,

where the linearly independent Jacobi fields ẑi will be chosen in (9.1) and (9.2) of
§8, and G = G1 + G2 was defined in (4.29), (4.30). We will use contraction mapping
principle to determine the existence of a unique solution h1 for which constraint (4.7),
namely

‖h1‖∗ := ‖h1‖L∞(M) + ‖(1 + r2)Dh1‖L∞(M) + ‖D2h1‖p,4− 4
p
≤ Kα , (8.2)

is satisfied after fixing K sufficiently large.

We need to analyze the size of the operator G, for which the crucial step is the
following estimate.

Lemma 8.1. — Let ψ(y, t) be a function defined in Mα × R such that

‖ψ‖p,µ,σ := sup
(y,t)∈Mα×R

eσ|t|(1 + rµ
α ) ‖ψ‖Lp(B((y,t),1) < +∞

for σ, µ ≥ 0. The function defined in M as

q(y) :=
∫

R
ψ(y/α, t)w′(t) dt

satisfies
‖q‖p,a ≤ C ‖ψ‖p,µ,σ (8.3)
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provided that

µ >
2
p

+ a .

In particular, for any τ > 0,

‖q‖p,2− 2
p−τ ≤ C ‖ψ‖p,2,σ (8.4)

and
‖q‖p,4− 4

p
≤ C ‖ψ‖p,4,σ . (8.5)

Proof. — We have that for |y| > R0∫

|y|>R0

|y|ap

∣∣∣∣
∫

R
ψ(y/α, t) w′(t) dt

∣∣∣∣
p

dV ≤ C

∫

R
w′(t) dt

∫

|y|>R0

|y|ap |ψ(y/α, t)|p dV .

Now ∫

|y|>R0

|y|ap |ψ(y/α, t)|p dV = αap+2

∫

|y|>R0/α

|y|ap |ψ(y, t)|p dVα

and ∫

|y|>R0/α

|y|ap |ψ(y, t)|p dVα ≤ C
∑

i≥[R0/α]

iap

∫

i<|y|<i+1

|ψ(y, t)|p dVα .

Now, i < |y| < i + 1 is contained in O(i) balls with radius one centered at points of
the annulus, hence∫

i<|y|<i+1

|ψ(y, t)|p dVα ≤ Ce−σp|t|i1−µp ‖ψ‖p
p,µ

≤ Ce−σp|t|‖ψ‖p
p,µ

∫

i<|y|<i+1

(1 + rα)−µpdVα

≤ Ce−σp|t|‖ψ‖p
p,µ

∫

i<|y|<i+1

|αy|−µpdVα

≤ Ce−σp|t|‖ψ‖p
p,µα−µpi1−µp .

Then we find

‖ |y|a q‖p
Lp(|y|>R0)

≤ C αap−µp+2‖ψ‖p
p,µ

∑

i≥[R0/α]

iap−µp+1 .

The sum converges if µ > 2
p + a and in this case

‖ |y|a q‖p
Lp(|y|>R0)

≤ C αap−µp+2α−ap+µp−2‖ψ‖p
p,µ = C ‖ψ‖p

p,µ

so that
‖ |y|a q‖Lp(|y|>R0) ≤ C ‖ψ‖p,µ.

Now, for the inner part |y| < R0 in M , the weights play no role. We have∫

|y|<R0

|ψ(y/α, t)|p dV = α2

∫

|y|<R0/α

|ψ(y, t)|p dVα ≤

Cα2
∑

i≤R0/α

∫

i<|y|<i+1

|ψ(y, t)|p dVα ≤ Cα2 ‖ψ‖p
p,µe−σp|t| ∑

i≤R0/α

i
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≤ C‖ψ‖p
p,µe−σp|t| .

Hence if µ > 2
p + a we finally get

‖q‖p,a ≤ C ‖ψ‖p,µ

and the proof of (8.3) is concluded. Letting (µ, a) = (2, 2− 2
p − τ), (µ, a) = (4, 4− 4

p )
respectively in (8.3), we obtain (8.4) and (8.5).

Let us apply this result to ψ(y, t) = N(Φ(h1) ) to estimate the size of the operator
G2 in (4.30). For φ = Φ(h1) we have that

G2(h1)(y) := c−1
∗ α−2

∫

R
N(φ)(y/α, t)w′ dt

satisfies
‖G2(h1)‖p,4− 4

p
≤ Cα−2‖N(φ)‖p,4,σ ≤ C α2.

On the other hand, we have that, similarly, for φl = Φ(hl), l = 1, 2,

‖G2(h1)−G2(h2)‖p,4− 4
p
≤ Cα−2‖N(φ1, h1)− N(φ2, h2)‖p,4,σ.

Now,

‖N(φ1, h1)− N(φ1, h2)‖p,4,σ ≤ Cα2‖h1 − h2‖∗‖φ1‖2,p,3,σ,≤ Cα5‖h1 − h2‖∗,
according to inequality (7.17), and

‖N(φ1, h1)− N(φ2, h1)‖p,4,σ ≤ Cα2‖φ1 − φ2‖p,3,σ ≤ Cα4‖h1 − h2‖∗ .

We conclude then that

‖G2(h1)−G2(h2)‖p,4− 4
p
≤ C α2‖h1 − h2‖∗ .

In addition, we also have that

‖G2(0)‖p,4− 4
p
≤ Cα2.

for some C > 0 possibly dependent of K. On the other hand, it is similarly checked
that the remaining small operator G1(h1) in (4.29) satisfies

‖G1(h1)−G1(h2)‖p,4− 4
p
≤ C1 α‖h1 − h2‖∗ .

A simple but crucial observation we make is that

c∗G1(0) = α ∂ih0∂jh0

∫

R
ζ4(t + h0)a1

ijw
′′w′ dt + α−2

∫

R
ζ4 R1(y, t, 0, 0 ) w′ dt

so that for a constant C2 independent of K in (8.2) we have

‖G1(0)‖p,4− 4
p
≤ C2α .

In all we have that the operator G(h1) has an O(α) Lipschitz constant, and in addition
satisfies

‖G(0)‖p,4− 4
p
≤ 2C2α.

Let h = T (g) be the linear operator defined by Proposition 4.3. Then we consider the
problem (8.1) written as the fixed point problem

h1 = T (G(h1) ), ‖h‖∗ ≤ Kα. (8.6)
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We have
‖T (G(h1) )‖∗ ≤ ‖T‖ ‖G(0)‖p,4− 4

p
+ Cα‖h1‖∗ .

Hence fixing K > 2C2‖T‖, we find that for all α sufficiently small, the operator T G is
a contraction mapping of the ball ‖h‖∗ ≤ Kα into itself. We thus have the existence of
a unique solution of the fixed problem (8.6), namely a unique solution h1 to problem
(8.1) satisfying (8.2) and the proof of Proposition 4.4 is concluded.

9. Conclusion of the proof of Theorem 1

We denote in what follows

r(x) =
√

x2
1 + x2

2, r̂ =
1
r
(x1, x2, 0), θ̂ =

1
r
(−x2, x1, 0) .

We consider the four Jacobi fields associated to rigid motions, z1, . . . , z4 introduced
in (1.14). Let J be the number of bounded, linearly independent Jacobi fields of J .
By our assumption and the asymptotic expansion of the ends (1.12), 3 ≤ J ≤ 4.
(Note that when M is a catenoid, z4 = 0 and J = 3.) Let us choose

ẑj =
4∑

l=1

djlz0l, j = 1, ..., J (9.1)

be normalized such that∫

M

q(y)ẑiẑj = 0, for i 6= j,

∫

M

q(y)ẑ2
i = 1, i, j = 1, · · · , J . (9.2)

In what follows we fix the function q as

q(y) :=
1

1 + r(y)4
. (9.3)

So far we have built, for certain constants c̃i a solution u of equation (4.36), namely

∆u + f(u) =
J∑

j=1

c̃iẑi(αy)w′(t)q(αy)ζ2

where u, defined in (4.35) satisfies the following properties

u(x) = w(t) + φ(y, t) (9.4)

near the manifold, meaning this x = y + (t + h(αy) ) ν(αy) with

y ∈ Mα, |t| ≤ δ

α
+ γ log(2 + r(αy)).

The function φ satisfies in this region the estimate

|φ|+ |∇φ| ≤ Cα2 1
1 + r2(αy)

e−σ|t| . (9.5)

Moreover, we have the validity of the global estimate

|∇u(x)| ≤ C

1 + r3(αx)
e−σ δ

α .
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We introduce the functions

Zi(x) = ∂xiu(x), i = 1, 2, 3, Z4(x) = −αx2∂x2u + αx1∂x2u .

From the expansion (9.4) we see that

∇u(x) = w′(t)∇t + ∇φ.

Now, t = z − h(αy) where z designates normal coordinate to Mα. Since ∇z = ν =
ν(αy) we then get

∇t = ν(αy)− α∇h(αy).
Let us recall that h satisfies h = (−1)kβk log r + O(1) along the k-th end, and

∇h = (−1)k βk

r
r̂ + O(r−2) .

From estimate (9.5) we we find that

∇u(x) = w′(t)(ν − α(−1)k βk

rα
r̂) + O(αr−2

α e−σ|t|). (9.6)

From here we get that near the manifold,

Zi(x) = w′(t) (zi(αy)− α(−1)k βk

rα
r̂ei) + O(αr−2

α e−σ|t|), i = 1, 2, 3, (9.7)

Z4(x) = w′(t) z04(αy) + O(αr−1
α e−σ|t|). (9.8)

Using the characterization (4.36) of the solution u and barriers (in exactly the same
way as in Lemma 11.4 below which estimates eigenfunctions of the linearized opera-
tor), we find the following estimate for rα(x) > R0:

|∇u(x)| ≤ C

m∑

k=1

e−σ|x3−α−1(Fk(αx′)+βjα log |αx′| ) | . (9.9)

We claim that∫

R3
(∆u + f(u))Zi(x) dx = 0 for all i = 1, . . . , 4 (9.10)

so that
J∑

j=1

c̃j

∫

R3
q(αx)ẑj(αy)w′(t)Zi(x) ζ2 dx = 0 for all i = 1, . . . , 4. (9.11)

Let us accept this fact for the moment. Let us observe that from estimates (9.7) and
(9.8),

α2

∫

R3
q(αx)ẑj(αy)w′(t)

4∑

l=1

dilZl(x) ζ2 dx =
∫ ∞

−∞
w′(t)2dt

∫

M

q ẑj ẑidV + o(1)

with o(1) is small with α. Since the functions ẑi are linearly independent on any open
set because they solve an homogeneous elliptic PDE, we conclude that the matrix
with the above coefficients is invertible. Hence from (9.11) and (9.2), all c̃i’s are
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necessarily zero. We have thus found a solution to the Allen Cahn equation (1.1)
with the properties required in Theorem 1.

It remains to prove identities (9.10). The idea is to use the invariance of ∆ + f(u)
under rigid translations and rotations. This type of Pohozaev identity argument has
been used in a number of places, see for instance [15].

In order to prove that the identity (9.10) holds for i = 3, we consider a large
number R >> 1

α and the infinite cylinder

CR = {x / x2
1 + x2

2 < R2}.
Since in CR the quantities involved in the integration approach zero at exponential
rate as |x3| → +∞ uniformly in (x1, x2), we have that

∫

CR

(∆u + f(u))∂x3u −
∫

∂CR

∇u · r̂ ∂x3u =
∫

CR

∂x3 (F (u)− 1
2
|∇u|2 ) = 0.

We claim that

lim
R→+∞

∫

∂CR

∇u · r̂ ∂x3u = 0.

Using estimate (9.6) we have that near the manifold,

∂x3u∇u(x) · r̂ = w′(t)2((ν − α(−1)k βk

rα
r̂) · r̂)ν3 + O(αe−σ|t| 1

r2
).

Let us consider the k-th end, which for large r is expanded as

x3 = Fk,α(x1, x2) = α−1(ak log αr + bk + O(r−1))

so that

(−1)kν =
1√

1 + |∇Fk,α|2
(∇Fk,α,−1) =

ak

α

r̂

r
− e3 + O(r−2) . (9.12)

Then on the portion of CR near this end we have that

(ν − α(−1)k βk

rα
r̂) · r̂ ν3 = −α−1 ak + αβk

R
+ O(R−2). (9.13)

In addition, also, for x2
1 + x2

2 = R2 we have the expansion

t = (x3 − Fk,α(x1, x2)− βk log αr + O(1))(1 + O(R−2))

with the same order valid after differentiation in x3, uniformly in such (x1, x2). Let
us choose ρ = γ log R for a large, fixed γ. Observe that on ∂CR the distance between
ends is greater than 2ρ whenever α is sufficiently small. We get,

∫ Fk,α(x1,x2)+βk log αr+ρ

Fk,α(x1,x2)+βk log αr−ρ

w′(t)2dx3 =
∫ ∞

−∞
w′(t)2dt + O(R−2) .

Because of estimate (9.9) we conclude, fixing appropriately γ, that
∫

⋂
k{|x3−Fk,α|>ρ}

∂x3u∇u(x) · r̂ dx3 = O(R−2) .
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As a conclusion
∫ ∞

−∞
∂x3u∇u · r̂ dx3 = − 1

αR

m∑

k=1

(ak + αβk)
∫ ∞

−∞
w′(t)2 dt + O(R−2)

and hence ∫

∂CR

∂x3u∇u(x) · r̂ = −2π

α

m∑

k=1

(ak + αβk) + O(R−1) .

But
∑m

k=1 ak =
∑m

k=1 βk = 0 and hence (9.10) for i = 3 follows after letting R →∞.

Let us prove the identity for i = 2. We need to carry out now the integration
against ∂x2u. In this case we get

∫

CR

(∆u + f(u))∂x2u =
∫

∂CR

∇u · r̂ ∂x2u +
∫

CR

∂x2 (F (u)− 1
2
|∇u|2 ).

We have that ∫

CR

∂x2 (F (u)− 1
2
|∇u|2 ) =

∫

∂CR

(F (u)− 1
2
|∇u|2 )n2

where n2 = x2/r. Now, near the ends estimate (9.6) yields

|∇u|2 = |w′(t)|2 + O(e−σ|t| 1
r2

)

and arguing as before, we get
∫ ∞

−∞
|∇u|2dx3 = m

∫ ∞

−∞
|w′(t)|2dt + O(R−2).

Hence ∫

∂CR

|∇u|2n2 = m

∫ ∞

−∞
|w′(t)|2dt

∫

[r=R]

n2 + O(R−1) .

Since
∫
[r=R]

n2 = 0 we conclude that

lim
R→+∞

∫

∂CR

|∇u|2 n2 = 0.

In a similar way we get

lim
R→+∞

∫

∂CR

F (u)n2 = 0.

Since near the ends we have

∂x2u = w′(t)(ν2 − α(−1)k βk

rα
r̂e2) + O(αr−2e−σ|t|)

and from (9.12) ν2 = O(R−1), completing the computation as previously done yields
∫

∂CR

∇u · r̂ ∂x2u = O(R−1).

As a conclusion of the previous estimates, letting R → +∞ we finally find the validity
of (9.10) for i = 2. Of course the same argument holds for i = 1.



48 MANUEL DEL PINO, MICHAL KOWALCZYK & JUNCHENG WEI

Finally, for i = 4 it is convenient to compute the integral over CR using cylindrical
coordinates. Let us write u = u(r, θ, z). Then

∫

CR

(∆u + f(u)) (x2∂x1u − x1∂x1u) =

∫ 2π

0

∫ R

0

∫ ∞

−∞
[uzz + r−1(rur)r + f(u)] uθ r dθ dr dz =

−1
2

∫ 2π

0

∫ R

0

∫ ∞

−∞
∂θ [u2

z + u2
r − 2F (u)] r dθ dr dz + R

∫ ∞

−∞

∫ 2π

0

ur uθ(R, θ, z) dθ dz =

0 +
∫

∂CR

uruθ .

On the other hand, on the portion of ∂CR near the ends we have

ur uθ = w′(t)2R(ν · r̂)(ν · θ̂) + O(R−2e−σ|t|).

From (9.12) we find
(ν · r̂)(ν · θ̂) = O(R−3),

hence
ur uθ = w′(t)2O(R−2) + O(R−2e−σ|t|)

and finally ∫

∂CR

ur uθ = O(R−1).

Letting R → +∞ we obtain relation (9.10) for i = 4. The proof is concluded.

10. Negative eigenvalues and their eigenfunctions for the Jacobi
operator

For the proof of Theorem 2 we need to translate the information on the index of
the minimal surface M into spectral features of the Jacobi operator. Since M has
finite total curvature, the index i(M) of the minimal surface M is finite. We will
translate this information into an eigenvalue problem for the operator J . Let

Q(k, k) :=
∫

M

|∇k|2 dV −
∫

M

|A|2k2 dV .

The number i(M) is, by definition, the largest dimension for a vector space E of
compactly supported smooth functions in M such that

Q(z, z) < 0 for all z ∈ E \ {0}.
The number i(M) when finite has the following convenient characterization, whose

proof is straightforward. In what follows we fix the function q as

p(y) :=
1

1 + r(y)4
. (10.14)
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Let us consider for a large number R, the region

MR = {y ∈ M / r(y) < R}
and the eigenvalue problem

∆Mk + |A|2k + λp(y) k = 0 in MR, (10.15)

k = 0 on ∂MR .

Let mR(p) denote the number of negative eigenvalues (counting multiplicities) for this
problem. Then we have

i(M) = sup
R>0

mR(p) . (10.16)

Let us also consider the eigenvalue problem in entire space

∆Mk + |A|2k + λp(y) k = 0 in M, k ∈ L∞(M) . (10.17)

We will prove the following result.

Lemma 10.1. — Problem (10.17) has exactly i(M) negative eigenvalues, counting
multiplicities.

10.0.3. A priori estimates in MR. — For the proof of Lemma 10.1, and for later
purposes, it is useful to have a priori estimates uniform in large R > 0 for the linear
problem

∆Mk + |A|2k − γp(y) k = f in MR, (10.18)

k = 0 on ∂MR .

We have the following result.

Lemma 10.2. — Let p > 1, σ > 0. Then for R0 > 0 large enough and fixed and
γ0 > 0, there exist a C > 0 such that for all R > R0 + 1, 0 ≤ γ < γ0, any f , and any
solution k of problem (10.18), we have that

(a) If ‖f‖p,4− 4
p

< +∞ then

‖k‖∞ ≤ C [ ‖f‖p,4− 4
p

+ ‖k‖L∞(|y|<3R0) ] . (10.19)

(b) If ‖f‖p,2− 2
p−σ < +∞, then ,

‖D2k‖p,2− 2
p−σ + ‖Dk ‖p,1− 2

p−σ ≤ C [ ‖f‖p,2− 2
p−σ + ‖k‖∞ ] . (10.20)

If p > 2, we have in addition

‖ (1 + |y|)1−σ Dk ‖∞ ≤ C [ ‖f‖p,2− 2
p−σ + ‖k‖∞ ] . (10.21)

Proof. — Let us consider the equation in M

∆Mψ + |A|2ψ = −|f |χ|y|<R, |y| > R0 , (10.22)

ψ(y) = 0, |y| = R0 . (10.23)
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For a large and fixed R0, solving this problem amounts to doing it on each separate
end. As in Lemma 6.1, after a Kelvin’s transform the problem reduces in each end to
solving in a ball in R2 an equation of the form

∆ψ̃ + O(|y|2)D2ψ̃ + O(|y|)Dψ̃ + O(1)ψ̃ = −|f̃ |χ|y|> 1
R

, |y| < 1
R0

,

ψ̃(y) = 0, |y| = 1
R 0

.

Enlarging R0 if necessary, this problem has a unique solution, which is also positive.
This produces a bounded, positive solution ψ of (10.22)-(10.23) with

‖ψ‖∞ ≤ C‖f‖p,4− 4
p

.

On the other hand, on this end the Jacobi field z3 = ν · e3 can be taken positive with
z3 ≥ 1 on |y| > R0. Thus the function ψ + ‖k‖L∞(|y|=R0)z3 is a positive, bounded
supersolution for the problem (10.18) in this end, where |y| > R0, and estimate (10.19)
then readily follows.

Let us prove now estimate (10.20). Fix a large number R0 > 0 and another number
R >> R0. Consider also a large ρ > 0 with 3ρ < R. On a given end we parameterize
with Euclidean coordinates y ∈ R2 and get that the equation satisfied by k = k(y)
reads

∆k + O(|y|−2)D2k + O(|y|−3)Dk + O(|y|−4)k = f, R0 < |y| < R.

Consider the function kρ(z) = k(ρz) wherever it is defined. Then

∆kρ + O(ρ−2|z|−2)D2kρ + O(ρ−2|z|−3)Dkρ + O(ρ−2|z|−4)kρ = fρ

where fρ(z) = ρ2f(ρz). Then interior elliptic estimates (see Theorem 9.11 of [14])
yield the existence of a constant C = C(p) such that for any sufficiently large ρ

‖Dkρ‖Lp(1<|z|<2) + ‖D2kρ‖Lp(1<|z|<2) ≤ C ( ‖kρ‖L∞( 1
2 <|z|<3) + ‖fρ‖Lp( 1

2 <|z|<3) ).
(10.24)

Now,

‖fρ‖p

Lp( 1
2 <|z|<3)

= ρ2p

∫

( 1
2 <|z|<3)

|f(ρz)|p dz ≤

Cρpσ

∫

( 1
2 <|z|<3)

|ρz|2p−2−pσ|f(ρz)|p ρ2dz = C ρpσ

∫

( ρ
2 <|y|<3ρ)

|y|2p−2−pσ|f(y)|p dy .

Similarly

‖D2kρ‖p
Lp(1<|z|<2) ≥ C ρpσ

∫

(ρ<|y|<2ρ)

|y|2p−2−pσ|D2k(y)|p dy .

Thus∫

(ρ<|y|<2ρ)

|y|2p−2−pσ|D2k(y)|p dy ≤ C

∫

( ρ
2 <|y|<4ρ)

|y|2p−2−pσ|f(y)|p dy +ρ−pσ‖k‖p
∞.

Take ρ = ρj = 2j . Then∫

(ρj<|y|<ρj+1)

|y|2p−2−pσ|D2k(y)|p dy ≤
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C

∫

(ρj−1<|y|<ρj+2)

|y|2p−2−pσ|f(y)|p dy + 2−jpσ‖k‖p
∞ .

Then, adding up these relations wherever they are defined, taking in addition into
account boundary elliptic estimates which give that for ρ = R

2 ,

‖D2kρ‖Lp(1<|z|<2) ≤ C
(
‖kρ‖L∞( 1

2 <|z|<2) + ‖fρ‖Lp( 1
2 <|z|<2)

)
,

plus a local elliptic estimate in a bounded region, we obtain that for some C > 0
independent of R,

‖D2k‖p,2− 2
p−σ ≤ C ( ‖k‖∞ + ‖f‖p,2− 2

p−σ ).

The corresponding estimate for the gradient follows immediately from (10.24). We
have proven (10.20). If p > 2 we can use Sobolev’s embedding to include ‖Dkρ‖L∞(1<|z|<2)

on the left hand side of (10.24), and estimate (10.21) follows. The proof is com-
plete.

10.0.4. Proof of Lemma 10.1. — We will prove first that problem (10.17) has at
least i(M) linearly independent eigenfunctions associated to negative eigenvalues in
L∞(M). For all R > 0 sufficiently large, problem (10.15) has n = i(M) linearly
independent eigenfunctions k1,R, . . . , kn,R associated to negative eigenvalues

λ1,R ≤ λ2,R ≤ · · · ≤ λn,R < 0 .

Through the min-max characterization of these eigenvalues, we see that they can be
chosen to define decreasing functions of R. On the other hand, λ1,R must be bounded
below. Indeed, for a sufficiently large γ > 0 we have that

|A|2 − γp < 0 in M

and by maximum principle we must have λ1,R > −γ. The eigenfunctions can be
chosen orthogonal in the sense that∫

MR

p ki,R kj,R dV = 0 for all i 6= j . (10.25)

Let us assume that ‖ki,R‖∞ = 1. Then the a priori estimate in Lemma 10.2 imply
that, passing to a subsequence in R → +∞, we may assume that

λi,R ↓ λi < 0, ki,R(y) → ki(y),

uniformly on compact subsets of M , where ki 6= 0 is a bounded eigenfunction of
(10.17) associated to the negative eigenvalue λi. Moreover, relations (10.25) pass to
the limit and yield ∫

M

p ki kj dV = 0 for all i 6= j . (10.26)

Thus, problem (10.17) has at least n = i(M) negative eigenvalues. Let us assume
there is a further bounded eigenfunction kn+1, linearly independent of k1, . . . , kn, say
with ∫

M

p ki kn+1 dV = 0 for all i = 1, . . . , n , (10.27)
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associated to a negative eigenvalue λn+1. Then the a priori estimate of Lemma 6.1
implies that

‖(1 + r2)∇kn+1‖ < +∞.

The same of course holds for the remaining ki’s. It follows that

Q(k, k) < 0 for all k ∈ span {k1, . . . , kn+1} \ {0}.
However, again since ∇kj decays fast, the same relation above will hold true for the
ki’s replaced by suitable smooth truncations far away from the origin. This implies,
by definition, i(M) ≥ n + 1 and we have have reached a contradiction. The proof is
concluded.

11. The proof of Theorem 2

In this section we will prove that the Morse index m(uα) of the solution we have
built in Theorem 1 coincides with the index of the surface M , as stated in Theorem
2. We recall that this number is defined as the supremum of all dimensions of vector
spaces E of compactly supported smooth functions for which

Q(ψ, ψ) =
∫

R3
|∇ψ|2 − f ′(uα)ψ2 < 0 for all ψ ∈ E \ {0}.

We provide next a more convenient characterization of this number, analogous to that
for the Jacobi operator of §10. Let us consider a smooth function p(x) defined in R3

such that

p(αx) =
1

1 + rα(y)4
if x = y + (t + h(αy))ν(αy) ∈ Nδ,

and such that for positive numbers a, b,

a

1 + |αx′|4 ≤ p(αx) ≤ b

1 + |αx′|4 for all x = (x′, x3) ∈ R3 .

For each R > 0, we consider the eigenvalue problem in the cylinder

CR = { (x′, x3) / |x′| < Rα−1, |x3| < Rα−1) },

∆φ + f ′(uα)φ + λp(αx)φ = 0 in CR , (11.1)

φ = 0 on ∂CR .

We also consider the problem in entire space

∆φ + f ′(uα)φ + λp(αx)φ = 0 in R3, φ ∈ L∞(R3). (11.2)

Let mR(uα) be the number of negative eigenvalues λ (counting multiplicities) of
this Problem (11.1). Then we readily check that

m(uα) = sup
R>0

mR(uα).
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On the other hand, we have seen in §10 that the index i(M) of the minimal surface
can be characterized as the number of linearly independent eigenfunctions associated
to negative eigenvalues of the problem

∆z + |A|2z + λp(y)z = 0 in M, z ∈ L∞(M) , (11.3)

which corresponds to the maximal dimension of the negative subspace in L∞(M) for
the quadratic form

Q(z, z) =
∫

M

|∇Mz|2 − |A|2z2 dV .

We shall prove in this section that m(uα) = i(M) for any sufficiently small α.

The idea of the proof is to put in correspondence eigenfunctions for negative eigen-
values of problem (11.1) for large R with those of problem (11.3). This correspondence
comes roughly as follows. If z is such an eigenfunction for problem (11.3) then the
function defined near Mα as

k(y)w′(t), k(y) = z(αy) (11.4)

defines after truncation a negative direction for the quadratic form Q on any large
ball. Reciprocally, an eigenfunction for negative eigenvalue of problem (11.1) will look
for any sufficiently small α and all large R like a function of the form (11.4). In the
following two lemmas we clarify the action of the operator L on functions of this type,
and the corresponding connection at the level of the quadratic forms Q and Q.

Lemma 11.1. — Let k(y) be a function of class C2 defined in some open subset V
of Mα. Let us consider the function v(x) defined for x ∈ Nδ, y ∈ V as

v(x) = v(y, t) := k(y)w′(t) , y ∈ V, |t + h1(αy)| < ρα(y)

where ρα is the function in the definition of Nα, (3.11). Then L(v) := ∆xv + f ′(uα)v
can be expanded as in (11.8) below. Besides we have

∫

|t+h1|<ρα

L(v) w′ dt = ( ∆Mαk + α2|A|2k + αha1,0
ij ∂ijk )

∫

R
w′2 dt

+ O(α2r−2
α ) ∂ijk + O(α2r−3

α ) ∂ik + O(α3r−4
α ) k . (11.5)

Here
a1,0

ij = a1,0
ij (αy) = O(r−2

α ) .

The same conclusions hold for the function

v(x) = v(y, t) := k(y)w′(t) ηδ(y, t), y ∈ V, |t + h1(αy)| < ρα(y)

where the cut-off function ηδ is defined in (3.12).

Proof. — Let us recall that

∆x = ∂tt + ∆Mα − α2[(t + h)|A|2 + ∆Mh]∂t − 2α a0
ij ∂jh∂it +

α(t + h) [a1
ij∂ij − 2α a1

ij ∂jh∂it + α(b1
i ∂i − αb1

i ∂ih∂t) ) ] +

α3(t + h)2b1
3∂t + α2[ a0

ij + α(t + h)a1
ij) ]∂ih∂jh∂tt .
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Hence, using Lemma 2.2 in the appendix we get

∆xv + f ′(uα)v = k(w′′′ + f ′(w)w′) + [f ′(uα)− f ′(w)] kw′ +

w′∆Mα
k − α2[(t + h1)|A|2 + ∆Mh1] k w′′ − 2α a0

ij∂jh∂ik w′′ +

α(t + h) [a1
ij∂ijkw′ − α a1

ij( ∂jh∂ik + ∂ih∂jk)w′′ + α(b1
i ∂ik w′ − αb1

i ∂ihw′′) ] +

α3(t + h)2b1
3 k w′′ + α2[ a0

ij + α(t + h)a1
ij) ]∂ih∂jh k w′′′ . (11.6)

We can expand

a1
ij = a1

ij(αy, 0) + α(t + h) a2
ij(αy, α(t + h)) =: a1,0

ij + α(t + h)a2
ij ,

with a2
ij = O(r−2

α ), and similarly

b1
j = b1

j (αy, 0) + α(t + h) b2
j (αy, α(t + h)) =: b1,0

j + α(t + h)b2
j ,

with b2
j = O(r−3

α ). On the other hand, let us recall that

uα − w = φ1 + O(α3r−4
α e−σ|t|)

where φ1 is given by (3.2),

φ1(y, t) = α2|A(αy)|2ψ0(t)− α2a0
ij∂ih0∂jh0(αy) ψ1(t) (11.7)

and ψ0, ψ1 decay exponentially as |t| → +∞. Hence

[f ′(uα)− f ′(w)] w′ = f ′′(w)φ1 w′ + O(α3e−σ|t|r−4
α ).

Using these considerations and expression (11.6), we can write,

Q := ∆xv + f ′(uα)v =

∆Mαk w′ − α2|A|2 k tw′′ + α2 a0
ij∂ih0∂jh0 k w′′′ + αha1,0

ij ∂ijkw′︸ ︷︷ ︸
Q1

+ f ′′(w)φ1 kw′︸ ︷︷ ︸
Q2

−w′′
[
αa0

ij(∂jh∂ik + ∂ih∂jk) + α2k∆Mh1 + α2ha1,0
ij (∂jh∂ik + ∂ih∂jk)

]

︸ ︷︷ ︸
Q3

+ αtw′
[
a1,0

ij ∂ijk + αb1,0
i ∂ik

]

︸ ︷︷ ︸
Q4

+ α2(t + h)2a2
ij∂ijkw′ + α2(t + h)a2

ij( ∂jh∂ik + ∂ih∂jk) w′′︸ ︷︷ ︸
Q5

+ O(α3e−σ|t|r−2
α )︸ ︷︷ ︸

Q6

.

(11.8)
The precise meaning of the remainder Q6 is

Q6 = O(α3e−σ|t|r−2
α ) ∂ijk + O(α3e−σ|t|r−3

α ) ∂jk .
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We will integrate the above relation against w′(t) in the region |t + h1(αy)| < ρα(y).

Let us observe that the terms Qi for i = 1, . . . , 4 are in reality defined for all t and
that ∫

|t+h1|<ρα

Qi w′ dt =
∫

R
Qi w′ dt + O(α3r−4

α ) (11.9)

where the remainder means

O(α3r−4
α ) := O(α3r−4

α ) ∂ijk + O(α3r−4
α ) ∂ik + O(α3r−4

α ) k .

Let us observe that ∫

R
(Q3 + Q4)w′ dt = 0 . (11.10)

On the other hand, since ∫

R
tw′′w′ dt = − 1

2

∫

R
w′2 dt ,

we get that∫

R
Q1 w′ dt = ( ∆Mαk+

1
2
|A|2k + αha1,0

ij ∂ijk )
∫

R
w′2 dt + a0

ij∂ih0∂jh0

∫

R
w′′′ w′ dt .

(11.11)
Next we will compute

∫
R Q2 w′ dt. We recall that, setting L0(ψ) = ψ′′ + f ′(w)ψ, the

functions ψ0 and ψ1 in (11.7) satisfy

L0(ψ0) = tw′(t), L0(ψ1) = w′′ .

Differentiating these equations we get

L0(ψ′0) + f ′′(w)w′ψ0 = (tw′)′, L0(ψ′1) + f ′′(w)w′ψ1 = w′′′ .

Integrating by parts against w′, using L0(w′) = 0 we obtain
∫

R
f ′′(w)w′2ψ0 = −

∫

R
tw′′w′ =

1
2

∫
w′2,

∫

R
f ′′(w)w′2ψ1 =

∫

R
w′′′w′ .

Therefore ∫

R
Q1 w′ dt =

∫

R
f ′′(w)φ1 kw′2 dt =

α2k|A|2
∫

R
f ′′(w)ψ0 w′2 dt − α2a0

ij∂ih0∂jh0 k

∫

R
f ′′(w)ψ1 w′2 dt =

α2k|A|2 1
2

∫

R
w′2 − α2a0

ij∂ih0∂jh0 k

∫

R
w′′′w′. (11.12)

Thus, combining relations (11.10)-(11.12) we get
∫

R
( Q1 + · · ·+ Q4) w′ dt = ( ∆Mαk + |A|2k + αha1,0

ij ∂ijk )
∫

R
w′2 dt . (11.13)

On the other hand, we observe that∫

|t+h1|<ρα

(Q5 + Q6)w′ dt = O(α2r−2
α ) ∂ijk + O(α2r−3

α ) ∂ik . (11.14)
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Combining relations (11.13), (11.14) and (11.9), expansion (11.5) follows. Finally, for
v replaced by ηδk w′ we have that∫

L(kwηδ)ηδ kw′ dt =
∫

η2
δL(kw)kw dt +

∫
ηδ(∆ηδ kw′ + 2∇ηδ∇(kw′)) kw dt .

The arguments above apply to obtain the desired expansion for the first integral in
the right hand side of the above decomposition. The second integral produces only
smaller order operators in k since ∆ηδ, ∇ηδ are both of order O(r−4

α α4) inside their
supports. The proof is concluded.

Let us consider now the region

W := {x ∈ Nδ / rα(y) < R},
where R is a given large number.

Lemma 11.2. — Let k(y) be a smooth function in Mα that vanishes when rα(y) =
R, and set v(y, t) := ηδ(y, t) k(y) w′(t). Then the following estimate holds.

Q(v, v) =
∫

W
|∇v |2 − f ′(uα) v2 dx =

∫

rα(y)<R

[ |∇Mαk|2 − α2|A(αy)|2 k2
]

dVα

∫

R
w′2 dt

+ O

(
α

∫

rα(y)<R

[ |∇k|2 + α2 (1 + r4
α)−1 k2 ] dVα

)
. (11.15)

Proof. — Let us estimate first the quantity∫

W
L(kw′) kw′ dx .

Let us express the Euclidean element of volume dx in the coordinates (y, t). Consider
one of the charts Yl(y), y ∈ Ul of M , l = 1, . . . , N introduced in (2.6), which induce
corresponding charts in Mα as in (2.9). Then, dropping the index l, we compute the
element of volume through the change of coordinates

x = X(y, t) = α−1Y (αy) + (t + h)ν(αy) . (11.16)

Below, as in subsequent computations, the computation of the integral in the entire
region is performed by localization through smooth partition of unity ξ1, . . . , ξm sub-
ordinated to the covering Yl(Uk), l = 1, . . . , N of M , namely with the support of ξl is
contained in Yl(Uk) and

∑
l ξl ≡ 1. We perform typically a computation of an integral

of a function g(x) defined in Nδ as
∫

Nδ

g(x) dx =
N∑

l=1

∫

Nδ

ξl(αy) g(y, t) dx(y, t) . (11.17)

Let us keep this in mind particularly for estimates obtained by integration by parts
relative to local variables for y.
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Let us consider the coordinates X in (11.16). Then we have that

DX(y, t) = [∂1Y + α(t + h) ∂1ν + α∂1h ν | ∂2Y + α(t + h) ∂2ν + α∂2h ν | ν ] (αy),

hence

det DX(y, t) = det [∂1Y + α(t + h) ∂1ν | ∂2Y + α(t + h)h∂2ν | ν ] (αy) =

det [∂1Y | ∂2Y | ν ] + α2(t + h)2 det [ ∂1ν | ∂2ν | ν ] +
α(t + h) {det [∂1Y | ∂2ν | ν ] + det [∂1ν | ∂2Y | ν ] } .

Since mean curvature of M vanishes and the Gauss curvature equals |A|2, we obtain

dx = |detDX(y, t) | dy dt =

( 1 + α2(t + h)2 |A|2) |det [∂1Y | ∂2Y | ν ] | (αy) dy dt =
( 1 + α2(t + h)2 |A(αy)|2 ) dVα(y) dt .

Using this, we estimate

I =
∫

W
L(kw′) kw′ dx =

∫

rα(y)<R

∫

|t+h1|<ρα

[L(kw′) kw′ ] ( 1 + α2(t + h)2 |A(αy)|2 ) dVα(y) dt .

According to Lemma 11.1,

I =
∫

(∆Mαk + α2|A(αy)|2k) k dVα(y)
︸ ︷︷ ︸

I1

+

∫

rα(y)<R

[O(α r−2
α log rα)k∂ijk + O( α2 r−3

α )k∂jk + O(α3 r−4
α )k2 ] dVα(y)

︸ ︷︷ ︸
I2

α2

∫

W
L(kw′) kw′ (t + h)2 |A(αy)|2 dVα(y) dt

︸ ︷︷ ︸
I3

.

Integrating by parts, we see that

−I1 =
∫

rα(y)<R

[ |∇Mαk|2 − α2|A(αy)|2 ] dVα(y) .

The quantity I2 involves some abuse of notation since it is expressed in local coordi-
nates for y associated to each chart, and the total should be understood in the sense
(11.17). Integrating by parts in those coordinates, we get

I2 =
∫

rα(y)<R

[O(α r−2
α log rα)∂ik∂jk + O(α2 r−3

α log rα)∂ik k +O(α3 r−4
α )k2 ] dVα(y) .

Now,
|α2 O(r−3

α log rα) ∂ik k | ≤ C [ α|∇k|2 + α3(1 + r4
α)−1 k2 ] ,

and hence we have

|I2| ≤ C α

∫

rα(y)<R

[ |∇k|2 + α2 (1 + r4
α)−1 k2 ] dVα(y) (11.18)
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where C is independent of ν and all small α. Finally, to deal with the term I3,
we consider the expression (11.8) for L(kw′) and integrate by parts once the terms
involving second derivatives of k. Using that |A|2 = O(r−4

α ) we then get that

|I3| ≤ Cα

∫

rα(y)<R

[ |∇k|2 + α2 (1 + r4
α)−1 k2 ] dVα(y) . (11.19)

The same considerations above hold for kw′ replaced by ηδkw′, at this point we
observe that since ηδkw′ satisfies Dirichlet boundary conditions, we have

−
∫

W
L(kw′ηδ) ηδkw′ dx =

∫

W
|∇(kw′ηδ) |2 − α2|ηδkw′ |2 dx =

∫

rα(y)<R

{ |∇Mα
k|2 − α2|A(αy)|2 k2

}
dVα

∫

R
w′2 dt

+ O

(
α

∫

rα(y)<R

[ |∇k|2 + α2 (1 + r4
α)−1 k2 ] dVα

)

and estimate (11.15) has been established. This concludes the proof.

After Lemma 11.2, the inequality

m(uα) ≥ i(M) (11.20)

for small α follows at once. Indeed, we showed in §10 that the Jacobi operator has
exactly i(M) linearly independent bounded eigenfunctions ẑi associated to negative
eigenvalues λi of the weighted problem in entire space M . According to the theory
developed in §6, we also find that ∇ẑi = O(r−2), hence we may assume

Q(ẑi, ẑj) = λi

∫

M

q ẑi ẑj dV . (11.21)

Let us set ki(y) := ẑi(αy). According to Lemma 11.2, setting vi(x) = ki(y)w′(t)ηδ

and changing variables we get

Q(vi, vj) = α2Q(ẑi, ẑj)
∫

R
w′2 + O(α3)

∑

l=i,j

∫

M

|∇ẑl|2 + (1 + r4)−1ẑ2
l dV . (11.22)

From here and relations (11.21), we find that the quadratic form Q is negative on
the space spanned by the functions v1, . . . , vi(M). The same remains true for the
functions vi smoothly truncated around rα(y) = R, for very large R. We have proven
then inequality (11.20).

In what remains this section we will carry out the proof of the inequality

m(uα) ≤ i(M). (11.23)

Relation (11.22) suggests that associated to a negative eigenvalue λi of problem
(11.3), there is an eigenvalue of (11.1) approximated by ∼ λiα

2. We will show next
that negative eigenvalues of problem (11.1) cannot exceed a size O(α2).
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Lemma 11.3. — There exists a µ > 0 independent of R > 0 and all small α such
that if λ is an eigenvalue of problem (11.1) then

λ ≥ −µα2 .

Proof. — Let us denote

QΩ(ψ, ψ) :=
∫

Ω

|∇ψ|2 − f ′(uα)ψ2 .

Then if ψ(x) is any function that vanishes for |x′| > Rα−1 then we have

Q(ψ, ψ) ≥ QNδ∩{rα(y)<R} (ψ, ψ) + γ

∫

R3\Nδ

ψ2

where γ > 0 is independent of α and R. We want to prove that for some µ > 0 we
have in Ω = Nδ ∩ {rα(y) < R} that

QΩ (ψ, ψ) ≥ −µα2

∫

Ω

ψ2

1 + r4
α

dx . (11.24)

Equivalently, let us consider the eigenvalue problem

L(ψ) + λp(αx)ψ = 0 in Ω, (11.25)

ψ = 0 on rα = R, ∂nψ = 0 on |t + h1| = ρα.

Then we need to show that for any eigenfunction ψ associated to a negative eigen-
function, inequality (11.24) holds. Here ∂n denotes normal derivative. Let us express
this boundary operator in terms of the coordinates (t, y). Let us consider the portion
of ∂Nδ where

t + h1(αy) = ρα(y). (11.26)

We recall that for some γ > 0, ρα(y) = ρ(αy) = γ log(1 + rα(y)). Relation (11.26) is
equivalent to

z − h0(αy)− ρα(y) = 0 (11.27)

where z denotes the normal coordinate to Mα. Then, for ∇ = ∇x, we have that a
normal vector to the boundary at a point satisfying (11.27) is

n = ∇z −∇Mα(h0 + ρ) = ν(αy)− α∇M (h0 + ρ)(αy).

Now, we have that ∂tψ = ∇xψ · ν(αy). Hence, on points (11.26), condition ∂nψ = 0
is equivalent to

∂tψ − α∇M (h0 + ρ) · ∇Mαψ = 0 , (11.28)

and similarly, for
t + h1(αy) = ρα(y). (11.29)

it corresponds to
∂tψ − α∇M (h0 − ρ) · ∇Mαψ = 0 . (11.30)

Let us consider a solution ψ of problem (11.25). We decompose

ψ = k(y)w′(t)ηδ + ψ⊥
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where ηδ is the cut-off function (3.12) and∫

|τ+h1(αy)|<ρα(y)

ψ⊥(y, τ)w′(τ) dτ = 0 for all y ∈ Mα ∩ {rα(y) < R},

namely

k(y) =

∫
|τ+h1(αy)|<ρα(y)

ψ(y, τ)w′(τ) dτ∫
R w′(t)2ηδ dt

. (11.31)

Then we have

QΩ(ψ, ψ) = QΩ(ψ⊥, ψ⊥) +QΩ(kw′ηδ, kw′ηδ) + 2QΩ(kw′ηδ, ψ
⊥).

Since ψ⊥ satisfies the same boundary conditions as ψ we have that

QΩ(ψ⊥, ψ⊥) = −
∫

Ω

( ψ⊥∆xψ⊥ + f ′(uα)ψ⊥
2
) dx .

Thus,

QΩ(ψ⊥, ψ⊥) = −
∫

rα<R

∫

|t+h1|<ρα

[ψ⊥∆xψ⊥+f ′(uα)ψ⊥
2
] (1+α2(t+h)2|A|2) dVα dt .

Let us fix a smooth function H(t) with H(t) = +1 if t > 1, H(t) = −1 for t < −1.
Let us write

−∆xψ⊥ − f ′(uα)ψ⊥ = −∂ttψ
⊥ − f ′(w)ψ⊥ + α∂t

[∇M (h0 + H(t)ρ) · ∇Mαψ⊥
]

−∆Mαψ⊥ + B(ψ⊥).
Then, integrating by parts in t, using the Neumann boundary condition, we get that
the integral

I :=

−
∫

|t+h1|<ρα

[
∂ttψ

⊥ + f ′(w)ψ⊥ − α∂t

(∇M (h0 + H(t)ρ) · ∇Mαψ⊥
)]

ψ⊥ (1+α2(t+h)2|A|2) dt

=
∫

|t+h1|<ρα

[
∂tψ

⊥ − α
(∇M (h0 + H(t)ρ) · ∇Mαψ⊥

) ]
∂tψ

⊥ (1+α2(t+h)2|A|2) dt

−
∫

|t+h1|<ρα

f ′(w)ψ⊥
2
(1 + α2(t + h)2|A|2) dt

+
∫

|t+h1|<ρα

[
∂tψ

⊥ − α
(∇M (h0 + H(t)ρ) · ∇Mαψ⊥

) ]
ψ⊥ 2α2(t + h)2 |A|2 dt

=
∫

|t+h1|<ρα

[ |∂tψ
⊥|2−f ′(w)|ψ⊥|2 ] (1+o(1) ) + αO(r−1

α )∇Mαψ⊥ ∂tψ
⊥+o(1)∂tψ

⊥ ψ⊥ dt .

Now we need to make use of the following fact: there is a γ > 0 such that if a > 0 is
a sufficiently large number, then for any smooth function ξ(t) with

∫ a

−a
ξ w′ dt = 0 we

have that ∫ a

−a

ξ′2 − f ′(w)ξ2 dt ≥ γ

∫ a

−a

ξ′2 + ξ2 dt . (11.32)

Inequality (11.32) is just a perturbation of the inequality (5.2). We leave the details
to the reader.
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Hence

I ≥ γ

2

∫

|t+h1|<ρα

[ |∂tψ
⊥|2+ |ψ⊥|2 ] dt +

∫

|t+h1|<ρα

αO(r−1
α )∇Mψ⊥ ∂tψ

⊥ dt . (11.33)

On the other hand, for the remaining part, integrating by parts in the y variable the
terms that involve two derivatives of ψ⊥ we get that

II := −
∫

|t+h1|<ρα

dt

∫

rα(y)<R

(∆Mαψ⊥ + Bψ⊥) ψ⊥ (1 + α2(t + h)2|A|2) dVα(y) ≥
∫

|t+h1|<ρα

dt

∫

rα(y)<R

|∇Mαψ⊥|2 + o(1) ( ψ⊥
2

+ |∂tψ
⊥|2|∇Mαψ⊥|2 ) . (11.34)

Using estimates (11.33), (11.34), we finally get

QΩ(ψ⊥, ψ⊥) ≥ 3µ

∫

Ω

(|∂tψ
⊥|2 + |∇Mα

ψ⊥|2 + ψ⊥
2
) dx , (11.35)

for some µ > 0.
Now, we estimate the crossed term. We have

−QΩ(ψ⊥, kw′ηδ) =
∫

Ω

L(kw′ηδ)ψ⊥ (1 + α2(t + h)2|A|2) dVα dt .

Let us consider expression (11.8) for L(kw′), and let us also consider the fact that

L(ηδkw′) = ηδL(kw′) + 2∇ηδ∇(kw′) + ∆ηδ kw′,

with the last two terms producing a first order operator in k with exponentially small
size, at the same time with decay O(r−4

α ). Thus all main contributions come from the
integral

I =
∫

Ω

ηδL(kw′)ψ⊥ (1 + α2(t + h)2|A|2) dVα dt.

Examining the expression (11.8), integrating by parts once in y variable those terms
involving two derivatives in k, we see that most of the terms obtained produce straight-
forwardly quantities of the type

θ := o(1)
∫

Mα

(|∇k|2 + α2|A|2k2 ) dVα + o(1)
∫

Ω

(|ψ⊥|2 + |∇ψ⊥|2).

In fact we have

I =
∫

Ω

∆Mαk w′ ηδ ψ⊥ dVα dt

︸ ︷︷ ︸
I1

+
∫

Ω

α2 a0
ij∂ih0∂jh0 k w′′′ ψ⊥dVα dt

︸ ︷︷ ︸
I2

+

∫

Ω

f ′′(w) φ1 kw′ ψ⊥dVα dt

︸ ︷︷ ︸
I3

+ θ.

On the other hand, the orthogonality definition of ψ⊥ essentially eliminates I1. In-
deed,

I1 = −
∫

Ω

∆Mαk w′ (1−ηδ)ψ⊥ dVα dt =
∫

Ω

∇Mαk w′ [(1−ηδ)∇Mαψ⊥−∇ηδψ
⊥) dVα dt = θ .
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On the other hand, for a small, fixed number ν > 0 we have

|I2| ≤ Cα2

∫

Ω

1
1 + r2

α

|k| |w′′′| |ψ⊥| dVα dt ≤ Cν−1α2

∫

Mα

1
1 + r4

α

k2 dVα+ν

∫

Ω

|ψ|2 dx .

A similar control is valid for I3 since φ1 = O(α2r−2
α ). We then get

I ≥ −Cν−1α2

∫

Mα

1
1 + r4

α

k2 dVα − ν

∫

Ω

|ψ⊥|2. (11.36)

Finally, we recall that from Lemma 11.2,

QΩ(kw′ηδ, kw′ηδ) =
∫

rα(y)<R

[ |∇Mαk|2 − α2|A(αy)|2 k2
]

dVα

∫

R
w′2 dt + θ. (11.37)

From estimates (11.35), (11.36), (11.37), we obtain that if ν is chosen sufficiently
small, then

QΩ(ψ, ψ) ≥ −C α2

∫

Mα

1
1 + r4

α

k2 dVα ≥ −µα2

∫

Ω

1
1 + r4

α

|ψ|2 dx ,

for some µ > 0 and inequality (11.24) follows.

In the next result, we show that an eigenfunction with negative eigenvalue of prob-
lem (11.1) or (11.2) decays exponentially, away from the interface of uα.

Lemma 11.4. — let φ be a solution of either (11.1) or (11.2) with λ ≤ 0. Then φ
satisfies in the subregion of Nα where it is defined that

|φ(y, t)| ≤ C ‖φ‖∞ e−σ|t| (11.38)

where σ > 0 can be taken arbitrarily close to min{σ+, σ−}. The number C depends
on σ but it is independent of small α and large R. We have, moreover, that for
|αx′| > R0,

|φ(x)| ≤ C

m∑

j=1

e−σ|x3−α−1(Fk(αx′)+βjα log |αx′| ) | . (11.39)

where R0 is independent of α. Finally, we have that

|φ(x)| ≤ C e−σ δ
α for dist (x,Mα) >

δ

α
. (11.40)

Proof. — Let φ solve problem (11.1) for a large R. Let us consider the region between
two consecutive ends Mj,α and Mj+1,α. For definiteness, we assume that this region
lies inside S+ so that f ′(uα) approaches σ2

+ inside it. So, let us consider the region S
of points x = (x′, x3) such that rα(x) > R0 for a sufficiently large but fixed R0 > 0
and

(aj + αβj) log α|x′|+ bj + αγ < αx3 < (aj+1 + αβj+1 ) log α|x′| + bj+1 − αγ.

In terms of the coordinate t near Mj,α, saying that

αx3 ∼ (aj + αβj) log α|x′|+ bj + αγ
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is up to lower order terms, the same as saying t ∼ γ, similarly near Mj+1,α. Thus given
any small number τ > 0 we can choose γ sufficiently large but fixed, independently
of all R0 sufficiently large and any small α, such that

f ′(uα) < −(σ+ − τ)2 in S.

Let us consider, for x ∈ S and σ = σ+ − 2τ the function

v1(x) := e−σ[ x3−α−1(aj+αβj) log α|x′|+bj ] + e−σ(α−1[aj+1+αβj+1) log α|x′|+bj+1)−x3] .

Then v has the form

v1 = A1e
−σx3rA2 + B1e

σx3r−B2 , r = |x′|,
so that

∆v1 = A2
2r
−2rA2 A1e

−σx3 + B2
2r−2 B1r

−B2eσx3 + σ2v1 <

[α2A2
2R

−2
0 + α2B2

2R−2
0 + σ2 ] v1 .

Here
A2 = σα−1(aj + αβj), B2 = σα−1(aj+1 + αβj+1).

Hence, enlarging R0 if necessary, we achieve

∆v1 + f ′(uα)v1 < 0 in S.

Therefore v so chosen is a positive supersolution of

∆v + f ′(uα)v + λp(αx)v ≤ 0 in S. (11.41)

Observe that the definition of v also achieves that

inf
∂S\{rα=R0}

≥ γ > 0

where γ is independent of α. Now, let us observe that the function v2 = e−σ(|x′|−R0
α )

also satisfies, for small α, inequality (11.41). As a conclusion, for φ, solution of (11.1),
we have that

|φ(x)| ≤ C ‖φ‖∞ [v1(x) + v2(x)] for all x ∈ S, rα(x) < R. (11.42)

Using the form of this barrier, we then obtain the validity of estimate (11.39), in
particular that of (11.38), in the subregion of Nδ in the positive t direction of Mj,α

and Mj+1,α when rα(y) > R0. The remaining subregions of Nδ ∩ {rα(y) > R0} are
dealt with in a similar manner. Finally, to prove the desired estimate for rα(y) < r0

we consider the region where |t| < 2δ
α assuming that the local coordinates are well

defined there. In this case we use, for instance in the region

ν < t <
2δ

α

for ν > 0 large and fixed, a barrier of the form

v(y, t) = e−σt + e−σ( 2δ
α −t) .

It is easily seen that for small α this function indeed satisfies

∆xv − f ′(uα)v < 0
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where σ can be taken arbitrarily close to σ+. We conclude that

|φ(y, t)| ≤ C‖φ‖∞e−σt for ν < t <
δ

α
.

Thus estimate (11.38) holds true. Inequality (11.40) follows from maximum principle.

Finally, for a solution of problem (11.2) the same procedure works, with only
minor difference introduced. Estimate (11.42) can be obtained after adding a growing
barrier. Indeed, we obtain

|φ(x)| ≤ C ‖φ‖∞ [v1(x) + v2(x) + εv3(x)] for all x ∈ S

with v3(x) = εeσ|x′|, and then we let ε → 0. We should also use εeσx3 to deal with the
region above the last end Mm and similarly below M1. We then use the controls far
away to deal with the comparisons at the second step. The proof is concluded.

11.1. The proof of inequality (10.23). — Let us assume by contradiction that
there is a sequence α = αn → 0 along which

m(uα) > i(M) =: N .

This implies that for some sequence Rn → +∞ we have that, for all R > Rn, Problem
(11.1) has at least N + 1 linearly independent eigenfunctions

φ1,α,R, . . . , φN+1,α,R

associated to negative eigenvalues

λ1,α,R ≤ λ2,α,R ≤ · · · ≤ λN+1,α,R < 0 .

We may assume that ‖φi,α,R‖∞ = 1 and that∫

R3
p(αx)φi,α,R φj,α,R dx = 0 for all i, j = 1, . . . , N + 1, i 6= j.

Let us observe that then the estimates in Lemma 11.4 imply that the contribution to
the above integrals of the region outside Nδ is small. We have at most∫

Nδ

p(αy)φi,α,R φj,α,R dx = O(α3) for all i, j = 1, . . . , N + 1, i 6= j. (11.43)

From the variational characterization of the eigenvalues, we may also assume that
λi,α,R defines a decreasing function of R. On the other hand, from Lemma 11.3 we
know that λi,α,R = O(α2), uniformly in R, so that we write for convenience

λi,α,R = µi,α,R α2, µi,α,R < 0.

We may assume µi,α,R → µi,α < 0 as R → +∞. We will prove that φi,α,R

converges, up to subsequences, uniformly over compacts to a nonzero bounded limit
φi,α which is an eigenfunction with eigenvalue µi,αα2 of Problem (11.2). We will then
take limits when α → 0 and find a contradiction with the fact that J has at i(M)
negative eigenvalues.

We fix an index i and consider the corresponding pair φi,α,R, µi,α,R, to which
temporarily we drop the subscripts i, α, R.
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Note that by maximum principle, |φ| can have values that stay away from zero
only inside Nδ Besides, from Lemma 11.4, φ = O(e−σ|t|) in Nδ. We observe then that
since λ remains bounded, local elliptic estimates imply the stronger assertion

|D2φ|+ |Dφ|+ |φ| ≤ C e−σ|t| in Nδ . (11.44)

In particular, considering its dependence in R, φ approaches up to subsequences, lo-
cally uniformly in R3 a limit. We will prove by suitable estimates that that limit is
nonzero. Moreover, we will show that φ ≈ z(αy)w′(t) in Nδ where z is an eigenfunc-
tion with negative eigenvalue ≈ µ of the Jacobi operator J .

First, let us localize φ inside Nδ. Let us consider the cut-off function ηδ in (3.12),
and the function

φ̃ = ηδφ.

Then φ̃ satisfies

L(φ̃) + µα2q(αx)φ̃ = Eα := −2∇ηδ∇φ−∆ηδφ (11.45)

with L(φ̃) = ∆φ̃ + f ′(uα)φ̃. Then from (11.44) we have that for some σ > 0,

|Eα| ≤ Cα3e−σ|t|(1 + r4
α)−1.

Inside Nδ we write in (y, t) coordinates equation (11.45) as

L∗(φ̃) + B(φ̃) + λp(αy)φ̃ = Eα (11.46)

where
L∗(φ̃) = ∂ttφ̃ + ∆Mα φ̃ + f ′(w(t))φ̃ .

Extending φ̃ and Eα as zero, we can regard equation (11.46) as the solution of a
problem in entire Mα × R for an operator L that interpolates L inside Nδ with L∗
outside. More precisely φ̃ satisfies

L(φ̃) := L∗(φ̃) + B(φ̃) + λp(αy)φ̃ = Eα in MR
α × R, (11.47)

where for a function ψ(y, t) we denote

B(ψ) :=
{

χB(ψ) if |t + h1(αy)| < ρα(y) + 3
0 otherwise (11.48)

and
χ(y, t) = ζ1(y + (t + h)να(y))

with ζ1 the cut off function defined by (4.8) for n = 1. In particular, L = L in Nδ.

Now, we decompose

φ̃(y, t) = ϕ(y, t) + k(y) ηδ w′(t) (11.49)

where

k(y) = −w′(t)

∫
R φ̃(y, ·) w′ dτ∫
R ηδw′2 dτ

so that ∫

R
ϕ(y, t)w′(t) dt = 0 for all y ∈ MR

α .
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From (11.44), k is a bounded function, of class C2 defined on MR
α with first and second

derivatives uniformly bounded independently of large R. A posteriori we expect that
k has also bounded smoothness as a function of αy, which means in particular that
Dk = O(α). We will see that this is indeed the case.

The function ϕ satisfies the equation

L(ϕ) + µα2p(αy)ϕ = −L(kw′) + Eα − µα2p k w′ inMR
α × R . (11.50)

We observe that the expansion (11.8) holds true globally in MR
α × R for L(kw′)

replacing L(kw′). We also have the validity of expansion (11.5) for the corresponding
projection, namely

∫

R
L(kw′)w′ dt = ( ∆Mα

k + α2|A|2k )
∫

R
w′2 dt

+ O(αr−2
α ) ∂ijk + O(α2r−3

α ) ∂ik + O(α3r−4
α ) k . (11.51)

Thus, integrating equation (11.50) against w′ we find that k satisfies

∆Mαk + α2|A|2k + µα2 p(αy) k +

O(αr−2
α ) ∂ijk + O(α2r−3

α ) ∂ik + O(α3r−4
α ) k =

O(α3r−4
α )− 1∫

R w′2

∫

R
B(ϕ)w′ dt, y ∈ MR

α . (11.52)

Let us consider the function z(y) defined in M by the relation k(y) = z(αy). Then
(11.52) translates in terms of z as

∆Mz + |A(y)|2z + µ q(y) z =

α
[
O(r−2) ∂ijz + O(r−3) ∂iz + O(r−4) z + O(r−4)

]
+ B y ∈ MR . (11.53)

where

B(y) :=
1∫
R w′2

α−2

∫

R
B(ϕ)(α−1y, t)w′ dt, y ∈ MR . (11.54)

In other words we have that k(y) = z(αy), where z solves “a perturbation” of the
eigenvalue equation for the Jacobi operator that we treated in §10. We need to make
this assertion precise, the basic element being to prove that the operator B[z] is
“small”. For this we will derive estimates for ϕ from equation (11.50).

We shall refer to the decomposition Q1 + · · · + Q6 in (11.8) to identify different
terms in L(kw′). Let us consider the decomposition

ϕ = ϕ1 + ϕ2,

where ϕ1 solves the linear problem for the operator L∗ and the part of L(kw′) that
“does not contribute to projections”, namely

Q3 + Q4 = −w′′
[
αa0

ij(∂jh∂ik + ∂ih∂jk) + α2k∆Mh1 + α2ha1,0
ij (∂jh∂ik + ∂ih∂jk)

]

+ αtw′
[
a1,0

ij ∂ijk + αb1,0
i ∂ik

]
. (11.55)

More precisely ϕ1 solves the equation
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L∗(ϕ1) + α2µ p ϕ1 = Q3 + Q4 in MR
α × R. (11.56)

This problem can indeed be solved: according to the linear theory developed, there
exists a unique solution to the problem

L∗(ϕ1) + µα2pϕ1 = Q3 + Q4 + c(y)w′(t) in MR
α × R,

such that ∫

R
ϕ1 w′ dt = 0 for all y ∈ MR

α

and

‖D2ϕ1‖p,1,σ + ‖Dϕ1‖∞,1,σ + ‖ϕ1‖∞,1,σ ≤ ‖Q3 + Q4‖p,1,σ ≤ Cα . (11.57)

But since ∫

R
(Q3 + Q4) w′ dt = 0 for all y ∈ MR

α

it follows that actually c(y) ≡ 0, namely ϕ1 solves equation (11.56).

We claim that ϕ2 has actually a smaller size than ϕ1. Indeed ϕ2 solves the equation

L∗(ϕ2)+B(ϕ2)+µα2pϕ2 = Eα−B(ϕ1)−(Q1+Q2+Q5+Q6)−µα2q kw′ in MR
α ×R.
(11.58)

Now, we have that
Q1 + Q2 + Q5 + Q6 =

[
∆Mαk + αha1,0

ij ∂ijk
]

w′ + α2
[−|A|2 k tw′′ + a0

ij∂ih0∂jh0 k w′′′ +

α−2f ′′(w)φ1 kw′ + (t + h)2a2
ij∂ijkw′ + 2(t + h)a2

ij ∂ih∂jk) w′′
]

+

α3
[
O(e−σ|t|r−2

α ) ∂ijk + O(e−σ|t|r−3
α ) ∂jk

]
= (11.59)

O(α2r−2
α log2 rα e−σ|t|) + ρ(y)w′(t) ,

for a certain function ρ(y). On the other hand, let us recall that

B = (f ′(uα)− f ′(w))− α2[(t + h1)|A|2 + ∆Mh1]∂t − α a0
ij( ∂jh∂it + ∂ih∂jt) +

α(t + h) [a1
ij∂ij − 2α a1

ij∂ih∂jt + α(b1
i ∂i − αb1

i ∂ih∂t) ) ] +

α3(t + h)2b1
3∂t + α2[ a0

ij + α(t + h)a1
ij) ]∂ih∂jh∂tt (11.60)

Thus the order of B(ϕ1) carries both an extra α and an extra r−1
α over those of ϕ1,

in the sense that
‖B(ϕ1)‖p,2,σ ≤ Cα2. (11.61)

From relations (11.59) and (11.61) we find that ϕ2 satisfies an equation of the form

L∗(ϕ2) + B(ϕ2) + µα2qϕ2 = g + c(y)w′ in MR
α × R (11.62)
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where for arbitrarily small σ′ > 0 we have

‖g‖p,2−σ′,σ ≤ Cα2.

Since ϕ2 satisfies
∫
R ϕ2 w′ dt ≡ 0, the linear theory for the operator L∗ yields then

that
‖D2ϕ2‖p,2−σ′,σ + ‖Dϕ2‖∞,2−σ′,σ + ‖ϕ2‖∞,2−σ′,σ ≤ Cα2 , (11.63)

which compared with (11.57) gives us the claimed extra smallness:

‖B(ϕ2)‖p,3−σ′,σ ≤ Cα3. (11.64)

Let us decompose in (11.54)
B = B1 + B2

where
Bl :=

1∫
R w′2

α−2

∫

R
B(ϕl)(α−1y, t) w′ dt, l = 1, 2. (11.65)

From Lemma 8.1 we get that

‖B1‖p,2− 2
p−σ′ ≤ Cα−2‖B(ϕ1)‖p,2,σ ≤ C (11.66)

and
‖B2‖p,3− 2

p−2σ′ ≤ Cα−2‖B(ϕ2)‖p,3−σ′,σ ≤ Cα (11.67)

Now, we apply the estimate in part (b) of Lemma 10.2 to equation (11.53) and
then get for z(y) = k( y

α ) the estimate

‖D2z‖p,2− 2
p−2σ′ + ‖ (1 + |x|)1−2σ′ Dz ‖∞ ≤ C [ ‖f‖p,2− 2

p−2σ′ + ‖z‖∞ ] (11.68)

where
f = α

[
O(r−2) ∂ijz + O(r−3) ∂iz + O(r−4) z + O(r−4)

]
+ B.

Then from estimate (11.68) it follows that for small α,

‖D2z‖p,2− 2
p−2σ′ + ‖ (1 + |x|)1−2σ′ Dz ‖∞ ≤ Cα. (11.69)

Using this new information, let us go back to equation (11.56) and to the expression
(11.55) for Q3 + Q4. The terms contributing the largest sizes in this function can be
bounded by

C α e−σ|t|
[ |Dk|

1 + rα
+
|D2k|
1 + r2

α

]
.

Now, we compute

(1 + rα(y)2)p

∫

B(y,1)

|D2k|p
(1 + r2

α)p
dVα ≤

Cα2p−2

∫

B(y,α)

|D2z|p dV ≤ Cα2p−2‖D2z‖p,2− 2
p−2σ′ ≤ Cα2p−2 ,

and

(1 + rα(y)2−2σ′)p

∫

B(y,1)

|Dk|p
(1 + rα)p

dVα ≤

C‖ |Dk| (1 + rα)1−2σ′ ‖p
∞ = C αp ‖ |Dz| (1 + r)1−2σ′ ‖p

∞ ≤ Cαp .
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As a conclusion, from expression (11.55) we obtain that

‖Q3 + Q4‖p,2−2σ′,σ ≤ Cα2,

and therefore a substantial reduction of the size of ϕ1, compared with (11.57), we
have

‖D2ϕ1‖p,2−2σ′,σ + ‖Dϕ1‖∞,2−2σ′,σ ≤ Cα2 , (11.70)
hence, using again Lemma 8.1 we get

‖B1‖p,3− 2
p−3σ′ ≤ Cα−2‖B(ϕ1)‖p,3−2σ′,σ ≤ Cα (11.71)

which matches the size we initially found for B2 in (11.67).

We recall that φ = φi,α,R has a uniform C1 bound (11.44). Thus, passing to a
subsequence if necessary, we may assume that

φi,α,R → φi,α as R → +∞,

locally uniformly, where φi,α is bounded and solves

∆φi,α + f ′(uα)φi,α + µi,α α2 p(αx)φi,α = 0 in R3. (11.72)

Let us return to equation (11.53) including the omitted subscripts. Thus k = ki,α,R

satisfies the local uniform convergence in Mα,

ki,α,R(y) = c

∫

|t+h1|<ρα

φi,α,R w′ dt → c

∫

|t+h1|<ρα

φi,α w′ dt =: ki,α(y) .

We have that z = zi,α,R satisfies

∆Mzi,α,R + |A(y)|2zi,α,R + µi,α,R q(y) zi,α,R =

α
[
O(r−2) ∂ijzi,α,R + O(r−3) ∂izi,α,R + O(r−4) zi,α,R + O(r−4)

]
+

Bi,α,R, y ∈ MR ,

where
‖Bi,α,R‖p,3− 2

p−3σ′ ≤ Cα (11.73)

with arbitrarily small σ′ > 0 and C independent of R. We apply now the estimates
in Lemma 10.2 for some 1 < p < 2 and find that for C independent of R we have

‖zi,α,R‖L∞(MR) ≤ C [ ‖zi,α,R‖L∞(r<R0) + O(α) ]

or equivalently

‖ki,α,R‖L∞(MR
α ) ≤ C [ ‖ki,α,R‖L∞(rα<R0) + O(α) ] . (11.74)

Since from (11.49) we have that

φi,R,α(y, t) = ϕi,R,α(y, t) + ki,R,α(y) w′(t) in Nδ, rα(y) ≤ R, (11.75)

where we have uniformly in R

|ϕi,R,α(y, t)| = O(α e−σ|t|r−2
α ),

while φi,R,α = O(e−
a
α ) outside Nδ, and

‖φi,R,α‖∞ = 1,
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then
‖ki,α,R‖L∞(MR

α ) ≥ γ > 0

uniformly in R. Thus from (11.74), the limit ki,α as R → +∞ cannot be zero. We
have thus found that φi,α is non-zero. Moreover, we observe the following: Since the
functions

Zi := ∂iuα, i = 1, 2, 3, Z4 := −x2∂1uα + x1∂2uα

are bounded solutions of (11.2) for λ = 0, we necessarily have that
∫

R3
p(αx) Zjφi,α dx = 0, j = 1, 2, 3, 4. (11.76)

Let

Ẑi =
4∑

l=1

dilZl, i = 1, . . . , J .

Then we also have ∫

R3
p(αx) Ẑiφi,α dx = 0, i = 1, . . . , J . (11.77)

Now we want to let α → 0. zi,α satisfies

∆Mzi,α + |A(y)|2zi,α + µi,α p(y) zi,α =

α
[
O(r−2) ∂ijzi,α + O(r−3) ∂izi,α + O(r−4) zi,α + O(r−4)

]
+ Bi,α, y ∈ M ,

with
‖Bi,α‖p,3− 2

p−3σ′ ≤ Cα. (11.78)

Moreover,
‖zi,α‖L∞(M) ≤ C [ ‖zi,α,R‖L∞(r<R0) + O(α) ] .

Since we also have that
‖D2zi,α‖Lp(M) ≤ C ,

Sobolev’s embedding implies that passing to a subsequence in α, zi,α converges as
α → 0, uniformly over compact subsets of M to a non-zero bounded solution z̄i of
the equation

∆M z̄i + |A(y)|2z̄i + µi q(y) z̄i = 0 in M,

with µi ≤ 0.

Now, we have that

φi,α = zi,α(αy)w′(t) + ϕi(y, t) in Nδ

where
|ϕi(y, t)| ≤ Cαe−σ|t| .

We recall that ∫

Nα

q(αy)φi,α φj,α dx = O(α) for all i 6= j .

Since on Nδ,
dx = (1 + α2|A|2(t + h))dVα dt ,
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we get then that ∫

Mα

q(αy)zi,α(αy) zj,α(αy) dVα = O(α)

or ∫

M

q(y)zi,α(y) zj,α(y) dV = O(α3) for all i 6= j.

We conclude, passing to the limit, that the zi’s i = 1, . . . , N + 1 satisfy
∫

M

q z̄iz̄j dV = 0 for all i 6= j.

Since, as we have seen in §10, this problem has exactly N = i(M) negative eigenvalues,
it follows that µN+1 = 0, so that that zN+1 is a bounded Jacobi field.

But we recall that, also

Zi = zi(αy)w′(t) + O(αe−σ|t|) for all i = 1, . . . , J,

hence the orthogonality relations (11.77) pass to the limit to yield
∫

M

q ẑi · z̄N+1 dV = 0, i = 1, . . . , J .

where ẑi’s are the J linearly independent Jacobi fields. We have thus reached a
contradiction with the non-degeneracy assumption for M and the proof of m(uα) =
i(M) is concluded.

Finally, the proof of the non-degeneracy of uα for all small α goes along the same
lines. Indeed, the above arguments are also valid for a bounded eigenfunction in entire
space, in particular for µ = 0. If we assume that a bounded solution Z5 of equation
(11.2) is present, linearly independent from Z1, . . . , Z4, then we assume that

∫

R3
p(αx)Z5 Ẑi dx = 0 i = 1, . . . , J. (11.79)

Thus, if in the same way as before, we have that in Nδ,

Z5 = z5(αy)w′(t) + ϕ

with ϕ orthogonal to w′(t) for all y and ϕ small with size α and uniform exponential
decay in t. The function zα solves an equation of the form (11.78), now for µ = 0.
In the same way as we did before, it converges uniformly on compacts to a non-zero
limit which is a bounded Jacobi field. But the orthogonality (11.79) passes to the
limit, thus implying the existence of at least J + 1 linearly independent Jacobi field.
We have reached a contradiction that finishes the proof of Theorem 2.
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12. Further comments and open questions

12.1. Symmetries. — As it is natural, the invariances of the surface are at the
same time inherited from the construction. If M is a catenoid, revolved around the
x3 axis, the solution in Theorem 1 is radial in the first two variables,

uα(x) = uα ( |x′|, x3) .

This is a consequence of the construction. The invariance of the Laplacian under
rotations and the autonomous character of the nonlinearity imply that the entire
proof can be carried out in spaces of functions with this radial symmetry. More
generally, if M is invariant a group of linear isometries, so will be the solution found,
at least in the case that f(u) is odd. This assumption allows for odd reflections.
The Costa-Hoffmann-Meeks surface is invariant under a discrete group constituted of
combination of dihedral symmetries and reflections to which this remark apply.

12.2. Towards a classification of finite Morse index solutions. —
Understanding bounded, entire solutions of nonlinear elliptic equations in RN is a
problem that has always been at the center of PDE research. This is the context of
various classical results in PDE literature like the Gidas-Ni-Nirenberg theorems on
radial symmetry of one-signed solutions, Liouville type theorems, or the achievements
around De Giorgi conjecture. In those results, the geometry of level sets of the
solutions turns out to be a posteriori very simple (planes or spheres). More challenging
seems the problem of classifying solutions with finite Morse index, in a model as
simple as the Allen-Cahn equation. While the solutions predicted by Theorem 1 are
generated in an asymptotic setting, it seems plausible that they contain germs of
generality, in view of parallel facts in the theory of minimal surfaces. In particular
we believe that the following two statements hold true for a a bounded solution u to
equation (1.1) in R3.

(1) If u has finite Morse index and ∇u(x) 6= 0 outside a bounded set, then each
level set of u must have outside a large ball a finite number of components, each of
them asymptotic to either a plane or to a catenoid. After a rotation of the coordinate
system, all these components are graphs of functions of the same two variables.

(2) If u has Morse index equal to one. Then u must be axially symmetric, namely
after a rotation and a translation, u is radially symmetric in two of its variables. Its
level sets have two ends, both of them catenoidal.

It is worth mentioning that a balancing formula for the “ends” of level sets to the
Allen-Cahn equation is available in R2, see [15]. An extension of such a formula to
R3 should involve the configuration (1) as its basis. The condition of finite Morse
index can probably be replaced by the energy growth (1.9).

On the other hand, (1) should not hold if the condition ∇u 6= 0 outside a large
ball is violated. For instance, let us consider the octant {x1, x2, x3 ≥ 0} and the
odd nonlinearity f(u) = (1 − u2)u. Problem (1.1) in the octant with zero boundary
data can be solved by a super-subsolution scheme (similar to that in [8]) yielding a
positive solution. Extending by successive odd reflections to the remaining octants,
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one generates an entire solution (likely to have finite Morse index), whose zero level set
does not have the characteristics above: the condition ∇u 6= 0 far away corresponds
to embeddedness of the ends.

Various rather general conditions on a minimal surface imply that it is a catenoid.
For example, R. Schoen [35] proved that a complete embedded minimal surface in R3

with two ends must be catenoid (and hence it has index one). One may wonder if a
bounded solution to (1.1) whose zero level set has only two ends is radially symmetric
in two variables. On the other hand a one-end minimal surface is forced to be a plane
[20]. We may wonder whether or not the zero level set lies on a half space implies
that the solution depends on only one variable.

These questions seem rather natural generalizations of that by De Giorgi, now on
the classification finite Morse index entire solutions of (1.1). The case in which the
minimal surfaces have finite topology but infinite total curvature, like the helicoid,
are natural objects to be considered. While results parallel to that in Theorem 1
may be expected possible, they may have rather different nature. The condition of
diverging ends in β is not just technical. If it fails a solution may still be associated to
the manifold but interactions between neighboring interfaces, which are inherent to
the Allen-Cahn equation but not to the minimal surface problem, will come into play.
The case of infinite topology may also give rise to very complicated patterns, we refer
to Pacard and Hauswirth [17] and references therein for recent result on construction
of minimal surfaces in this scenario.

13. Appendix

In this appendix we carry out the computations that lead to Lemma 2.1.

13.1. Coordinates near M and the Euclidean Laplacian. — Let us consider
the smooth map

(y, z) ∈ M × R 7−→ x = X̃(y, z) = y + zν(y) ∈ R3. (13.1)
Let O be a set as in the statement of Lemma 2.1, and consider the subset of M × R
defined as

Õ = { (αy, α(t + h(y)) ) ∈ M × R / (t, y) ∈ O }.
Then X̃|Õ is one to one, and

Õ ⊂ {(y, z) ∈ M × R / |z| < δ log(1 + r(y))}.
Since along ends ∂iν = O(r−2) so that z∂iν is uniformly small in Õ, it follows that
X̃ is actually a diffeomorphism onto is image, Ñ = X̃(Õ) = αN .

The Euclidean Laplacian ∆x can be computed in such a region by the well-known
formula in terms of the coordinates (y, z) ∈ Õ as

∆x = ∂zz + ∆Mz −HMz∂z, x = X̃(y, z), (y, z) ∈ O (13.2)
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where Mz is the manifold

Mz = {y + zν(y) / y ∈ M}.
Local coordinates y = Yk(y), y ∈ R2 as in (2.1) induce natural local coordinates in
Mz. The metric gij(z) in Mz can then be computed as

gij(z) = 〈∂iY, ∂jY 〉+ z(〈∂iY, ∂jν〉+ 〈∂jY, ∂iν〉) + z2 〈∂iν, ∂jν〉 (13.3)

or
gij(z) = gij + z O(r−2) + z2O(r−4) .

where these relations can be differentiated. Thus we find from the expression of ∆Mz

in local coordinates that

∆Mz
= ∆M + za1

ij(y, z)∂ij + zb1
i (y, z)∂i, y = Y (y) (13.4)

where a1
ij , b

1
i are smooth functions of their arguments. Let us examine this expansion

closer around the ends of Mk where y = Yk(y) is chosen as in (2.1). In this case, from
(13.3) and (2.2) we find

gij(z) = gij + z O(r−2) + z2O(r4) + . . .

Then we find that for large r,

∆Mz = ∆M + z O(r−2)∂ij + zO(r−3)∂i. (13.5)

Let us consider the remaining term in the expression for the Laplacian, the mean
curvature HMz . We have the validity of the formula

HMz =
2∑

i=1

ki

1− kiz
=

2∑

i=1

ki + k2
i z + k3

i z2 + · · ·

where ki, i = 1, 2 are the principal curvatures. Since M is a minimal surface, we have
that k1 + k2 = 0. Thus

|A|2 = k2
1 + k2

2 = −2k1k2 = −2K

where |A| is the Euclidean norm of the second fundamental form, and K the Gauss
curvature. As r → +∞ we have seen that ki = O(r−2) and hence |A|2 = O(r−4).
More precisely, we find for large r,

HMz = |A|2z + z2O(r−6).

Thus we have found the following expansion for the Euclidean Laplacian,

∆x = ∂zz + ∆M − z|A|2∂z + B (13.6)

where expressed in local coordinates in M the operator B has the form

B = z a1
ij(y, z)∂ij + z b1

i (y, z)∂i + z2b1
3(y, z)∂z (13.7)

with a1
ij , b1

i , b1
3 smooth functions. Besides, we find that

a1
ij(y, z) = O(r−2), b1

i (y, z) = O(r−3), b1
i (y, z) = O(r−6), (13.8)
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uniformly in z for (y, z) ∈ Õ. Moreover, the way these coefficients are produced from
the metric yields for instance that

a1
ij(y, z) = a1

i,j(y, 0) + za
(2)
i,j (y, z), a2

i,j(y, z) = O(r−3),

b1
i (y, z) = b1

i (y, 0) + zb
(2)
i (y, z), b

(2)
i (y, z) = O(r−4) .

We summarize the discussion above. Let us consider the parameterization in (13.1)
of the region Ñ .

Lemma 13.1. — The Euclidean Laplacian can be expanded in Ñ as

∆x = ∂zz + ∆Mz
−HMz

∂z =

∂zz + ∆M − z |A|2∂z + z [a1
ij(y, z)∂ij + b1

i (y, z)∂i] + z2b1
3(y, z)∂z,

∆M = a0
ij∂ij + b0

i ∂i, x = X̃(y, z), (y, z) ∈ Õ,

where al
ij, bl

j are smooth, bounded functions, with the index k omitted. In addition,
for k = 1, . . . , m,

al
ij = δijδ0l + O(r−2), bl

i = O(r−3), b1
3 = O(r−6) ,

as r = |y| → ∞, uniformly in z variable.

13.2. Laplacian in expanded variables. — Now we consider the expanded min-
imal surface Mα = α−1M for a small number α. We have that N = α−1Ñ . We
describe N via the coordinates

x = X(y, z) := y + zνα(y), (y, z) ∈ α−1Õ. (13.9)

Let us observe that
X(y, z) = α−1X̃(αy, αz)

where x̃ = X̃(ỹ, z̃) = ỹ + z̃ν(ỹ), where the coordinates in Nδ previously dealt with.
We want to compute the Euclidean Laplacian in these coordinates associated to Mα.
Observe that

∆x[u(x)] |x=X(y,z) = α2∆x̃[u(α−1x̃) ] |x̃=X̃(αy,αz)

and that the term in the right hand side is the one we have already computed. In
fact setting v(y, z) := u(y + zνα(y)), we get

∆xu |x=X(y,z) = α2(∆ỹ,Mz̃ + ∂z̃z̃ −HMz̃∂z̃) [v(α−1ỹ, α−1z̃)] |(ỹ,z̃)=(αy,αz) . (13.10)

We can then use the discussion summarized in Lemma 13.1 to obtain a represen-
tation of ∆x in N via the coordinates X(y, t) in (13.9). Let us consider the local
coordinates Ykα of Mα in (2.9). .
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Lemma 13.2. — In N we have

∆x = ∂zz + ∆Mα,z −HMα,z∂z =

∂zz +∆Mα−α2z |A(αy)|2∂z + αz [a1
ij(αy, αz)∂ij +αb1

i (αy, αz)∂i] +α3z2b1
3(αy, αz)∂z,

∆Mα
= a0

ij(αy)∂ij + b1
i (αy)∂i, (y, z) ∈ α−1Õ, y = Ykα(y)

where al
ij, bl

j are smooth, bounded functions. In addition, for k = 1, . . . , m,

al
ij = δijδ0l + O(r−2

α ), bl
i = O(r−3

α ), b1
3 = O(r−6

α ) ,

as rα(y) = |αy| → ∞, uniformly in z variable.

13.3. The proof of Lemma 2.1. — Let us consider a function u defined in N ,
expressed in coordinates x = X(y, z), and consider the expression of u in the co-
ordinates x = Xh(y, t), namely the function v(y, t) defined by the relation in local
coordinates y = Yk(y),

v(y, z − h(αy)) = u(y, z),

(by slight abuse of notation we are denoting just by h the function h ◦ Yk). Then we
compute

∂iu = ∂iv − α∂tv∂ih, ∂zu = ∂tv,

∂iju = ∂ijv − α∂itv∂jh− α∂jtv∂ih + α2∂ttv∂ih∂jh− α2∂tv∂ijh .

Observe that, in the notation for coefficients in Lemma 13.2,

a0
ij∂ijh + b0

i ∂ih = ∆Mh, a0
ij∂ijv + αb0

i ∂iv = ∆Mαv .

We find then

∆x = ∂tt + ∆Mα − α2[(t + h)|A|2 + ∆Mh]∂t − 2α a0
ij ∂jh∂it +

α(t + h) [a1
ij∂ij − 2α a1

ij ∂ih∂jt + α(b1
i ∂i − αb1

i ∂ih∂t) ] +

α3(t + h)2b1
3∂t + α2[ a0

ij + α(t + h)a1
ij ]∂ih∂jh ∂tt (13.11)

where all the coefficients are understood to be evaluated at αy or (αy, α(t + h(αy)).
The desired properties of the coefficients have already been established. The proof of
Lemma 2.1 is concluded.
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Casilla 170 Correo 3, Santiago, Chile. • E-mail : delpino@dim.uchile.cl
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