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STABLE SPIKE CLUSTERS FOR THE ONE-DIMENSIONAL
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ABSTRACT. We consider the Gierer-Meinhardt system with precursboimogeneity and two
small diffusivities in an interval

Ay =24 — p(w)A + 42 z€e(=1,1),t>0,
TH, = DH" — H + A2, x € (=1,1),t>0,
A'(-1)=A'(1) = H'(-1) = H'(1) =0,

where 0<e< VD <1,
7 > 0 andr is independent of.

A spike cluster is the combination of several spikes which all approach #mespoint in the
singular limit. We rigorously prove the existence of a sieathte spike cluster consisting &f
spikes near a non-degenerate local minimum pdinf the smooth inhomogeneityz), i.e. we
assume that/(¢°) = 0, u”(t°) > 0. HereN is an arbitrary positive integer. Further, we show
that this solution is linearly stable. We explicitly compuwll eigenvalues, both large (of order
O(1)) and small (of ordeo(1)). The main features of studying the Gierer-Meinhardt sysie
this setting are as follows: (i) it is biologically relevagihce it models a hierarchical process
(pattern formation of small-scale structures induced byeagxisting large-scale inhomogene-
ity); (i) it contains three different spatial scales twowliich are small: the(1) scale of the
precursor inhomogeneiy(x), theO(v/D) scale of the inhibitor diffusivity and th@(¢) scale

of the activator diffusivity; (iii) the expressions can bade explicit and often have a particularly
simple form.

1. INTRODUCTION

In his pioneering work [31] in 1952, Turing studied how pattéormation could start from
an unpatterned state. He explained the onset of patterratmmby the presence of spatially
varying instabilities combined with the absence of spigti@mogeneous instabilities. This ap-
proach is now commonly calleBuring diffusion-driven instabilitySince then many reaction-
diffusion systems in biological modeling have been prodosed the occurrence of pattern
formation has been investigated based on the approach wfgTmstability [31]. One of the
most widely used class of biological pattern-formation elsa@onsists of the activator-inhibitor
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type models which are based on real-world interactions siscthose encountered in experi-
ments and observations on seashells, animal skin patesnisyological development, cell sig-

nalling pathways and many more. Among these, one of the nogatlar models is the Gierer-

Meinhardt system [9], [16], [19], which in one dimension k& precursor-inhomogeneity and
two small diffusivities can be stated as follows:

At:52AA—,u(:E)A+%2, re(—1,1),t>0,
TH, = DAH — H + A?, v e (=1,1),t>0, (1.1)
A(-1)=A(1)=H'(-1)=H'(1) =0,

where 0<e< VD <1,

7 > 0 andr is independent of.

In the standard Gierer-Meinhardt system without precutdsrassumed thai(z) = 1.

Precursor gradients in reaction-diffusion systems haea loevestigated in earlier work. The
original Gierer-Meinhardt system [9], [16], [19] has beatroduced with precursor gradients.
These precursors were proposed to model the localizatittredfead structure in the coelenter-
ateHydra. Gradients have also been used in the Brusselator moddttactgpattern formation
to some fraction of the spatial domain [13]. In that examtiie,gradient carries the system in
and out of the pattern-forming part of the parameter range$a the Turing bifurcation), thus
effectively confining the domain where peak formation cacuncA similar localization effect
has been used to model segmentation patterns in the fridrélgophila melanogasten [15]
and [12].

In this paper, we study the Gierer-Meinhardt system witltpreor and prove the existence
and stability of a cluster, which consists 8fspikes approaching the same limiting point.

More precisely, we prove the existence of a steady-stake gfuister consisting oV spikes
near a non-degenerate local minimum pathof the inhomogeneity:(z) € C3(f), i.e. we
assume that/(°) = 0, 1’(t°) > 0. Further, we show that this solution is linearly stable.

We explicitly compute all eigenvalues, both large (of or@¥i )) and small (of orden(1)).
The main features of studying the Gierer-Meinhardt systethis setting are as follows: (i) it
is biologically relevant since it models a hierarchicalgass (pattern formation of small-scale
structures induced by a pre-existing inhomogeneity)

(i) it is important to note that this system contains thrégedent spatial scales two of which
are small (i.eo(1)):

(@) TheO(1) scale of the precursqi(z),

(b) TheO(v/D) scale of the inhibitor diffusivity,

(c) TheO(e) scale of the activator diffusivity.
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Consequently there are the two small quantité&s and% which play an important role
throughout the paper.

(ii) the expressions can be made explicit and often havetecp&arly simple form.

Let us now summarize the analytical approach employed irpaper. The existence proof
is based on Liapunov-Schmidt reduction. The stability @f ¢luster is shown by first separat-
ing the eigenvalues into two cases: large eigenvalues whiaihto a nonzero limit and small
eigenvalues which tend to zero in the lindX — 0 and% — 0. Large eigenvalues are then
explored by deriving suitable nonlocal eigenvalue proldemd studying them using results of
[36] and a compactness argument of Dancer [4]. Small eide@sare calculated explicitly by
using asymptotic analysis with rigorous error estimates.

We shall establish the existence and stability of positivepeaked steady-state spike clusters

to (1.1). The steady-state problem for positive solutidnd d) is the following:

( €2A”—u(:c)A+%2 =0 re(—1,1),
DH'—H+ A?=0 x € (—1,1),
(1.2)
A(x) > 0,H(x) > 0, r e (—1,1),
| A(-1)=A(1)=H'(-1)=H'(1)=0.
To have a nontrivial spike cluster, we assume throughoupdper that
N > 2. (1.3)

Before stating our main results, let us review some preadiessits on pattern formation for the
Gierer-Meinhardt system (1.1) , in particular concernipig patterns.

1. I. Takagi [30] proved the existence &tspike steady-state solutions of (1.1) in an interval
for homogeneous coefficients (i.2(x) = 1) in the regimes < 1 andD > 1, whereN is an
arbitrary positive integer. For these solutions, the spiée identical copies of each other and
their maxima are located at

2j — 1

t‘]:_l_'_T’ j:17...7N,

The proof in [30] is based on symmetry and the implicit fuacttheorem.

2. In [14] (using matched asymptotic expansions) and [485€0 on rigorous proofs), the
following stability result has been shown: for thespike steady-state solution derived in item
1 and0 < 7 < 19(NN), wherery(N) > 0 is independent of, there are number®; > D, >
---> Dy > --- (which have been computed explicitly) such that ffiespike steady-state is
stable for forD < Dy and unstable foD > Dy.
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3. In [14] (using matched asymptotic expansions) and [38k€d on rigorous analysis)
the following existence and stability results have beennshdor a certain parameter range
of D, the Gierer-Meinhardt system (1.1) witl{z) = 1 hasasymmetric N—spike steady-
state solutions, which consist of exact copies of precissty different spikes with distinct
amplitudes. They can be considered as bifurcating solsitioom those in item 1 such that
the amplitudes start to differ at the bifurcation point @adnode bifuraction). The stability of
these asymmetri®y —peaked solutions has been studied in [33].

4. In [45] the existence and stability df —peaked steady states for the Gierer-Meinhardt
system with precursor inhomogeneity has been shown. Tipdsesshave different amplitudes.
In particular, the results imply that precursor inhomogee® can induce instabilities. Single-
spike solutions for the Gierer-Meinhardt system with preouincluding spike motion have
been studied in [32].

5. In [42] the existence of symmetric and asymmetric mudtgghike clusters in an interval
has been shown.

Compared to each of the items listed above, the setting audtsen our paper have marked
differences. We now consider two small parametérand% which results in new types of
behavior. The leading-order asymptotic expression of éingel and small eigenvalues depend
on the index of the eigenvalue quadratically, whereas mst& and 2 this relation is oscillatory
(involving trigonometric functions).

In our study, the spikes in leading order have equal ammgw@ehd uniform spacing, although
there is precursor inhomogeneity in the system, in contoaigtm 3. The amplitudes, positions
and eigenvalues in our study can be characterized explaitl have a simpler form than in
item 4. We can also prove the stability of clusters not metlegyr existence as in item 5. In
particular, we show here that the clusters may be stableseaben item 5 they are expected to
be unstable.

In the shadow system cas® (= oo) the existence of single- av-peaked solutions has
been established in [10, 11, 21, 22] and other papers. Itasasting to remark that symmetric
and asymmetric patterns can also be obtained for the Giéeerhardt system on the real line,
see [5, 6]. We refer to [23] for the SLEP approch for the exiseeand stability of multi-
layered solutions for reaction-diffusion systems. For-tlumensional domains the existence
and stability of multi-peaked steady states has been prio&8, 39, 40] and results similar to
items 1 and 2 have been derived. Hopf bifurcation has beablested in [4, 34, 35, 40]. The
repulsive dynamics of multiple spikes has been studied]in [7
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Another study with three different spatial scales, two ofckhare small, considers a con-
sumer chain model allowing for a novel type of spiky clustepattern which is stable for
certain parameters [46].

The model in our paper shows some similarity to variationadiets for material microstruc-
ture [1, 20, 48]. In both models the solutions have two sneless. However, in our case we
have two parameters to control each of them independertiigteas in the microstructure case
they are expressions of different orders depending on tie sanall parameter and so they are
related to one another.

Results on the existence and stability of multi-spike syestdtes have been reviewed and put
in a general context in [47].

This paper has the following structure: In Section 2 we statemain results on existence
and stability and present four highlights of their proofs.Section 3 we introduce some pre-
liminaries. In Sections 4-5 and Appendices A-B we prove thistence of steady-state spike
clusters: in Section 4 we introduce suitable approximalgtiems, in Appendix A we compute
their error, in Appendix B we use the Liapunov-Schmidt mettmreduce the existence of so-
lutions of (1.2) to a finite-dimensional problem, in Sect®me solve this finite-dimensional
reduced problem. In Sections 6—7 and Appendix C we provet#imlity of these steady-state
spike clusters: in Section 6 we study the large eigenvaltidsedinearized operator and show
that it has diagonal form. We give a complete descriptiorhefrtasymptotic behavior which
is stated in Lemma 12. In Section 7 we characterize the srgghealues of the linearized
operator and show that they all have negative real part. ifbiades deriving the eigenvalues
of a matrix which is needed to compute the small eigenvalupboitly. We give a complete
description of their asymptotic behavior in leading ordéichk can be found in Lemma 13. Our
approach here is to interpret the main matrix as the finitiergince approximation of a suitable
ordinary differential equation, compute the solution a$ lpproximation explicitly and get the
eigenvectors by taking the values of this solution at unilgrspaced points. In Appendix C we
perform the technical analysis needed to derive the sng@healues. In Section 8 we conclude
with a discussion of our results with respect to the bridgohtength scales and the hierarchy
of multi-stage biological processes.

Acknowledgements: This research is supported by NSERC of Canada. MW thanks ¢he D
partment of Mathematics at UBC for their kind hospitality.

2. MAIN RESULTS ONEXISTENCE AND STABILITY

In this section, we state our main results on existence amillisy of solutions and present
four highlights of our approach.
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We first need to introduce some essential notation. 1%t-1,1) and H*(—1, 1) denote
Lebesgue and Sobolev space, respectively. Let the funatiba the unique solution (ground
state) of the problem

w' —w+w?=0, yeR,
w >0, w(0) = maxyer w(y), (2.1)
w(y) =0 as|y| — oc.

Thenw(y) can explicitly be written as

_ 3 osh-2 (¥
w(y) = 5 cosh (2> ) (2.2)
Elementary calculations give
/wz(z) dz =6, /w3(z) dz =172, / (w')? (2)dz = 1.2. (2.3)
R R R
Let
Q=(-1,1).

Forz € (—1,1), letGp(z, z) be the Green’s function defined by

DG%(ZL‘az)_GD(:E7Z)+5Z($) =0, z¢€ (_171)7 ( )
24
Gh(—1,2) =GH(1,2) =0,
whereG', (z, z) = £Gp(z, z) (and the lefthand and righthand limits are considered fer z).
We calculate

m cosh[f(1 + x)] cosh[f(1 — 2)], —1 <z < z,
Toh(3) cosh[f(1 — z)] cosh[f(1 + 2)], z <z <1,
where
0 =D
Lett® € (—1,1) and set
p’ = p(t). (2.6)
Let £0 be defined by
2 1
0 _ ) 2.7
SN TR CNTIWORE 20
We set
2v'D
w2 (2.8)
e [pw?(z)dz

Our first result is about the existence of Arspike cluster solution near a non-degenerate
minimum point of the precursor.
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Theorem 1. (Existence of aV-spike cluster.)
Let N be a positive integer andf € (—1,1). We assume that € C3(—1, 1) and

(%) =0, u"(t°) > 0. (2.9)

Then, fore < v/D < 1, problem (1.2) has aiV-spike cluster solution which concentrates
att. In particular, it satisfies

N €
Ae) S8 (m T tk) | (2.10)
k=1

3

H.(;) ~ &£, k=1,...,N, (2.11)
te -t k=1,...,N, (2.12)

whereu” has been defined in (2.6)° has been introduced in (2.7) agd has been defined in
(2.8).

Next we state our second result which concerns the stabifitiie N-spike cluster steady
states given in Theorem 1.

Theorem 2. (Stability of anN-spike cluster.)

Fore < VD < 1, let(A., H.) be anN-spike cluster steady state given in Theorem 1. Then
there exists;, > 0 independent of and+/D such that theV-spike cluster steady state., H.)
is linearly stable for all0 < 7 < 7.

Remark 3. For the stability, we assume that< r < 7, for somer, > 0. Stability in the
case where is large has been investigated[B5] for single spikes and those results on Hopf
bifurcation are expected to carry over to the case of/érspike cluster considered here. We
remark that stability in the case of largefor the shadow system has been studied jr84]. It
turns out that this Hopf bifurcation leads to oscillationfstiee amplitudes.

Remark 4. Previous studies of the precursor case can be found amormgsoii2], [27], [28].
We also refer to results for the dynamics of pulses in hetregus medif24], [49].

The proofs of both Theorems 1 and 2 will follow the approachir], where we reviewed
and discussed many results on the existence and stabilityibFspike steady states.

Next we present some highlights of the proofs of Theoremsdl2aim an informal manner.
We will give reference to the full proofs which will follow itater sections.

Highlight 1. For the proof in Theorem 1 we use Liapunov-Schmidt reducttoderive a
reduced problem which will determine the positions of thikef This reduced problem in
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leading order is given by

t, —t
Wolt) ~er Y eltmtlVD (—ﬁ)m@w’(t%s—t%, s=1,...,N,
k,|k—s|=1 5

(2.13)
wherec;, ¢, > 0 are constants which are independent of the small paranaetdts= (¢,...,tx)
are the positions of the spikes (compare (5.4)). We needve 8i6,(t) = 0, which implies
1
57
(compare (5.6)). The distance between neighboring spikébeeicluster is small (converging to
zero) and in leading order it is the same between any pairighbers.

ts—ts,lw\/ﬁlog s=2,...,N,

Highlight 2: The large eigenvalues with. — )\, # 0 and their corresponding eigenfunc-

tions

x—1t; .
¢E,i(y) — ¢Z(y)7 Yy = c ) 1= ]-7' . '7N7

where. ;(y) is the restriction of the rescaled eigenfunction of thevattir A. neart;, in the

limit max (%, D) — 0 solve the nonlocal eigenvalue problem (NLEP)

2 i d
7wa¢ yw2:)\0gbi, izl,...,N,
fR w? dy
(see (6.6)). This nonlocal eigenvalue problem has diagonal. Thus each spike only interacts
with itself and not with the other spikes.
It follows that the spike cluster is stable with the respedatge eigenvalues.

Aypi — @i + 2we; —

Highlight 3: The small eigenvalues. — 0 in leading order are given by the eigenvalues of
the matrix

—e?e3M(tY),
wherec; > 0 is independent of the small parameteafs= (¢°,...,t°) and
M)y ~ 1 (1)
1
x | log 5 (i —1)(N+1—19)d,;-1 —i(N —0)0; j11 + [(1 — 1)(N + 1 —3) + (N — i)]0; ;]+49; ;
with 0 o = 61, n1+1 = 0 (compare 7.13)).

Highlight 4. We determine all the eigenvalues of the mattix(t°) (see Highlight 3) ex-
plicitly by a method based on exactly finding a finite-difiece approximation to a suitable
ordinary differential equation.
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These eigenvalues are given by
1
Ape ~ —2log 5cgu"(t0)n(n +1), n=1,...,N—1
Further, there is an eigenvalue of smaller size given by
Ao ~ —e2dezp” (1)

(compare Lemma 13).

This implies that the spike cluster is stable with respesiall eigenvalues.

3. PRELIMINARIES: SCALING PROPERTY GREEN'S FUNCTION AND EIGENVALUE
PROBLEMS

In this section we will provide some preliminaries whichiMak needed later for the existence
and stability proofs.
Letw be the ground state solution given in (2.1). By a simple sgadirgument, the function

wa(y) = aw(Vay) (3.1)

is the unique solution of the problem

w! —aw, + w2 =0 y €R,
(3.2)
we >0, we(0) = maxyer wo(y), wq(y) — 0 asly| — oc.
We compute
[ty = [z [ i)y = [
R R R R
[ iy = [ W) (3.3)
R R
We set
1 ——L |z—2|
Kplle —z|) = ——e VD 3.4

to be the singular part @i p(z, z). Let the regular part/, of G, be defined by, = Kp —
Gp. Note thatH p(x, ) belongs to the spagg>((—1,1) x (—1,1)).
By (2.5) we have

Gp(1°,1°) = Kp(0) (1 41O <e*2<d0*no>/@)) , (3.5)

whered, = min(1 — ¢°,¢° + 1) andn, > 0 is an arbitrary but fixed constant.
For 0, we estimate

N 1 1
0 _ _ —2(do—n0)/vD
= svpam e~ o O ) =0

by (3.4), (3.5).
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Letus denoteda— asV,,. Wheni # j, we can defind/,,G(t;, t;) in the classical way because
the function is smooth. Whehn = j, then Kp(|t; — ¢;|) = Kp(0) = ﬁ is a constant
independent of; and we define

VtZGD(tZ,tZ) = — 3

x=t;

Similarly, we define

—a—i|m:ti§y|y:tiHD(fan) if o=,
Vi Vi, Gp(ts, t;) if i j.

For convenience and clarity, we introduce a re-scaled eesi the Green'’s function which has
a finite limitasD — 0. Thus we set

Vi, Vi,Gp(ti, t;) = { (3.7)

Gp(z,z) = 2VDGp(z, 2), (3.8)
[A(D(x, z) = 2\/5[(,3(95, z), (3.9
Hp(z,2) = 2V DHp(z, 2). (3.10)

Next we consider the stability of a system of nonlocal eigéune problems (NLEPs). We first
recall the following result:

Theorem 5. Consider the nonlocal eigenvalue problem

d
" — ¢+ 2wep — fR wo dy w? = ag. (3.11)
fR w? dy
(1) (Appendix E of14].) If v < 1, then there is a positive eigenvalue to (3.11).
(2) (Theorem 1.4 dB6].) If v > 1, then for any nonzero eigenvalueof (3.11) we have
Rea) < —c < 0.
(3) If v # 1 anda = 0, then
¢ = cow’

for some constant,.
Next we consider the following system of nonlocal eigenggitoblems:

od
Lo = ' — <I>+2w©—2wa Yw?,

— 3.12

where
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Set
Lou := u" — u + 2wu, (3.13)

whereu € H*(R).
Then the conjugate operator bfunder the scalar product it? (R) is given by

20 d
I A Y s kL (3.14)
Jrw?dy
where
(G
(C5
v = € (H*(R)N
(Y
Then we have the following result.
Lemma 6. [43] We have
Ker(L) = Xo D X() D---D XQ, (315)
where
Xo = span{w’(y)}
and
Ker(L*) = Xo® Xo® -+ & Xo. (3.16)
Proof. The system (3.12) is in diagonal form. Suppose
LD =0.
Forl =1,2,..., N thel-th equation of system (3.12) is given by
b, d
O — By + 20, — 0Py (3.17)
fR w? dy
By Theorem 5 (3) withy = 2, we have
o, eXy, [(=1,....,N (3.18)

and (3.15) follows.
To prove (3.16), we proceed in a similar way for. Thel-th equation of (3.14) is given as

follows:
Jp W dy

fR w? dy
Multiplying (3.19) byw and integrating, we obtain

/wZ\Ill dy = 0.
R

U — U, + 2w, — 2 w =0, (3.19)
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Thus all the nonlocal terms vanish and we have
LoV, =0, [=1,...,N. (3.20)
By Theorem 5 (3) withy = 0, this implies

U,e€Xy, l=1,...,N.

O
As a consequence of Lemma 6, we have
Lemma 7. [43] The operator
O d
L: (HXR)N = (L2AR)N, L = & — & + 20 — 2 o
Jp w?dy
is invertible if it is restricted as follows
L:(Xo@ @ X)) N(H*R)YN = (Xo@ - D Xo)" N (LAR))".
Moreover,L ! is bounded.
Proof. This result follows from the Fredholm Alternative and Leméa
O
Finally, we study the eigenvalue problem fbr
Ld = ad. (3.21)

We have
Lemma 8. For any nonzero eigenvalueof (3.21) we have Re) < —c < 0.

Proof. Let (P, ) satisfy the system (3.21). Suppose(&e> 0 anda # 0. Then thel-th
equation of (3.21) becomes

B — By + 2wd, — 2{}“?2%2 — ady.
R
By Theorem 5 (2) we conclude that
Re(a) < —¢ < 0.
0

Throughout the paper, |€t, ¢ denote generic constants which may change from line to line.
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4. EXISTENCE PROOFI: APPROXIMATE SOLUTIONS

Lett® € (—1, 1) be a non-degenerate minimum point of the precursor inhomeiei.e. we
assume that (2.9) is satisfied. In this section, we consaimietpproximation to a spike cluster
solution to (1.2) which concentratestat

The approximate cluster consists of the spikes (\//TZ%) which are centered at the points
t; and have the scaling factosis = u(t;), wherei = 1,..., N.

Let 2, denote the set of all = (¢1,t,...,tx) € Q¥ With —1 < t; < ty--- < ty < 1
satisfying (4.1) and (4.2), where

ty —ts 1 1 1 5u” (%)
W—logﬁ—i-loglogﬁj%og( 16,0 +log[(s —1)(N+1-s)]|| <n (4.1)
fors=2,..., N,
1it 0] < nlog (4.2)
J— — 0og — .
Nk:1 k =7 gD

andn > 0 is a constant which is small enough and will be chosen in &e&i The reason for
assuming (4.1) and (4.2) will become clear in Section 5 whers@lve the reduced problem.
We further denote

t9 = (°,¢°,...,1) (4.3)
and set

To simplify our notation, fot € 2, andk =1,..., N, we set

1%u%=mw(¢m“‘“) (4.5)
ZL‘—tk

19
wk(w)zﬂkw(\/ﬁx;tk)-x< 5 ) (4.6)

wherey is a smooth cut-off function which satisfies the conditions

and

1
x(@) = 1for o] < o, x(x) = 0for Js] > 2 X € C(R) a.7)

and

10 1
malog = (4.8)

Using (4.1), we havét; — 1°| = O (ﬁlog %) fori =1,..., N. This implies

mmwwmw=o<DQ%%)>, (4.9)

K0, K
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/ 1"¢40 0 1 ? 1
wt) =p" ()t —t")+O | D logﬁ =0 \/Elogﬁ : (4.10)

wﬁazwﬁ%+0(ﬂi%%)=oaxmw0=mn. (4.11)

W"(t;) = O(1), 1"(t°) = O(1). (4.12)
To simplify notation, we set
Further, we compute, using (2.5),
Cplti,ti) = Kp(0) (1+ 0200 mIVD)) — 14 O(e 20mVD) - (4.14)

whered, = min(1 — t°,tY 4+ 1), no > 0 is an arbitrary but fixed constant (compare (3.5)). We
have

Gp(tits) =0 (Dlog %) , Kp(ti,t) =0 (D log %) for i — s| = 1, (4.15)

R 1\?2 ) 1\ 2
Gp(ti,ts) = O <(D log 5) ) , Kp(ti,ts) =0 ((Dlog 5) ) for|i —s| =2. (4.16)

Generally, we have

) i\ ji—s|
GD(ti,tS):O <(D10g%) ) , KD(tZ,tS):O <(D10g%) ) f0r|i—8| > 1.

(4.17)
For the derivatives, we estimate
ak R 1 li—s]
@GD(ti;ts) =0 (Dlogﬁ) D_k/2 f0r|i—8| Z 1, k= ]_,2,... (418)
ak . 1 li—s]
ﬁKD(tiats) =0 (DlOg 5) D7*/% ] for |Z—S| >1, k=1,2,... (419)

and analogous results hold for the mixed derivatives.

By rescalingA = £, A, H = £.H with & defined in (2.8), it follows that (1.2) is equivalent
to the following system for the rescaled functiofisH .
(24" — p(2)A+ % =0, ze(-1,1),

DH" — H+¢A2=0, ze(-1,1),

A(z) > 0,H(z) >0 in (-1,1),
| A'(-1)=A'(1) = H'(-1) = H'(1) = 0.

From now on, we shall work with (4.20) and drop the hats. Nexteawrite (4.20) as a single
equation with a nonlocal term.

(4.20)
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For a functionA € H?(—1, 1), we definel'[A] to be the solution of

D(T[A])" = T[A] + (A2 =0, —-1<z<]1,
) ) (4.21)
(TTA)'(=1) = (TTA])'(1) = 0.
It is easy to see that the soluti@iA] is unique and positive. Then (4.20) becomes
AQ
S.[A] =4 — A+ T — 0, A>0, A(-1)=A4(1)=0. (4.22)
Fort € Q,, we define an approximate solution to (4.22) as follows:
N ~
Az) = wey(z) = Y Guip(z), z€Q, (4.23)
k=1

wheret € ), andw,, has been defined in (4.6).
Next we are now going to determine the amplitugleto leading order. Let us first compute

Ts i= Tw. ) (ts). (4.24)
From (4.21), we have

1
— / Gt 2w (2) dz

1

1 N

= fs/ Gpl(ts, 2) [Z Ep(2) + kafzwk(z)wl(z)] dz = I, (4.25)
-1 k=1 Kl

wherel; is defined by the last equality.

We have

SE/QGD(tS,:p)zIJ,%(:p) dr = §€/QGD(tS,x) (Mkw (\/,u_k

Fork £ s, we compute

2 /Q Gp(te, 1)} (x) dr = & ()G b, ) [/R EEIGe <%> }
— ()G (ts, 1) ll 0 <%>}

-+ (5 (b))
140 <% D (log %)QM

=0 (D log %) : (4.26)

using (2.8), (3.8), (4.9) and (4.17). Fbr= s, we have
c | Gplts,x)wi(z)d
£ /Q p(ts, x)wi(z) dz

l‘—tk

))2 dz (14 0(e2)).

3

1
_ (,,0\3/2
(1) O(Dlog )
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— . /Q [%ew/@ ~ Hp(t,, x)} 0 (x) de

- st oty [ [0y o ()]

— ()2 Cnltnt) + 0 ()

vD
using (2.8), (3.8) and (4.9). Next, fér=£ [, we have

= (uo)g/QéD(ts, ts) + O <L +D (log %) ) , (4.27)

&e / Gp(ts, 2)iy(2)in(z) dz = 0 (4.28)
Q

by (4.6). Combining (4.26), (4.27) and (4.28), we have

I = léfi(uk)w%(tw ) {1 o (%)}

= () (1, 1,) [1 e (

Substituting (4.29) into (4.25), we conclude that

€ 1
ﬁ + Dlog 5)} . (4.29)

Thwed)(ts) = 7 = (1) Cp(tar ) [1 Lo (L N Dlogi)]

VD D
- € 1\°
= &(u0)** [1+0 (5 +D (log 5) ) (4.30)
We now choosé, such that, = &,. Then (4.30) has a unique solution which satisfies
R 1 € 1)\?
&= oy 1+O<E+D(log5) )] (4.31)

This concludes the construction of the approximate satutio

The next two parts of the existence proof have been movecdetappendix since they are
quite technical and follow the approaches in previous Eaper

Appendix A: Existence Proof Il — error terms

Appendix B: Existence Proof Il — Liapunov Schmidt reductio

In the next section, we continue with the discussion of tdeiced problem, which concludes
the Proof of Theorem 1.
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5. EXISTENCE PROOFIV: REDUCED PROBLEM

In this section, we solve the reduced problem. This comgkste proof of our main existence
result given by Theorem 1.
By Lemma 19, for every € (2, there exists a unique solutien € let such that

Sa [wa,t + ¢a,t] = Vet S Ce,t~ (51)
We need to determing = (t7,t3,...,t%) € , such that
Se [we,tf + ¢5,t5] 1 Ce,tfa (52)

Wh'Ch Imp|IeSS€ [wats + ¢E,t5] = O
To this end, let

1 dws
We,s(t) : /Qse[we,t + Qbe,t]ﬁ dlL‘,

. ex/ﬁlog%
W (t) := (Wealt),...,Wen(t)) : Q, — RN,

Then the magV,(t) is continuous int € 2, and it remains to find a zero of the vector field

W.(t).
We compute
1 i
— = [ Selwep + e ——du
z—:\/ﬁlog%/g wee + dedd gy
! dis
= T = 1 85 € Sl € & O £ 2 —8 d .
6\/510g%/§; [w ,t]_'_ E[w 7t](¢ ,t)+ <H¢vt”H2(IE)) dl, €T
We first compute the main term given by
1 dw
il [ Selwed g dr =c. 5.3
z—:\/ﬁlog%/g [0 dx (5-3)

Letz =t, + cy. By (9.10), we have

1 dw
————— | S.w.y]|—dx = csq + Cs0,
ev/Dlog /Q e dx ! 2

where

1 T —1ts odw ry e ts — ti
= s 2 0Ws 3282, lte—tul VD [ Ls
Cs,1 DlOg % /Q c Wy dr xZ(Mk) 5]@6 |t5 — tk;|

k#s
£
+0 _+€2(d0770)/\/5)
(75
11 N ty —
_ 1 J 3282 et VD [ Ls
Dlog%?,/Rw“s y;(m e [t — ]

g
_|_O — + 62(d0770)/\/5)
(5
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11, / o —
— Z(1)?? | wid 3/2 £2 o~ Its—ti| /D (_7)

g
vo (4 €2<dono>/@)
(7

2.4 . . ty—t
_ /2 3/2£2 —[ts—tx|/VD [ _ s T 'k
Dlog % (:us) ;(Mk) §k€ ( ‘ts _ tk‘)

g
vo -2+ €2<dono>/@)
(5

2.4 40,02 —|ts—t|/VD [ _ ts — Tk L i
(10)"(£7) Ze R +0 \/E—i-\/ﬁlogD

Dlog % =

and

2 —t, . dw € 1
1) (t, — t° Ty s g Dlog -
O~ e [ 00,52 000 (< + VDlog )

d 1
;U;S dy+ 0O (L—F\/ﬁlog—)

= ——=— ()t =1 / w
\/Elog%u( )( )5 ]Ry s \/5 D
9

1 8/2,11(40 0 1A/ 2 ( 1)
= B 1 \Hs E)(ts —7) 585 dy + O VD1
2

-~ 3/2F 11740 40 & i)

3 ov3/280, 0y 40 <L l)

In summary, we have

o= g @y (et

1 "
Cog = ————
? smlog%u
1

Dlog 5 kts |ts — ti]
\/ a 1
13VD(0)2E0, (1Y (¢, — ° +O(€ +VDlo _)’ s=1..N 64
() =Ep () (s = 1) 75 T VPle (5.4)
Next we estimate ]
1 W
/1 S. We e —dx
BTy Sweel0:0%,
1 2.nm QUJEt w?t , d’(IJs
T Do L € P — T)Pet + m—=Pet — 773 T We € dx
8\/Dlog% /Q [ ¢ b ,u( )¢ t T[wsvt]gb b (T[wg,t])z( [ t]Cb ,t) dx
1 2.n QUJEt w?t , dﬁ}s
- 7\/ €0t — MsPet + et — T s T |we e —dx
5 Dlog% /Q [ ¢ & H ¢ )t T[wg,t]¢ it (T[ws,t])Q( [ t]¢ ,t) dr

1
+m4—(u(x) — ju(ts)) et . dx
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D SR (N S P (S0 i di,
= 5@]0{;%/9 {T[ws,t] gj 2§s Uset — (T[we4))? (1] s,t]¢s,t)] dr d
1 dws
e RN

9
=0(—
(\/D)
which follows from (10.9) and (10.10). This implies

Wet) = = ()" S (E0)2e 1o lVD (_i)

DlogD ks ‘ts_tk‘

+3VD(p0)* 20" (1) (s — t°) + O (— ++VDlog D) s=1,...,N. (5.5)

vD
Now, for given smalls > 0, we have to determint® < (2, such thatiV, ,(t°) = 0 for s =
1,..., V.
We first consider the limiting case which only takes into asddhe leading terms and set
1 A ts — 1
Wo(t) =24 0y4(£0y2 —[ts—txl/VD [ _ s T "k

k,|k—s|=1
+3VD (0P (1) (¢ — 1°).

We computdV,(t*) = 0, wheret* satisfies

Bl jog L joglog -
\/5 - Og D Og Og D
5u”(t°) log log L
-1 —1 —1H(N+1- ol —=—=L 5.6
o (M) ~lells - D+ 1-9) -0 (FEZ) 66)
1 N
~ > =t (5.7)
k=1
By (5.6) and (5.7), we have € Q, if D is small enough.
We need to find® € ,, such thatV,(t°) = 0.
Settinge = (1,1...,1)7, we have
c C
— < [|[DWh(tY)e|| < ———
\/Elog% — ” 0( ) H — \/Elog%
and
L < DWWt < ifv.e=0.

75 \/—HVII

Fort € )., we expand

W.(t) = W.(t) — Wo(t) + Wo(t) — Wo(t") + Wo(t")

~0 (%) by (5.4)
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+DWy(t*) - (t — t¥) + Ro(t — t¥)
+Wo(t™),

whereR(7) = D*W,(t*)(r, 7). Decomposing = v + ae, wherev - e = 0, we estimate

\/Elog% \/Elog% .

Noting that fort* + 7 € Q,,, we havelv| < nvD anda < nv/Dlog &, we get

Cy
[Ro(r)| < SIvP + v

\%hﬂgnQGm+%J5+%¢5bg%).

This implies
(DWo(t)) ™ Ro(7)v] < ern*V'D

and

(DWo(t)) " Ro(r)oe] < ey Dlog .
Settingr = t — t*, we have to determine such that

—(DWo(t") WL (t* 4 7) = Wo(t* +7) + Ro(7)] = 7
and sor must be a fixed point of the mapping
T — M. p(7) := —(DWo(t*)) ' [W.(t* + 1) — Wo(t* +7) + Ro(7)], Bi — By,

whereB; = ), — t* (pointwise). We estimate

[Mep(T)[| = || = (DWo(t")) T [We(t” +7) = Wo(t™ +7) + Ro(7)]|
<C <% . \/Elog% +772\/510g%) \/Elog%.

Using projections, we have

M. p(7) - v < c<%+n2) VD ifvee—0

and

IM.o() - (@)l < € (5 +47) VDo

We now determine when the mappidd. , maps fromB; into B; for max (%, D) small
enough. We need to have

C (% + nQ) <. (5.8)
Now (5.8) is satisfied if we choose
n= 20% (5.9)
and we assume 2 _
Cn* = 4035 < 075' (5.10)



STABLE SPIKE CLUSTERS FOR THE ONE-DIMENSIONAL GIERER-MEHWARDT SYSTEM 21

Note that (5.10) is satisfied if

VD — AC?
which holds if% is small enough sincel; is a constant which is independentzcénd D.
By Brouwer’s fixed point theorem, the mapping. , possesses a fixed poirft € B;. Then
t° =t* + 7° € Q, is the desired solution which satisfigs (t*) = 0.
Thus we have proved the following proposition.

€ 1
<

Proposition 9. For max (%, D) small enough, there exist points € ©,, with t¢ — t° such
that W, (t%) = 0.

Finally, we complete the proof of Theorem 1.

Proof. By Proposition 9, there exists — t° such thati_(t°) = 0. Written differently, we
haves. [w. i« + ¢. -] = 0. Let A, = & (we e + e v ), He = ET W, 4= + ¢ 1] By the Maximum
Principle,A. > 0, H. > 0. Moreover(A., H.) satisfies all the properties of Theorem 1.

O

6. STABILITY PROOF |: LARGE EIGENVALUES

In this section, we study the large eigenvalues which salist— \q # 0 asmax (L D) —

\/57
0.
First we consider the special case- 0. Then we need to analyze the eigenvalue problem
- 2A.0 A?
_ 2 . eve € ! —
Le,tf¢a =& A¢a ,u(l‘)(be + T[AE] (T[AE])2(T [Aa]¢a) )\e(bea (61)

where). is some complex numbed,. = w. ¢ + ¢. - With t° € Q, determined in the previous
section,

6. € H(9). (6.2)
and forg € L?(Q2) the functionT”[A]¢ is defined as the unique solution of
DA(T'[A]¢) — (T'[A]¢) + 26.Ap =0, —1 <z <1,
{ (T"[A]o) (=1) = (T"[A]¢)'(1) = 0.
Because we study the large eigenvalues, there exists soaibcsm 0 such that).| > ¢ > 0
for max (L D) small enough. We are looking for a condition under whicliRe< ¢ < 0

(6.3)

D7
for all eigenvalues\. of (6.1), (6.2) ifmax (%, D) is small enough, whereis independent
of e andD. If Re()\.) < —c¢, then)\, is a stable large eigenvalue. Therefore, for the rest of this

section, we assume that Re) > —c and study the stability properties of such eigenvalues.
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We first derive the limiting problem of (6.1), (6.2) asix <ﬁ D) —» 0 which will be given
by a system of NLEPs. Let us assume that

@l r2(0.) = 1.
We cut off . as follows: Introduce
g
¢m@%ﬂwa(%), (6.4)

wherey = (z — t;) /e for z € , the cut-off functiony was introduced in (4.7) ant} satisfies
(4.8) .
From (6.1), (6.2), using Re.) > —c and||¢. -

2. = O (%) it follows that

N
£
= i+ 0 —= in H2(9,). 6.5
¢ Z¢> ; ( @) () (6.5)
Then, by a standard procedure, we exteng¢to a function defined o such that
||¢€J||H2(R) S O’|¢E7j’|H2(Qg)7 ] = ]-7"'7N'

Since||é: || u2.) = 1, ||¢e]l 2. < C. By taking a subsequence, we may also assume that

0-y — 0y asmax (75, D) — 0in H'(R)for j =1, N.
Taking the limitmax (L D) 5 Owith A. — )\ in (6.1) we get

\/57
Aydi — pid; + 2W;;

N A N A ) -1
- (z ot ) [ & dy) (z ot ) [ (éi) dy) 72 = doo
Using the transformatiop = /iy and the relations

~

1
GD(tgvt?) =g + O (D log 5) )

N 1 1
0 __
£ oy {1 o (D tog 5)}

2 [pwdidy .
e :)\ ) :17...,N7 66

this implies that
Aydi — @i + 2wep; —

whereg; € H*(RY).
Then we have

Theorem 10. Let \. be an eigenvalue of (6.1) and (6.2) such thatRg¢ > —c for somer > 0.
(1) Suppose that (for suitable sequenn&sx( o ,Dn) — 0) we have)\,, — Ao # 0.

VDn
Then), is an eigenvalue of the problem (NLEP) given in (6.6).
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(2) Let)y # 0 with R€ ) > 0 be an eigenvalue of the problem (NLEP) given in (6.6). Then

for max (LD, D) small enough, there is an eigenvaldeof (6.1) and (6.2) with\. — ), as

max <%, D) — 0.

Proof. (1) of Theorem 10 follows by asymptotic analysis similar top&ndix B.
To prove (2) of Theorem 10, we follow a compactness argunfddanocer [4]. The main idea
of his approach is as follows: Let # 0 be an eigenvalue of problem (6.6) with Rg) > 0.
Then can we rewrite (6.1) as follows:

24¢, A2

Al TA]

¢E = _RE()\E)

T’[A]@] : (6.7)

whereR. (). ) isthe inverse of A+(u(z)+\.) in H*(R) (which exists if Ré)\.) > — min g ()
or Im(\.) # 0) and the nonlocal operators have been defined in (4.21) aBy (6spectively.
The main property is thak.(\.) is a compact operator ihax (%, D) is small enough.
The rest of the argument follows in the same way as in [4].
0

We now study the stability of (6.1), (6.2) for large eigemes explicitly and prove Theorem
2.
By Lemma 8, for any nonzero eigenvalygin (6.6) we have

Re(Ng) < <0 for somecy > 0.

\/57
(6.1), (6.2) have strictly negative real parts. More prelgisall eigenvalues.. of (6.1), (6.2),

for which \. — A, # 0 holds, satisfy Re\.) < —c < 0.

When studying the case > 0, we have to deal with nonlocal eigenvalue problems as in
(3.11), for which the coefficient of the nonlocal term is a function etr. Lety = v(7«) be a
complex function ofra. Let us suppose that

Thus by Theorem 10 (1), famax (L D) small enough, all nonzero large eigenvalues of

7(0) eR, |y(ra)| <C forRea) =ar > 0,7 >0, (6.8)
whereC'is a generic constant which is independent ahda. In our case the following simple
example of a function(7«) satisfying (6.8) is relevant:

v(a) = -

\/1%—7'(17

wherey/1 + Ta denotes the principal branch of the square root functiompare [35].
Now we have
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Lemma 11. [43] Consider the nonlocal eigenvalue problem

Jpwody
Tw? = 6.9

oz, = o (6.9)

wherey(T«) satisfies (6.8). Then there is a small numhger- 0 such that forr < 7,

(1) if v(0) < 1, then there is a positive eigenvalue to (3.11);

(2) if v(0) > 1, then for any nonzero eigenvalueof (6.9), we have

¢" — ¢+ 2wp —(7a)

Rea) < —¢y < 0.

Proof. Lemma 11 follows from Theorem 5 by a regular perturbatioruargnt. To make sure
that the perturbation argument works, we have to show that it 0 and0 < 7 < 1, then
la] < C, whereC'is a generic constant which is independent ofn fact, multiplying (6.9) by
the conjugate of ¢ and integration by parts, we obtain that

: ewody [ o5
2 2 2 JR TS 2
[0 108~ 2uiof)dy = o [ ol dy —(re) Ft [ vt @10

From the imaginary part of (6.10), we obtain that
s < Ciy(ra),

wherea = ar + v/ —1ay andC is a positive constant (independent9f By assumption (6.8),
|v(ra)| < Cand sga;| < C. Taking the real part of (6.10) and noting that

l.h.s. of (6.10)> C/ |p|> for someC € R,
R

we obtain thatvy < Cy, whereCs is a positive constant (independentof- 0). Therefore|«|
is uniformly bounded and hence a perturbation argumensdhe desired conclusion.
O

Now Theorem 10 can be extended to the case0 for eigenvalues such that Re\.) > —1.

2
Then by Lemma 11 it follows that far < 7 < 7 all eigenvalues\. of (6.1), (6.2), for which
A: — Ao # 0 holds, satisfy Re\.) < —c < 0.
Fort > 0, the large eigenvalues in the limit are determined expbliby the following result

from [47]:

Lemma 12. Let A = v/—1)\; be an eigenvalue of the problem

2 Jpwo o

Agb—gb—k?wgb—m waz

= Ao, ¢ € H(R), (6.11)

where
T>20,AeC, A=Ag+iA[,A\g >0
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and we take the principal branch gf1 + 7). Then)\ is a solution of the algebraic equation

17 37 _17 2 3
V1I+TA 2
1 = b 1
247, 2—v, 2 ;
3 .
oA T(1+7)T(2) 24y, —5+7 1+7 ;
?bl—F 205 1 3,(6.12)
(r+2) 1+2y, 347 ;
wherey = +/1 + X\ andb, is given by
9 —1)3
by = — Oy =1™ — . (6.13)
24 (v - 3/2)(y — 1/2)2% sin(n(y — 1))
Here for two sequences, as, ...,a, andby, bs, ..., bg we let the series

aag---ax 2 (e +1)(ag+1)---(aa+1) 2°

1 SN 6.14
b s i Dbt 1) (st 1) 2 (6.14)
ap, a2, ..., @A
=: AFB z
bl) b27 ceey bB ;

be the generalized Gauss function or generalized hyperggi@rfunction.

In conclusion, we have finished the study of the large eigeieeézof ordeiO(1)) and derived
results on their stability properties.

It remains to study the small eigenvalues (of ordér)) which will be done in the next
section.

7. STABILITY PROOF |l: CHARACTERIZATION OF SMALL EIGENVALUES

Now we study the eigenvalue problem (6.1), (6.2) with respesmall eigenvalues. Namely,

we assume that, — 0 asmax <%, D) — 0.
Let

We = We e + (bs,tfa H& = T[wa,tE + ¢E,t5]7 (71)

wheret® = (#5,...,t5) € Q,.
After re-scaling, the eigenvalue problem (6.1), (6.2) lmees
2

e?A¢. — p(x)de + Q%gbe ~ %@ — Ao,
DAY, — ), + 2600 = AT, (7.2)
¢L(—1) = ¢.(1) = ¢o(—1) = ¢(1) = 0.

Throughout this section, we denote

g = p(t5), py=40t), W= p"({t5).
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~

By the implicit function theorem, there exists a (locallyigue solutiorf(t) = (&(b), ...

of the equation
N
Z tlat 52 B/Q_é’h 221,,N

Moreover£(t) is C' fort € €,
We have the estimates

£t =0(1), &(t°)—§(t) =0 (D (log 5) ) .

As a preparation, we first compute the derivative§(af.
Now from (7.3) we calculate

0
vt éz =2 ZGD tZa tl)gl:ul vt él + —(GD(tzat ))§2M3/2

=1

3
+5 Gt )&y Tori # j,

N N
. A . - 0 -
Vié = 2§jGD<ti,tl>&ui””vti&+§ o (Golt )&
=1 "

+2 GD(t@,t V2l

5
= QZZIGD tz7tl)§l:ul Vt & +VtZGD(tzat )§2M3/2 1 i/l(ti)

+2 GD(tz,t)é2 V24 Fi(t)

R X 1
= 2Gp(t;, t:)i 3/2vti§’i — Zfiu ) + Fi(t) + O (\/ﬁlog 5) 1=1,...

fu(t:)

Here F'(t) is the vector field
F(t) = (Fi(t),..., Fx(t)),

where
5. 1 (t) 32 .
R(t) = 16— +thGD (tit)eiu®, i=1,...,N.
We compute
5. 1(t:) 3/2 1 :
Ei(t) = 15, + Z Ve Kp(ti, t)Eu; +O<D3/210g5>7 i=1...,N

lL,|l—i|=1
by (3.5), (4.17).
Thus (7.4) implies that

Vil(t) =0 <\/510g %) .

(7.4)

(7.5)

(7.6)

(7.7)
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o) = (7). 7.9

By the reduced problem (see Section 5), we h&aye) = 0 att® = (¢5,...,t5). In addition, if
M(t9)) is positive definite, then we will show that all small eigelos have negative real part
when0 < 7 < 7, for somery > 0.

Next we computeM (t) using (7.4).

Fori = j, we have

Set

N
Z V tza tl lzlu:;/2

=1

N
= > Vi Kp(t )& (1+ O(e 20 1VP))

=1

R 2 1
= [V &ttt s+ it tu@nlls] (140 (D1oe 35 ) )

vio (o () )]

(7.9)

= [V?ZKD(E‘, ti1)(€%)?(u%)*? + Vi Kp(t;, ti+1)(50)2(/i0)3/2]

For|i — j| = 1, we compute in casg=i — 1

N
Z Vti_l (thGD(tZ7 tl))&?”?/Q
=1

N
- Z vti—l(vtiKD(tiy tl))ff,u?m [1 + O(G*Q(doﬂvo)\/ﬁ)]

=1

= Ve (Ve Kp(ti tia))E2 110 [1 +0 (D tog 11))}
o (o))
1+O< log — ) )] (7.10)

and a similar result holds fgr= ¢ + 1. For|i — j| > 2, we have

N 2
SV, (ViGoltit) &4 = 0 (D (m%) ) : (7.12)
=1

140 (D (log %) )] , (7.12)

= Vi (Vi Kp(ti ti1)) (€9 (1)

= —V} Kp(ti, t;i1) (%) (u°)*/?

This implies

M(t%) = (my;(67)) 721 = (mi(69)71
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where

Mg (t) = (é0>2(uo)3/2 [Vi [RD(ti7 tio1) + kD(M ti+1)]5i,j

5/%5

_v2 KD(tzatz 1)51]—1—1 _v KD(tZ7tl+1)6Z] 1:| + 4

N N
+2 Z V. Kbt tz?l)fiflvtjfz 1Mf/21 + 2 Z Vi Kp(t, tz’+1)€i+1vtjfi+1/i?ﬁ

j=1 j=1
3 ~ 29 1/2 3 o 29 1/2 4
+§Vt¢KD(tiati71)§ 1M1 151j+1+ivtiKD(thti+1)§z+1luz+1:uz+1élj 1
o (1)
{Vt fz—i— i N? 5i,j-

Therefore, using (5.6), (5.7) and the estimate (7.7) we have
L (4€) — 3 F0\2 1/2 s i
miy(6) = 75 (€ (1) V0" () log 5

X [ — (i —=1)(N+1—-14)0;—1 — (N —0)6ji1 + [(i = 1)(N+1—14) +i(N — z)]éu}

+Zfo(u0)‘lu”(tf)5m +0 <D (log %) )
= (@) ()
X |:10g% [—(’L — 1)(N -+ 1— Z')éi,jfl — Z(N - i>5i,j+1 + [(Z - 1)(N + 1— ’L) + Z(N - Z)](S%J]—'—Zléw}

+O<¢5bg%). (7.13)

The matrix M (t°) will be the leading-order contribution to the small eigdoes (compare
Lemma 20 and the comments following it). Thus we study thectspm of the symmetric
N x N-matrix A defined by

ass=(s—1)(N—-s+1)+s(N—-s), s=1,...,N, (7.14)
Us 41 = Ast1,s = —S(N—5), s=1,...,N—1,
as; =0, |s—1t]>1.
We will show
Lemma 13. The eigenvalues of the mattikare given by
Ap=n(n+1), n=0,1,...,N—1. (7.15)

The corresponding eigenvectors are computed recursivety 7.17).
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The matrixA has eigenvalue; = 0 with eigenvectorn, = e. To compute the other eigen-
values and eigenvectors gf, we remark that this problem is equivalent to finding a su&ab
finite-difference approximatiof of the differential equation

Rx(1 — 2)u” + =0, «'(0)=u'(1)=0 (7.16)

in the interval(0, 1) for uniform stepsizé = +-.
More precisely, we identify
k—1/2

. k
Vik = ’ll(.’L’k_l/g) with x;, = N and Tk—1/2 = for k = 1,..., N,
where in (7.16) we replace(1 — x)u”(x) by

1

72 Tp-1(1 — 2p_1)W(xp—3/2) + k(1 — ) U(Tk11/2)

—[zr(1 = z1) + 21 (1 — 2p1)]A(T8-1/2)
= (k= 1)(N —k+ 1)u(tp—s/2) + k(N — k)tu(tps1/2)
—[(k =1)(N =k +1) + k(N = E)]a(ty—1/2)-
To determine the eigenvectors we have to solve this finite-difference problem exactly. We

assume that the solutions are given by polynomials of deg(eéich will be shown later and
n will be specified). Using Taylor expansion aroune- z;_,/, and the identities

.’L’k,1(1 — .’L’k,1) — .’L’k(l — l'k) = —h(l — 2$k_1/2)

and ,
Tp—1(1 = 2p—1) + (1 — 21) = 22512(1 — Tp—1/2) — %7
the finite-difference problem is equivalent to
/2] | 91—
<2x(1 — ) — %2) ; %a@l) (z)
[n/2] p21-2
+(1-21) ) mfﬂ*”(z) + \a(z) =0, n=0,...,N—1.

=1
Substituting the ansatz

u(zr) = Z apz”
k=0
into this equation, considering the coefficient of the powkerk = 0, ..., n, implies that

(An — k(k 4+ 1))ag + (k + 1)%ag1
[n/2]+1
+ > 2
=2

=2 (k420 —1)! [k+1 .
20! (k—1)! o W21 T Gkl
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A g2 (k42!

202 &l

agyo1 = 0,
=1

(7.17)

where fork = 0 we put(0 — 1)! = 1 in the second line of (7.17).
Fork=n,n=0,1,..., N — 1, this gives

(A —n(n+1))a, + (n+1)%ap1 = 0.

Thus, if\,, = n(n+1), we haves,,; = 0 and the solutiom(x) is indeed a polynomial with de-
green. After choosing the leading coefficiemt # 0 arbitrarily, from (7.17) we compute, 1,
an—2, - .., ap recursively in aunique way. Thenwe set= (u(ti—1/2), u(ta—1/2), ..., U(tn-1/2))-

There are two case€ase 1. n < N: Thenwv, # 0 since otherwise we would have= 0,
in contradiction to the fact that we have choseto be a nontrivial eigenfunction witta, # 0.
Thus(\,, v,) is an eigenpair ford. The eigenvectors,, n = 1,..., N are linearly indepen-
dent. From Case 1, we gat eigenpairs with eigenvalues, = n(n+1)forn =0,..., N — 1.

Case2. n > N: Thenw, = 0 althoughu # 0. The resulting eigenfunctions fot are trivial
and so in this case there are no new eigenpairs.

Thus we have foundv eigenpairs with linearly independent eigenvectors.

Remark 14. The eigenvector, with eigenvalue\, = 0 corresponds to a rigid translation of
all N spikes.

The leading eigenpair for mutual movement of spikéaisv, ).

The eigenvector fok; = 2 can be computed as follows:

a(r)=1-2z,0<x <1

Uik = a(tk71/2)7 k= ]-7 .- '7N7

20k —1/2) N —2k+1
1)17]9:1— = .

N N
The components of ; are linearly increasing and have odd symmetry around theészeaf the

spike cluster which correspondsito= 2 or z = 1.

Remark 15. The stability of the small eigenvalues follows from the Itssao [29] but the eigen-
values have not been determined explicitly.

The technical analysis for the small eigenvalues has besippoed to Appendix C.
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8. DiscussION

We conclude this paper with a discussion of our results. We ltansidered a particular
biological reaction-diffusion system with two small difiuities, the Gierer-Meinhardt system
with precursor. We have proved the existence and stabfiitjuster solutions which have three
different length scales: a scale of order O(1) coming fromn ghecursor inhomogeneity and
two small scales which are of the same size as the squareabtite small diffusivities. In
particular, the cluster solution can be stable for a suttahbice of parameter values.

Such systems and their solutions play an important role atogical modeling to account
for the bridging of length scales, e.g. between geneticJeauncintra-cellular, cellular and
tissue levels. Our solutions incorporate and combine pigltscales in a robust and stable
manner. A particular example of biological multi-scaletpats concerns the pattern formation
of hypostome, tentacles, and foot fiydra Meinhardt's model [18] correctly describes the
following experimental observation: with tentacle-sgiecantibodies, Bode et al. [3] have
shown that after head removal tentacle activation firstpeaps at the very tip of the gastric
column. Then this activation becomes shifted away from ifhhvéota new location, where the
tentacles eventually appear. There are different lengtbsdnvolved for this tentacle pattern:
diameter of the gastric column, distance between tentamtesdiameter of tentacles.

Systems of the type considered in this paper are also a kegderstanding the hierarchy
of multi-stage biological processes such as in signalliathhways, where typically first large-
scale structures appear which induce patterns on sucebssimaller scales. In our example,
the multi-spike cluster is a typical small-scale patternalvhs established near a pre-existing
large-scale precursor inhomogeneity. The precursor garesent previous information from
an earlier stage of development leading to the formationnaf §tructure at the present time.
An example of hierarchical pattern formation is seen in tegemnination of cell states for
segmentation irosophilawings. In this case three different hierarchy levels arelved in
the process: maternal positional information, gap gemespair rule genes [17].

9. APPENDIX A: EXISTENCE PROOFII — ERROR TERMS

In this section, we compute the error terms caused by theogppate solutions in Section
4. We begin by considering the spatial dependence of théitohinear the spikes which is
given by the differenc@w. ¢](xs) — T[w. |(ts) for x = (z1,...,zx) € Q, andt € Q,, where
the nonlocal operatdf [A] has been defined in (4.21) and the approximate solution rers be
introduced in (4.23).

To simplify our notation, we let

H.¢(z5) = Twe (). (9.1)
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Letz, = t, + ey. We calculate

H. +(ts +€y) — H_4(ts)

= fe/ [GD(tS +ey,w ) GD t57 l‘ Zékwk ) + Z ékélwk(x)wl(x) dx
Q k£l
- J17 (92)

whereg, has been introduced in (2.8) addis defined by the last equality. Fdr, we have

Ji :fz-:/Q[GD(ts‘f‘Eya x) — Gp(ts, v)] (Z &g +Zékélwk(x)wl(x)> dx

k£l

—@Zsk / (Gp(ts + ey, 2) — Gp(t,, z)] i dz. (9.3)
by (4.6). We further compute

¢, / G(ts +2y.2) — (e, )] 02 da
Q

1
— 55/ [ﬁ <e*\t5+€yfx|/\/5 _ e*ltrxl/\/ﬁ> _ (HD(?fs + ey,x) _ HD<t37x)):| ZIJ]% dr
Q

_ 552\}5 / (eleerelVD — emtmel VD) ity (140 (e-20-mVD)) - (9.4)
Q
using (4.14). Letr = t;, + ¢Zz. Fork = s, we have

56%/_ / (el VP el 2 () da
2
2\/_/ (e3P — VDY 2 (3)dz (1 + O(™))

s | [ - o=t 9 i+ 0 (502 )] 1+ 0
oo |5 [l = (3 iz 0 (5] <1+ < log = )+>>
e s o

wherew,,, has been defined in (3.1) and

To(y) = / (2] = |y — 2)) w2 d (9.6)

is an even function, using (2.8) and (4.9). Fo# s, we have
1
—|ts+ey—z|/vVD —|ts—z[/V' D) =2
— e —e wi(x) dx
¢ 2@/9 ( ) oite)

£ —|ts—th+e(y=2)|/VD _ ,~|ts—ty—el/VD
2@/R<e v ) u, (2)dz (1+ 0())

=&

m

- 55
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2
_e_ € 82 | g-lte—tel/vD (_ts =tk N €Y o (L

x/uﬂ(z) dz (14 O(£"))

R

— (,,0\3/2 | ~ts—txl/vD _ts_tk €Y 2 i 2
el () o (vt

X (1 +0 (D (log %)2 +€10>>, (9.7)

using (4.9) and (2.8). Combining (9.5) and (9.7), we have

H.i(ts +ey) — Ho1(ts)

. 1 £ / 3 3 N g2
=& 2l =y —zZ)w? (2 dz—i—O(— 2)
(5 a5 0~ = ) o

220 32 —lte—til VD [ ts — e\ €Y 2 log o2
+Z§k(ﬂk) e ( n —tk|) 5 +0 (6 08 1Y

k#s
X (1 +0 (D (log %) + 510)> . (9.8)

Remark 16. (i) The second line in (9.8) is an even function in the inneartalde y which will
drop out in many subsequent computations due to symmetry.
(i) The third line in (9.8) is an odd function in the inner vabley. For t € 2, we have

1
e*‘tsftkvx/5 — O (D lOg 5) ) |k - S| = 1’

1\2
e~ lts=tel/VD _ <(Dlog 5) ) , |k—s[ =2

Thus the third line in (9.8) is of exact order (5@ log %y) .

Next we compute and estimate the error terms of the Gierenihedt system (4.20) for the
approximate solution. ;. We recall that a steady state for (4.20) is givernsbyA| = 0, where
A2
T[A]
andT’[A] is defined by (4.21), combined with Neumann boundary comsti’ (—1) = A’(1) =
0. We now compute the error term

S.JA] = 24" — A+

(9.9)
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N N N
= 2A (Z és’u?s> — () Z Asws 1 <ZS}}£SMS)
s=1 s=1 gt
v (En)) & :
= [Z A — b s | = D (ula) = plt))Ed
s=1 eg,t\ls o—1

(14 0 (=)

- Z:: W[Hs’t(x) ~H. (1] <1 +0 <%\y\>)

[ - - Z (:u/<ts)5y> ésw,us

s=1

—stfwz s [ (===, () a2

N
o e — ts _tk: €Y
Y wpe Y &) e ID (_|t5 —tk|) \/5]

s=1 k#s

(v omb) )

l [ (8t~ ©)0) £

s=1

N 1 £ g2
-t s [ (= =)l () a0 (S)
s=1 R

N
o T tS — tk ey 1
D wh > Glu) e tkl/\/ﬁ( . —tk|) +0 <52 log Eyz)]

s=1 k#s
X (1 +0 (D (log %) + 510)> . (9.10)

Now we readily have the estimate

£
”Ss[ws,t”‘m(_%%) =0 (ﬁ) : (9.11)
Remark 17. The estimates derived in this section will be needed to coecthe existence
proof using Liapunov-Schmidt reduction in Appendix B. Irtipalar, they will imply an explicit
formula for the positions of the spikes in Section 5.
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10. APPENDIX B: EXISTENCE PROOFIII — LIAPUNOV-SCHMIDT REDUCTION

In this section, we study the linear operator defined by

2A¢ A2

TIA]  (T[A])
L.y : HX(Q) = L*(Q),

whereA = w. ; andT’[A] has been defined in (6.3).

We will prove results on its invertibility after suitablegections. This will have important
implications on the existence of solutions of the nonliq@ablem including bounds in suitable
norms. The proof uses the method of Liapunov-Schmidt réaluethich was also considered
in [10], [11], [8], [25], [26] and [37] and other works.

We define the approximate kernel and co-kernel of the opefatg respectively, as follows:

Ley = S/[Al¢ = £A¢ — p(z)d +

dwi
Key = span{ pi

T

¢:1,...,N} C H*(Q),

d .
Cot = span{ Wi
dx

Recall that the vectorial linear operatbthas been introduced in (3.12) as follows:

z‘:1,...,N}cL2(Q).

fR wd
LP:=A® — D4 20wd —2 w?, (10.1)
f]R w?
where
o1
o | |e (H2(R))".
ON

By Lemma 7, we know that
L:(Xo® - ®X) " n(H RN = (Xo@® - @ Xo)" N (LAR)Y

with X, = span{‘fi—‘;} is invertible and possesses a bounded inverse.

We also introduce the orthogonal projection, : L*(Q2) — C., and study the operator
Loy i= w2, o Leg. We will show thatL. : K, — CZ, is invertible with a bounded inverse
providedmax (%, D) is small enough. In proving this, we will use the fact thastbystem
is the limit of the operatol. ; asmax <%,D> — 0. This statement is contained in the
following proposition.

Proposition 18. There exist positive constarts\ such that formax ( £ ,D) € (0,0) and all
t € (2, we have

5l

[ Le6ellL2(0.) = Mldell 20 (10.2)
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Further, the map
LE,t = 7TE,t [e] Z:J57t . ch_,t — CEJ,_t

IS surjective.

Proof. Suppose (10.2) is false. Then there exist sequefiggs { Dy}, {t*}, {¢*} such that

max(r Dk> 0, t" € Q, ¢* = ¢, € KL 4 k=1,2,...and
Loy 468"l 120, ) = 0 ask — oo, (10.3)
¥ 2y =1, k=1,2,.... (10.4)
We definep. ;,i = 1,2,..., N and¢, x4, as follows:
Pei(T) = ¢e()X < 5 ) , TEQ, (10.5)
¢a N+1 Z ¢a i z € Q.

At first (after rescaling), the functions ; are only defined of2.. However, by a standard result
they can be extended B such that their norm i#7%(R) is bounded by a constant independent
of ¢, D andt for max <@, D) small enough. In the following we will study this extensidiar
simplicity of notation we keep the same notation for the egten. Since for = 1,2,..., N
each sequencéyf} = {¢.,;} (k = 1,2,...) is bounded inH? (R) it has a weak limit in

H}.(R), and therefore also a strong limit iy, .(R) and L{2.(R). Call these limitsp;. Then
b1
P2

o= solves the system¢ = 0. By Lemma 6,0 € Ker(L) = X, @ --- & X,. Since
O

e, € K-, by takingk — oo we get¢ € Ker(L)*. Thereforegp = 0.

By elliptic estimates we havigp., ;|| 2wy — 0 ask — oofori=1,2,..., N.
Furthermoreg., x41 — ¢n41 in H*(R), wheredy, , satisfies

Apny1 —¢np1 =0 inR.

Therefore we concludey,, = 0 and ||¢X,,llm>® — 0 ask — oo. This contradicts
16* | rr20., ) = 1.

To complete the proof of Proposition 18 we just need to shawtte conjugate operator to
L. (denoted byL? ,) is injective fromK, to C.,.

The proof forL; ; follows along the same lines as fbr ; and is omitted.
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Now we are in the position to solve the equation
Wét o Sc[wet + ¢] = 0. (10.6)
SinceL, | K, is invertible (call the inversé;,}) we can rewrite this as

¢=—(Ley om0 Sefwe)] — (Lig 0oy 0 Neg[9]) = Mg, (10.7)
where
Noi[d] = Se[we g + @] — Se[w.¢] — Siwe]o (10.8)

and the operatoM. ; is defined by (10.7) fop € H*(Q).). We are going to show that the
operatorM_. ; is a contraction on

Bes={¢ € H* () : ||¢]lg2,) < 6}

for suitably chosen if max (\/_, D) is small enough. By (9.11) and Proposition 18 we have

IMealolliron < A7 (I o Nealdllzzan + 175 0 Seliwedll| )

T (cw)a i ﬁ) 1612,

where\ > 0 is independent of > 0, > 0, D > 0 and¢(d) — 0 asé — 0. Similarly, we
show that

[Mesld] = Mgl 20 < ATC((8)0)]|6 = &l 20,

wherec(d) — 0 asd — 0. If we choose

5= 227 |7y 0 S.lueil| e

then, formax <\/_, D) small enough, the operatd¥!. . is a contraction o3, 5. The existence

of a fixed pointy, , now follows from the standard contraction mapping prineighde. ¢ is a
solution of (10.7).
We have thus proved

Lemma 19. There exists > 0 such that for every pair of t with0 < ¢ < § andt € ©,, there
exists a unique. € Kjt satisfyingS.[w. + + ¢-+] € C.¢. Furthermore, we have the estimate

|Pet|| 20y < C (\/—%) . (10.9)

Using the symmetry discussed in Remark 16, we can decompose

(bs,t = ¢E,t,1 + ¢5,t,27 (1010)
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where¢. , ; is an even function in the inner variabjevhich can be estimated as

Hﬁbe,t,lHHQ(*éé) =0 (%)

andg. ¢ » is an odd function in the inner variablewhich can be estimated as
1
ocscl (1.2 = O (VDog 3 ).

11. APPENDIX C: STABILITY PROOFIIl — TECHNICAL ANALYSIS OF SMALL
EIGENVALUES

In this section we perform a technical analysis of the smigkmvalues and conclude the
proof of Theorem 2.

First let us define
T —t;

W, j(x) = x ( 5 J) we(x), j=1,...,N, (11.112)

wherey(x) is given in (4.7) and. satisfies (4.8). We define similar to Section 5
K¢ :=spanfeul; : j=1,...,N} C H*(Qs.),
Cre¥ =spanfew.; : j=1,...,N} C L*().

Then itis easy to see that

N
We(w) = Y e j(x) + O("). (11.12)
j=1
Note thatw. ; satisfies
~ \2
2 AW, ; — p(w)b. j + % +0('%) = 0.

Further, we havei. ;(z) = &w, <?> + O <% + D (log %)2> in H%(9.), wherew; has

been defined in(4.5).

dw

Thusd! ; := “3=¢ satisfies

~ ~ 211}57 |~ ws, T ~
AW, ; — p(x)wl ; + ]flejw;’j — @HQ — i/ (2).; + O(£%) = 0. (11.13)

Let us now decompose
N
de=c ) agil; + o7, (11.14)
j=1

wherea are complex numbers angt L K7$¥. Note that the scaling factarhas been intro-
duced to ensure that = O(1) in H*(Q.).
Suppose thate. || z2.) = 1. Thenlas| < C.
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The decomposition of. given in (11.14) implies

N
Ve =2 aith;+ U7 (11.15)
j=1
wherey), ; satisfies
DAY j = the j 4 28w, ; =0, L ;(=1) =4 ;(1) =0 (11.16)

andyt is given by
DAYz — oz + 26w =0, (¥2)'(=1) = (v2)'(1) =0. (11.17)

Substituting the decompositions ©f and+. into (7.2) we have, using (11.13),
N ~ N
e ( (e, )? = (w.)? e ~
DI (szHé — g Ve ) e )i (@)
€ 15 j:l

+e"A0F — (@)t + 27508 — Z5VE — AedF + O(E)

N
=\ (,5 > a5, j> . (11.18)

j=1 k=1 €
S (15-,5) 5 we (1o 1Y
=) as H’; Yep +O0(E”) +0 | eD¥ (1og5) . (11.19)
J=1 |k—j|=1 €

Let us also put
- 210, 2
Legt = 0% — p(a)ot + oot — =20

o — =5 (11.20)

and
a® = (a5,...,a5%)". (11.21)
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Multiplying both sides of (11.18) by, ; and integrating ovef—1, 1), we obtain, using (3.3),

1
_ € ~7 o~
rh.s. = el a»/ w, W, dx

-1

J=1

= A&l /R(wl'(y))2 dy <1 +0 (% +D <log %) )) (11.22)

= \a ?Mfﬂ/R(w'(z))?dz« <1+0 (%H} (log %) )) (11.23)

and, using (11.19),

N 172
w _
l.h.s. = —z—:Zai/ }—;2[ (e — Hldy] @l da
b=1 -1 €
N 1
e / b gl d
j=1 1
Ebrryr oL
v [ et ds
1 ?DZz 1
- [ Hwhdes [ ot
-1 e -1

= (Jiu+ o+ s+ Jug+ Jsy),

whereJ;;, i = 1,2,3,4,5 are defined by the last equality.
The following is the key lemma.

Lemma 20. We have

1 . . .
i = =€ (g /ng dy) flﬂi/z { - v?;‘KD(tlaat?—l)f?—lﬂ?ﬁalgﬂ (11.24)
_v?2 K £t F2 0 3/2 ¢
ts D]t )& 1A

£ £ 3/2 5 s 3/2
+v?§KD(tz€7 tf+1)512+1/i141 + V?ZEKD(t;:a t}il)ff,lulfl]af

o+ (G0 eh)))
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5 . 1\?
J2,l = —g? (E / w? dy) fﬂ?/zuglai +0 <52 (% +D (log 5) )) , (11.25)
R

€ 1\°
J3,l = O 52 _D —|— D <10g 5) ) y (1126)
€ 1\°
J4,l = O 52 _D + D <10g 5) ) y (1127)
2
_ 2 & 1
Jsg = Ofe 75 +D <log D) ) , (11.28)

wherea; has been defined in (11.21) and

a) = lim a;, a’ = (a),...,a%). (11.29)

Proof. We prove Theorem 1 by using Lemma 20. We compute

€ 1\°
l.h.s. = Jl,l + szl + O (82 <ﬁ + D (lOg 5) ))

1 s 5/2 o o 3/2
= —¢ (g / w’ d!/) flﬂz/ [_ V%KD(tlsatfﬂ)ffqﬂz[ﬂil
R
> 2 3/2
_v?; Kp(t], t?+1)512+1MlJ/rlai+1

2 o 3/2 2 2 3/2
+v?§ Kp(t], tl€+1)512+1ﬂp/r1 + V?;s Kp(t], t?—l)f?—l#l/ﬁaf]

5} 29 3/2 c £ 1 2
_52 (E/Rw?’dy) Z2Ml/ ,uglaz +0 <52 (ﬁ—}—D (10g5) )) .

Comparing with r.h.s. and recalling the computation\dft°) at (7.12), we obtain

—2.42%€%(1°)>2 M(t)a, (1 +0 (L ++vDlog i))

/D D
P a [ () dy (1 e (ﬁ + VDlog %)) | (11.30)

using (2.3). Equation (11.30) shows that the small eigers. of (7.2) are given by
A ~ =282 (M(tY)),
using (2.3).
Arguing as in Theorem 10, this shows that if all the eigenealaf M (t°) have positive real

part, then the small eigenvalues are stable. On the othel; ifati (t°) has an eigenvalue with
negative real part, then there are eigenfunctions and wa$jees to make the system unstable.
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This proves Theorem 2.

Next we prove Lemma 20.

Proof. We first study the asymptotic behaviorof ;.

Lemma 21. We have

~

(the e — HLOW)(t]) = —Vt;KD(tzEati)éﬁ#i/2[5k,l—1+5k,z+1] — Okt Z Ve Kp(t,t5,)6% 1)

m,|m—l|=1
1 1\?
+O <\/510g5 (% + (D log 5) )) . (11.31)
Proof. Note that forl # k, we have
1
Ve p(t]) = 255/ GD(tf,z)wazD;k dz
-1
A e 46\ ¢2,,3/2 1 ?
~ e ,enE2 3/2 1 £ 1 2
Next we compute).; — H. nearts:
1
() = & [ Gole.z)ot iz
—1
—+o00 1
= & KD(|Z|)ID€2J(x+Z)dZ—§€ HD(:E,Z)IZ;;Z dz
—00 —1
! 9 € 1\?
+& / Gp(x,z)ws ,dz + O ——l—D(log—) .
kz#l . D( ) k \/E D
So
B +o0o 1
o) = &  Kplle)@uile + 20 (x4 2)) dz — & / Y, Hp(z, 2)i?, dz
oo -1
+€ Z/lva (z,2)0?,dz+ O [ VDI L +D<1 1)2
- " T, 2)w;, dz og— | — og —
kY 1 ’ * °D vD °D
= > VKp(x, )&
k|k—1|=1

+O (\/Blog% (% +D (log %) )) . (11.33)
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Thus
H!(z) — e (x) = —55/ V.Hp(x, z)wsldz+§52/ V.Gp(x,2)w?, dz

kAl

+2£€/ Hp(x, 2)i. ., dz
-1

+0 (\/Elog% (% 4D (log %)2»

k,|k—1|=1
o(vBost (= b g ) (11.34)
gD \/5 gD . .
Therefore, we have,
B~ veatt) = & [ Vo, it e+ &Y [ Va2, o

kAl

2
. e 46\ {2, 3/2 - L i
Ve Hp(t], 1) & 1 +O<\/510gD (\/E—FD(logD) ))

N
= N VeGpt )& — Ve Hp(t;, 1))
k=1

+O (\/ﬁlogﬁ <% +D (log %)2»

= Y VeKp(t )&

k|k—I|=1
o vpost (b g L) (11.35)
g b\ VD g D . .
Combining (11.33) and (11.35), we have shown (11.31).
O
Similar to the proof of Lemma 21, the following result is dexal.
Lemma 22. We have
1/}57]{@7 + €y) — ws,k(tf) (1136)

= —eyVe Vi Gp(t], 1)

RCORIQED))
o) o oo )

= —ey Vi Vi Kp (85, 80) €400 (0141 + Gt
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forl # k and

(Ve — HI)(t; + y) — (g — H)(t]) (11.37)

1+0(iy
RCORIGEDN]

N
= —ey > ViGplt, 15,

m=1

~—
_I_
)
—
)
~——~
S
0
S|~
-
~

——cy Y VEKp(t, )5

m,|m—I|=1

For J,;, we compute

N 12
€ e,l ry/
Jl,l = —6;0% /_1 Hg [ws,k - H 5”9} w dl‘
N 1,@21
— _5Za;/ H2 [ i (£5) — HL(E5) 0] L, d
k=1 -1 e

—e>nai [ (eate) — L] — [benls) — BLE)]) i

For Js,;, we use (11.33) and Lemma 21 to obtain

N 13
2 g, / € ! (4€
Joo = _ggza; H;H [ (t5) — HL(t5)6n] do
k=1
2, _ _
= 2> ([ whay) #1200 [venten) - HG)0]
k=1

X

1+O< c
N

. 2 5 2 3 5/2

= £ jgzak 3 wody |y

k=1

Vi Gplt5, )€ ZWGD t;,ts)gguzﬂl

to( 5o () )

+
)
~ —
o
7
S|~
-
~

ZWGD RIS
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_ 2 a € 2 5/2
= € Zak A w® dy
k=1

Vie Kp(t5, )€ [k + 0p] = > Ve Kt 1) 60,
Ky k—1|=1

2 2
e 4e\f2,,3/2 9 1 € 1
X E VtEKD tl,t])f + 0O (6 D (log 5) <—D +D <log 5) ))

Jili=1=1

Vt;KD(tlaJi)égﬂk 0151+ O1 k1] Z Vi Kp(t], ;) Sl

k) |k—1|=1
3/2 1 2 9 1 2
£ 16\ 2 2
X Zl lvtsKD tl,t])£] j +O<5D(10g5) (ﬁ—f-D(lOgE) >>
| /13

1\? 1\N° [ ¢ 1\°
_ 2 — 2 _ -
= 0 5D(logD) >+O<5D<logD) <\/5+D(logD) ))

1 2
= 0|e&’D (1og5) ) (11.38)

Similarly, we compute, using Lemma 22, (7.10) and (7.11),

Jrg = 52&/ (ywiw,(y) dyz (vtsvts Gp(t,15) fﬁui/z + Z ViGp(t5,E) ému%25k7l> a
R

O <52\/510g% (% +D (log %)2»

1
- e (ﬁ/ w3dy) [ VT VeV Kot )€ o
R

ke, [k—1|=1
+ Z V Dt 18)E2 113/ } O<52@1g1<6 +D<1g1>2>>
l’ m/)Smbm Qg g | = 0g =
m,|m—l|=1 D \/5 D
1
= —¢? (3/w dy) 5/2[ Z Vi KD (t5,62)E20 s
ke, k—1|=1

o 1( ¢ 1)’
+ Z V KD tl’t )5/3:“’2/20'1:| O<82\/510g5<ﬁ+D<10g5) ))

ky|k—1|=1
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1
= —¢? (3/w dy) 5/2 Z Vi KD (t5,15)E2 3/2(al—a2)

k| k—1|=1
O <52\/510g% <% +D (log %)2»

1 5/2 s i 3/2
= &2 (3/Rw dy) / {—Vfls_lKD(tf,tf1)§121Ml/1a1 1
- 2o 3/2
—V%HKD(QE, tzs+1)512+1/~%/tlal€+1

N 3/9 Lo 3/2
+VE;KD( I 25+1)512M14/r1 2 ( 1) 12,“1/1]“15}

+O <52\/510g% (% +D <log %) 2)) . (11.39)

Combining (11.38) and (11.39), we obtain (11.24).
For Jy,, integration by parts gives

1
Joy = 62&?/ e L dx
—1
€ 1\?2
140 —=+D[(log—
<¢5 ( gD) )]

e’aj 2,302 /,/ 2 3 ( 1)2
= ——* w'dy |[1+0 | — + D (| log —

and (11.25) follows.
These are the main terms. The remaining terms are small andlirghow that they are of
c 2
the orderO <€2 <ﬁ + D (log 5) )) )
Similar to the proof of Proposition 18, it can be shown thats invertible from(X7<*)L to
(Crew)+ with uniformly bounded inverse for max-= D) small enough. By (11.18), (11.19),

\/_7
Lemma 21 and the fact that is uniformly invertible, we deduce that

1
6 |20y = O (8\/510g 5) . (11.40)

Then we have by the equation for-

1
vie) = 26 | 1GD<t§,z>ws¢édz=O(Nﬁlog%).

Further, we estimate

1
Vo (5 + ey) — v (1) = 26 /_1[GD(t§ +ey,2) = Gp(t; + ey, 2)| -0 dz
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€ 1)?
1+0 <ﬁ +D (logﬁ) )]
=0 <8 vV Dlog % ev/Dlog % y) =0 <€2D <log %) y) . (11.41)

These estimates of- and¢. are important for the rest of the proof.

For Js;, we have by (11.33), (11.40)
1+0(——+D (1 1 )2
PE— O —_
VD .D

1 I
=0 <\/510g 5€H¢jHH2(QE)) =0 (52D <log 5) )

which proves (11.26).
For Jy,;, we decompose

1
= 2eyé. / Vi Gp(t5y, 2)w. ¢ dz
-1

1
Ty = () / Wk dz

1

Jag = Jgg+ Jou,
where
! w?l 1 ~/
o= | WAL, de, (11.42)
71 e
1 le
Jog = — Hsé (- () — W (¢l da. (11.43)
—1 P
For .Js,;, we have using (11.33), (11.41)
1 w2
_ 1 /4e sl ~
J&l = —1/15 (tl) » H2 il dl'

2 1 "3l
= g@/)el(tza)/ I; . dx

1 €

1+O<5+D log ))]
= A ) (/ngdy) 1+0 <f+D(logD) )]

= 0 (g \/Elog%s\/ﬁlog %) =0 < logD) ) (11.44)

For Jy;, we have using (11.41)

! wgl € i ~1 2 1 ?
Jog = — » }_Ié (Yo (x) — 2 (tf))wavl dr =0 <6 D (log 5) ) . (11.45)
Now (11.27) follows from (11.44), (11.45).
Finally, we estimate using (11.40) apt{t;) = O (\/Elog %) that

! 1 1 1\?
Js1 = / potw. de =0 (g ev'D log 5 VD log 5) =0 (&D (log 5) (11.46)
—1
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and (11.28) follows.
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