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Abstract

When the mass constraint of the Cahn-Hilliard equation in two dimensions is lowered to the
order of €2/3, where € is the interface thickness parameter, the existence of droplet solutions
becomes conditional. For interior single droplet solutions, there is a critical value for the mass
constraint such that above this value two interior single droplet solutions exist, and below this
value interior single droplet solutions can not be constructed. One solution has smaller droplet
radius than the other one does. The one with smaller radius is less stable than the one with
larger radius. The center of the droplets in these solutions is (almost) the point in the domain
that is furthest from the boundary. A critical mass constraint also appears when multiple droplet
solutions are sought. Above the critical mass constraint, which now depends on the number of
droplets, there exist two multi-droplet solutions. In each solution the radii of the droplets are
about the same. However when the two solutions are compared, one has larger droplet radius
than the other one does. The locations of the droplets are determined by the solution of a disc
packing problem.

1 Introduction

The Cahn-Hilliard equation was originally proposed to study binary alloys [9]. Let u be the relative
concentration of one of the two components in an alloy, so 1 — u is the relative concentration of the
other component. At a point x where u(x) &~ 1 there is higher concentration of the first component,
and at a point where u(z) ~ 0 there is high concentration of the second component. When u(z)
stays between 0 and 1, a mixture of the two components occupies z. Let Q2 be the region taken by
the alloy, which we assume to be a smooth and bounded domain. The average concentration of the
first component is ﬁ Jo, u(x) dz denoted by m, often called the mass constraint. Here || is the size
of €.
In a dimensionless form the free energy of the system is

I(u) = /Q(%Wu|2 + F(u)) da. (1.1)

*Corresponding author. Phone: 1 435 797-0755; Fax: 1 435 797-1822; E-mail: ren@math.usu.edu
fSupported in part by NSF grant DMS-0509725.
fSupported in part by an Earmarked Grant of RGC of Hong Kong (RGC Proj. 402304).



The function F is a smooth function with at least quadratic growth rate at oo. It is a balanced

double well potential with two global minimum points at 0 and 1. These two global minima are

non-degenerate: F''(0), F"(1) > 0. There is a third critical point between 0 and 1 which is a local

maximum. We impose a symmetry condition F(u) = F(1 — u). Then the local maximum point is

1/2. The reader may take the particular example F(u) = (1/4)u?(1 — u)? throughout this paper.
The functional I is defined for u in the admissible set

A={uewWh?(Q): ﬁ/ udr =m} (1.2)
Q

with m € (0,1), the mass constraint, being a given number. In this paper a bar over a function
denotes its average. Hence uw = m.
The Euler-Lagrange equation derived from (1.1, 1.2) is

—?Au+ f(u) =nin Q, d,u =0 on N (1.3)

The function f is the derivative of F. If we use the particular F(u) = (1/4)u?(1 — u)?, then
f(w) = u(u —1/2)(u — 1). v is the outward normal direction on 9 and 8, is the directional
derivative in that direction. Both the function u and the constant n are unknown in (1.3). The
constant 7 is the Lagrange multiplier coming from the constraint of w in (1.2). If we integrate (1.3),
then

n=f(u). (1.4)
We introduce a nonlinear operator S by
S(u) = —€*Au+ f(u) — f(u), (1.5)
so the equation (1.3) becomes
S(u) = 0. (1.6)

To have low free energy the field u(z) likes to be close to 0 or 1 because this makes F(u(z))

small. Any oscillation between 0 and 1 makes %\Vu? large, and is better avoided. However the
constraint w = m € (0,1) does not allow u to be 0 (or 1) everywhere. The parameter € is a small
positive number. If u(xz) must vary between 0 and 1, it can do so over a narrow region without
raising the free energy too significantly.

Most works on this problem make the assumption that m is independent of e. When € is a
two dimensional domain, Alikakos and Fusco [3, 4], Alikakos, Bronsard and Fusco [1], Alikakos,
Fusco and Karali [5] studied the development of a bubble profile under a dynamical law of I. A
bubble profile of u(x) is a function that is close to 1 inside a round circle, a bubble, of radius r with
7r2/|Q| ~ m and close to 0 outside the circle. There is a narrow transition region whose width is
of order e along the circle. In this region u(z) changes rapidly from 1 to 0. They showed that this
profile is rather stable in the dynamics and the bubble moves slowly towards the nearest boundary
point on 9. One byproduct of their work is that there exists an equilibrium, which is a solution of
(1.3), of the bubble profile. The location of the bubble in the equilibrium is not given in [4] or [1].
Wei and Winter [19] gave a static method, without using the dynamics of I, to show that a bubble
equilibrium exists with the center of the bubble being the furthest point in Q from 9. A formal
justification on the location of this bubble was given by Ward [18].

When m is independent of €, one powerful technique to study the Cahn-Hilliard equation is the
I-convergence theory (cf. De Giorgi [11], Modica and Mortola [15], Modica [14], and Kohn and



Sternberg [13]). It reduces the variational problem (1.1) to the geometric problem of the perimeter
functional: Given a subset E of Q (again assume Q C R?) whose size is m|{|, the perimeter
functional P, (FE) associates to E the arc length of the part of OF that is in 2. One consequence of
the T'-convergence theory is that as € — 0, the global minimizer of I must converge in some sense to
a global minimizer of Pg. For the global minimizer E of Pq, the part of the boundary of E that is
in Q is a circular arc. E also shares a part of its boundary with 0€2. The arc meets 0f2 at the right
angle.

Another consequence of the I'-convergence theory is that if E is an isolated local minimizer of
Pq, one can find a local minimizer u of I that is close to the characteristic function of E if € is
sufficiently small. The set E\0f is approximated by the set {z : u(z) = 1/2}. Using this fact Chen
and Kowalczyk [10] proved that a solution of a small bubble exists if m is sufficiently small. The
bubble is attached to the boundary 992 at a point whose mean curvature attains a local maximum,
viewed from inside 2. Even though m is a small number, it must be independent of € in the T'-
convergence framework. On the other hand, Sternberg and Zumbrun [17] showed that in a strictly
convex domain the interface must be connected.

Alikakos, Chen and Fusco [2] studied the dynamics of a boundary bubble profile using another
dynamical law of I. Allowing m to depend on €, they made an interesting discovery: To observe
boundary bubble dynamics and to have the existence of boundary bubble equilibrium, the mass
constraint can not be too small, in terms of €. It was shown that the mass constraint m can be of
order €2/3 at the lowest. They called the boundary bubble profile in the case m ~ €2/3 the droplet
profile. If one writes m = €2/3mg + o(e2/?), a critical value for mg exists. Below this value one can
not construct a good approximate solution meeting all the requirements in their droplet dynamics
analysis. This droplet profile has its root in the bubble profile when m is independent of e. When
we decrease m to €2/3 order, the bubble shrinks to a droplet.

If the mass constraint is above the critical level but still of order ¢2/3, it was shown in [2] that
there is a second solution with a boundary droplet. This droplet has smaller radius than the first
one. It is less stable and has higher free energy. The existence of this second solution has its root in
the so called spike solutions.

When m is not too close to 1/2 but independent of €, one can find a solution that is close to m
for most z € 2, except in a neighborhood of a point where the graph of the solution has a sharp
peak. This point may be on 92 or inside of Q. The solution is very unstable and has high free
energy. For more information about spike solutions in this parameter range see Bates and Fife [7],
Bates, Dancer and Shi [6], Bates and Fusco [8], and Wei and Winter [20, 21]. When m is decreased
to the €2/3 range, a boundary spike solution flattens to become a boundary droplet solution. This
droplet solution is different from the earlier droplet solution. It has smaller radius and is less stable.

In this paper we study interior droplet solutions under the mass constraint m ~ €2/3 in two
dimensions: Q C R%. More explicitly we assume
m = €2/*mg + o(e*/?) (1.7)

with mg > 0 independent of €. In the case of Q being a unit disc, interior single droplet solutions
may be studied within the class of radially symmetric functions. In this class it was shown in [2]
that a critical mass constraint exists. When the mass constraint is in the €2/3 range and above the
critical level, the droplet solutions and the constant solution have comparable fee energy of order
€*/3. We will show in this paper that a critical mass constraint also exists in the general domain
Q for interior single droplet solutions. If the mass constraint is above the critical level and still



of order €2/3 we find two interior droplet solutions. One of them has greater radius and is related
to an interior bubble solution (see [19]). The second one has smaller radius and is related to an
interior spike solution (see [21]). Both solutions are unstable. Between the two solutions the one
with smaller droplet is less stable than the one with larger droplet.

Our approach is static. We do not use any of the dynamic laws associated with I. We use a type of
Lyapunov-Schmidt reduction procedure tailored for singularly perturbed problems. To understand
this method we must have a good understanding of the linearized operator at the solution we want
to construct. The linear operator admits eigenvalues that tend to 0 as € — 0, which we call critical
eigenvalues. These eigenvalues are further divided according to the rates they converge to 0. They
give us a split into a finitely dimensional manifold M, and at each point, say we of the manifold a
infinitely dimensional fiber space F¢. In this construction every member in M is a function with a
droplet profile. The center of the droplet is at £ which serves to parameterize M. In each fiber space
we look for a function ¢¢ € F¢ so that we + ¢¢ “solves” the equation (1.3) in the fiber direction.
Now wg + ¢¢ forms another manifold, say N. We maximize I in N. The maximum is achieved at
a particular £ which we call &. Then we, + ¢¢, is an exact solution of the equation (1.3). This
approach has been used to study the Cahn-Hilliard problem by Wei and Winter in [19, 20, 21].

It turns out that maximizing I (w¢ +¢¢) with respect to £ is equivalent to maximizing the distance
of ¢ to the boundary of Q. Therefore this approach also gives us the location of the droplet in a
solution. The center £, of the droplet is (almost) the point in Q that is furthest from 09.

We will also show the existence of solutions with multiple droplets. Here given any positive
integer K, we find a critical mass constraint and, above this critical level, two solutions, each of
which has a profile of K droplets. In each solution the droplets are almost of the same size. However
if we compare the two K-droplet solutions, one solution has smaller droplets than the other one
does.

The locations of the droplets in both solutions are determined by solving a disc packing problem.
In the disc packing problem we are given K (open) discs of the same radius. What is the greatest
possible radius of these discs so that they can all be placed inside Q without intersection? Let ¢!,
£2,... £X be the centers of K discs. If we take the radius of the discs to be

& —¢€m

(10(517527"'751{) = min{d§k7 T - k7l7m € {1727"'7K}7 l# m}, (18)

where dg: is the distance of £* to 99
der = min{|z — &*[: z € 80},

then the discs are all inside 2 and they are mutually disjoint. To find the greatest possible radius,
we simply maximize (&1, €2, ...,£K). The locations of the droplets of our multi-droplet solutions
are (almost) the ¢!, €2, ..., £X7s that maximize ¢.

The paper is organized as follows. In Section 2 we describe the shape of a droplet. In Section
3 we show the existence of two radially symmetric single droplet solutions in the unit disc, using
a straight forward fixed point argument. In Section 4 we analyze the linear operator at each of
the two radial solutions. We obtain detailed information on the eigenvalues of the linear operator.
Aided with this information we construct two interior droplet solutions in a general domain using
the Lyapunov-Schmidt reduction method in Section 5. Finally in Section 6 we find two solutions
of multiple interior droplets. To do so, we employ the Lyapunov-Schmidt method to reduce the



problem to the disc packing problem. Some of the proofs are quite technical. To help the reader
follow the main framework of this paper, we leave these difficult proofs to the appendices.

To avoid overly complicated notations, a quantity’s dependence on € is usually suppressed. For
instance we write I instead of I, and S instead of S.. On the other hand, if a quantity is independent
of €, we often use a subscript o to emphasize this fact, such as mg in m = €2/3mq + o(e?/3). We use
C, Cy, Ci,..., a, ag, ay,..., to denote positive constants independent of €. Their values change from
line to line and even from place to place in the same line.

2 The droplet profile

The shape of a droplet is described by the solution of the equation
—Av+ f(v) =8 (2.1)

in the entire space R2. This solution v is radially symmetric. In the language of the formal asymptotic
theory, v is known as an inner approximation. We collect some well-known results about v in this
section.

The constant 8 on the right side is assumed to be positive and has the expansion

B = €38y + o(e*/?) (22)

with By > 0 independent of €. Denote the three zeros of f — 8 by z,2’, 2", in the increasing order.
Here z is positive and 2" is greater than 1. Because 8 ~ €2/3,

2~ 3 M1~ P23 (2.3)
The interface of the droplet profile is identified by p > 0 where
v(p) = 1/2. (2.4)

So for r > p, when € is small v(r) is close to z, and for r < p, v(r) is close to z". It is known that
p ~ €'/3 (see for example Lemma 2.1 [19]). We therefore write

p=€3py + o(e/?). (2.5)
v decays to z as r = |z]| = oo:
lim o(r) = z. (2.6)

The decay rate of v and v' are given as follows (see Lemma 2.8 [19]).

Lemma 2.1 There exist positive constants Cy, C1, ag, a1 independent of € such that

Coe_aoe_z/se_\/ Frlarfe < v(r) —z, —v'(r) < C1e‘“€_2/3e_\/ Fi(2)r/e

Near p we have the following expansion formula.



Lemma 2.2 Near p, v can be expanded as
v(et + p) = H(t) + €/>P(t) + €/°Q(t) + o(e*/?)

where H, P and () are respectively the solutions of

1.
~H"+ f(H) =0, H(~c0)=1, H(c0) =0, H(0)=1/2 (2.7)

2.

l/3

—-P"+ f{(H)P = THI + Const., P(0) = 0; (2.8)

3.

61/3 62/3 1

Q"+ f(H)Q = 7P’ - p—QtH’ - §f”(H)P2, Q(0) =0. (2.9)

For the proof we refer the reader to Section 2 of [16], particularly Lemma 2.3. There we studied
the more complex Ohta-Kawasaki model of diblock copolymers which in addition to the two terms
in (1.1) has a nonlocal term. The reader can simply ignore that nonlocal term when applying the
results there.

In (2.8) Const. is a constant determined by the solvability condition

(1/3
R

If we relate Const. to 3, we find the following important relation between By and pg.

Lemma 2.3 In the expansion p = €'/3py + o(e'/3), po satisfies By = L where T is a constant given
Po

by T = [p(H'(t))*dt.

The constant 7 is independent of €. It can also be given by

1
= /0 V2F(q) dg. (2.11)

These two definitions are equivalent because of the first-integral —1(H') + F(H) = 0 of H. Note
that H' = \/2F(H) and hence

/ (H'(t))*dt = / V2F(H(t)H'(t) dt = / 1\/2F(H) dH.
R R 0

7 is known as the surface tension.
Proof of Lemma 2.3. From (2.10) we find

1/3 A 1/3
Const. = — (H"? dt = £ 7
P Jr p

If we send € — 0, then Const. = 61/% — 2~ On the other hand by (2.6) and Lemma 2.2 z = v(c0) =
€?/3P(c0) + o(€*/?) and, by Lemma 2.2 (2), f'(0)P(c0) = Const. Hence zof'(0) = Const. + o(1).

But 8o = f'(0)zo. Therefore Const. — S as € — 0. Hence 3y = plo. 0



3 The radial case

We take  to be the unit disc:
Q={reR®:|z| <1} (3.1)

All functions that appear in this section are radially symmetric. We prove the following theorem.

r
Theorem 3.1 Let Q) be a unit disc. If the mass constraint m is chosen so that mg > 3(—2]“(0) )2/3:
there exist two droplet solutions in €.

The proof of the theorem consists of two steps. First we construct two approximate solutions
that satisfy the Neumann boundary condition, the mass constraint, and up to an exponentially small
error almost satisfy the differential equation. In the second step we use each of the two approximate
solutions and find an exact solution nearby, using the fixed point argument. To this end we analyze
the linearized operator. Most importantly we show that the linearized operator is invertible and the
spectrum is bounded away from 0 by a distance of order €*/3.

An approximate solution takes the form

w(z) = v(z) + 9() (32)

where v is the radial droplet profile given in Section 2. The function g(z) is the radial solution of
the linear equation
—e2Ag+ f'(2)g=0in Q, 8,9 = —d,v on OQ. (3.3)

This correction function g is quite small. We denote the L°°(£2) norm of a function by || - ||oc in this
section.

Lemma 3.2 ||g]| = O(ee_\/m/é). Moreover for any small v > 0,
g(r) = O(e_(\/er‘sl)/e), ifr<l-—.
for some §; > 0.
Proof. We write g(r) = —v'(1)g(r). Then v'(1) = O(e‘m/é). g satisfies the equation
—2A§+ f'(2)g=0, 8,§=1on o0.

For a small ¢ > 0, §(r) = O(e) if r > 1 — . If r <1 —, there is & > 0 so that g(r) = O(e~%/¢).
The construction of g ensures that w satisfies the Neumann boundary condition. By adjusting
B, or equivalently p or z, we make w satisfy the mass constraint

w=m. (3.4)
As a consequence of (3.4) we have the following fact.

Lemma 3.3 The constants po and mg must satisfy the equation

p2 + L
¢ pof'(0)

myo.

So mg can not be less than 3(#(0))2/3. The last value for mg is attained if po is ( /3,

2/'(0)



Proof. Because g is exponentially small, W is exponentially close to 7. The integral of v inside

the interface p is
7P + o(e2/?) = we?/? p2 + o(e¥?), (3.5)

and the integral of v outside the interface is

2/3

08 weoT
7z +o(e2/?) = T 23y = + o(e?/? 3.6
= p ) = g T (30
by 8 = f(z) = f'(0)z + o(z) and Lemma 2.3. The mass constraint implies that
2/3,
mm = w3 p2 + e + o(€*/3). 3.7

This gives the relation

m p2 + T
0= — 7y

® " pof'(0)
For this equation to have a solution for pg, mg can not be too small. The smallest value for myg is

T T 1/3
RSTI0) 2r)) O

Under the assumption of Theorem 3.1, we find two pg’s that solve the equation pg +

)?/3, which is attained if pq is (

T _m
pof(0) ~

The smaller pq is less than ( )1/3 and the large po is greater than ( )1/3_ From these two

2f'(0) 2/'(0)

po’s we construct two approximate solutions w. The w’s nearly solve (1.3) in the following sense.

Lemma 3.4 There exists 6 > 0 independent of € such that ||S(w)||ec = O(e*(l'“s)\/m/e).
Proof. Let © = v — z. Define h(?) by
fw) = f(z+7) = f(z) + f'(2)0 + h(D).
In the special case f(u) =u(u —1/2)(u—1),

') 2 1) o3

ho) == 6

Then we have

f) = f(2)g+ flv+9)

= flz+0) = f'(2)g+ fz+7+9)
= ﬁ+h(?7 9) — h(?)

= B+Hh(0)g+0(lgll3)

= B+ 0(llogllo) + O(llgll3,)

= B+ O0(e"HIVIGE)/ey

for some § > 0 by Lemmas 2.1 and 3.2. To reach the last line, we note that

o(r) = 0(e=VI'@r/9 g(r) = O(e_\/m/f)



ifr>1—forasmall ¢;and if r <1 —4,

g(r) =—v'"(1)g(r) = O(e_\/-fl—(z)/e)o(e—61/€)

for some §; > 0, since §(r) = O(e~91/¢) there. We are now left with f(w). Since S(w) = —e>Aw +

f(w) — f(w) and S(w) = 0, we find

J(w) = =ERw+ f(w) = f + O™ HHOVTG/e),

Therefore
S(w) = O(e—(1+5)\/f’(Z)/e)‘ O
In the second step we look for exact solutions. Take one of the two approximate solutions. Denote

it by w with w = v+ g. p (hence z and 3) is chosen so that W = m. pg satisfies the equation in
Lemma 3.3. We define two function spaces

X ={ueW?*Q):u=u(z]), u=00n90 u=m}, YV ={qeL*):q=q(z]),g=0}
(3.8)
The nonlinear operator S maps from X to ).
We look for a solution of S(u) = 0 of the form w + ¢, where ¢, is a small correction to the
approximate solution w. It is in the function space

F={p e W?%(Q): ¢ =o(z|), 8,6 =0o0n 89, ¢ =0}. (3.9)
Rewrite S(w + @) =0 as

S(w) + L(¢«) + R(x) = 0. (3.10)
In (3.10) L is the linearized operator of S at w:
L(¢) := —€A¢ + f'(w)¢ - ['(w)p, ¢ € F. (3.11)
The last term in (3.10) defines the remainder
R(¢) := f(w+ ¢) — f(w) — f'(w)¢ — f(w+ @) — f(w) — f'(w)o (3.12)

It turns out that the operator L is invertible. The spectrum of L is bounded away from 0 by a
distance of order e*/3.

Lemma 3.5 The operator L : F — Y is one-to-one and onto. There exists a constant C' independent
of small € so that for all € F, ||¢]loc < Ce=*/3||L(9)]|oo-

The proof of this lemma is quite long, so we leave it to Appendix A. Rewrite (3.10) in a fixed
point form

¢ = L7H(=S(w) — R($4)). (3.13)
Hence we define a nonlinear operator T by
T(¢) = L7 (=S(w) — R(¢)). (3.14)
We set the domain of T' to be
D={p € L™(Q): ¢ = (), =0, [|¢]loc < e~ FIVI'()/} (3.15)

where §5 is any positive number independent of € and less than ¢ in Lemma 3.4. Note that we use
the L°°-norm in D.



Lemma 3.6 The operator T on D is a contraction map. There is a unique fized point ¢.

Proof. From Lemmas 3.4 and 3.5 we deduce

1T (@)l Ce (IS (w)lloo + 1R(H)]10)

< CePO(e” VIR +19]13,).

IA

Hence T maps D to itself if € is sufficiently small. For two ¢; and ¢» in D,

IT(¢1) —T($2)llo < Ce*3||R($1) — R(¢2)]|oo (3.16)
< Ce 2 ([lg1lloo + 1d2lloo)l b1 — S2llo (3.17)
< Ce e MHRVIE/ g — gyl (3.18)

Therefore T is a contraction map. A fixed point ¢, exists in D.
The proof of Theorem 3.1 is complete.

4 The critical eigenvalues

Let u be one of the two droplet solutions given in Theorem 3.1. The linearized operator is

Ly = —A¢+ f'(u)¢ — f'(u). (4.1)

This L differs slightly from the one considered in the last section, for the one there is linearized
around w. However the difference between v and w is the exponentially small function ¢., which
is a rather insignificant quantity in this section. The stability of u is determined by solving the
eigenvalue problem

Lp=Xp, 0,6 =00n0Q, ¢=0. (4.2)
Theorem 4.1 The linearized operator around u has one eigenvalue equal to

64/3(21“(0)[’0 _ %) +o(€4/3),

T Po

which determines the stability of the droplet solutions in the radial class. The corresponding eigen-
function is, up to a constant multiple,

H' + 3P — H' + &3P + O(*/?)

where H and P are given in (2.7, 2.8). Other eigenvalues in the radial class are greater than a
positive number that is independent of . The smaller droplet solution is unstable and the larger
droplet solution is stable in the radial class.

The proof mimics the work in [16]. Several ideas have already appeared in the proof of Lemma
3.5. We give an outline of the proof in Appendix B.

Theorem 4.1 only addresses the stability of the droplet solutions in the radial class. To study
the stability in the non-radial class, we may separate variables in the equation L¢ = A¢, this time

10



for non-radial ¢. For each j = 1,2,3,... there are two independent eigenfunction ¢ = {(r) cos(j0)
and ¢ = ((r) sin(j6). The radially symmetric function ¢ is a solution of the equation

€2j2

2
~Clr = G S =X G(1) =0, (43)

Arguing as in the proof of Theorem 4.1 we may show the following asymptotic expansions for the
eigenvalues and eigenfunctions.

Theorem 4.2 For each j =1,2,3, ... there is an eigenvalue equal to

4/3052 _ 1
€ (32 )+0(€4/3)_
Po

There correspond two independent eigenfunctions ((r) cos(j6) and {(r)sin(j6) where, up to a con-
stant multiple, ¢ is equal to
H' + &3P + 0(*?)

where H and P are given in (2.7, 2.8). Other eigenvalues are greater than a positive number that is
independent of €.

One sees from this theorem that the eigenvalues corresponding to j > 2 are all of order €*/3 and
positive. So with respect to these modes both droplet solutions are stable. However when j = 1,
we have an eigenvalue of higher order o(e*/3). The theorem does not tell us whether this eigenvalue
is positive or negative, i.e. we do not know whether the droplet solutions are stable with respect to
the 7 = 1 mode. We will come back to this issue later.

5 The general domain
The main result we will prove here is the analogy of Theorem 3.1 in a general domain.

Theorem 5.1 In a general domain U, if the mass constraint m = €2/3mqg + 0(62/3) is above the
critical level, i.e.

T )2/3l

o> 3Gp0)  jor

then there exist two droplet solutions.

The construction of droplet solutions in a general domain is more complex. We do expect that
the spectral properties obtained in Theorems 4.1 and 4.2 remain more or less valid even if ( is not
a disc. But we are not able to restrict ourselves to radial functions. Without the radial symmetry
in addition to the small eigenvalue corresponding to the one in Theorem 4.1, the small eigenvalues,
corresponding to the ones in Theorem 4.2, have to be considered as well. The small eigenvalues fall
into two scales. The one in Theorem 4.1 and the ones in Theorem 4.2 with j > 2, are positive and
of order ¢*/3. They are considerably greater than the one in Theorem 4.2 with j = 1, which is of
order o(€*/*). The exact size of the latter eigenvalue will be discussed near the end of this section.
Our construction of two droplet solutions in a general domain must take this scale difference into
consideration.

11



Let us give an outline of our approach. The reader must be aware that although the notations
used in the rest of this paper look similar to the ones used in the earlier sections, we are taking a
significantly different approach. We define two function spaces

X={ueW?*Q): 6,u=00n00, u=m}, Y={geL*):q=0} (5.1)

and the nonlinear operator S given in (1.5) maps from X to ). Note that X and Y differ from
the corresponding spaces in Section 3 in that here the functions in these spaces are generally not
radially symmetric.

We first construct a good approximate solution of a droplet, centered at a point £. £ must have
a small distance from 90€2. Let o > 0 be independent of € and

Qe ={£€Q:de > 50} (5.2)

where d; is the distance of £ to 9Q. At each £ we construct an approximate solution whose droplet
is centered at €. This £ is first an arbitrary point in ,. It will be determined in the last step. The
constant o is chosen to be sufficiently small so that

max{de : £ € Q\Q,} < max{d : { € Q}. (5.3)

This ensures that a point in 2 with the largest distance to 92 is in Q,. The choice of the number
5 in (5.2) will be explained in the proof of Lemma 5.5. All estimates in this section are uniform in
£Ee,.
Denote the approximate solution by we. As £ varies in 2, we forms a two dimensional manifold
in X which we denote by
M={weg: £€Q,}. (5.4)

At each point wg we define an approximate tangent plane to M spanned by two functions b; ¢ and
bo¢ that are essentially the truncated versions of the two eigenfunctions of mode j = 1 studied in
Theorem 4.2. Perpendicular to by ¢ and bs ¢ is the space F¢ that is almost normal to the surface M.
Next we “solve” S(u) = 0 in each F¢ direction. More precisely we look for a correction function

¢¢ so that
S(’wg + ¢§) = Clbl,g + 62b27§ (5.5)

for some ¢;,c2 € R. Now we have a second manifold
N ={we +¢e: £€Q} (5.6)

of improved approximate solutions.
In the last step we find an exact solution in . To do this we maximize I(w¢ + ¢¢) in N:

max{I(we + ¢¢) : € € Q}. (5.7)

We will show that the maximizer exists at an interior point of 2. Actually we will show this
maximizer has almost the greatest distance from 92, among all the points in .

These three steps (5.4, 5.5, 5.7) are carried out in the rest of this section. It turns out that in
constructing (5.4) we can find two approximate solutions we at any fixed point £. One corresponds
to a smaller droplet and the other to a larger droplet. Starting with the two approximate solutions
respectively and completing the three steps, we will find two droplet solutions in the general domain.

12



We first recall the profile of a droplet: v(r) given in (2.1). It is a radially symmetric function
that decays to z as r — oo. Note that f(z) = 5. Define

D=v— 2. (5.8)
Note that ¢ decays to 0 at infinity. It satisfies the equation
—2A% + f'(2)0+ h() =0 (5.9)
where
h®) = f(v) = f(2) = f'(2)(v = 2) (5.10)
In the particular case f(u) = u(u —1/2)(u — 1),
n n

We need to choose z properly to reflect the mass constraint of the Cahn-Hilliard problem. We
look for z so that z and the corresponding v (and ©) determined from z satisfy the relation

f@ﬂm—zﬂﬂ+£pmmdm=& (5.11)

Let us explain how we arrive at (5.11). Shift v to v(- — £). Integrate (5.9) over Q to derive

9 8'17(—5) ! ~ v =
—e [ ZEasrpo) [o6-gda+ [ na-enas=o.

We ignore the first term on the left side since it is very small. We replace the last term by [, h(7) dz.
Regarding the mass constraint we must have v(- — ) & m in , i.e.

/a_am@m_mm
Q

After these replacements, we obtain (5.11). Note that z defined this way is independent of the choice
of the center ¢ of the droplet.

Lemma 5.2 When m is above the critical level, (5.11) has two solutions of z. More precisely let
2 = €232 + 0(e*/?) with zy independent of €. Then 2y satisfies the condition

2
T
5 :m0|Q|a

20| + O
where m = €2/3mg + o(e*/?).
Proof. The equation (5.11) implies that
F'(z)(m = 2)|Q| + h(1)7p? + o(e*/?) = 0.

The lemma follows once we note that h(1) = —f'(0) + o(1) and po = 7077 bY f'(0)z0 = Bo and
Lemma 2.3.

Here one solution z corresponds to a smaller droplet and the other to a larger droplet. In terms
of p (recall that v(p) = 1/2) this lemma reads the following.
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Lemma 5.3 Suppose m = €*/3mqg + 0(e?/?) and p = €'/3po + o(€'/?). Then po and mo must satisfy

the equation
T —

= 3+ m
Q)7 " pofr) -

Therefore mg can not be less than 3(2]“7(0))2/3&. The last value for mg is attained if po is
( |Q|T )1/3
2rf'(0)"

Proof. Use the relations 8y = f'(0)z¢ and By = - from Lemma 2.3 to rewrite the equation in
Lemma 5.2 in terms of pg instead of 2.

Now we move v to v(- — £) so that center of the droplet is at an arbitrary point £ € Q,. This
v(- — §) does not satisfy the Neumann boundary condition. We introduce g¢ which is the solution
of the linear problem

—€?Age + f'(2)ge =0in Q, 9,9¢ = —0,v(- — &) on N. (5.12)

Then v(- — ) + g¢ satisfies the Neumann boundary condition. Finally to have the mass constraint
satisfied we introduce a number 7¢ so that

weg =v(- — &) + ge +ne and Wg =m. (5.13)

Here wg is our approximate solution, from which we have the manifold M, (5.4), in X.
The properties of w, are given in the following lemma. We leave its rather technical proof to
Appendix C.

Lemma 5.4 Let the distance from & € Q, to O be de: de = min{|z — &| : » € 90}.

L [[S(we)llz2 o) = O(e~ VI (2)de/€) for some small § > 0 independent of e.

2. There exist constants Cy, C1, ag and a1 independent of € and &, and a constant C, independent
of & but dependent of € so that

Ce — o *e 2V 2e/¢ < T(we) < Cc — Cre @ P 2V e/,

When we keep track of the decay rate of I(w¢) to C., the dominate part is e 2V/'(2)d¢/¢. Both

-2/3 ae—2/3 -
e?o¢ and e 1€ are rather negligible.

Now that we have a family of approximate solutions we proceed to solve (5.5). It is sometimes
more convenient to work with the re-scaled domain. Let Q¢ = {y € R? : ey + £ € }. Note that
is a large domain that depends on € as well as £&. The L? and W22 norms on the rescaled domain
)¢ are more appropriate for our problem than the corresponding norms on Q. For simplicity we will
write ¢(y) = ¢(x) with z = ey + £. In the following differentiation, as in the Laplace operator, is
taken with respect to y.

At each w, we define an approximate tangent plane to M. Recall the two eigenfunctions asso-
ciated with eigenvalue \; studied in Theorem 4.2. They are of the form

(H' + PP + 0(¢*/?)) cos 9, and (H' + €¥/>P' + O(¢*/?))sin 6.
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We shift the center of these functions to £ so that r = |x — £| and 8 = arctan((z2 — &2)/(x1 — &1)).
The radial part of these two functions decay exponentially fast. We truncate the exponentially small
tails of H' + €2/3Q" + O(¢*/?) to define

bre = (H' +€/°P' + O(e"?)) cos, bag = (H' +€/>P' + O("/?))sin 6 (5.14)

which have compact support in Q. More precisely the supports of by ¢ and by ¢ must be in B, (&)
where o is given after (5.2).
At each w¢ of the manifold M we define

Fe={peW>?(Q): =0, 0,6 =00n 00, ¢Lbje, j=1,2} (5.15)
where L is defined from the L?(Q) inner product. Note that in the rescaled domain Q, ¢ is the
average of ¢ over Q¢. Then we + F¢ is a subset of {u € W22(Q) : ,u = 0 on 9N, u = m}, which
we call the {-fiber of M. Define & to be

Ee={qeL?(Q):q=0, g Lbje, j=1,2} (5.16)
which is a subspace of {g € L*(€¢) : § = 0}. Let the projection to & be ¢
{g € L*(Q) : g =0} — &. (5.17)

To solve (5.5) we look for a ¢, € F¢ so that

mg 0 S(wg + ¢¢) = 0. (5.18)
For each ¢ € F; we expand
S(we + @) = S(we) + Le(9) + Re(9) (5.19)
where _
Le(¢) = —A¢ + f'(we)d — f'(we)d (5.20)
is the linearization of S at w¢, and
Re(¢) = flwe + 8) — f(we) — f'(we)¢ — flwe + ¢) — fwe) — f'(we)d. (5.21)

Note that when we use the rescaled variable y, there is no €> in front of A in L¢. Then (5.18) is
written as

g © S(wg) + mg 0 Lg(¢e) + g © Re(¢e) = 0 (5.22)

Regarding the linear operator m¢ o Lg:
e © L§ : .7:5 — 55 (5.23)
we have the following lemma.

Lemma 5.5 The operator m¢ o L¢ is one-to-one and onto from F to E. There exists C > 0
independent of € such that ||@||lwz2(q,) < Ce43||mg o Le(9)llz2(ae) for all ¢ € Fe.
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The proof of this lemma, is difficulty. We leave it to Appendix D. Lemma 5.5 gives a measurement
of the invertibility of m¢ o L¢. The equation (5.22) can now be solved by a fixed point argument.

Lemma 5.6 There exists ¢ € F¢ so that m¢ o Se(we + ¢¢) = 0. Moreover
Igellw=a(g) = O (HIVTTI/e)
for some small § > 0 independent of €.
Proof. We write (5.22) in a fixed point form:
¢ = (mg 0 Lg) ™' (=g 0 S(wg) — me  Re (b))
We define the operator T; from D¢ to itself by
Te() = (me o Le) ™' (=g 0 S(we) — me o Re(¢))
where the domain D¢ of T is
De={peW>*(Q):¢=0, ¢ Lbjge, j=1,2}
By Lemma 5.4 (1), we have that on the rescaled domain
IS@e)llL2(ae) = O te 1+IVICIe/e),
Let B¢ be a closed ball in D, defined by
Be = {¢ € D¢ : [|$llw22(a) < 016_7/36_(1+6)‘/md€/6}
where C} is a constant independent of € to be determined soon. Then for every ¢ € B,

ITe(@)llw2i0e) < € *3(|Ime o S(we)llr2(ae) + llme © R(D)l|z2(0))

< BOE e IVTORL) 1 ABCYg| g
< 0(6—7/36—(14-5)\/f’(z)dg/e) + 6_4/3C||¢”%/V2’2(QE)
S 0(6—7/36—(14-5)\/f’(z)dg/f) + 6—4/30[016—7/36—(14—5)\/f’(z)d5/6]2

where C is a constant and we have used the Sobolev Embedding Theorem. We see that if we choose
Ci to be sufficiently large, T maps B¢ into itself. Similarly we can show that this mapping is a
contraction. Then by the Contraction Mapping Theorem we conclude that there is a fixed point ¢;.
Since ¢¢ € D¢, we have

||¢§||W2’2(Q£) = 0(6_7/36_(1+6)\/ f’(Z)df/E)-

By changing d to a smaller value we obtain
lgellwz2a) = O(e~ OV I (2)de/€) 0

In the final step we look for a particular &, so that &, maximizes I(wg + @¢) with respect to
and consequently S(we, + ¢¢,) = 0. To this end we first show
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Lemma 5.7
I(we + ge) = I(we) + O HOVI @e/e)
for some § > 0.
Proof. Let
Re.(6) = Fluwe + ) — Flwe) — f(we)g— 5 (we)d?.
We expand I(wg + ¢¢) as follows.

I(wg + ¢¢) = I(we) + /Q S(we)pe dz + % /Q Le¢(¢¢)pe dz + /Q Re 1 (¢¢) da

Since S(T,UE + (bg) = 07 we have
S(we) + Le(de) + Re2(de) = Const.

where
Rea(9e) = f(we + ¢¢) — fwe) — f'(we) de-

After substitution we obtain

I(wg + ¢¢) = I(we) + % /Q S(we)pe dr + /Q[Rg,l(¢§) - %R§,2(¢g)¢§] dz.

The third term on the right side is bounded by

1 ]
| /Q [Re,1(de) — 5 Re2(d¢)del da| < C /Q [6¢|* dz < Ce ey = O(e™EHIVILe)

for some 6 > 0 by Lemma 5.6. For the second term one has
| Stwersedal = €| [ S(ue)de dyl < @IS wollxgldelizaag = Ofe™*HIVIEsr
¢

for some ¢ > 0 by Lemmas 5.4 (1) and 5.6. Lemma 5.7 then follows.
Combining Lemma 5.4 (2) and Lemma 5.7 we deduce that I(wg + ¢¢) and I(wg) have the same
asymptotic property:

C. — Coea°€_2/3e_2’/f'(z)df/€ < I(’w§ +¢£) <C. _016(116—2/36_2 /f’(z)dg/e_

To maximize I(w¢ + ¢¢) we just need to maximize d¢. The maximizer &, is exponentially close to
a point whose distance to 92 is the greatest among all £ € 2. It follows that we, + ¢¢, is an exact
solution of S(we, + ¢¢,) = 0 (See for instance Section 5 [12]). The proof of Theorem 5.1 is complete.
A remark about the stability of these two droplet solutions is in order. As in the last section,
the smaller droplet solution is unstable. For the larger droplet solution, when we solve the equation
me 0 S(we + ¢¢) = 0, the solution we + ¢¢ is stable in this step, very much like in the last section
where we were restricted to radial functions. However to find we, + ¢¢,, we maximized I(we + ¢¢)
with respect to €. In this step the solution wg, + ¢, is unstable. Overall the larger droplet solution
is also unstable. In the last section we were left with the question whether with respect to the j =1
mode the larger radial droplet solution is stable. Now we know that the j = 1 mode is an unstable
mode. Moreover because, as we vary &, I(wg + ¢¢) changes by an exponentially small amount, the
eigenvalue of j = 1 mode of the last section should be negative but exponentially close to 0.

17



6 Multiple droplets

We now consider solutions with multiple droplets. Let K be a positive integer. We show the
existence of a critical mass constraint, which depends on K, so that when the mass is above this
critical value, two solutions of multiple droplets exit. Our approach closely follows the argument in
the last section. We only emphasize the modifications that are needed while omitting the details
that are identical to the ones before.

In the case of single droplet solutions, the center of the droplet is given by &, that almost
maximizes the distance function dg¢ of £ € Q to 0. In the multi-droplet case the role of the distance
function is played by the function (¢!, €2, ..., €K) given in (1.8) for any

(€L, eQx Qx .. xQ, & £Emifl #m.

If ¢F — 9Q for some k or |¢8 — ¢™| — 0 for some I and m, then (¢!, €2,....6K) — 0. Hence ¢
admits a maximum. Maximizing (¢!, €2, ..., €K) is a disc packing problem. If we place K discs,
all of radius (£, ..., £K), centered at £%, k = 1,2,..., K, these K discs reside inside  and they are
mutually disjoint. The maximum value of p(§) is the greatest possible radius we can have as we
pack the discs.

The main result in this section is the following existence theorem.

Theorem 6.1 If the mass constraint m = €2/3mg + 0(e2/3) is above the critical level:

T )2/3ﬁ
2f1(0)" 19|

m0>3(

there exist two solutions of K droplets. For each of the two solutions the centers of the droplets
€L, €2, K almost mazimize the function (€', €2, ..., £5).

For multiple droplet solutions, the critical mass constraint is greater than the critical mass for
single droplet solutions. If the critical mass constraint were to be attained, the radius of each droplet
would be p = €'/3pg + o(€'/3) with pg being (5 K‘S}T(o) )1/3 which is less than the corresponding value
in the single-droplet case (see Lemma, 6.3 below).

The proof of the theorem is again divided into three steps. First we construct a family of
approximate solutions parameterized by £ = (£1,€2,...,€K). We have promoted ¢ to a K-vector. &
is an arbitrary member in

QX = {(¢.,€,....65) e QX 1 da > 50, |€F — ¢ > 100, k,1=1,..,K}. (6.1)

Here o is a small positive number independent of e. It is chosen so that any maximum of ¢ is in
QK. We will explain in the proof of Lemma 6.5 why we have the numbers 5 and 10 in (6.1). All
estimates in this section are uniform in ¢ € QK.

We use the same function spaces X', Y and the nonlinear operator S as in the last section. The
droplet profile is again given by v of (2.1). To determine the value z we solve, instead of (5.11),

f'(z)(m—z)|Q|+K/R2 h(?) =0 where & = v — 2. (6.2)
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Lemma 6.2 When m is above the critical level, (5.11) has two solutions of z. Let z = €*/3zo+o0(e*/?)
with zo independent of €. Then zy satisfies the condition

Knr?

zo0|2 + 71(0)222 = mo|®,
0

(0)*2
where m = €2/3mqg + o(€?/?).

Lemma 6.3 Suppose m = €/3mg + o(e2/3) and p = €'/3po + 0(¢'/®). Then po and mo must satisfy
the equation

Kme, T __n

1™ pof'0)

K
Therefore mg can not be less than 3(2];(0) )2/3ﬁ. The latter value for mg is attained if po is
( |Q|T )1/3
2K~ f'(0) '

Move ¥ to §(- — &¥) = §gr = 0y, for a £F € Q. Define g to be the solution of

—2Agr + f'(2)gr =0 8, = —9,v(- — £¥) on HQ (6.3)
Given £ we define
K
We = Z(f)k + k), we=we+ 2+ (6.4)
k=1

where 7¢ is a number chosen so that Wy = m. As we vary £ in wg we obtain a manifold M of
dimension 2K in X. The next Lemma generalizes lemma 5.4 whose proof is left to Appendix E.

Lemma 6.4 1. [|S(we)[z2(0) = O (e~ (HIVF(2)e©€)/¢) for some small § > 0 independent of €.

2. There exist constants Cy, C1, ag and ay independent of € and &, and a constant C, independent
of & but dependent of € so that

Ce _ 00€a0€_2/3672‘/fl(z)‘p(!’:)/e S I(wg) S Ce _ Cle,a1€—2/3€72 /f’(Z)qo(E)/e_
To define the approximate tangent space of M at w¢, we move the eigenfunctions corresponding

to Ay in Theorem 4.2 to each &*. Truncate the radial part so that they have support in €. Denote
these functions by bf . and b ., (k = 1,2, ..., K). The fiber space at wg is

Fe={peW>(Q): 0,6=00n0%, =0, ¢ Lbi k=12, K, j=1,2} (6.5)
Also define & to be
Ee={qeL’(): =0, ¢ Lb}, k=1,2,..,K, j =1,2} (6.6)

and 7¢ to be the projection to & as in the last section.
In the second step we solve the equation 7¢ o S(wg + ¢¢) = 0. First we must be able to invert
the linearized operator L.
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Lemma 6.5 The operator m¢ o L¢ is one-to-one and onto from F¢ to E. There exists C > 0
independent of € such that ||¢||w22(q) < Ce*/3||m¢ o Le(9)l|ln2(e) for all ¢ € F.

The proof of this lemma is given in Appendix F. Using a fixed point argument we obtain
Lemma 6.6 There exists ¢ € F¢ so that m¢ o S¢(we + ¢¢) = 0. Moreover
Igellwe.z() = O(e=HHIVI @)
for some § > 0 independent of .

In the third and final step we maximize I(w¢ + @¢) with respect to {. Again it suffices to consider
I(we) based on the following lemma.

Lemma 6.7
I(wg + ¢¢) = I(wg) + O(e” FHIVIRI#@)/c)
for some § > 0 independent of .

Combining Lemma 6.4 (2) and Lemma 6.7 we see that I(wg + ¢¢) has the asymptotic property:
C. — Coe™ ™ * e 2V I 2®)/¢ < [(we + ¢¢) < C, — Cre @< P2V Ie(0)/e,

As indicated at the beginning of this section that ¢(§) has an interior maximum, I(wg + ¢¢) is
maximized at some &,. It follows that we, + ¢¢, is an exact solution of S(we, + ¢¢,) = 0. This
proves Theorem 6.1.

A Proof of Lemma 3.5

Let us define -
p=H + &3P — H + 3P (A1)

where H and P are given in (2.7, 2.8).
Regarding the linear operator L we have the following results.

Lemma A.1 There ezists a constant C independent of € such that for all b € F and ¢ L p, we
have [[9)]lco < ClIL(¥)|lco-

Proof. Suppose that the lemma is false. There exist ¢ and some r, such that ||¢] = ¢¥(r.) =1,
¥ L p and L(y) = o(1). Then r, must lie in a neighborhood of p. The size of this neighborhood
must be of order e. Otherwise —e2Av(r,) > 0, f'(w)y = (f'(w) — f'(20))1 = o(1) (since ¢ = 0),
and f'(w(r«))Y(rs) is positive and bounded away from 0 independent of e. Then the equation
L(v) = o(1) is not satisfied at ..

So let us assume that 7, is in a neighborhood, of size €, of p. Then ¥(p + €t) = ¥y (t) in CZ _(R)
as € tends to 0. ¥q satisfies —¥( + f'(H)¥o = 0. Therefore ¥y = cH’ for some constant ¢ # 0. On
the other hand ¢ L p implies

0= (), H —H + /3P - P')) = 27rcep/ (H")? dt + o(e*/?) = 2ncepr + o(€*/?),
R
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which is possible only if ¢ = 0. A contradiction. 5
The estimate [|¢||co < Ce*3||L(¢)||co implies that L is one-to-one. The surjectiveness of L
means that for any g € Y there is ¢ € F so that L(¢) = q. We write this equation as

o+ (=A) 1 (f'(w)e - f'(w)d) = (-4)'q

where (—A)~! is a bijection from ) to F. The left side of the equation defines an operator from
F to itself which is of the form “e% Identity + Compact”. For this operator F is equipped with
the W22 norm. The Fredholm Alternative asserts that the equation is solvable if and only if the
homogeneous equation
€6+ (=0)" (f'(w)p - f'(w)g) =0

only has the trivial solution. But this is a consequence of L being one-to-one.

Hence it suffices to prove the estimate. Suppose it is not true. Then there exists ¢ with ||¢|| =1
and L(¢) = o(€*/?) along a sequence of € that tends to 0.

Decompose ¢ into

p=cp+¢-, plot. (A.2)
We start with L(p). First we estimate
2 —_—
L(H' =) = ~(H')pr = = (H"); + f'()(H' ~ ) - '(w)(H' — 1),
in which
1
flw)H' = 2/ (f'(H) + 3 Pf"(H)H'r dr + o(*/?)
0

= 2 /R [f'(H)p + etf'(H) + />Pf"(H)p|H' dt + o(e*/?) = o(¢'/?)  (A.3)

since [ f'(H)H'dt = [ptf'(H)H'dt = [, Pf"(H)H'dt =0, (tf'(H)H' and Pf"(H)H' are odd).
Then

L(H' — H")
= (f'(w) - f(H)H - ;H" + (f'(w) = f'(w)H' + o(e"/?)
_ _2/3.¢n 1 4/30pn f"(H)P? L - Y A T 77 4/3
= eI HPH + 7 (f1(H)Q + ——5——)H' — “H" + (f'(w) = f((w)H' + o(').

By differentiating (2.8) we have

1/3
—P" + f(H)P' + f"(H)H'P — ETH” -0

Then
LP = P) = ~@(P)yr = S(P)y + £ w)(P — )~ F) (P~ )
61/3 € o
= (M) = fE)P = ["(HH'P+ ——H" = -P" + (/W) - /' @)P'+ o(e2/?)

/
= CEFUPP ~ fUEP + T TP (T )P 4o,
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where we have used the fact

1
fl(w)P' = 2/ f'(w)P'r dr = o(e?/?). (A4)
0
Therefore
meg P2 1 1 1/3
) = P e+ I - PP s (- o - P

+(f'(w) — f'(w))H' + /3P + o(e"?).

On the other hand
1
H = 2/ H'rdr = 26/ H'(t)(p +et)dt = 26p/ H'(t) dt + 262/ H'(t)tdt = —2¢p
0 R R R

since H}(t)t is odd, and

. 1

P = 2/ P'rdr = 26p/ P'dt + O(€®) = O(¢%)

0 R

since P’ is odd. We find

H' + e3P = —2¢p + o(e*/?). (A.5)
Hence we deduce that
m( [y p2 1 1 el/3
L) = &P Q-+ T PP (- S = P
—2ep(f'(w) — f'(w)) + o(€"/?). (A.6)
Note that in (A.6)
11 g E5tH"(t)
(61/3p 61/3r)H ~ plpt+et) o).
In particular
L(p) = O(¢*?). (A7)
We write L(¢) = o(e*/?) as
L(¢h) = —cL(p) + o(€*/?) = O(e*? |¢|) + o(*/?). (A.8)

We deduce from the last equation and Lemma A.1 that

¢t = 0(*? |c|) + o(e¥?). (A.9)
We now return to
cL(p) + L(¢1) = o(¢*/?). (A.10)
Multiply the equation by p and integrate over €2 to deduce
(L(p), p) + (6™, L(p)) = o(e*”*). (A11)

22



The two terms on the left side are calculated as follows.

(L(p),p) = coe®”® + 0(e*/?), o #0, (A.12)

where ¢ is independent of €. To see this we note that P’ decays exponentially fast. Then (A.6)
implies that

(Lp),p) = (LH —H +&*P' ~P)),H +PP)
" 2/34 7!
— 64/3<(f”(H)Q—|—f (H)P2)Hl+fII(H)PPI+€ tHJ _ﬁP”,H'_}_62/3P’>
2 pr r
=2ep(f'(w) = f'(w), H' + &7 P') + o*)?)
" 2/34 17!t €
— 64/3<(f”(H)Q + f (-[;)P2)H, + f//(H)PP/ + € pT;H] _ IT/BP”,HI)
—2ep(f(w) — f'(w), H'Y + o(3/?) (A.13)
" 2/ " 1/
— 27T€7/3p{/ [(f”(H)Q + f (-[;)P2)H, —}—f”(H)PP' + € 3t2H _ iP//]HI dt}
R p p
+4e2mp? fl(w) + o(¥/?). (A.14)

To find the integral in (A.14), we differentiate (2.9) to obtain

1/3 2/3 m( YH' P2
_QIII+fI(H)QI+fII(H)HIQ_ GTPII_'_G’T(HI_FtHII)_’_ f ( ; +fII(H)PPI :0

Multiplying by H' and integrating over (—oo, 0c) yield

€ /3 ptt gzt € / " 12
/ [f"(H)Q(H')? — P 31; i ;((H')2 +tH"H') + w + f'(H)PP'H']dt = 0.
R

The integral in (A.14) now becomes

2/3 2/37

= [ (H)?dt=—
I R( ) p

2

Therefore

2medT
(Lp,p) = 4me’p® f'(0) —

+ o(€%/3). (A.15)

For the smaller droplet solution with po < (7/(2f'(0)))'/3, the first two terms on the right side of
(A.15) give a negative number of order €3/3. For the larger droplet solution with po > (7/(2f'(0)))'/3,
the first two terms on the right side of (A.15) give a positive number of order €3/3. In each of the
two cases the right side is coe®/? + 0(e3/2) for some cy # 0.

Next we estimate (¢+, L(p)). Although, by (A.7) and (A.9), we could have
<¢L=L(p)) = (0(64/3 le]) + 0(64/3))0(64/3),

this estimate is not good enough. Instead we note that

(@t L)) < ot ool L) = (O(*? |e]) + o(/*)IIL(P) 1
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Although L(p) = O(¢*/?), a close observation of (A.6) shows that only in a neighborhood, whose
size is of € order, L(p) is of order O(e*/3) and outside of this neighborhood L(p) is of order o(e*/3).
Therefore

IL®)Ih = o(e*?), (A.16)
and consequently
(@*, L)) = (O(e"? [¢]) + o(¢*/*))o(e'?) (A.17)
Then (A.11) becomes
c(co€®® + o(3/3)) + (O(*3 |¢|) + o(€*?))o(e*/?) = o(€%/?) (A.18)
which implies that
c=o0(1). (A.19)

By (A.9) we find that ¢ = o(¢*/3) and ¢ = o(1). This is a contradiction to the assumption that
l[4llcc = 1.

B Proof of Theorem 4.1
Let A be an eigenvalue. We claim that
limiélf/\ > 0. (B.1)
€—>!

This may be proved by the maximum principle argument as in the proof of Lemma A.1.
We now only need to consider A that satisfies

lim A = 0. (B.2)

e—0

Such an eigenvalue is called a critical eigenvalue. Let ¢ be an eigenfunction corresponding to A\. We
decompose ¢ into

p=cp+¢t, pLlot (B.3)
where p is given by the same formula (A.1). We write L(¢) = A¢ as
cL(p) + L(¢™) = A(ep + ¢). (B.4)
Since L(p) = O(e*/?), we find
L(¢™) = O(?le]) + O(IAD(e| + [16* lloo)- (B.5)

As in Lemma A.1 we deduce that
16 oo = O ®[e]) + OUAN (Ie] + 6™ [loo)
which implies, since A = o(1),
16" lloc = O(e*/?le]) + O(IA])e]- (B.6)
We multiply (B.4) by p and integrate to find
(L(p), p) + (¢, L(p)) = Acllpll3 (B.7)
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The right side is

Ae(2mept + o(€*/?)). (B.8)
We estimate the second term on the left
{6, L) < (19 [loo | L (D) 11 (B.9)

Here ||¢" || is given in (B.6). By (A.16) we find
{@h, L(p)) = (O(e*|e]) + O |e])o(e?) (B.10)
We now return to (B.7) and, with the help of (A.15), to find

2medT

c(4me*p* f'(0) +0(e¥7)) + (0(e*%[el) + O(ADel)o(e!/?) = Ae(2mepr +o(¢*/*))  (B.11)

Ignoring the higher order terms, we obtain

2f 1
lim /2y = 200 _ . (B.12)
e—0 T pO

This gives the asymptotic expansion of \, claimed in the theorem. Knowing A = O(¢*/3), we return
to (B.6) to deduce
¢ = cp+ O(e|c]), (B.13)

which gives the expansion of the eigenfunction.

Recall that the smaller droplet solution has po less than (7/(2f'(0)))*/® and the larger droplet
solution has py greater than (7/(2f'(0)))'/3. The right side of (B.12) is negative if po is less than
(7/(2f'(0)))/3, and is positive if po is greater than (7/(2f'(0)))'/3. Hence the solution with smaller
po leads to a negative A and the one with larger pg leads to a positive A. Therefore the smaller
droplet solution is unstable in the radial class and the larger droplet solution is stable in the radial
class.

The critical eigenvalue A is unique. Otherwise there would be two eigenfunctions ¢; and ¢, with
the same expansion property, i.e. ¢p + O(¢*/3|¢|). On the other hand by the self-adjoint-ness of L,
¢1 and ¢, must be perpendicular. One can then find a contradiction (see Section 4 [16]).

It can also be shown, as in Section 4 [16], that there always exists a simple eigenvalue with the
property claimed in the theorem.

C Proof of Lemma 5.4
We start with an estimate of 7. Let 0 = v(- — §) — 2z and @ = we — 2 — N = U + g¢. W satisfies

the equation
—€>Atiig + f'(2)ig + h(Tg) =0, O, = 0 on 0.

Integrate the above equation to deduce

f'(z)(m =z —ne)|Q + /Q h(?)dz = 0.
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From (5.11) we deduce

1
= - h(0¢) dx.
"= TR Jyn

If we multiply the equation for @¢ by ¥ and integrate over R?\(2, we find

——U¢ ds—/ h(0)v dx
/39 ov R2\Q ®)

= e [ Py gs 4 o(e-HOVTRL/e
ov ¢
o002

/ 2|Vl + f(2)22] de
R2\Q

for some & > 0. Here we have used the fact that h(d¢) = O(ﬁg) and Lemma 2.1. In the boundary
integral v points to the outward direction of Q (the inward direction of R2\(2). Consequently

/ |h(0¢)|dz < C 0 dz < —Cé’ / % ds + O(e=HOV I (2)de /ey,
R2\Q R2\Q ov

So we have

el < —Cé? / 0% e ds + O(e= VTG /o) (C.1)
a0 61/
If we apply Lemma 2.1, then we obtain
e = O(e™VT G, (C2)

Now we turn out attention to I(we¢) to see how it depends on §. Here
rwg) = [1E5E 4 k42 4l

= [IEEE s R vw0 + s+ mnel o+ 06)

= /Q[w + F(z + w¢)] dz + 0(62/317§)

= /[M + F(2) + f(2)we + @wg + H(ig)] dz + O(e2/%ne)

= [EEE L T g 1 @) e + 1010 + 1) 0m =2 =) + O
= He) + QI(F() + £(2)om - 2) + O(5e) ©3

where the second term on the last line is independent of £ and

_ €2 W 2 IZ
D )=/Q[ |V2 4 +fé)w§+H(u7§)]da:.

To compute I (i) we use the integral identity
/ (€2 |Vae|? + [ (2)52 + h(Te)ive] dz = 0
Q
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which follows from the equation for we. We can rewrite I (i) as

foe) = | [H(e) - 3he)ie] da

1 1
/[H(’f}g) — —h(ﬁg)f)g] de + - / h(f}g)gg dx + O(/ 17592 dz). (C.4)
Q 2 2 Jg Q
The three terms are estimated as follows. The first is

~ 1. . 5 1 ... 5 1
| 10 - 3htze)ic] da 1) - gh(@)ilds + | 6O — 5G] de

R2

[ 1m6) - %h(f})ﬁ] dz + O(e=CHOVT Grde/c) (C.5)

for some § > 0 by Lemma 2.1. Note that the integral in the last line is independent of &.
Before we estimate the second term in (C.4) we need to know a bit more about g¢. Let § be the
solution of
—eA§+ f'(2)9 =0, 9,9

1 on 99. (C.6)
Lemma C.1 1. There exist C >0 and a > 0 so that |ge(z)| < Ceos e~ VI ()de/e ().

2. There exist C >0 and & > 0 such that g¢(x) > —Ce~ IV (@)de/cg ().
Proof. Note that on 02

Lemma C.1 (1) follows from Lemma 2.1 and the Comparison Principle.

Fix ¢ small. Then for z € B 425)4, (§) N0, we have <T—w_—€£'\/_> =1+ 0(6) and hence d,g¢(z) > 0

there. For z € 0Q\B(14.25)4, (£), we have, again by Lemma 2.1,
B, g¢(x) > _Ce (WHNVF (z)de /e
By the Comparison Principle, we have (2).

Now we can estimate

0t 9 a0
v - *Avg — f'(2)D = 2/ €ge — H5.1ds = 2/ ¢ )
/Qh(v":)gg & /Q(e U~ [(De)geds =€ | [Froe— Flicdds =€ | Fh(ge+Te)do
= 62/ U'('.’IJ — E')M(ﬁg +g£) ds + O(e_(2+5) /f’(z_)dg/e)
9N B(1425)a, (€) |z — |

for some § > 0 by Lemmas 2.1 and C.1 (1).

Note that since <T;_5€'|’> =1+ 0(6) for z in IQ N B(1425)4, (), for some positive C' and a

62’1}'(|aj —§|)M@£ < _Ce—ae‘2/3/ 6_2,/f'(z)|z_§|/€
QN B(1426), (£)

/t9903(1+25)d5 €3] |33 o £|

S _Ce—ae_z/se—%/f' (ze)de /€
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By Lemma C.1 (2),

& (fo— ) T8 2 g < gem VT e

/890B(1+26)d5 (E) |'Z. - §|

Thus we obtain

/ h(e)ge do < —Ce=¢ " e=2V f'(2)de/
Q
On the other hand, by Lemmas 2.1 and C.1 (1), we have
|/ h(ie)ge da| < Ceoe '*e=2V' ()de/e
Q
Combining the last two, we have the following important estimate

_Clea16_2/sef2\/f' (z)de /e < / h(fig)gg dz < —Co€7a06_2/3672\/f1 (z)de /e (07)
Q

To estimate the third term in (C.4) we let ¢ be a small positive number and divide Q into 4
which consists of points in © whose distance to 99 is less than ¢ and Qy = Q\Qy. On Q; since

ge = O(e” V/'(2)4e/€) and o is exponentially small by Lemma 2.1, we have

/ Geg? dz = O(e~ GHOVI e/

1

for some § > 0. On Q, we know that § = O(e9/¢) for some §; > 0 and, by Lemma C.1,
ge(z) = §(z)0(e%"* e~ VF'(2)de/)  Again we have

/Q Beg? dz = O(e=PHIVICIte e

for some § > 0. So on the whole Q we have

/Qﬁggg dz = O(e~TOVI(@)de/¢) - 5 . (C.8)

Before we can prove Lemma 5.4 (2) by combining (C.5, C.7, C.8), we must deal with the O(e?/3n;)
term in (C.3). Fortunately (C.1) and the estimation of [, h(0¢)ge dz imply that

O(¢*/*ne) + %/Qh(ﬁs)gg dz = (% + 0(62/3))/9’1(175)96 dz.

Lemma 5.4 (2) now follows from (C.3, C.4, C.5, C.7, C.8).
To show Lemma 5.4 (1), note that

—&Awg + f(wg) = B+ f'(2)ng + h(De + g¢ + ne) — h(Te).
We focus on

h(B + ge +ne) — h(Be) = h(Be + ge) — h(Te) + O(ne) = h(De + ge) — h(@e) + O(e=2VI'(de/c)
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by (C.7). We then argue as in the proof of Lemma 3.4 to conclude that
h(Ge + ge) — h(Te) = O(e~HIVF()de/ey,
This shows that
—e2Awe + f(we) = B + f'(2)me + O(e HOIVF B)de/ey,

If we integrate this equation, then
F(we) = B+ f(2)ne + O(e=LHIVI' (R)de/ey

Therefore
S(we) = —€2Awg + f(we) — [(wg) = O(e~HIVIGde/e),

and Lemma 5.4 is proved.

D Proof of Lemma 5.5

Here we prove Lemma 5.5. It suffices to prove the estimate. The one-to-one property follows
immediately, and the onto property follows from the Fredholm Alternative Principle.

To simplify notation we omit subscript ¢ in quantities like L¢, b1¢ and by . We prove the
lemma by a contradiction argument. Assume that there exists ¢ such that ||@||lw=2(q,) = 1 and

I o L($)|L2(2e) = o(e*/?). Denote 7 o L(¢) by q and f'(w)¢ by ¢o. Then we write the equation
me 0 Lg(¢) = q as

—A¢+ f'(w)¢ =c¢o + c1by + cab2 + g, 5 =0and ¢ L b1, ¢ L by (Dl)

where ¢; and ¢, like ¢, are unknown constants.

We first consider a region in  that is far away from the droplet. Recall €2, given in (5.2) and
the small positive number o given in (5.3). For any £ € Q,, Bs,(£) C Q. by and by are supported in
B, (€). After re-scaling, Bs, (&) becomes Bs, /. whose radius is 50 /€ and center is the origin. In the
region Q¢\ B, /., we note that ¢ — f,c—("z) satisfies the equation

o ! Co — —C/e
—Alp— ——)+ fl(w)(¢p— ——)=q+ O(e D.2
(6= i)+ £/ )6 = 505) = 4+ 0(e=) (D2)
¢ — 7(y satisfies the Neumann boundary condition on 9. Let £ be a smooth cut-off function so

that kK =1 in Q\Bs, and k = 0 in B,. Then it is easy to see that

Co Co

I =Alle - m)ﬁ] + ' (w)l(¢ - m)ﬁ]”LQ(QE\Bg/E) = O(e). (D.3)
We assert by the elliptic regularity theory that
16 = iy 2@\ pas ) = O (D4)
Next we consider ¢ in By, /.. Let 9 be the solution of
—A¢ + f'(2)Y =0in Byyse, 0y = 8,¢ on 0By, (D.5)
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Define ¢ = ¢ — 1) — a where « is the average of ¢ — 1) in By,:
1

o= —-—
|B4‘T/f| Byoye

(¢ —¢)dy. (D.6)

Note that ¢ satisfies the Neumann boundary condition on By, /. and has zero average. The equation
for ¢ is
—Ap + f'(w)p = co + c1br + eabz + g + (f'(2) — f'(w)Y — af'(w).

Since (f'(z) — f'(w))y = O(e~C/¢) for some C > 0 independent of €, we write
Lp(p) = c1by + c2by + ¢ — Av(q) — a(f'(w) — Av(f'(w))) + O(e” ) (D.7)
where we define the linear operator Lg in By, by

Lp(p) = —Ap + f'(w)p — Av(f'(w)e),

in which Av(...) is the average of a function in By, /..

We now use the results obtained in Sections 3 and 4. However there the radius of the disc is one
and here the radius, before re-scaling, is 40. We could re-do the two sections with the more general
radius. But for simplicity we will just assume without the loss of generality that 40 = 1. Using
complex notation we organize the eigen-pairs by modes, i.e. A;; and e;; where j = 0,%1,+2,... and
1=1,2,3,.... Here A\j; = A_j;. Each ej; is normalized and takes the form

eji = 2™ ¢ (r).

Ao,1 is the eigenvalue discussed in Theorem 4.1 and A4, j = 1,2,..., are the critical eigenvalues
discussed in Theorem 4.2. Up to translation, normalization and an exponentially small error caused
by truncation e_;,; is by — by and ey ; is by + iba. Decompose ¢ so that

oo o0

»= Z Zdjlejla

j=—o0 l=1

where we let

oo oo o0 oo
ot = doeo, p =) (dueu+d_ue_u)+ Y > duej,
1=2

=2 ljl=2 I=1
do =do, de1 =di1,1, €0 = €0,1, €+1 = €x1,1

so that
@ =doeg +die;r +d_1e_1 + cpJ‘ + Q. (D.8)

One remark is in order. The linear operator L here differs from the linear operator in Section 4
in that Lp is linearization around w while in Section 4 the linearization is around a solution. However
the difference between the two functions is exponentially small. Exponentially small quantities are
negligible in this proof. Hence the e;’s are approximate eigenfunctions of Lp:

Lp(ej) = \jej + 0(e™¢/9), j=0,+1, (D.9)
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where we have set Ao = Xo,1 and A\ = Ai;1 = A1 = A_1,1. Theorems 4.1 and 4.2 show that there
exists ¢ > 0 independent of € so that

(Le(ph),oh) 2 cle*iea,,,.)- (D-10)

and
(Lp(®),p) > ce4/3||s5lli2(34,,6)- (D.11)

We claim that dy; are exponentially small. We have used (,) to denote the inner product in
L?(By, ). Note that ¢ L by, by in L?(Q) implies that (¢ + 1 + a,e41) = O(e=/¢). Tt follows that
(p,e+1) = O(e=C/¢). This implies that

diy = O(e™ /) (D.12)
In (D.8) ¢ is also easy to analyze. We write the equation (D.7) as

Aodoeo + Aidier + Aid_1e_1 + LB(‘PL) + Lp(p)
= c1br + c2by + ¢ — Av(q) — a(f'(w) — Av(f'(w))). (D.13)

Multiply (D.13) by ¢ and integrate to obtain
<LB (95)7 95) = <q7 95)

Hence by (D.11)
1@ll2(Bs, ) = o(1)- (D.14)

The analysis of do is trickier. It has to be done together with the estimation of ¢*. Multiply
(D.13) by ! and integrate to find that

(Le("),¢") = (6,9") = af' (w) = f'(2), )
Using (D.10) and the fact that
1/ () = f'(2)lL2(B.,,) = O )

we find that
et llz2(Bay o) = 0(e"?) + @O(e™/?). (D.15)

Multiply (D.13) by e and integrate to find (since |leo||r2(5,,,.) = 1)

Xodo = (g, e0) — a(f'(w), o).

Since Ao ~ €*/3 and ||gl|2(B,,,.) = o(*/?), we deduce

do = o(1) — @) co)a (D.16)
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Calculations show that
2 2

€ , _ e o
= ﬁ Qef(w)(lsdy - |Q| Qg(f (w) f(z))¢dy
2
= = (W) - F@)pdy + 0l )
12 /s,,,.
= % (f'(w) = f'(2))(doeo + drer +d_1e 1 + o= + @+ a)dy + 0(670/6)
Bysy/e
€2
= 1o (f'(w) — f'(2))(doeo + ¢ + @) dy + O(e_c/e)
12 /s,,,.
62<fl(11)),60)

d
= 200 I (w) = (D) lz2(Ba, o 10 122(B,,,) O(€2) + aO (')

1]

= W +a0(e'?) + o(e®)

where the last line follows from (D.15). Thus we have the important fact that

co = 62<f’(1|18|, €0>d0 +a0(64/3) +0(63)_ (D.17)

The calculations in Appendix A show that

2pom

(f'(w),e0) = F1(0)e7H2 4 o(e7/?). (D.18)

Plugging (D.16) into (D.17) and using (D.18) we find

o= — <f’(w/\);|e(;|)2€2a 4 a0(64/3) + 0(65/3). (D.19)

T

We consider ¢ in the matching region Bs, /c\By,/.. Since the L? norm of ¢ — f—,c(oz—) is of order
O(e) in this region by (D.4) and 9 in ¢ = ¢ + ¢ + « is exponentially small, we find that
. ¢
ldoeo + @ + a — Woz)HH(Bg,,E\BQ,,S)

Co —CJ/e
< l¢— WHH(BS,/E\BQ,,E) + ||<PL||L2(BS,/E\BQ,/E) +|di| + |d_1| + O(e~°7°)
= 0(e) + o(e*?) + a0(e71/?)
= O0(e) + a0(e71/?)

by (D.15). Because doep + o — f—,c(oz—) is still orthogonal to ¢ in this region, we write

~ Co D ~ Co b
||d060 typta-— f’(z) ||i’2(B3a'/e\B2a'/e) = ”(‘0”%2(330/6\320/5) + ||d060 ta-— f’(z) ”iQ(Bs,/E\Bza/e)

Co 12
l|doeo + o — WHL2(330/5\B2‘7/6).

vV
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Therefore we conclude that
c _
ldoco + = S l2(5s0 \3r ) = QO+ 0(0) (D.20)

In this matching region, uniformly in y, eg satisfies the estimate

2
eoly) = /| L2653 1 o(e3/3). (D.21)
T
It follows from (D.20) that

2p0 573 €0
R LT

¢
||doeo + o — WOZ)”L%B%/&\BZ,/E) + ||d00(€5/3)||L2(33,/€\BQG/E)

IA

< aO(e '?) + dyo(e*?) + O(e),

which implies that

,/Qﬂ 5/3 4 g 0 _ 2/3 5/3 2
do p— +a 72 = aO(e”?) + dpo(e’’*) + O(€”).

Upon substitutions by (D.16) and (D.19) we deduce that
(f'(w),e0)a [2po 55 (f'(w), e0)? 620‘ e2/3 5/3
This shows, from Theorem 4.1 and (D.18), that
2p0f'(0) (1-

T

2f'(0)po __
T p

B
SN—r

afl - +0(1)] = o(e>/3) (D.23)

|~

o

Note that the big fraction is 1 precisely when pg = %, which is attained at the critical mass.

Under the assumption of Theorem 5.1, p§ # % (See Lemma 5.3). Hence the fraction is not 1
and we conclude that
o = o(e/?) and hence do = o(1), co = o(e*/?) (D.24)

by (D.16) and (D.19). Moreover from (D.15) we have
™ 2B, ) = o(e*?). (D.25)

It follows from (D.12), (D.14), (D.24) and (D.25) that [|¢[|L2(s,,,.) = o(1), and consequently

||¢||L2(Bao/e) = o(1). In the region Q¢\By,, we have ||¢||W2,z(ge\320/e) = 0(62/3) by (D.4) and
co = o(€%/3). In the whole region (¢ we have

18]l 2 (2e) = o(1)- (D.26)
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Re-write the equation for ¢ as

—Ad+ f'(2)p = (f'(2) = f'(w))d + co + c1br + c2bs + ¢ (D.27)
The elliptic regularity theory asserts that
lpllw=220) < ClI(f'(2) = f'(w))¢ + co + e1by + caba + qll L2 (o) (D.28)

where C' is independent of €. The only quantities that remain to be estimated are ¢; and cy. Multiply
the equation (D.1) for ¢ by b;, j = 1,2, and integrate to find

M [0+ 0L dy = liyllaag + [ absdy (D.29)
1973 Q¢

Hence, for j = 1,2, since ¢ L b; in L?(£),
Oe™ ) = o, idy  O(ldll2e) _ o(e'/?)

1651172 () bjlleee Ibsllzeee

(D.30)

C; =

It follows from (D.28) that ||@||lw=.2(q,) = o(1) and we have a contradiction to the assumption that
lBllw22) = 1. O

E Proof of Lemma 6.4

The constant 7 in the definition of w, satisfies

1 K
= h(T;) dx.
e /R\E (54) da

It follows as in Appendix C that

K
v A e
Ine| < —Cez/ > 8L6k ds + O(e~ IV ()e(®)/e) (E.1)
o0, Y
and
e = 0(6—2\/f (2)e(€)/ey, (E.2)

The functional I(w¢) can be written as
I(wg) = I(w¢) + |92/(F(2) + f(2)(m = 2)) + O 1p¢). (E.3)

where the second term on the right side is independent of £ and

Fae) :/Q[6 Vol I gz 4 m(ag) as.

To estimate the first term we note an important but trivial fact

01172 < —h(@) < 02772, C1,Ce >0 (E4)
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which implies that
/(—h(’ﬁz’)’ﬁj) < C/ﬁ?@j sce“f‘“/ e 2VF @l /=P (@) o€ |/¢
Q Q Q
< Qe e VI RE € /e

Similarly we have a lower bound and
—C16a1€_2/3€_ VI ()le' =7 e < / h(v;)v; < —Coe_aoé_zme_v F(2)|6 —€7| /e
Q

Let iy, = o + gk We compare I (i) with Zle I(wy,).

~ K K B 1
IS w) = > I(wx)+ EZ / [V Vi; + f'(2c)0ib;] da
k=1 = i /8
K

k=1 .
+ / HY i) = S H(i)] do
2 k=1

Using the equation for w;, we see that
/[62V11~]iv11~)j -+ fI(ZE)’lI]ﬂIJj = —/ h(ﬁ,)uij
Q Q
Next we estimate
/ |h(;) — h(;)|b; < e VI'(R)di/eo—/F' ()& —&jl/e — 0(67(2+6)\/f’(Z)w(ﬁl,---éK)/e)
Q

It follows that

K K
/Q HS w0 - S Haw)] = Y / W(isyiy + O(F / 2 [52)

k=1 k=1 i#j i#j

> / h(B)ib; + O(e~ CHOVF el bx)/e).
Q

i#]
Therefore
K K 1
I ) = Yo Tan+ 53 [ h@)a; do+191(FG) + () m - K2)
k=1 k=1 iz 'O
FO(3ne| + e~ CHOVI EIe(e ) ey

By Lemma C.1 (2) and (E.5), we have

- / (@) (@5 + g;) > Cer e~ VIRIE /e _ oo (VT @dgs /e _ / h(©:)9)
Q Q
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where

‘/h<ﬁi)g=f2/ (31— 45) = (™" e VITL
Q a0 ov

Hence

_/ h(#;)w; > Ceac > o= V1 (2)|e1—E2l /e _ O(e~ VI (Z)e(6r,8x) /€y (E.8)
Q
By Lemma C.1 (1) and (E.5), we also have

- [ Wogg; < VIO [(Ch@g < ce VTG

o <
Hence

_/ h(5;); < Ceae_z/a[e—\/ F(2)|6 =€ /e + e*\/f’(l)(dgﬁdej)/e] (E.9)
Q

In Appendix C we have learned that I(wy) is estimated in (C.7), the most dominating term in
(C.4). Combining it with (E.8) and (E.9), we see that the exponential decay rates in these terms
are given by |§i - §j|, dgi + dgi, and 2dgr. Therefore the slowest decay rate is (€L, €2, ..., €5). This
proves Lemma 6.4 (2).

To prove Lemma 6.4 (1), we note that

K
—€2Aw§ + flwe) = —€? EAwk +f Z Wr + 2+ n¢)
k_lK K: K
= —f'(2) Y i — Y h(@) + £(2) + £'( ZUHmLTIg ) + (Y e + ne)
k=1 k=1 k=1 k=1
K K
= [)+ ['(2)ne + B e +me) — Y h(Dr).-
k=1 k=1

We only need to focus on, as in Appendix C,

K K K K
WOk +ng) = Y @) = h(Y @) — > h@r) +Ofe “2/FEe(©)/ ey
k=1 k=1 k=1 k=1
K K K
= W) = 3 ha) + S [h(in) — (o)) + O(e VT @)/
k=1 k=1 k=1
= Z O(|ww; ||w;]) + O(e —(1+6)\/f’(2)w(5)/€) Ole —(1+5)\/f'(Z)LP(E)/€)_
i#£]

This completes the proof.

F Proof of Lemma 6.5

It suffices to prove the estimate. Assume on the contrary ||@|lw=22(q,) = 1 and ||7¢ 0 Le(9) || n2(0e) =
o(e*/3).
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Let o > 0 be the small number given in (6.1), which is independent of ¢, so that the B, (£%)’s
are mutually disjoint and contained in . Denote f'(w)¢ by co. In Q\ Ui Ba,/(£F) we have, as in
Appendix D,

Co
||¢ - m”wzang\uwgo,e(gk)) = 0(6)- (F-l)
Next we consider ¢ in each B,/ (£*). Let ¢* be the solution of

—AYP* + f'(2)¢" =0 in By, ye(€¥), 8,4" = 8,4 on 8By, e (£F).
Define ¢* to be ¢ — ¢* — o where aF is the average of ¢ — 9* in the ball:

1
WIS S (¢ — o*) dy.
|B40'/€(£k)| B4o‘/5(§k)

We follow the same argument as in the proof of Lemma 5.5 and arrive at

2
(1= A5 e (f (w), e0))ex +2 /\0|Q|f ak=0(65/3), k=12 ... K (F.2)

We sum these K equations to deduce

K 200f 00 (1 — &)
Qo =~y o] =o(e?). (F.3)
k=1 T P

Note that the big fraction is 1 precisely when pj = %, which is attained at the critical mass.
When the mass is larger, this fraction is not 1 and we conclude that

Z of = o(%/?) (F.4)

We now return to (F.2) to find that each

ab = o(e’/?), (F.5)
because
2p0 f'(0)
1- /\Eléo(f'(UJ)aed =1- W +o(1) (F.6)
T po

which does not tend to 0 as € — 0. The rest of the proof is the same as in Appendix D.
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