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The Brusselator is a generic reaction-diffusion model for a tri-molecular chemical reaction.

We consider the case when the input and output reactions are slow. In this limit, we show

the existence of K-periodic, spatially bi-stable structures, mesas, and study their stability.

Using singular perturbation techniques, we find a threshold for the stability of K mesas.

This threshold occurs in the regime where the exponentially small tails of the localized

structures start to interact. By comparing our results with Turing analysis, we show that

in the generic case, a Turing instability is followed by a slow coarsening process whereby

logarithmically many mesas are annihilated before the system reaches a steady equilibrium

state. We also study a “breather”-type instability of a mesa, which occurs due to a Hopf

bifurcation. Full numerical simulations are shown to confirm the analytical results.

1 Introduction

In 1952, Turing proposed that the formation of spatial patterns during morphogenesis

could be explained in terms of the instability of a homogeneous steady-state solution of

a reaction-diffusion network describing the evolution of a set of morphogens [31]. Turing

himself illustrated his ideas on two chemical models. Turing’s original work is primarily

concerned with the stability analysis of the homogeneous steady-state solution of the

rate equations for the interacting morphogens [22]. The main point of biological interest,

however, is whether stable spatial structures may be generated beyond the instability,

i.e., whether the rate equations admit stable (and positive) inhomogeneous solutions

exhibiting the most characteristic features of morphogenetic patterns.

This point has been taken up seriously in the early seventies. More systematic numer-

ical studies of Turing’s model have been performed showing irregular spatial structures

[4]. This led to serious reservations about the relevance of Turing’s theory in develop-

mental biology, particularly its ability to generate regular patterns. But these criticisms

originate from a somewhat unfortunate choice of Turing’s example and they do not touch

the essential points of Turing’s theory. More specifically, the obvious requirement that

the rate equations must admit positive and bounded solutions is not satisfied in Turing’s

example [11].
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(a) (b)

Figure 1. (a) Turing instability and mesa-type localized structures. The parameters are A =
1, B = 8, ε = 10−4, D = 10, τ = 10. Initial steady state was set to u = A, v = A/B, perturbed
by a very small random noise. Note the logarithmic scale for time. Initial Turing instability
triggers a k = 7 mode at time t ∼ 50. Thereafter a coarsening process takes place until there
are only two mesas left. (b) Slow-time oscillatory instability of a single spike solution to (1.1).
The parameter values are A = 1, B = 8, D = 10, ε = 0.00025, τ = 0.999.

Because of this misunderstanding on Turing’s fundamental contribution, other two-

variable models satisfying the law of mass action have been explored. In 1968, Prigogine

and Lefever [28] introduced a two variable system that exhibits an autocatalytic reaction

(called the “Brusselator”). The simplicity of the rate equations motivated analytical and

numerical studies which showed the existence of stable structures [3]. The Brusselator is

based on the following intermediate reactions for the two chemical intermediates X and

Y :

A→ X, C +X → Y + F, 2X + Y → 3X, X → E.

The global reaction is A+C → F +E and corresponds to the transformation of inputs

products A and C into output products F and E. We assume (without loss of generality)

that the rate constants for the first and last step are equal to r whereas the intermediate

rate constants are one. The rates equations then become

Xt = DxXxx + rA − CX +X2Y − rX

Yt = DyYxx + CX −X2Y.

Since the discovery of spatial patterns in 1970’s, various Turing patterns in the Brus-

selator were studied both numerically and analytically in one, two and three dimensions.

These include spots, stripes, labyrinths and and hexagonal patterns, [12], [22], [35], [30],

[36] oscillatory instabilities and spatio-temporal chaos [18], [37]. While Turing analysis

and its weakly nonlinear extension have been successful at detecting and classifying

possible pattern types, its range of applicability is limited. Indeed Turing patterns are
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assumed to be small sinusoidal perturbations of a homogeneous state. In practice how-

ever, many solutions contain sharp transitions such as spikes and kinks. Such patterns

are not amenable to Turing analysis since they are far away from the homogeneous state.

In this paper we study mesa-type patterns.1 These are box-like patterns that join two flat

regions of space with sharp transition layers, such as shown in Figure 2. Such patterns

are far away from the homogenous steady state.

Most analytical and numerical studies assumed that all kinetic reaction rates are the

same (r = 1) and used the fixed concentrations A,C as control parameters. By contrast,

in this paper we concentrate on the case where the first and last two steps are slow in

comparison to the intermediate steps, so that r is small.

For our analysis it will be convenient to use the following scaling,

τut = Dεuxx + εA−Bu+ u2v − εu

vt = Dεvxx +Bu − u2v
(1.1)

where

τ =
Dy

Dx
, ε = r

Dy

Dx
, B = C

Dy

Dx
, D =

Dx

r
,

u = X, v = τY

and the spatial domain is x ∈ [0, 1] with the zero flux boundary conditions

ux = 0 = vx at x = 0 and 1.

In this work we assume the following conditions,

r � Dx ≤ O(Dy) � 1, A = O(1), C = O

(

Dx

Dy

)

. (1.2)

In particular this implies that the the input and output reactions are slow compared

to the intermediate steps. In terms of our scaling we have

εD � 1, D � 1; O(A) = 1 = O(B), (1.3)

O(τ) ≥ 1. (1.4)

As a motivation, let us present two numerical examples. On Figure 1.a we show a typical

time evolution on a very long time interval. The homogeneous steady state is unstable

because of Turing instability but the expected Turing sinusoidal pattern only appears

after a delay (t > 50). Turing’s structure then gradually deteriorates and relatively

quickly moves into a new pattern formed by several localized mesa-type structures. They

then undergo a coarsening process over a logarthmically long time-scale and, eventually,

only two mesas remain. Turing’s analysis can be used to predict the first pattern (t ∼ 50)

but it cannot anticipate the coarsening process or the number of final mesas. As we shall

demonstrate, in the case B > A2, the Turing pattern is characterized by a wave number

proportional to k = O
(

1√
Dε

)

while the number of stable long-time mesas has the order

1 Mesa means table in Spanish; it is also a name given to square boulders which are found
in the Colorado desert. The use of this term was suggested by Fife [13].
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Figure 2. An example of a three-mesa equilibrium solution for v. Here,
K = 3, A = 2, B = 18, εD = 0.022, w0 = 9, l = 0.11.

K = O
(

1√
Dε ln 1

ε

)

, so that k is logarithmically bigger than K. This is the underlying

cause of the coarsening process observed in Figure 1.a.

In the second experiment shown in Figure 1.b, a single mesa undergoes a “breather”-

type oscillatory instability which eventually leads to its extinction. Both coarsening and

the breather instability occur at a slow timescale. The main goal of this work is to describe

these instabilities analytically.

Our results are related to the study of bistable systems, see for example [29], [15], [23]

[24], [25], [26], [27], [8]. Mesa patterns also appear in the FitzHugh-Nagumo model [15],

certain phase separation models such as Cahn-Hilliard, Allen-Cahn, [1], [2], [6] and block-

copolymers [29]. For these systems the resulting spectral problem has small eigenvalues,

also called critical spectra, that tend to zero with the thickness of the interfaces. Typically

k such layers are stable [26]. However as we show in this paper, if the number of layers

is excessively large, instabilities can occur. This happens when the exponentially small

interaction outside the interface locations cannot be ignored. Our main new contribution

is to study this interaction, and to show that it has a destabilizing effect.

1.1 Summary of main results

We now summarize our main results. We first describe the shape of the equilibrium K

mesa solutions. In Section 2 we show the following.
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Proposition 1 Consider the equilibrium-state problem,

0 = εDvxx +Bu− u2v, 0 = εDuxx + εA+ u2v − (B + ε)u, x ∈ [0, 1] ,

u′ = 0 = v′ at x = 0 or x = 1.

in the limit (1.3) and suppose that

A2 < 2B. (1.5)

Then there exists a K-mesa symmetric solution to (v, u) of the following form.

Let

w0 = 3
√

B/2, l =
A

K
√

2B
, d =

1

K
− l, (1.6)

xli ≡ xi −
l

2
, xri ≡ xi +

l

2
, xi ≡

(

1
2 + i

)

K
, i = 1 . . .K. (1.7)

For x away from xri, xli, we have:

v ∼
{

w0, x ∈ [0, 1]\ ∪ [xli, xri]
w0

3 , x ∈ ∪ (xli, xri)

For x near the interfaces xri, xli we have,

v ∼







vl(x− xli), x− xli ≤ O(
√

εD
B )

vr(x− xri), x− xri ≤ O(
√

εD
B )

where

vr = w0
2

3
+ w0

1

3
tanh

(

w0

3

x√
2εD

)

, vl = w0
2

3
− w0

1

3
tanh

(

w0

3

x√
2εD

)

.

Finally,

u ∼ w0 − v.

A typical such solution with K = 3 is illustrated on Figure 2.

We next analyse the stability of such equilibrium. There are two distinguished limits of

interest, either DK2 � O
(

1
εln2 ε

)

or DK2 = O
(

1
εln2 ε

)

. The former is studied in Sections

3 and 4 while the latter in Section 5. In Section 3 we derive rather precise results for

eigenvalues, summarized in the following theorem.

Theorem 2 Consider a K mesa solution of Proposition 1. Suppose in addition that

1 � DK2 � O

(

1

εln2 ε

)

and O (τ − 1) � 0.

Such solution is stable when τ−1 � 0 and unstable when τ−1 � 0. There are 2K small

eigenvalues of order O (ε) ; all other eigenvalues are negative and have order ≥ O (Dε) .



6 Theodore Kolokolnikov, Thomas Erneux and Juncheng Wei

The smallest 2K eigenvalues are given by

λj± ∼
−1 ±

√

1 − 2K2dl
[

1 − cos
(

πj
K

)]

2 (τ − 1)
ε, j = 1 . . .K − 1;

λ− ∼ −Kl
τ − 1

ε, λ+ =
−1

τ − 1
ε.

and are all negative when τ > 1, and positive when τ < 1. The transition from stability to

instability occurs via a Hopf bifurcation as τ is decreased past τh where to leading order,

τh ∼ 1.

Note that near the interfaces, the gradient changes on the order δ =
√
εD. In terms of

δ, the scaling DK2 = O( 1
ε ln2 ε

) can be written as

D = O

(

δ2 exp

(

1

Kδ

))

.

Thus Theorem 2 confirms the stability of K mesas when τ > 1 as long as D is not

exponentially large in δ. In the contrary case, we derive the following result in Section 5.

Theorem 3 Suppose that

τ > 1

and let

DK =
1

K2
D1 where D1 ∼















A2

2ε ln2

�
12

√
2AB3/2

ε(
√

2B−A)2 � , 2A2 < B

(
√

2B−A)2

2ε ln2 �12
√

2

εA B3/2� , 2A2 > B
+ l.s.t.

Here, l.s.t. denotes logarithmically small terms. Then a K mesa symmetric equilibrium

with K ≥ 2 is stable if D < DK and is unstable otherwise. Moreover, a single-mesa

equilibria K = 1 is always stable. A more precise value for D1 is given in Proposition 8.

Theorem 3 states that the instability threshold occurs when D is exponentially large.

In this case the exponentially fast decay outside the interface locations must be taken

into account. Their exponentially weak interaction is responsible for an eventual loss of

stability. Figure 3 illustrates this proposition. Indeed using the parameters used in that

simulation we deduce from Proposition 8 that D1 = 20.96; so that D2 = 5.28. Since

D = 10 > D2, the two-mesa equilibrium state is unstable.

Our next result is about the presence of a Hopf bifurcation when τ is near 1.

Theorem 4 Suppose that
√

B

εD
� DK2 � O

(

1

ε ln2 ε

)

. (1.8)

Let

τh+
= 1 +

1

4D

(

ld− K

3

(

d3 + l3
)

)

(1.9)
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Figure 3. Slow-time competition instability of a two-mesa solution to (1.1). The parameter
values are A = 1, B = 8, D = 10, ε = 0.00025, τ = 1.3

where K, d, l are as in Proposition 1. Then a K-mesa solution undergoes a Hopf bifurca-

tion when τ = τh+
. It is stable when τ > τh+

and unstable otherwise. When τ = τh+
, the

corresponding eigenvalue has value

λ+ ∼ i
√

8K
(

ε3DB
)1/4

Figure 1.b illustrates the type of oscillations that occur when τ < τh+. Theorem 4 is able

to predict the onset of such oscillations even though it says nothing about whether this

bifurcation is supercritical or subcritical.

Finally we perform a Turing stability analysis of the Brusselator in Section 6. We find

that in the generic case, the modes k within the Turing instability band have the order

O(1
δ ) where δ =

√
εD is the width of the interface. On the other hand the mesa instability

threshold occurs when K = O
(

1
δ ln 1

ε

)

. It is then clear that k � K by a logarithmically

large amount. This is the underlying reason for the coarsening process observed in Figure

1.a.

One of the easy consequences of Turing’s analysis is the existence of the regime for

which mesa-type structures are stable at the same time as the homogeneous steady state.

A more interesting question is the following.

Open problem 5 Does there exist a parameter regime for which the mesa-type solution

is unstable, and in addition the homogeneous steady state u = A, v = B
A is unstable with

respect to the Turing instability?
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An existence of such a regime would imply spatio-temporal chaos in the Brusselator.

We answer this question in the negative for the case when

1

δ
� D � δ exp

(

1

δ

)

, δ =
√
εD.

2 Steady state

In this section we derive the asymptotics of the steady-state solution to the Brusselator

(1.1). Let

w = v + u. (2.1)

Then we obtain

vt = δ2vxx +B (w − v) − (w − v)2 v, (2.2)

1

ε
(vt + τ (wt − vt)) = Dwxx − w + v +A (2.3)

where

δ2 = εD.

The steady-state equations then become
{

0 = δ2vxx +B (w − v) − (w − v)2 v,

0 = Dwxx − w + v +A
, x ∈ [0, L]

vx(0) = 0 = vx(L), wx(0) = 0 = wx(L).

Next we expand in 1
D ,

v = v0 +
1

D
v1 + . . . ,

w = w0 +
1

D
w1 + . . .

We obtain w′′
0 = 0 so that Then w0 is a constant to be determined. For v0 we obtain

δ2v0xx = F (w0, v0)

where

F (v, w) ≡ B (v − w) + (v − w)
2
v.

We seek solutions for w0 such that F (w0, v) is a cubic in v0 with equidistant roots.

This is the so-called Maxwell line condition, and implies that the integral of F between

its first two roots is the negative of the integral between the last two. When this is the

case, the solution for v0 will be a kink-like solution in the form of a tanh. An example

of such solution is shown on Figure 2. The condition of equidistant roots is equivalent to

solving two equations

Fvv(v, w) = 0 = F (v, w)

for unknowns B and w. A simple computation shows that this is equivalent to

B =
2

9
w2

0 . (2.4)



Localized patterns in the Brusselator 9

Substituting for B we obtain

F (v0,w0) = (v0 − w0)
2
v0 −

2

9
w2

0 (v0 − w0) =

(

v0 −
1

3
w0

)(

v0 −
2

3
w0

)

(v0 − w0) (2.5)

On the entire space, the ODE δ2v′′0 = F (v0, w0) with F as in 2.5 admits the following

two solutions,

vr = w0
2

3
+ w0

1

3
tanh

(

w0

3

x√
2δ

)

, (2.6)

vl = w0
2

3
− w0

1

3
tanh

(

w0

3

x√
2δ

)

. (2.7)

We are interested in mesa-type solutions. A single, symmetric mesa-type solution on an

interval [0, L] has the form,

v0 ∼
{

vl (x− xl) , x < L
2

vr (x− xr) , x > L
2

.

Here, we chose

xl =
L− l

2
, xr =

L+ l

2
.

where l is the width of the mesa to be determined. A K-spike symmetric solution on the

interval [0, 1] is then obtained by glueing together K solutions on the interval L = 1
K .

Such a solution has 2K interfaces whose locations are given by xli, xri defined in (1.7).

To find l we need the second order equations. We have,

δ2v1xx = Fv(v0,w0)v1 + Fw(v0,w0)w1, (2.8)

w1xx = w0 − v0 −A (2.9)

where

Fv (v, w) = B + (v − w) (3v − w) , Fw (v, w) = −B + 2 (w − v) v.

Using the boundary condition w′
1 (±L) = 0 we obtain

∫ L

0

(w0 − v0 −A) = 0.

We evaluate
∫ L

0

v0 ∼ l
w0

3
+ w0 (L− l)

from where

l ∼ 3

2

LA

w0
∼ LA√

2B
. (2.10)

Substituting L = 1
K then yields Proposition 1.

We remark that the equation (2.9) for w1 with Neumann boundary condition is solvable

up to a constant. See Section 5, Lemma 9 for the determination of this constant.
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3 Stability in the regime DK2 � O
(

1
ε ln2 ε

)

In this section we derive Theorem 2, valid when D � O
(

1
ε ln2 ε

)

. Before showing this

result, we derive a more general formula for eigenvalues which is valid for all τ. We show

the following.

Lemma 6 Consider a K-mesa symmetric equilibrium solution as given in Proposition

1. Moreover suppose that

1 � DK2 � O

(

1

ε
ln2 ε

)

.

The eigenvalues of such equilibrium state are asymptotically given implicitly by

λ ∼ 2

√

B
ε

D

(

ldK − 2

σ

(τ − 1)λ+ ε

ε

)

(3.1)

where σ may take one of the following 2K values

σj± =
(

c±
√

a2 + b2 + 2ab cos (θ)
)

, θ =
πj

K
, j = 1 . . .K − 1

σ± = c+ a± b

where

a =
−µd

sinh (µdd)
, b =

−µl

sinh (µll)
, c = µd coth (µdd) + µl coth (µll) ,

µl ≡
√

2ε+ λ (2τ − 1)

δ
, µd ≡

√
λ

δ
. (3.2)

Proof. We start by linearizing around the equilibrium solution (v, w). We write,

v(x, t) = v (x) + eλtφ (x) , w(x, t) = w (x) + eλtψ (x)

where we assume that ψ and φ are small. We obtain

λφ = δ2φxx − Fv(v, w)φ − Fw(v, w)ψ, (3.3 a)

1

ε
(φ+ τ (ψ − φ))λ = Dψxx − ψ + φ (3.3 b)

where δ =
√
εD. Using (2.4) we obtain

Fv(v0, w0) = 3v2
0 − 4w0v0 +

(

w2
0 +B

)

= 3v2
0 − 4w0v0 +

11

9
w2

0 ,

Fw(v0, w0) = −2v2
0 + 2w0v0 −B = −2v2

0 + 2w0v0 −
2

9
w2

0 .

so that

Fv(w0, w0) = B, Fw(w0, w0) = −B

Fv(
w0

3
, w0) = B, Fw(

w0

3
, w0) = B

Note that away from kink locations xli, xri, the diffusion term εDφ′′ may be neglected

and we have φ ∼ −Fw(v0,w0)
Fv(v0,w0)

ψ. On the other hand, near the kink locations we locally
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estimate the eigenfunction by the derivative of the profile. This suggests the following

asymptotic form:

φ ∼















cliv
′
li, x ∼ xli

criv
′
ri, x ∼ xri

ψ, x /∈ (xli, xri) , i = 1 . . .K

−ψ, x ∈ (xli, xri) , i = 1 . . .K

.

where the constants cli and cri are to be found. We multiply (3.3 a) by v′li and integrate.

Because of exponential decay, we obtain that
∫

v′liφ ∼ cli
∫

v′2li . Therefore

λ

∫

v′2li +

∫

v′liFw(vli, w0)ψ ∼
∫ [

δ2v′liφxx − v′liφFv (vli, w0) − v′liφ
1

D
(Fvv (vli, w0) v1 + Fvw (vli, w0)w1)

]

.

Using integration by parts we obtain,
∫

[εDv′liφxx − v′liφFv (vli, w0)] ∼ 0.

Next we evaluate

I =

∫

v′liφ (Fvv (vli, w0) v1 + Fvw (vli, w0)w1) .

Differentiating (2.8) we have

δ2v′′1 − v′l (Fvv (vli, w0) v1 + Fvw (vli, w0)w1) − Fv (vli, w0) v
′
1 − Fw (vli, w0)w

′
1 = 0

so that

I =

∫

φ
(

δ2v′′1 − Fv (vli, w0) v
′
1 − Fw (vli, w0)w

′
1

)

∼ −
∫

cliv
′
lFw (vli, w0)w

′
1

Therefore we obtain

cliλ

∫ x+

li

x−
li

v′2li + ψ (xli)

∫ x+

li

x−
li

v′liFw(v0, w0) ∼ cliw
′
1(xli)

∫ x+

li

x−
li

v′liFw (v0, w0) ,

Here and below, the symbol
∫ x+

li

x−
li

denotes integration over the interface located at xli.

Since v′0 decays exponentially outside the interface, this symbol is unambigious; that is
∫ x+

li

x−
li

=
∫ 1

0
+e.s.t. Next we show,

∫ x+

li

x−
li

v′liFw (v0, w0) ∼ − 8

81
w3

0 ,

∫ x+

li

x−
li

v′2li ∼ 2
√

2w3
0

81δ
.

We have
∫ x+

l

x−
l

v′liFw (v0, w0) = G(v(x+
li )) − G(v(x−li )) where G(v) ≡

∫

Fw(v, w0)dv =

− 2
3v

3+w0v
2− 2

9w
2
0v. We have v(x+

li ) = w/3, v(x−li ) = w0 so that G(v(x+
li ))−G(v(x−li )) =

[

1
81 − 1

9

]

w3
0 = − 8

81w
3
0 .

To evaluate the second integral, use the explicit formula (2.7) for vl and the fact that
∫ +∞
−∞ sech4 (y) dy = 4

3 .
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Using (2.9) and (2.10) yields

w′
1 (xli) ∼ −w0ldK

3D
.

Therefore we obtain

cliλ

√
2

δ
= 4

(

cli

(

1

3

ldK

D
w0

)

+ ψ (xli)

)

, (3.4)

An analogous computation yields

−criλ

√
2

δ
= 4

(

−cri

(

1

3

ldK

D
w0

)

+ ψ (xri)

)

, (3.5)

It remains to compute ψ (xli) . Inside the intervals (xli, xri) we have φ ∼ −ψ and

outside those intervals we have φ ∼ ψ. In addition we assume that near kinks, ψ changes

much slower than φ. In this case we may replace

v′li ∼ −2

3
w0δ (x− xli) , v′ri ∼

2

3
w0δ (x− xri) .

inside the equation (3.3 b). Here and below, δ denotes the Dirac delta function. Therefore

we obtain,

ψxx − µ2ψ ∼ −α
K
∑

i=1

cliδ (x− xli) − criδ (x− xri)

where

µ ∼ µl ≡
√

2ε+ λ (2τ − 1)

δ
, x ∈ (xli, xri)

µ ∼ µd ≡
√
λ

δ
, x /∈ (xli, xri) .

and

α =
2

3
w0

(1 − τ) λ− ε

δ2
.

Next we apply the following lemma.

Lemma 7 Suppose that

u′′ − µ2u = −
(

∑

bliδ (x− xli) + briδ (x− xri)
)

(3.6)

with u′ (0) = 0 = u′ (1) (3.7)

where xli, xri are given in (1.7) and

µ =

{

µl x ∈ (xli, xri)

µd x /∈ (xli, xri)
.
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Let

~u ≡















u (xl1)

u (xr1)
...

u (xlK)

u (xrK)















, ~b ≡















bl1
br1

...

blK
brK















.

Then

~u = M~b

where

M−1 =



















a+ c b

b c a

a c b

· · ·
a c b

b c+ a



















with

a =
−µd

sinh (µdd)
, b =

−µl

sinh (µll)
, c = µd coth (µdd) + µl coth (µll) .

The eigenvalues σ of M−1 are given as follows

σj± =
(

c±
√

a2 + b2 + 2ab cos (θ)
)

, θ =
πj

K
, j = 1 . . .K − 1

σ± = c+ a± b.

The two eigenvalues σ± may be written explicitly as

σ+ = µd tanh (µdd/2) + µl tanh (µll/2) ,

σ− = µd tanh (µdd/2) + µl coth (µll/2) .

This lemma was derived in [29]; for convenience of the reader we give its proof in

Appendix A.

Define

~ψ =















ψ (xl1)

ψ (xr1)
...

ψ (xlK)

ψ (xrK)















, ~d =















cl1
−cr1

...

clK
−crK















Using Lemma 7 we have,

~ψ = αM~d

and we write (3.4, 3.5) as

~dλ

√

2

εD
. = 4

(

~d

(

1

3

ldK

D
w

)

+ αM~d

)

.
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Therefore we have

λj

√

2

εD
= 4

(

1

3

ldK

D
w + ασ−1

)

, j = 1 . . . 2K (3.8)

where σ are 2K eigenvalues of M−1.

This completes the proof of Lemma 6. �

We now come back to the proof of Theorem 2. Assuming O(τ−1) � 0, the dimensional

analysis shows that two scalings are possible, either λ = O(ε) or λ = O(Dε).

We first consider the case

λ = ελ0.

Using the notation of Lemma 6 we then obtain

µ2
d =

λ0

D
� 1, µ2

l =
2 + λ0 (2τ − 1)

D
� 1.

and

a ∼ −1

d
, b ∼ −1

l
, c ∼ 1

d
+

1

l
=

1

Kdl
,

σj± = c±
√

(a+ b)2 − 2abt, t = 1 − cos

(

πj

K

)

∈ (0, 2)

=
1

Kdl
±

√

(

1

Kdl

)2

− 2
1

dl
t

=
1

Kdl

(

1 ±
√

1 − 2K2dlt
)

.

Therefore we obtain

λ0 ∼ 2ldK

√

B

εD

(

1 − 2
(τ − 1)λ0 + 1

1 ±
√

1 − 2K2dlt

)

.

When λ0 = O (1) , the right hand side dominates and we therefore obtain

λ0 =
−1 ±

√
1 − 2K2dlt

2 (τ − 1)
. (3.9)

Moreover, since d = 1
K − l, l ∈

(

0, 1
K

)

, and since t ∈ (0, 2) we see that 2K2dlt ≤ 1. This

shows that in the case τ > 1, the eigenvalues corresponding to the nodes σj± are all real

negative. The node σ+ is,

σ+ = µd tanh

(

µd
d

2

)

+ µl tanh

(

µl
l

2

)

∼ µ2
d

d

2
+ µ2

l

l

2

∼ 1

2D
(λ0d+ (2 + λ0 (2τ − 1)) l) ,

λ0 ∼ 2

√

B

εD

(

ldK − 4D [(τ − 1)λ0 + 1]

(λ0d+ (2 + λ0 (2τ − 1)) l)

)

.
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Since the third term is asymptotically bigger, the assumption λ0 = O(1) leads to

λ0 =
−1

τ − 1
.

Note that this is a special case of the formula (3.9) with ± = − and t = 0. For the mode

σ− we have

σ− = µd tanh

(

µd
d

2

)

+ µl coth

(

µl
l

2

)

∼ 2

l
;

λ0 ∼ 2l

√

B
1

εD
(dK − [(τ − 1)λ0 + 1]) ,

λ0 ∼ −1 +Kd

τ − 1
∼ −Kl
τ − 1

Note that this is a special case of the formula (3.9) with ± = − and t = 2.

Next we consider large eigenvalues, λ� O(ε). Then we have

µl ∼
√

(2τ − 1)λ√
Dε

, µd ∼
√
λ√
Dε

,

and we write,

λ ∼ 2
√
B





1

D

√
DεldK − 2

(

σ/
√

λ√
Dε

) (τ − 1)
√
λ



 .

Dimensional analysis shows that the only way to achieve this balance is when σ is large.

But this is only possible when

sinh (µll) = 0 or sinh (µdd) = 0

Thus either µll = iπm or µdd = iπm where m is some integer. This yields the following

eigenvalues,

λ ∼ −Dε m2π2

l2 (2τ − 1)
or λ ∼ −Dεm

2π2

d2
.

Finally, we show that a Hopf bifurcation occurs in the regime O (τ − 1) � 1. Since the

small eigenvalues are negative when τ − 1 � 0 and positive when τ − 1 � 0, the real

part changes sign precisely when O (τ − 1) � 1. To show that this occurs via a Hopf

bifurcation, it suffices to show that λ can never be zero. Suppose not. Then using some

algebra we arrive at the following for the modes σj±

−1 ±
√

1 − 2K2dlt = 0, t = 1 − cos

(

πj

K

)

∈ (0, 2)

But this is clearly impossible since K2dlt < 1
4 as mentioned above. The modes σ± are

handled similarly.

This completes the proof of Theorem 2. �

4 Hopf bifurcation, DK2 � O
(

1
ε ln2 ε

)
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As Theorem 2 shows, a Hopf bifurcation occurs when τ is near 1. In this section we study

this regime in more detail, culminating in the proof of Theorem 4.

We start by analysing the σ+ node. We make the assumption that

λ� O (εD) .

This assumption will be verified later on to be consistent with the condition (1.8), D �
√

B
εD . We have,

µ2
l ∼ λ+ 2ε

εD
� 1, µd ∼ λ

εD
� 1,

and we expand σ+ up to second order,

σ+ = µd tanh

(

µd
d

2

)

+ µl tanh

(

µl
l

2

)

∼ λ

εD

d

2
− 1

24

(

λ

εD

)2

d3 +
λ+ 2ε

εD

l

2
− 1

24

(

λ+ 2ε

εD

)2

l3

∼ −
(

λ

εD

)2(
d3 + l3

24

)

+
λ

εD

(

1

2K

)

+
l

D
.

We write the equation for λ as

λσ ∼ 2

√

B
ε

D

(

ldKσ − 2
(τ − 1)λ+ ε

ε

)

or

aλ3 + bλ2 + cλ+ d = 0

where

a =

(

1

εD

)2(
d3 + l3

24

)

,

b = − 1

εD

(

1

2K

)

− 2

√

B
ε

D
ldK

(

1

εD

)2(
d3 + l3

24

)

∼ − 1

εD

(

1

2K

)

using (1.8)

c = − l

D
+ 2

√

B
ε

D

(

ld

2εD
− 2

ε
(τ − 1)

)

∼ 2

√

B
ε

D

(

ld

2εD
− 2

ε
(τ − 1)

)

d = 2

√

B
ε

D

(

ldK

{

l

D

}

− 2

)

∼ −4

√

B
ε

D

Substituting λ = iλi and separating the real and imaginary part, we find that

λi =

√

d

b
, c =

ad

b
.
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This yields,

λi =
√

8K
(

ε3DB
)1/4

and, keeping also all lower order terms for reference,

τ − 1 ∼ ld

4D
−

(

d3+l3

12

)

K

D +
√

B 1
εD ldK

2
(

d3+l3

6

)

− lε

4
√
BεD

. (4.1)

The formula (1.9) is obtained by dropping the last term of the right hand side of (4.1)

(which is of smaller order than the first term on the right hand side), as well as dropping

the second term in the denominator of the second term.

Finally we must also show that the σ+ mode undergoes a Hopf bifurcation before all

other modes. Let us now consider the σ− mode. We assume here that µl ∼
√

λ√
εD

∼ µd.

and we rewrite (3.1) as

−4
1

D

√

B

εD
(τ0λ0D + 1) = F (λ0) ≡ λ0

√

λ0

(

tanh
√

λ0
d

2
+ coth

√

λ0
l

2

)

where τ = 1 + τ0, λ = εDλ0.

Near the origin and for real λ0, the curve F (λ0) ∼ 2
l λ0 +

(

d
2 + l

6

)

λ2
0 is convex and

increasing. The left hand side is a line in λ0 and it intersects the y axis at − 4
D

√

B
εD

which is a very small value by assumption (1.8). Therefore this line will intersect the

curve F (λ0) for some small value of λ0 unless its slope is precisely the slope of F (λ0) at

the origin, i.e. −4
√

B
εD τ0 ∼ 2

l . This is precisely the scaling on which the Hopf bifurcation

occurs. Subsituting l = A√
2B

we obtain,

τh− ∼ 1 −
√
εD√
2A

. (4.2)

Performing a similar study for the modes σj± we obtain

τhj± ∼ 1 −
√
εD√

B4Kdl

(

1 ±
√

1 − 2K2dlt
)

, t = t = 1 − cos

(

πj

K

)

∈ (0, 2) . (4.3)

But clearly, τhj± , τh− < τh+
since

√
εD
A � O

(

1
D

)

by the assumption (1.8). This shows

that the eigenvalue λ+ corresponding to σ+ undergoes the Hopf bifurcation before any

of the other eigenvalues, as τ decreases past τh+
. �

In figure 4 we show the Hopf bifurcation values τh+
and τh− computed numerically as

well as the asymptotic results (1.9), (4.2), for various values of D while fixing δ =
√
Dε =

0.01. This figure shows a very good agreement when D � δ.

5 Asymmetric K-mesa solutions and instability with DK2 ∼ O
(

1
ε ln2 ε

)

In Section 3 we have shown that K mesas are always stable provided that τ > 1. In our

analysis there, we have ignored the effect of the exponentially decaying tail of v. However

as DK2 increases, this effect eventually must be taken into account. As we will see in this

section, this occurs when D ≥ O
(

1
ε ln2 ε

)

. The main result of this section is the following.
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log10(Dδ)

lo
g
1
0
(1

−
τ
)

–6

–5

–4

–3

–2

–1 –0.5 0 0.5 1 1.5

Figure 4. The value of τh+
and τh− as a function of D, while δ =

√
εD = 0.01 is held fixed. The

dots represent the numerical solution obtained by substituting λ = iλi into (3.1) and solving for
τ and λi using Newton’s method. The solid lines are represent formulas (1.9) and (4.2). Here,
A = 1 and B = 15.

Proposition 8 Let

f(D) = 3
√

B/2+
A

16BD

(√
2B −A

)2

+3
√

2B

(

exp

{

− A√
2εD

}

+ exp

{

− 1√
2εD

(√
2B −A

)

})

,

and let D1 be the minimum of f(D). Let

DK =
1

K2
D1.

Suppose that τ > 1 and K ≥ 2. Then K − mesa solution of Proposition 1 is stable

when D < DK and unstable when D > DK . The minimum D1 satisfies the following

transcendental equation,

A√
D18B

(√
2B −A

)2

=
3
√

2B√
2ε

(

A exp

{

− A√
D12ε

}

+
(√

2B −A
)

exp

{

− 1√
D12ε

(√
2B −A

)

})

.

(5.1)

Suppose that 2A2 < B. Then

D1 ∼ A2

2ε ln2

(

12
√

2AB3/2

ε(
√

2B−A)2

) .

Suppose that 2A2 > B. Then

D1 ∼

(√
2B −A

)2

2ε ln2
(

12
√

2
εA B3/2

) .

Before providing a proof, consider a numerical example. Take

ε = 0.001, A = 2, B = 18.
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Then solving (5.1) we obtain D1 = 21.16 so that

D2 = 5.3, D3 = 2.35.

To verify Proposition 8, we ran the full numerical simulation of (1.1) for various values

of D. We took τ = 3, the initial condition to be as given in Proposition 1 with K = 2,

and we took D from 5 to 6 with 0.1 increments every 2500 time units. For each value of

D, we then plotted the difference of the height of the two mesas versus time. See Figure

5.a. From this computation, we see that a change of stability occurs when D ≈ 5.5: if

D < 5.5 then the difference in height is decreasing but is increasing if D > 5.5. This

agrees well with the theoretical prediction D = 5.3. We then took K = 3, and D from

1.9 to 3 with 0.1 increments every 2500 time units. Figure 5.b shows the the difference

in heights of the first and second mesa. From this figure we conclude that the change in

stability occurs when D ∼ 2.45. Again, this agrees well with the theoretical prediction of

D3 = 2.35.

5.2 5.4 5.6 5.8 6
−12

−10

−8

−6

−4

x 10
−7

D

v(
0.

75
)−

v(
0.

25
)

2.2 2.4 2.6
0

1

2

3

4
x 10

−4

D

v(
1/

2)
−

v(
1/

6)

(a) (b)

Figure 5. (a) The difference in height of a two-mesa solution for various values of D. Here,
D = 5 + 0.1floor(t/2500). Note the change of stability when D ∼ 5.5. (b) The difference in
height of the first two mesas of a three-mesa solution. Here, D = 1.9 + 0.1floor(t/2500). Note
the change of stability when D ∼ 2.45. In both figures, ε = 0.001, A = 2, B = 18, τ = 3.

Proposition 8 follows from the existence of asymmetric patterns. Indeed a similar

phenomena was studied for the spike solutions of the Gierer-Meinhardt model [16] and

in the Gray-Scott model [19]. In both of these models, an asymmetric spike pattern was

found to bifurcate from a symmetric K spike solution when K > 1. Moreover a change

of stability of a K-spike pattern occured precisely at that point.

To show existence of asymmetric patterns, it suffices to compute w(L) as a function

of the domain length L, and to show an existence of a minimum of this curve. Below we

show that such minimum occurs precisely when the the interaction in the u component is

balanced by the interaction of v in the exponential tail. The main result is the following.
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Lemma 9 Consider a symmetric mesa-type solution on domain [0, L]. Then we have,

w (L) ∼ 3
√

B/2+
1

D

A

16B
L2
(√

2B −A
)2

+3
√

2B

(

exp

{

− LA√
2εD

}

+ exp

{

− L√
2εD

(√
2B −A

)

})

(5.2)

9.005

9.01

9.015

9.02

9.025

9.03

9.035

9.04

w(L)

0.4 0.5 0.6 0.7 0.8 0.9 1
L

Figure 6. The value of w(L) as a function of L. Here, A = 2, B = 18, ε = 0.001 and D = 10.
The solid curve represents an exact numerical value computed using the boundary value problem
solver; the dashed curve represents the asymptotic formula (5.2). Note that both curves give
almost the same minimum value of L ≈ 0.68

Proof. We recall that upon expanding the solution in 1
D as w = w0 + 1

Dw1 + . . .,

v = v0 + 1
Dv1 + . . ., the equation for w1 is

δ2v1xx = Fv(v0,w0)v1 + Fw(v0,w0)w1, (5.3)

w1xx = w0 − v0 −A (5.4)

Note that we have

δ2v′0xx = Fv(v0, w0)v
′
0.

Therefore, upon multiplying (2.8) by v′0, integrating we obtain,

∫ L/2

0

v′0Fw(v0w0)w1 = δ2 (v1xv0x − v1v0xx)
x=L/2
x=0 . (5.5)

To evaluate the right hand side, we write

∫ L/2

0

v′0Fw(v0w0)w1 ∼ w1 (xl)

∫ x+

l

x−
l

d

dx
G (v0, w0)
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where

G(v0) =

∫

Fwdv0 = −Bv0 + v2
0w0 −

2

3
v3
0 ,

G(w0) =
1

9
w3

0 , G(
w0

3
) =

1

81
w3

0 .

It follows that
∫ L/2

0

v′0Fw(v0w0)w1 ∼ −w1 (xl)
8

81
w3

0 .

To evaluate the right hand side of (5.5) we expand the solution near the boundary.

At x = 0, we assumed that v ∼ w0; writing

v = w0 + V (x)

we then obtain to leading order,

δ2V ′′ = Fv (w0, w0)V +O

(

1

D

)

∼ BV.

Imposing the boundary condition V ′ (0) = 0 we then obtain

V ∼ K

(

exp

{

−
√
B

δ
x

}

+ exp

{

+

√
B

δ
x

})

+O

(

1

D

)

for some constant K. To determine K, we impose the matching condition w0 + V ∼
v0 + 1

Dv1 in the region δ√
B

� x� xl. In this region we obtain

v0 =
2

3
w − w

3
tanh

x− xl

2

√
B

δ

∼ w0 +
2

3
w0 exp

{

−
√
B

δ
xl

}

exp

{√
B

δ
x

}

.

Thus we obtain

K =
2

3
w0 exp

{

−
√
B

δ
xl

}

.

Moreover, for x� xl we have

δ2v1xx ∼ Bv1 −Bw1 (5.6)

∼ Bv1 −Bw1(0) (5.7)

so that

v1 ∼ w1 (0) +DK exp

{

−
√
B

δ
x

}

.
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It follows that

v1x (0) v0x (0) ∼ −B
δ2

K2D, v1x (0) v0xx (0) ∼ B

δ2
K2

D
,

δ2 (v1xv0x − v1v0xx)x=0 = −4B2D exp

{

−
√
B

δ
(L− l)

}

.

Similarly, near x = L
2 we have

v0 ∼ w0

3
+

2

3
w0 exp

{

−
√
B

δ

l

2

}

exp

{

−
√
B

δ

(

x− L

2

)

}

from where we deduce

v1 ∼ −w1(0) +D
2

3
w0 exp

{

−
√
B

δ

l

2

}

exp

(√
B

δ

(

x− L

2

)

)

,

δ2 (v1xv0x − v1v0xx)x=L/2 = −4B2

D
exp

{

−
√
B

δ
l

}

.

Therefore we obtain

w1 (xl)
8

81
w3

0 ∼ 4B2D

(

exp

{

−
√
B

δ
l

}

+ exp

{

−
√
B

δ
(L− l)

})

w1 (xl) ∼ 3
√

2BD

(

exp

{

− LA√
2δ

}

+ exp

{

− L√
2δ

(√
2B −A

)

})

.

In the region 0 < x < xl, we have v0 ∼ w0 so from (2.9), we obtain

w′′
1 ∼ −A, 0 < x < xl.

It follows that

w1 (xl) − w1 (0) ∼ −A
2
x2

l = −A
2

(

L− l

2

)2

,

Using w0 = 3
√

B/2, l = LA√
2B

we then obtain (5.2). �

In Figure 6 we compare the asymptotic formula (5.2) with the numerically computed

value for A = 2, B = 18, ε = 0.001 and D = 10. Note that the function L → w(L) has

a minimum at L ≈ 0.7. This shows the existence of a fold point. Now suppose that D

is chosen such that this minimum occurs precisely at L = 1
K , with K > 1 an integer.

Then the corresponding K-mesa equilibrium solution will have a zero eigenvalue. Since

the exponential terms in (5.2) quickly die out as L increases, the solution becomes stable

to the right of L = 1
K , and therefore unstable to the left of it. Proposition 8 is precisely

this statement; it is obtained simply by scaling the L out and stating the existence of

the fold point in terms of D instead.

6 Turing analysis

In this section we perform a Turing analysis of the homogenous steady state u = A, v =
B
A . In particular, we are interested in examining any possible connections between the
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Turing instability regime (which leads to cosinusoidal-like patterns cos (2kπx) of mode

k) and the localized mesa-like structures. We start by linearizing (1.1) around the steady

state as follows,

u = A+ ξeλt cos (2kπx) , v =
B

A
+ ηeλt cos (2kπx) , ξ, η � 1; 2k ∈ N.

This yields a 2x2 eigenvalue problem for λ. Its solution is given by

λ2 − Tλ+ ∆ = 0,

where

T = B− τA2 −n (1 + τ)− ε, ∆ = τ
[

n
(

n−B +A2
)

+ ε
(

A2 + n
)]

, n = 4k2π2εD.

Note that ∆n=0 > 0 so that the zero mode is unstable if Tn=0 > 0 or B − τA2 > 0.

Numerically, we observe that when the zero mode is unstable, it dominates and the

system moves away from the equilibrium and quickly approaches a very long relaxation

cycle, before any of the non-zero modes are activated. Therefore no spatial instability

is observed. This leads to the following necessary condition for the Turing instability to

appear:

B − τA2 < 0. (6.1)

Provided this condition is satisfied, we have T < 0 for all n. Therefore Turing instability

will occur iff ∆ < 0. In particular the second necessary condition is that

B −A2 > 0. (6.2)

In this case, the most unstable mode is of the same order as the minimum of ∆,

k2
∗ ∼ B −A2 − ε

π22εD
. (6.3)

Shortly after the Turing instability is triggered, localized mesa-type structures appear

due to the presence of steep gradients. In this regime, Turing instability cannot predict

the final number K of mesas. Indeed, we have K ≤ K∗ where

K∗ = max

(

1,

√

D1

D

)

with D1 = O
(

1
ε ln2 ε

)

as obtained in Theorem 3. It follows that as long as B − A2 � 0

and τ − 1 � 0, we have

K∗ = O

(

1

δ ln 1
ε

)

, k∗ = O

(

1

δ

)

, δ =
√
εD

so thatK∗ � k∗. Therefore we expect that shortly after the patterns appear, a coarsening

process takes place whereby some of the resulting mesas dissapear until there are at most

K∗ of them left.

Consider an example shown on Figure 1.a. Take A = 1, B = 8, ε = 10−4, D = 10.

We take τ = 10 to satisfy (6.1). From (5.1) we obtain D1 ∼ 44.5 so that K∗ = 2 and

from (6.3) we obtain k∗ = 9. In a numerical simulation, we started from the homogenous

steady state u = A, v = B
A , perturbed by a very small random noise. A Turing instability

corresponding to the mode k = 7 first develops. At time t ∼ 50 only six modes remain
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from which six mesas develop. One by one, these mesas are annihilated until only two

remain, confirming our theory. We integrated the system until t = one million, but we

do not expect any more mesa refinement since K∗ = 2.

Formulas (6.3) together with (1.5) show that it is possible for the mesa patterns to be

stable even as the homogenous steady state is stable. This occurs when A2/2 < B < A2

(i.e. l > 1
2 ) with τ > B

A2 . A more difficult question is whether one can find a regime in

which both are unstable, and the system iterates between the two. Here we consider the

case where D satisfies (1.8). In this regime the instability of a single mesa solution can

only occur when τ is near 1. Then (6.1) and (6.2) together imply that A ∼ B2. So we

set:

B = A2 + α, α� 1.

From the condition Tn=0 ≤ 0 we obtain

τ ≥ 1 +
α− ε

A2

and we and suppose that a single mode k = 1 =⇒ n = n∗ = 4π2εD is unstable. The

condition ∆n=n∗ < 0 then leads, to leading order:

4π2εD
(

εD4π2 − α
)

+ εA2 < 0

so that to leading order,

α ≥ A2

D4π2
+ 4π2εD

from where

τ ≥ 1 +
1

D4π2
∼ 1 + 0.025

1

D
.

On the other hand, we have B ∼ A2 =⇒ l = 1√
2
; and we have

ld− l3 + d3

3
= 2l− 2l2 − 1

3
=

√
2 − 1 − 1

3

so that from Theorem 4 we obtain

τh ∼ 1 + 0.020
1

D
.

Therefore the instability of a mesa cannot follow the Turing instability since τ > τh.

7 Discussion

In Section 5 we were able to determine the instability thresholds without actually com-

puting the eigenvalues; but simply by showing the existence of an asymmetric pattern

bifurcating from a fold point. It is an open problem to find the full expression for the

eigenvalues near this threshold. This would give a theoretical timescale for each of the

step in the coarsening process. We expect that the unstable eigenvalue will decrease ex-

ponentially in the distance between the mesas. This would explain the exponential time

increase between the successive coarsening events, as observed in Figure 1.a

In Theorem 4 under condition (1.8) we have shown that as τ is decreased near 1,

the first eigenvalue to cross the imaginary axis is λ+, whose eigenfunction is even. This
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corresponds to a “breather”-type instability shown on Figure 1.b. An open question is

whether there exists a regime for which other eigenvalues undergo a Hopf bifurcation

before the λ+ eigenvalue. For the Gray-Scott model it is known that a single spike can

undergo a Hopf bifurcation due to a slow translational instability – which corresponds

to an odd eigenfunction – whereby the center of the spike oscillates periodically [19],

[10], [20]. The analogy of this phenomenon for a single mesa of the Brusselator would be

the Hopf bifurcation of the λ− eigenvalue. One can also imagine spike-type solutions for

the Brusselator simply by taking the limit l → 0 or equivalently, B → ∞. It is an open

problem to study this regime.

It would be interesting to study the slow dynamics of the mesas, of which there are

several types, corresponding to different eigenvalues. The first type is the slow transla-

tional motion of the mesa such as seen in Figure 3 after time t ∼ 2200. Similar motion

has been analysed for the FitzHugh-Nagumo model on an infinite line [15]. In contrast

to the Brusselator however, the FitzHugh-Nagumo model does not have a mass conser-

vation constraint lK ∼ A√
2B

derived in Proposition 1, and does not undergo a coarsening

process. In this sense the Brusselator resembles more the Cahn-Hilliard model or the

Allen-Cahn model with mass constraint [32], [34]. However unlike the Cahn-Hilliard

model, the Brusselator does not have a variational formulation, and the mass conserva-

tion is only asymptotically valid. We remark that a similar phenomenon was also studied

for Gray Scott and Gierer-Meinhardt models in the context of spike solutions [16], [9],

[21].

A second type of slow instability is the mass exchange that occurs prior to mesa

annhiliation as seen in Figure 3 at time t ∼ 2000. This phenomenon also occurs in

some flame-propagation problems [5], [33] and in the Keller-Segel model [17], where an

exchange of mass takes place between two boundary spikes, and eventually leads to an

annihilation of one of them.

The coarsening process in the brusselator terminates when there are K = O
(

1
δ ln ε−1

)

mesas left, where δ is the characteristic width of the interface. This is in contrast to

the the Cahn-Hilliard model, where the coarsening proceeds until all but one interface

remains [32].

Localized structures far from the Turing regime are commonplace in reaction-diffusion

systems such as the Brusselator, and provide an alternative pattern-formation mechanism

to Turing instability. These structures appear whenever the Turing instability band is

very large or when the diffusivity ratio of the activator and inhibitor is large. As we

demonstrate in this work, Turing analysis cannot explain the diverse phenomena that can

occur in this regime, such as coarsening and the “breather”-type instabilities. However

singular perturbation tools can be successfully applied to asnwer many of these questions.
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8 Appendix A: proof of Lemma 7

Proof. Note that (3.6) is equivalent to solving

u′′ − µ2
l u = 0, x ∈ ∪ (xli, xri)

u′′ − µ2
du = 0, x /∈ ∪ (xli, xri)

u′
(

x+
li

)

− u′
(

x−li
)

= −bli, u′
(

x+
ri

)

− u′
(

x−ri

)

= −bri,

u′ (0) = 0 = u′ (1) .

When x ∈ [xli,xir] we have

u = uli cosh (µ2 (x− xli)) +Bli sinh (µ2 (x− xli)) , x ∈ [xli,xir ] , i = 1 . . .K

where uli = u (xli) and Bli is to be found. We similarly have

u = uir cosh (µ1 (x− xri))+Bdi sinh (µ1 (x− xri)) , x ∈
[

xri,xl(i+1)

]

, i = 1 . . .K − 1.

We define

d ≡ xr(i+1) − xli =
1 − l

K
,

c1 ≡ cosh (µll) , s1 ≡ cosh (µll)

c2 ≡ cosh (µdd) , s2 ≡ cosh (µdd) .

We have uri = ulicl + Blisl from where

Bli =
uri − ulicl

sl
, i = 1 . . .K

and similarly ul(i+1) = uircd +Brisd so that

Bdi =
ul(i+1) − uricd

sd
, i = 1 . . .K − 1

We also have

bli = u′
(

x−li
)

− u′
(

x+
li

)

= µd

(

ur(i−1)sd +Bd(i−1)cd
)

− µlBli

= µd

(

ur(i−1)sd +
uli − ur(i−1)cd

sd
cd

)

− µl
uri − ulicl

sl

= − 1

sd
µdur(i−1) +

(

cd
sd
µd +

cl
sl
µl

)

uli −
1

sl
µluri, i = 2 . . .K

and similarly

bri = − 1

sl
µluli +

(

cd
sd
µd +

cl
sl
µl

)

uri −
1

sd
µdur(i+1), i = 1 . . .K − 1.

Next note that

u = A cosh (µx) , x ∈ [0, xl1]
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for some constant A. Matching u
(

x−l1
)

= u
(

x+
l1

)

we then obtain

u =
u (xl1)

cd/2
cosh (µx) ,

u′
(

x−l1
)

= u (xl1)µ
sd/2

cd/2
.

where sd/2 ≡ sinh (µdd/2) , cd/2 ≡ cosh (µdd/2) . Next we use the following identity,

sinh (x/2)

cosh(x/2)
=

cosh (x) − 1

sinh(x)
=

sinh(x)

1 + cosh(x)

to obtain

u′
(

x−l1
)

= µ
cd − 1

sd
u (xl1) .

Therefore we obtain

bl1 = µ
cd − 1

sd
ul1 − u′

(

x+
li

)

= µ
cd − 1

sd
ul1 − µ

ur1 − ul1cl
sl

= µ

(−1

sd
µd +

cd
sd
µd +

cl
sl
µl

)

ul1 −
1

sl
µur1

and similarly

brK = − 1

sl
µlulK +

(−1

sl
µl +

cd
sd
µd +

cl
sl
µl

)

ulK .

This yields the matrix M :

M =



















a+ c b

b c a

a c b

· · ·
a c b

b c+ a



















where

a =
−µd

sd
, b =

−µl

sl
, c =

cd
sd
µd +

cl
sl
µl.

Consider the matrix

Q =























a b

b 0 a

a 0 b

· · ·
b 0 a

a 0 b

b a























.

The eigenvalues of this matrix were computed in [29] (see Appendix B). It was found
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that Q has the following eigenvalues,

±
√

a2 + b2 + 2ab cos (θ), θ =
πj

K
, j = 1 . . .K − 1

a+ b, a− b.

But we have M = (Q+ c) . Therefore the eigenvalues of M are given by

(

c±
√

a2 + b2 + 2ab cos (θ)
)

, θ =
πj

K
, j = 1 . . .K − 1

c+ a+ b, c+ a− b.
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