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1 Introduction

Recently, there have been lots of work on the study of higher order conformally invariant
operators. A notable example is the so-called Paneitz operator (see [10])

2
(1) Pu=A*u+§ <§K0I - ZRic) du
and the associated ()—curvature:
_ 1 2 .12
2) Q= E(KO — AKo - 3|Ricf?),

where § denotes the divergence, d the differential, Ric is the Ricci curvature of (M, go),
a four dimensional manifold and Kj is the scalar curvature. In [2]-[3], Chang and Yang
studied the existence of extreme functions for the associated variational problem:

IIu] = (Pu,u) + / QowdVy, — ( / QodVgO) log / " dV,, .

For background material and other related problems, we refer to [2], [3], [4], [6] and the
references therein. The extreme function u of IIu] satisfies a conformal invariant elliptic
equation of fourth order:

(3) Pu +2Qo = 2Qe™.

where @ is a constant. To study the qualitative behavior (such as blow up, a priori estimates)
of solutions of (3), it is important to classify all solutions to the following reduced fourth
order equation

(4) A%y = 6e*™ in R*, / e*dz < oo.
R4

In [7] (see also [12] for higher order cases), Lin classified the solutions to (4) and proved the
following theorem.

Theorem 1.1 (Theorem 1.1 and 1.2 of [7]) Suppose u is a solution to (4). Then the
following statements hold true.



(i) After an orthogonal transformation, u(xz) can be represented by

3 etu(v)
= — 1 d
u(z) 12 /R4 og Y — Za] 2+ ¢
(5)
:—Za] )2 — alog|z| + co + o(1),
as |z| tends to co. Here a; > 0, ¢y are constants and z° = (29...,29) € R*. Moreover,

if aj # 0 for all j, then u is symmetric with respect to the hyperplane {:c | z; = w?} If
a1 = ay = as = ag, then u is radially symmetric with respect to x°.
(ii) The total integration

3
a=5 » ettWdy < 2.
If a = 2, then all a; are zero and u has the following form:
(6) u(z) = log ™ with A > 0.
14 X2z — 202’

(ii3) If u(z) = o(|z|?) at oo, then a = 2.

Lin’s theorem shows a striking difference between (4) and its second order analogue:
(7 Au+e* =0 in R?, / e*dr < oco.
R2

It is known (see [5]) that all solutions to (7) are radially symmetric (with respect to one
point) and have the form (6).

An interesting question in Lin’s theorem is: given any a; > 0, 1 < j < 4 and a > 0,
are there solutions to (4) satisfying (5)? In the case a; = as = a3z = a4, by Lin’s theorem,
solutions are radially symmetric up to translation. Chang and Chen [1] proved the existence
of radially symmetric solutions to (4) for any a € (0,2). It remains to study the nonradially
symmetric case, that is exactly the purpose of this paper.

Here, we show that the converse of Lin’s theorem is also true.

Theorem 1.2 Let 2° € R*, 1 <k <4, a € (1-%2) anda; > 0 for 1 < j < k. Then
there exists co € R and a solution of (4) such that

(8) Z a;(z —alog|z| + ¢o + o(1)

for |x| tends to co. Moreover,

2
/ tule) gy — AT
R4 3

Remark 1.3 Lin remarked that the condition a > 1 — % is necessary for the existence of
solution if we have just a; > 0 for 1 < j < k, see the comments under (3.8) in page 224
of [7]. Our result means that this condition is also sufficient. Note that when k = 4, this
condition becomes just o € (0,2), so we recover the result in [1].

Theorem 1.2 shows that there are abundant nonradially symmetric solutions to the con-
formally invariant equation (4). More precisely, for any a € (0,2), even up to translation
and the gauge transformation u(Az)+4log A, there exist infinitely many nonradial solutions.
This is quite surprising.

In the next section, we shall prove Theorem 1.2. We make use an idea of McOwen [8],
where he constructed solutions to

9) Au + k(z)e*™ =0 in R?,

with prescribed asymptotic behavior. Our difficulty is to show a priori estimates, our main
arguments are blow-up analysis and Pohozaev’s identity.



2 Proof of Theorem 1.2

Fix1<k<4,a; >0for1<j<kandl—-£k/4<a< 2 Using translation, we can
assume that 20 = 0. First, we fix a radially symmetric function uy € C*°(R*) such that
ug(x) = —log|z| for any |z| > 1. Clearly, A2uq is compactly supported and

(10) A%ug(x)dr = 8.
R4
Define
k
(11) v=u+2ajm§—au0 C 0+ ug — aug.
Jj=1

Then wu is a solution of (4) if and only if A%v = Ke*¥ — aA2uy where K (z) = 6e~4vt4auo,
For constructing v, we shall use some ideas of McOwen. Let M’SD’ s be the weighted Sobolev
spaces, the completion of C§°(R*) with the norm

3 H(1 + [2[2)@+1eD/2 Dty

le|<s

Lr(R%)

wherep € (1,00),s € Nand § € R. Let Lf = Mg’ s5- The following are some useful properties
of Mj 5 (cf. [9]).

Lemma 2.1 Letp > 1 and § € (—3,—% +1). Then the operator A is an isomorphism
from MY ; into

A= {fELfM, / fd:czO}.
R4
On the other hand, if p > 1,0 > —4/p and s > 4/p, M’S’,é is compactly embedded in Co(R?).

Here Co(R?*) denotes the space of continuous functions which tend to zero at oo, endowed
with the norm || - ||co-

Remark 2.2 For1 <k <4,ifa; >0 forl<j<kandoa>1-k/4, we can always choose
p>landd € (—%, —% + 1) such that K € LZH NLY(RY). In fact, a sufficient condition is

Jjust p(da—d—4) >4 —k.
For any v € Co(R*), define

log (87%a) 1
(12) Cy = M — —log ( Ke‘“’da:) .
4 4 ks
Thanks to remark 2.2, ¢, is well defined and it is easy to see that Ke*(*+¢») — A2y, belongs
to A for suitable p > 1 and 6 € (—%, —% +1). By lemma 2.1, there exists unique 7 € Mj ;

such that A% = Ke*(t¢) — qA%ug, we define then 7 = Tv. Applying again lemma 2.1,
T is a continuous and compact mapping from Co(R*) into itself. Now we will try to find a
fixed point for T, which enables us to get a solution of (4).

In our analysis, a crucial argument is the following result.

Lemma 2.3 Let u be a smooth function satisfying A%u = Ke** in By C R*, such that K
s continuous et positive in By,

(13) Ke*'dy < B < 167
B,

and there exists Co > 0 verifying

(*) VB(.Z’,’I“) C By, ||Au”L1(B(w,r)) < COTz-
Then there exists C € R (depending on 8 and Cy) such that
(14) maxu < C.

Bi/a



The proof of this lemma is given by contradiction and blow-up analysis. One of the
key points is that the condition (*) remains stable under the gauge transformation uy(y) =
u(z + Ay) + 4log \. Moreover, this condition prevents to have some a; > 0 for the solution
after the blow-up, which will force the total integration to be just 1672 and contradicts then
B < 1672.

Proof of lemma 2.3. Suppose that the constant C' does not exist, so we have a family of
smooth functions u, such that A%u, = Ke*¥» in By, verifies (*) and

Kedy < 3, lim maxu, > n.
n—o0 By
By /

Consider .

Then maxg, ,, hy, > n —4log4 — co. Define

1
Mn = hn(mn) =maxh,, o,=—=— |$n| and M\, = Un€7“"/4‘
B2 2
Clearly 0,,/A\, — co. Define also wy,(y) = un(®n + Any) + 4log A, For |y| < 0,/ (2\,), we
have
On  Op

1 1
- >z, — >g, -2 =n
D) | + Any| > 2 |Tn| = Anly| > on B 9

hence o
Un(Zn + Any) < pn — 4log (7") = —4log A, + log 16.

In other words, wy,(y) < log16 for |y| < 0,/(2A,). Therefore, we obtain

A’w,, = K(z, + M\y)et? in B;, /¢22)
w, < log 16 in Btfn/(Q/\n)
wp(0) =1.

Moreover, for any R > 0, yo € R* such that B(yo, R) C B,, /(2x,), the condition (*) implies

1
(15) / |Awp|dy = —2/ |Aup|dz < CoR.
B(yo,R) AL B(zn+Any0,An R)

Using standard elliptic theory, it is not difficult to prove
Lemma 2.4 Let R > 0 and w be a family of functions satisfying w(0) =1 and

I1A%w]| Lo () + 1AW L1 (5, + s;pw <A,
R

then there exists Cr > 0 depending on R and A such that w > —Cpg in Bgs.

Applying this result on w,. Up to a subsequence, we can assume that z, = T«, w, = w
in C22 (R*), solution of

A’w = K(z,)e*” in R*
and
K (z,)e*dy < liminf K(zn + My)e*ndy < B < 1677

R* " JBo, 23m)

Noting that K (z.) is a constant, w must be a solution given by (5), then

K(z, edw(y) 4 B 4
Aw(z) = — 4(772)/12 d, 22a,-=0(|w| 2)—22(1]-.
j=1 j=1

ar—yp® "

Otherwise, if we take limit in (15), we get [|Aw||p1(p,) < CoR? for any R > 0. Since a; > 0,
all the coefficients a; must be equal to zero. By Lin’s result, we have w(y) = o(|y|?), hence

K(z.)e**dy = 1672,
R4

which is a contradiction. Our proof is completed. O



Remark 2.5 We can prove similar results for a family of equicontinuous functions K,
which verifies 0 < a < K,, < b < 00. The gauge transformation yields also that the result is
true in any ball Br.

Proof of Theorem 1.2 completed. Suppose that v is a fixed point for the operator tT
in Co(R*) with ¢ € (0, 1], that is v = tTv and v € Co(R?*). We claim then

t
872

/ log |z — y|Ke*"+e) dy — taug(z) + C def (z) + Ch.
R4

(16) v(z) = —
Indeed, as e*(*¢) ¢ L>°(R*), under the assumption on a and k, ¥ is well defined. It is
clear that A%(7 — v) = 0 in R*. Moreover, since for |z| > 1,

t

17 3(2) = = [ Kettred1op 1T g
(17) u(z) = g L Ke 8 Ty W

and Ke*(vtew) € Con LY (RY), we get 9(z) = o(log|z|) at co. Liouville’s theorem yields then
v — U = constant.

Take
logt
w=v+cv+tau0+T,

then A2w = Qe*™ in R* with

Q= Ke—4tauwo — g~ i<k ajw?+4(1—t)auo_

Clearly,
Qe*dr =t | Ke*vte)ds < 87%a < 1672,
R* R4
since t € (0,1] and @ < 2. On the other hand, thanks to (16),
1 4w
Aw(z) = Qe

Cdn? R4 |7 =yl v

Since —Aw > 0 and

1 1
- Aw(z) = — Qe4w(y)/ ———dzdy
/B(zo,r) ( ) 472 R4 B(zo,r) |$' - y|2

1
<= Qe*v ) ———dzdy
42 R4 B(y,r) |1' - y|2
2
r Qetv Wy

< 2r’ar?.
Thus w satisfies the condition (x). By lemma 2.3 and remark 2.5, we obtain then w is locally
uniformly upper bounded. Using the representation formula, we get also |Vv| and Av are
locally bounded, as e** is locally bounded. For example, fix R > 0, for any = € B,

1 Qe4w
Av(e)] = 1Bu(e)] = 15 [ 2y
1 Qe4u) 4 1 / Qe4w

= — Y _— _
4m? Bor |z — y|? 472 R4\ Bag |z —y|?

1 1
<c / dy + / Qe dy
R Bar |z — y|? 472 R? R4\ Bag

2a
<Cr+ 2k

From the uniform upper bound of w, it follows then W = v + ¢, + logt/4 is locally
uniformly upper bounded. So we conclude




Lemma 2.6 Let k, a; and o be as in Theorem 1.2. For any R > 0, there exists Cr > 0
such that if v = tTv with t € (0,1],

sgpv + ¢y +logt + [|Vl|Lo(Bg) + [|AV||L~(BR) < Cr.
R

It remains to study the exterior domain. For that, we apply the Pohozaev’s identity (see
[11]). For any R > 1, as supp(AZ%ug) C By,

_ 1 _
Ke*%dr + = / (z- VK)e'@dx
Br 4 Bgr

1 _
(18) = - / ta(z - Vo) A%ugdr + = K(z)|z|e*dx
B: 4 JoBp

(Av)? / Ov O(Av) 0 ( Ov
- = = Av— (r— .
/<93R & 2 do + aBp Or Or do + 8Bg Yar "or do

By lemma, 2.6, we know that the first term in the right-hand side is uniformly bounded. The
following lemma shows the behavior of last three terms, its proof is technical and delayed
to the next section. There we will use intensively the assumption a > 1 — k/4.

Lemma 2.7 Let k, a; and o be as in Theorem 1.2. For each fixed v satisfying v = tTv
with t € (0,1], the last three terms in (18) tend to zero as R — oc.

Since
VeeR'\B;,, z-VK= —(ZSajx§ +4a|x|)K <0,
i<k

passing to the limit R — oo in (18), we obtain

1 — _

——/ (z-VK)edx < / ta(z - Vo)A2uede + | Ke*™dz.

4 Jga B1 R4

Using again lemma 2.6,
_ 1 _
aR Ke4“’d;c§0+87r2toz+—/ (r-VK)e*Pdx < ', if R>1.
R4\ Bg 4 /g,

For any € > 0, there exists Ry > 1 (depending only on &) such that
(19) / Ke™dg < e.
R4\ Bg,

As a > 1 - k/4, we can verify that |z|"8K(z|z|~2) € LP(By) for some p > 1. Choose
g = 1672 /q where
_plp+1)
p—1
and Ry such that (19) holds. Consider the Kelvin’s transformation

)

R
(=woyp with go(x):ﬁ for |z| <1.

Therefore A2¢ = Rj|z| 8K o p(x)e*¢ in By, since supp(A2ug) C By. As

R|z| 8K o (x)e*dr = / Ke*Vdzr < ¢,

B R*\Bg,

by Moser-Trudinger’s inequality (see [7]), the upper bound for ¢ and |A{| on 8B;, we can
prove |[e*||Le(B,) < C so that [||z] *K o (z)e*||pw+1/2(5,) < C. Thus ( is uniformly
upper bounded in By by elliptic theory.



Finally, w is uniformly upper bounded in R* \ Bg,, so w is uniformly upper bounded in
R*. Furthermore, as A%v = Ke*” — taA?uq, we get easily that v is uniformly bounded by
lemma 2.1, that is

If veCo(R*), v=1tTv with t € (0,1], then [|v|| < C.

In conclusion, as T is compact, the Leray-Schauder’s theory ensures the existence of a fixed
point v for T, so we get the desired solution as u = v — uy + auyg. d

3 Proof of Lemma 2.7

For fixed v, we recall the Pohozaev identity (18)
_ 1 _
Ke'dg + —/ (z - VK)e'¥dx
Br 4 Br

1 _
= - / ta(z - Vo) A?ugdz + 1 K(z)|z|e*dx
B 9Br

2
—/ |.’E|Md0 —/ m@@(Av) do + Av2 (r@) do
8Bg 2 8Bg or Or 8BR or or

=N+ + I3+ Jy+ 5.

We claim then, under the condition of Theorem 1.2 for o and aj,

(20) lim J3 = lim J4 = lim J5 =0.
R—o00 R—o00 R—o0

Remark 3.1 By similar arguments, we can also show that limp_,, Jo = 0, but it is not
necessary for the proof of Theorem 1.2.

In fact, for |z| > 1,

2 K 4w ) 2 K 4w
|z|2Av(z) = ﬂ/ c dy — |z|*taAug = ﬂ/ c dy + 2ta
R

T 4n? Jpa |z — y)? T 4m? Jpa |z — y)?
1 o 2
= — Ke' |1 - 2] d
472 Jpa |z —y|?
1 2 _2g. —
P =22y 1 s,

T an? Rt |-yl

We decompose the integral over three sub domains, O = {|y| < R1 }; Q2 = B(z, |z|/2) and
Q3 = R*\ (2 UQ2), assuming that |z| = R > 2R; > 2.

On 3, since |z — y| > |z|/2 implies |z — y| > |y|/4 (we can discuss the cases |y| < 2|z|
and |y| > 2|z|), by taking R; big enough (depending on v),

(21)

2 _ 9. _ —_
/ |y|7x2yKe4’”dy‘ <cC Ke'dy < e.
a; |T—yl R4\Bg,

Fix R;, for |z| > 2R,

(22)

2 _9p. —_
/ MK@MUC@‘ < Clz|™.
Q1 |.’L°—y|

It remains to consider 2 where |y| < 3|z|/2. Denote ¥ = (y;)1<j<r € R¥ for any y € R?,

2 _ 9. _ 2,—aly|?
/ |y| $2 yKeélwdy‘ S C |.Z’| € 5 |y|74ady
Qo |.'L' - y| Qo |$ - y|

— CR4—4a/ 67 n —4ad,’,’
B2 1§ —nl I




where @ = min; <<y a; is positive and we use the change of variables x = R{ and y = Rp.
Since |n| > 1/2, we have

(23) |z|?Av(z) = O(e) + O(R™1) 4+ O(A»)

where

2—12
dif 4—4 e_a'R ‘77‘
R [ T
B(£,1/2) n

with |¢| = 1. Similarly, if |z| = R > 2Ry, by decomposing R* as above,

o, 1 - (T—Y) o 4w _ 1 Y- (Y . 4w
(24) |w|6r (z) = 872 /R4 |z —y|? Ke™dy +to = 872 Jra |z —y|? Ke™dy
=0()+O(R™) +0(4)),
d ( dv 1 [z -y —(z-9)z] - (—9) . 4
_ _ - K@
|x|6r (T(?r) (z) 472 /1114 |z —y|* edy
(25) 1 -y 1w
— K
T ez =yl a
=0()+ O(R™) + 0(42) + 0(4,),
and
0(Av) 1 lz?(y — ) @ 4o
3Z\TV) - g =) & 4w
|z 5 (z) 5.2 /]R4 " Ke*dy + 4ta
(26) _ 1 ly?=2z-y |zPl@—y) Y] . aw, -
BN N P R
=0()+O(R™) +0(42) + O(4s)
Here

_aR2 |72
A;(z) & gi-to / et
! Bleay2) 1€—nl

with || = 1. Of course, A; < 24, and A, < 243, so it suffices to estimate Aj.

dn, ¥v1<j<3

If k = 4, it is easy to see that e=®F° " < ¢=aR*/4 in B(¢ 1/2) since [7] = |n| > 1/2, so
| 43|l (Br) = 0(1) as R tends to infinity. Finally, (20) follows easily from

(27) lim |z[?Av = lim |m|@= lim |$|3M: lim |.z’|2 (rav) =0.
|| =00 or z|— 00 r or

|z| =00 [ 0 |z|—o00 or

3.1 Case k=1

Consider now k = 1. By rearrangement argument, the integral of fg is less than that of their
Schwarz-symmetrizations f*g*. Applying that to each hyperplane (n;)2<ij<4 = constant, we

obtain
7aR27]2 7aR2(§1+n1)2 7aR27]2
e 1 e e 1
_dn= / < /  _dn
/3(5,1/2) € —mnf B(0,1/2) nl? B(0,1/2) nl?

Using the sphere coordinates, 1 = r cos, 12 = rsinf cos ¢ etc, we get

1/2 pm/2 5o o 1/2 p1 5 5.9
R4, < C / / e ol cos™ 0 Gin2 gdrde = C / / e BT /1 — #2dsdt
0 0 0 0

<CL+ D)



where
1/2 1 1/2
I =/ / e~ B T2 gsdr < l/ e ag o L /Oo s = ¢
o Jiy2 2 Jo R Jo R

and

1/2 p1/2 VE/2 R/
I =/ / e~ B\ /1 p2dsdt < l/ / 9% gdt < ClogR’
0 0 R Jy o R

thanks to the following lemma.
Lemma 3.2 Let
M M oo
= / / e 2 dsdt,
o Jo
then £(M) = O(log M) as M tends to oc.

Therefore A3 = O (R*~**log R), then limg_,o0 || 43||z(5s) = 0 as a > 3/4. Since ¢ is
arbitrary, we obtain easily (27). We finish by the proof of lemma 3.2. Indeed (for M > 1),

M s o M 1 o M? 1 5o
M):Q/ /e_“tdsdt=2/ / e_“tsdsdtz/ /e_“tdsdt
o Jo o Jo o Jo
M? oo 2.0
§C+/ </ e‘““dt)ds
1 0

=C+C’/M ds
1

8

which yields ¢(M) < Clog M for all M > 2.

3.2 Case k=2
In this case, we take the change of variables 11 + in2 = r cosfe’® and 53 + ins = r sin fe¥.

e—aR*(ni+m3) 1/2 pm/2 5 s o
R*e=%4, g/ ———dn < C/ / e~ oftrcos™ 0 gin @ cos Odrdf
B(0,1/2) [n| o Jo

= % /01/2 % (1 _ e—aR2r2> dr

= % OR/2 % (1 —e % )ds
ClogR

ST

Therefore, Ay = O(R? ““log R) and tends uniformly to zero as a > 1/2. Consequently,

lellgl |z|?Av = - hm |$|gr 0.

For A3(x), we cannot prove a uniform estimate tending to zero at oo as in previous case.
However, we show that limp_,o ||As||L1(9Bs) = 0(R?) by suitable pointwise estimate. In
fact, denote § = (y1,y2) and y' = (ys,y4) for any y € R*, we have

!
R4 43(z) < C e—oR?(ml* / _ _dn d7
R2 B.20,R) |E =T + [n']?

R
<C [ e oRm” / =3 3 id; 5 | am;
R2 o =7 +r



which implies

—aR?|7|? C e*a\mQ
R 43)<C | e—di=2 | T——dy
Rz | -7 R Jp> [z -7
< Pl amirsa , O a7 g
R R[Z| Jp2\B(z,17)/2)
Hence
C

R4 < —.
(e

Since a > 1/2,

/2 P3 o
As(z)do < CR3—1@ / R7sinfcosh 10 o ops-ta = o(R?),

9Bg 0 1+ Rcosf

Now we can claim (20). For example,

Bo= [ o) x [0 (A7) +0 (R Ay)]do = of1) +0 (R—3 A3(:c)da) — o(1).
O8BRr

OBR

3.3 Case k=3

Here, we prove the following pointwise estimates for A;, A2 and As.
Lemma 3.3 If k =3, for any R > 2 and x € O0BR, we have

CR2—4a CR3—4a
< CR™*« Ay(z) < ——on As(z) < ——
(28) As(z) < CRY™logR, As(z) < T+l and As(z) < PR

where T = (1,2, 23).

With these estimates, we obtain again (20). As the proof is very similar to that for
As(z) in the case k = 2, we just show how to handle J3 using (28) and leave other details
for interested readers.

As Av(z) = o(R™2) + O(R 2 A,) for |z| = R,

2—4a\ 2
2|J3| = / |x|(Av)2da < C’R/ o(R_4)da + CR_3/ (R — ) do
8Br 8Br oBr \1+ [T

< o(1) +CR1—8a/ dia_r
o8y 1 + |7

Taking the sphere coordinates 4 = r cosf, x3 = rsinf cos p etc,

T 3 .2
/ d0_2:C R sm'02 4 < CR,
aBp 1+ |7 o 1+ R2sin*0
so we have |J3| < o(1) + CR*8*, which yields limpg o J3 = 0 when a > 1/4. The proof is
completed. O
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