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1. INTRODUCTION

This paper is devoted to study the existence and asymptotic behavior of solutions
to the classic semilinear elliptic equation

Au+u(l—u?) =0, inRY (1.1)

Equation is known as the Allen-Cahn equation and it arises in the gradient
theory of phase transitions by Allen and Cahn [I], where is the prototype
equation for the continuous modeling of phase transition phenomena finding appli-
cations on material sciences, superconductivity, population dynamics and biological
patterns formation, see for instance [30]. In this physical model, the function « rep-
resents the phase of a material in a given point of RV,

In 1978 E. De Giorgi formulated the following celebrated conjecture concerning
entire solutions to the equation , which is in parallel to Bernstein’s conjecture
theorem for minimal hypersurfaces.

DE GIORGI’S CONJECTURE: The level sets of a bounded entire solution u to
, which is in addition monotone in one direction, must be hyperplanes, at least
for dimension 2 < N < 8.

This conjecture, basically states that, up to translations and rotations of RY,
u(z) = w(zy), where w is determined by

w’ +w(l—w?) =0, inR, w(doo)==+l. (1.2)
1
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A solution to ([1.2]) indeed exists. Even more, this solution is strictly increasing and
uniquely determined up to translations by

w(t) = tanh <%) ., teR.

The conjecture was proved in dimension N = 2 by Ghoussoub and Gui, see [13]
in dimension N = 3 by Ambrosio and Cabré, see [2], and in dimensions 4 < N < 8
by Savin, under the additional assumption

. ’ _
Ingrioo u(z',xn) = £1

see [28]. Recently in [I1], the authors showed a counter-example to this conjecture
in dimension N > 9, monotone in the x5 direction and whose zero level set is close
to a large dilation of the Bombieri-De Giorgi-Giusti minimal graph that disproves
Bernstein’s conjecture in high dimensions, see [3].

The monotonicity of the solution u implies its stability, in the sense that the
quadratic form

B.w) = [ VU =Py Flu) = u(1 =)

is positive, for all v € C°(RY). Indeed, without any loss of generality, assume
Opnu > 0,in RV, It is not hard to check that the linearized operator L := A + F'(u)
satisfies maximum principle. Even more, the level sets of u are all graphs. Let us
remark that stability is at the core of the proof of the conjecture in dimensions
N = 2,3, where is used to control at infinity the Dirichlet integral

/ V> = O(R?), R>0 (1.3)
Br(0)

which intuitively says that the level sets of © must have a finite number of compo-
nents outside a large ball, which are all asymptotically flat. The question if stability
is sufficient to conclude (L.3), remains open. Actually, it is believed that property
is equivalent to Finite Morse Index of the solution u. For a bounded entire
solution v to , the Morse index m(u) is defined as the maximal dimension of a
vector space E of compactly supported functions such that

B(y,¢¥) <0, Vi¢eFE-—{0}.
Strikingly, there are basically no examples of finite Morse index solutions to (1.1
in dimension 3, and the connection between Allen-Cahn equation and the theory
of minimal surfaces has only been partially explored to produced more examples of
finite Morse index solutions.

As remarked in [6], Morse index is a natural element regarding classification of
bounded entire solutions to . This is of course, the natural step to follow beyond
De Giorgi’s conjecture, towards the understanding of the geometrical structure of
the set of solutions to (L.1).

There is a great connection between the developments made in the study of
equation and the theory of minimal surfaces. Let us restrict ourselves to
dimension N = 3. For more than a century there were only two known examples of
minimal surfaces with finite total curvature, namely the catenoid and plane. The
first nontrivial example was found by Costa in 1981, see [B], [I5]. The Costa surface
is a genus one, minimal, complete and properly embedded surface. It has three
connected components outside some compact set, say a large ball, for which two
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of these components are asymptotically catenoids with the same axis of symmetry,
while the remaining one is asymptotically a plane, perpendicular to the axis of
symmetry of the catenoidal ends. Later, Hoffman and Meeks generalized Costa’s
construction by exhibiting a genus k, embedded, minimal surface with three ends
and with the same look as the Costa genus one surface outside a large ball, see [16],
[17], [I8]. Many other examples of this kind of surfaces, with multiple connected
components outside a compact set, either asymptotically catenoidal or flat, have
been found, see for instance [20], [22] and references there in.

Recently, a new family of finite Morse index solutions to equation in R3,
was found in [9]. Each one of these solutions has the property that its nodal set is
close to a large dilation of a fixed, complete, embedded and nondegenerate minimal
surface and along the normal direction of this large dilation of the surface it has
the one dimensional profile of the heteroclinic solution w, determined by .
Their Morse index coincides with the index of the surface, which is counted as
k =20 — 1, where [ € N is the genus of the surface. In this regard solutions with
Morse index 1, associated to the catenoid and Morse index k for k > 3, associated
to the Costa-Hoffman-Meeks surface do exist.

A natural question that rises is wether the construction of solutions to with
multiple transitions ”close” to a complete embedded minimal surfaces of finite total
curvature, can be carried out, under the same conditions as in [9]. The first goal of
this paper is to provide a partial answer to this question by constructing a family
of bounded solution to problem with an arbitrary finite number of transitions
layers near a large dilation of a catenoid in R3.

In order to state our first result, let M be a catenoid in R3, which is the surface
of revolution having the catenary curve as profile and described by the mapping
Y : R x (0,27) — R3, defined by

Y(y,0) := (/14 y%cosf,v/1+ y?sinb,log(y + /1 + y?))

which provides local coordinates on the catenoid in terms of the angle of rotation,
and the signed arch-length variable of the catenary curve. We observe that M
divides R? into two connected components, say ST and S~, where we choose S+
to be the component containing the axis of symmetry, namely the z3-axis.

The unit normal vector to M, pointing towards S, is then given by

v(y,0) = (—cosf,—sinb,y), yeR, 0€(0,2m).

1
V1492
Let us now consider a large dilation of the catenoid M, given by

M,=a'M

for any small positive number a. We parameterize M, by Y, : (y,0) — o~ 1Y (ay, )
and we define associated local Fermi coordinates in R3,

1
Xa(y.6,2) = a”'Y (ay,0) + zv(ay,0), |2 < L+ o~ log(1+y?).
Our first result is the following;:

Theorem 1. Let N = 3 and M be the catenoid in R® described above. Then for
all sufficiently small a > 0 there exists a bounded solution us to problem (1.1]) such



4 O. AGUDELO, M. DEL PINO, AND J. WEI

that

U () = Z(—l)j_lw(z — hj(ay)) + W% + 0o(1), asa—0

j=1
forz = X,(y,0,2), |2| <L+ 5=log(1+y?) and the location of the interfaces hs
is governed by the Jacobi-Toda system of PDEs on M,
o® (Anhy + [Am|Phy) — ao {eﬁt e V2(hi=hj—1) _ o=V2t o=V2hin—hi)| —

where

_ -2 2\ V2t 1

ap = ||lw'|| 2 / 6(1 —w)eV="w'(t)dt > 0
R
and
1
hjt1—hj = log (a> +log(1+y)).
In addition, these solutions are axially symmetric and converge to =1 away from

M,, i.e
U (1) = ua (2’|, 23), 2z = (2,23) €R®

ul(x) =1, as dist(z, M) — oo.
The Morse Index of us, m(ue), satisfies that

1
m(uq) > ¢olog <> , asa—0.
e

Entire solutions with multiple transition layers to in R? were found in [7]. In
this case the nodal set of the solutions consists on multiple asymptotically straight
lines, not intersecting themselves, whose locations are governed by the Toda system
of ODEs.

As a byproduct of this result, we also present a new familiy of solutions to
equation in R3, with Morse index 1 and the property that its zero level set,
outside a large ball, has four logarithmical divergent connected components. The
transitions of these solutions take place near the graph of a radially symmetric
solution to the Toda System in R%Z. This is another step in the program towards
the study of finite Morse index solutions to (L.1J).

In order to state our second result, we consider a smooth radially symmetric
solution (g1, g2) of the Toda System

Aqi+age V2@ ) = Agy —age V2(@9) =0, inRZ (1.4)

where ag > 0 is the positive constant from [I} To be more precise, we assume that
—q1 = g2 = ¢, and the function ¢ is a solution to the Liouville equation

Aq—age2V?9=0, inR? (1.5)

given explicitly by

q(r,p) = ﬁ log (f;o (1+ pr2)2> : (1.6)
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We remark that, for every o > 0, the functions

Galr) = =10z () aan), - azalr) = 105

are also smooth radially symmetric solutions to (|1.4). Denote by M, the graph of
the function qjo. Our second Theorem states the following:

1

(0%

) + q(ar), r>0

Theorem 2. For all sufficiently small o > 0 there exists an smooth azially symme-
tric bounded solution us to equation (1.1)) such that m(us) =1 and

ua(a'2) = w(z - qialaa’)) — w(z - qzalaa’)) — 1 + o(1), asa—0

forz = (rcosf,rsing,z), |z| < Z+5-log(1+r?) and the location of the interfaces

q;-as is governed by the Toda system on R? and

1
920 — Qla 2 \/ilog (Ot) + IOg (1 + |aml‘) .
In addition, these solutions even in the z—wvariable and they converge to +1 away
from the graphs of the functions qjq, i.e

U (', 2) = ua(|2'], 2) = ua(2’, —2), forxz = (2',2) € R3.

2

Uq

(x) =1, as dist(z, Mjq) — oo.

Remark 1.1: The proof of Theorems [I] and [2] strongly relies on an infinite di-
mensional reduction procedure, in the spirit of the pioneering work due to Floer
and Weinstein, see [12] and for which the choice of a ”good” approximation of the
solution is of vital importance. The proof also combines elements from the analysis
made in [9] and [11] for one transition in a noncompact setting and [10] for multiple
transition for the compact setting. We remark that, contrary to the compact case
treated in [10], no gap condition is required.

Remark 1.2: An important ingredient in the proof of Theorem [I} is the nonde-
generacy of the catenoid. To make this more precise, let us consider the Jacobi
operator of the catenoid

J(h) = Aph+ | An|?h,
where |Ajs|? is the euclidean norm of the second fundamental form of M. M is
nondegenerate, in the sense that the bounded kernel of J consists exactly on the
jacobi fields
zi(x) =v(x)-e;, foreveryxze M, i=123.

associated to the translation along the coordinates axis. It turns out that a suitable
right inverse for J can be found. This implies that M is isolated in a smooth
topology.

This kind of nondegeneracy is expected to hold true for complete embedded
minimal surfaces with finite total curvature, but it is known to hold true not only
for the catenoid, but for some other important cases, such as the Costa-Hoffman-
Meeks surface of genus k. Nondegeneracy has been a used as a tool to construct
new minimal surfaces, see for instance [19], [23], and also to construct solutions to
the Allen-Cahn equation over compact manifold, see [27].

The paper is structured as follows. Sections 2 through 8 are concerned with the
construction of the solutions predicted in Theorems Theorem [I] and [2] while section
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9 sketches the estimates and computations regarding information about the Morse
index of these families of Solutions.

2. GEOMETRICAL SETTING NEAR A DILATED CATENOID

In this section we compute the euclidean laplacian in R3, in a neighborhood of
the dilated catenoid M.

Let us consider the curve
~v(s) = (cosh(s),s), s€R.

The set v(R) corresponds to the catenary curve in R?, for which we can compute
the corresponding signed arch-length as

v = | "IW()lld¢ = sinh(s), s €R.

Setting

s(y) =logly +V1+9?), weR

we can parameterize v(R) using the mapping

Wsw) = (VI+e2 log(y+V1+47), yeR

Let us now consider the catenoid M in R3, with v(R) as profile curve. The
mapping Y : R x (0,27) — R3, defined by

Y(y,0) := (\/1 +y2cosf, \/1+y2sinb, log(y + /1 +y2))

gives local coordinates on M in terms of the signed arch-length variable of v(R)
and the angle of rotations around the z3-axis which, in our setting, corresponds to
the axis of symmetry of M. Observe also that for y = (y;,y4,v3) € M

r(y) =y, y2)l = V1+y?, y=Y(y,0) € M.
We consider local Fermi coordinates
X(y,0,2) =Y (y,0) + zv(y,0), yeR, 0€(0,2n), z€R.

This map defines a smooth local change of variables onto the open neighborhood
of M, given by

1
N = {Y(y,@) +2v(y,0) |2 <n+ 510g(1 + yQ)}
for some small, but fixed n > 0. Observe that |z| = dist(z, M), for every z € N
with x = X(y, 6, 2).

Let us compute the euclidean laplacian in AV, in terms of these local coordinates,
from the formula

1

Ax = Jaew)

where g;; = 9;,X - 0;X corresponds to the ij-th entry of the metric g on N and
97 = (97 ")is-

9i(\/det(9)g"9;), i,j=1y,0,2
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Computing the metric g, we find that

N
gy 00 1+ 55) 0 L0
L R I T,
9zz 0 0 1
so that
Videt(g) = /1 + 2<1 G >
e = - .
I Y (1+y?)?
Since

= \/(%(m [0,(V/Aet0)5,10,) + Do/ At (9)az ) + 0= (\/Aet (92

we find by a direct computation that

Y 1 2z
0 Ogp —
1+ y+1+y2 06

(1+y2)2 7~
where

D = za1(y,2) Oyy + za2(y,2) Ope + 2b1(y,2) 0y + 23 by(y, 2) 0.
and the smooth functions a;(y, z), b;(y, z) satisfy

lai| + [y Dyail = O(ly|=2), [ba| + |y Dybi| = O(ly|~*)
(2.2)
[b2| + |y Dybo| = O(ly|~®)
as |y| — oo, uniformly on z in the neighborhood N of M. Actually, it is not hard
to check that, inside N and for ¢ = 1,2

ai(yaz) = ai,O(y) + Zai,l(yaz)a bl(yaz) = bl,O(y) + Zbl,l(yaz)7

(2.3)
ba(y,z) = bao(y) + 22 b2 1(y, 2),
where
(—2)”1 2y 2
i = ) b = - 3 b = - ;
a,O(y) (1+y2)z 1,0(y) (1+y2)2 Q,O(y) (1+y2)4
and

lai, 1] + |y Dyai 1| = O(ly|=F29), |by 1|+ |y Dyb1,1| = O(|y|~®)

[b2,1] + [y Dyba. 1| = O(ly|~*%).

At this point, we remark that the catenoid is an axially symmetric minimal
surface, and the functions a;, b;, ¢ = 1,2, also share this symmetry and actually
they enjoy the additional properties

(Zi<y,2) :a’i(_y’z)7 bl(y?z> = _b1<_y7z)a bQ(yaz) :bQ(y7Z), $:X(97972’) EN
Let us now consider a large dilation of the catenoid M, given by
M, =ao"'M

for a small positive number a.
We parameterize M, by Y, : (y,0) — o~ 'Y (ay,6) and define associated local
Fermi coordinates

Xa(y,0,2) = o 'Y (ay,0) + zv(ay,0)
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on the neighborhood N, = a~'N of M,. Observe that
1
N = {0 0) 4 2vlan) 1ol < 2+ tos(1 + (@)}

Scaling formula (2.1)) we find that
2 o?

a”y
o, L °
2 y+1+(ay)2

Dnp —
1+ (ay) o0

Ax, = 0. + 0y + 2% 0.+ Do (24)
(1+ (ay)?)?

where

D, = aza(oy, az) 0y, + o® 2z as (o, az) Opg + o 2 by (ay, a2) Oy + ot 22 bo(ay, az) 0,
and the smooth functions a;, b;, i = 1,2, satisfy and .

Let us consider next an arbitrary smooth function A : R — R and local coordi-
nates near M,, defined by

Xan(y,0,t) = a 'Y (ay,0) + (t + h(ow)) v(oy, 0)

onto the region N, which can be described as

N, = {Xa,h@,a,t) bl < L+ Liog( TP >}.

Observe that for z € M, we have © = X,(y,0,2) = Xo.n(y,0,t), which means
t = z — h(ay). We will often emphasize the description of the region N, in terms
of the local coordinates X, j by writing /\/’a’h.

We compute directly, from expression (2.4)), the euclidean laplacian in these new
coordinates.

Lemma 2.1. On the open neighborhood N of M, in R3, in the coordinates
x = Xan(y,0,t), the euclidean laplacian has the following expression:

o’y a?
AXa,h = Oy + Oyy + 1T (ay)2 8y + T (ay)2 Ope
_ 2 ) oy / 2(t +h)
o {1 + T nen+ Fim | o
- 2ah/(ay) Oy + &P (ay)]? Ou + Dan (2.5)
where
Don = a(t+h)a(ay,alt+h)) (Oy, — 20k’ (ay)dy: — B (ay)0; + 2[K (ay)|*Ou)

)
a®(t + h)as(ay, a(t + h))deg
o2(t + )by (ay, alt + b)) (9, — ol (a)d)
ot (t 4 h)3ba(ay, alt + h)) O (2.6)
and the smooth functions a;, b; are those described in -.

Proof. Set z = t+h(ay) and consider a function U € C?(N, ). In the coordinates
Xa,n as well as in the coordinates X, we can write

U(Xa(ya 0, Z)) - u(y, 0, Z) and U(Xa,h(y; 0, t)) = U(ya 0, t)

which means that u(y, 0, 2) = v(y, 8, z — h(ay)).
It remains to notice that in the local coordinates X,

azu = 8151), 8zzu = att’l)

+ + +
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aau = (%”U, 69910 = 899’0
dyu = dyv — ah/(ay)dpv
Dyyu = Oyyv — 20k’ (ay)Ogyv — &*R” (ay)Opv + &> [h (ay)]2Oyv.
Substituting these partial derivatives into formula and using that z = t+h,
we get expression . O

Remark 2.1: The Laplace-Beltrami operator of the dilated catenoid M, in the
coordinates Y, (y, 8), corresponds to the differential operator

a?y a?

9, +
L+ (ay)? ™" 1+ (ay)?
with the convention that M = M;j. On the other hand, since each one of these

dilated catenoids is a minimal surface, we have that the Gaussian curvature, Kz,
of M,, is given by the relation

AMQ = 3yy + Ogo

2a?
(14 (ay)?)*’
where |Aps(y)| is the norm of the second fundamental form of the catenoid M.

2K, (y) = —o?|Ap(ay)|® = — yeR

Hence, we can write the euclidean laplacian in expression (2.5)), as follows
AXa,h = att—l—AMa — a? {AMh+(t+h)|A]\/[|2} Oy
—2ah (ay) Oy + o?[W (ay)]® Oy + Dan (2.7)

where the functions h, Aysh, |Ay|? are evaluated in ay.

3. JACOBI-TODA SYSTEM ON THE CATENOID

In the previous section, we discussed the system of coordinates and differential
operators that come into play in the proof of Theorem [I} We continue our discus-
sion providing a detailed description of the approximate nodal set of the solutions
predicted by this Theorem. As mentioned in the introduction, the location of this
nodal set is governed by the nonlinear system of PDEs for h = (hy, ha, ..., hy)

o (Anhy + [Am|? ) — ao[efﬁ(hlfh“l) - efﬂ(}”“*h’)] =0, inM (3.1)

where ag > 0 is a constant, a > 0 is a small parameter and with the convention
that
—OO=h0<h1<"'<hm<hm+1=OO.
In this section we provide a complete proof of the following proposition.
Proposition 3.1. For every o > 0 small enough there exists an azially symmetric

and smooth vector function h = (hy, ..., hy) solving system (3.1) and satisfying
that

hy = (zm;l> {oa + <1 \/;Ua>log(|AM(y)|2) +hy, l=1,...,m
(3.2)

where o, ~ log(a™t!) and the functions El satisfy the estimates

hi(y)| < K6ilog(2+7(y), yeM

H(1+r(y))iD<i>ElH <K;j8%7F 1=1,...m j=1,2,...
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for some large constant K > 0, independent of a > 0. In addition h is even respect
to the arch-length variable of the catenoid M

We split the proof of proposition [3.1] into a series of steps, each of which is
presented as a subsection.

3.1. Decoupling and the approximate Solution: We look for a solution
h = (hy, ha, ..., hy) to (3.1) having the form
hl—<l—)oa—|—ql, l=1,...,m (3.3)

where the constant o = o, solves the algebraic equation

oo = ag e~ V2o

so that o, is a smooth function of «, satisfying the asymptotic expansion

2 2 log log log 25
oo = log \fgao —log | log \[2&0 + O (ogog(>g1a2> )
o o loglog ==
In what follows, we omit the explicit dependence of o respect to a and we set

§=o0"1.
Plugging (3.3) into (3.1]) and dividing by o, we obtain the system for (g1, ..., ¢m)

5 (AMQZ + \AM|2(]1) _ |:€*\/§(‘Zl*q1—l) _ e*\/ﬁ(qquz)}

1
+<l—mz+>|AM|2=o, in M, I=1,...,m (34)

Before solving system (3.4)), let us introduce some useful notations. Consider the
invertible m x m real matrix

-1 1 0 0 O
0o -1 1 0 O
0 o -1 ... 0 O
B = . . . . . . (3'5)
0 0 0 -1 1
1 1 1 1 1
and the auxiliary functions
q1
v R, q o .
()= (2) o
dm—1
Let us introduce the notation
ev1 1

evm—1 1
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and consider the constant invertible (m — 1) x (m — 1) matrix

-2 1 0 --- 0
1 -2 1 0
C= Do e e ) (3.6)
o --- 1 -2 1
0 O 1 -2
We notice that the [—th entry of the constant vector B~! - 1 corresponds to
| — ;i
With these notations, system (3.4) can be written as
§ (Apv+]AnPv) + C-e V2V 4+ |Ay[?-1=0, in M (3.7)
Apvm + |Ay|*vm =0, in M (3.8)

Since matrix B in (3.5) is invertible, any information about system (3.7))-(3.8)
has a direct translation into system (3.4)) and viceversa.

Taking v,, = 0 in (3.8)), we only need to take care of system (3.7)). In order to
solve this system, let us denote

E(v,8,y) =6 (Apv+ [Aul?v) + C- e V2 + [4Ay]?1 (3.9)

We want to find an approximate solution vy to (3.7) such that E(vg,d,y) is as
close to zero as possible. Writing

vo(y,0) = wo(y) +dwi(y)
expression (3.9) becomes
E(vo,d,y) = C-ev20 4 |Ay[?1

+8 (Aarwo + [AuPwo) + 3Dy (C-e™V2Y)

V=wo

+6% (Aywr + [Ay P wr) +C- [e\/ﬁ(“’ﬁ‘swl) —e V2w _§D, (67\/§v> w1

V=wo

(3.10)

Proceeding formally by taking § — 0, we find that wy must solve the algebraic
equation

C-e V2 4 |4y 21 = 0. (3.11)
where we recall that in local coordinates
A 2= =Y (y,0).
From this we write wo = (wo,1, - - -, Wo,m—1) Where

1 1
naly) = = o (GlAw@Em = 1)1) . 1<t<m-1
so that 1
= ﬁ

for some constant vector c¢g. A direct computation yields that

Apgwo + |AnsPwo = |Ap > (2- 1+ wp) . (3.13)

wo log (|Awm|™?) 1 + <o (3.12)
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With this choice of wg, dividing expression (3.10]) by ¢ and taking 6 — 0, we find
that w; must solve the algebraic equation

D, (c-e—ﬁV) cw + (Aprwo + [Ay[Pwo) = 0. (3.14)
V=wo
Observe that
D, (c : e*\/?V) = —V2|Ay[>C - diag <(m _m>
V=wo 2 (m—1)x(m—1)
—2a1 as ... .. 0 0
ail —20,2 e N 0 0
O as —2(13 - 0 0
= V2|Au|? . S . . (3.15)
: : - - : 0
0 0 Am—3 _201777,72 Am—1
0 0 0 am—2 —20m—1
where
-l
a; = M l=1,....m-—1

2 )
Directly from (3.15)) we find that

~C - diag <(m;3)]> .
(m—1)x(m—1)

=
I
=

and consequently (3.14) becomes

V2C - diag <(m;j)j>m_lw1 = (2-1+4wp).

It follows that

1
Wy =—V2-1— 5 log (|JAm|™%) -1+ &1 (3.16)
for some constant vector ¢;. Therefore, our choice of the approximation to (3.7) is
1
vo(y,0) = L (1 - 5) log (|JAv)|72) | & | +co+da
’ V2 V2 )

and observe that
E(V(),(S,y) = §2 (AM w1 + |AM‘2L«J1)

+C- {e‘ﬁ(“’o“‘é“l) —e V2w _§D, (e‘ﬁv) 5w1} . (3.17)

V=wo

From (3.12), (3.16)), (3.17) and a direct computation we get the pointwise esti-
mate in M

|E(vo,8,y)| < C82|Apnr|* =972 [1+ [log (|An|?) |+ O(|log (|Ane[?) )] - (3.18)
for some £ > 0 small. To verify estimate (3.18]), first recall that

r(y) =1yl y=("ys) € M,
which in the local coordinates y = Y (y,0) reads as 7(y) = /1 + y2.
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Next, using Taylor expansion up to second derivatives in the region of M where

1) log(|AM\2) < K;

we get that

e~ V2 (wotdw) _ o=V2wo _ 6D, (e*ﬂv) 0w

V=wo

< C 8| AnPlon

where K7 is independent of § and y. Since |A/]? ~ O(r(y)~*), this actually occurs
in the large region determined by

Ky

45

riy)<e®m, yeM

while in the remaining part of M, we use the fast decay of |Axr|? to get that

e~ V2(wotdwn) _ o—vV2wo _ 0D, (e_ﬂv) 0w

V=wo

C'|Apy|2e? 108D

IN

< )P

which is exponentially small in §, provided that we choose 5 so that 0 < 8 < 4—44.
Clearly, (3.18]) follows at once from these remarks.

3.2 Solving the Jacobi Toda System. Next, we linearize system around
the approximate solution vo(y, d), we have described in the previous subsection.

Let us first introduce the topologies that will be used to set up our functional
analytical scheme. For functions g and ¢ defined in M, 1 < p < oo and > g we
consider the norms

lgllp.s = (L +7(3)")gll Lo (ary (3.19)

I€lls,00 := S1D*Clloc,2 + 8% [|(1 +7(¥) DCll e (ary + [ log(r(y) +2)1C|L°<E(M)~)
3.20

1 _

ps + 02 [(L+ 7)) Dl + [og(r(y) +2)7" Cllzee(an-
(3.21)

Next, we study the linearization of system ([3.7) around vq(y,d). Recall that

1Sl5.5.5 == SI1D*¢]

1
vo(y,d) = % <1 - ji) log (|[Av()|™2) | @ | +co+da (3.22)

and we look for a solution to (3.7)) of the form
v =vg+ (.

Thus, we are led to study the system

1) (A]\/IC + |A]\4|2 C) + D, [C . e—ﬂv] C =

v=vo

vV=vo

— E(vo,0) — (c e V20H0) L @LemV2Vo _ [C : e*ﬁV} g) . in M.

(3.23)
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Let us observe that

D, {C . e_ﬂ"] =D, {C . e_‘/i"}

v=wo+owq

+C- ([Dve_‘/i"} g =D [e—\@V]V:w ) . (3.24)

Proceeding as in (3.18)), it can be checked that

c ([ -] )| se e

V=wqo

B
for any 0 < 8 < 4 — 44. Consequently, we can write system (3.23)) as
ﬁg(g) = —E(Vo,(S) — Q(VO,C), in M. (326)
where

Ls5(C) =6 (AmC+[Am|*¢) — V2|Au|PC - A(y,5) ¢

2 (m—1)x(m—1)
| 1Au 2 (A 0) = AC0)) ||, S C6. 0< <445
and
Q(vg,¢) i= C - e7V2o+O _ . eV _ P, [C . e,ﬁv}

vV=vyg
The following proposition provides a suitable linear theory needed to solve the
linear equation
L5(¢) =g, ,inM (3.27)
in the class of axially symmetric even functions.

Proposition 3.2. For every § > 0 small enough and any given azially symmetric
even vector function g with

19 1lp.s < o0
for % <p< > and % <p<4- %, there exists a unique axially symmetric even
solution ¢ to system (3.27)) satisfying the estimates

_3 ||~
I€ll5.p.6 < C6~2 [|gllp,5 (3.28)

_3 i~
1C[5,00 < CO77 |Gl oo, (3.29)
where we recall that
1 _
1€ ll6.0,6 = 011 D*Cllp,s + 821+ () DClleeary + [1log(r(y) +2) 7" ¢l ar)-
We remark that the constant C' > 0 in proposition does not depend on ¢ but

rather on 8 and p. We provide the proof of this result in next section.

We finish this section solving system (3.26)). Let ¢ = Ts5(g) denote the linear
operator provided by proposition We recast system (3.26]) as the fixed point
problem for the vector function ¢

¢=R((), R(C):=Ts[-E(vo,6) — Q(vo,¢)]

in the Banach space X of smooth vector functions ¢ with the norm

1€l = l¢lls,00 < 00
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From ([3.18) and for any § such that 2 < 8 < 4 — 46, we get that
1BV, 8)[lcc,p < C 62 (3.30)
and consequently, from (3.29)) we obtain that
IR(O)|lx = I T5[ E(vo,8)] || x < C57.

On the other hand, proceeding as we did to verify (3.18)), for any % <p<4-46
and any ( such that
I¢lx < ot (3.31)

it follows that

IT5[Q(vo, Ol lx < C6 3 Q(0,0) lloop
ci1¢)%

7

O(6%).

A

Finally, we check the Lipschitz character of Q(vg,¢) respect to ¢, we simply
observe that for (1, (s satisfying (3.31]), we have

Q(V07 Cl) - Q(VO7 CQ) =
C. |:e*\/§(V0+C1) _ e*\/i(v()*FCQ) o Dv(ef\/iv)vzvo (Cl _ §2)j|
From this and proceeding again as we did to obtain (3.30)), the inequality

1Q(vo, &) — Q(vo, &) loos < C 831G — Gl x (3.32)
follows. This implies that

IR(G) = R(G)lx < C33|Q(vo, 1) — Q(vo, ) llsep < €02 11 = ol x-

Hence, the function R maps the ball in X of radius Kd % onto itself, provided the
constant K > 0 is chosen large enough, but independent of 6 > 0 small. A direct
application of Banach fixed point theorem allows us to solve system . We
have thus proven the following proposition.

Proposition 3.3. For every § > 0 small and 8 such that 3 < 3 < 4(1 — §) there
exists a unique axially symmetric even and smooth solution ( to the system

ﬁé(() = _E(Vové) - Q(V()aC)? in M

satisfying that
i

[¢lls,0 < K 0%, [|(1+7()) DI |l < K617, j=1,2,...

To conclude the proof of proposition |3.1] simply notice that, from the previous
proposition and a direct computation, the solution h = B~ [vg + (] is such that

h = (z— m;”) [oa + (1— \/;Ua) 1og(|AM(y)|_2)} +hy, l=1,...,m

with the El as predicted in Proposition
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4. JACOBI OPERATOR AND THE LINEAR JACOBI-TODA OPERATOR ON THE
CATENOID.

This section is devoted to prove Proposition [3.2]and the study of the linearization
of the decoupled Jacobi-Toda system around the exact solution we found in the
previous section.

4.1 Linearized Jacobi-Toda Operator. We first prove proposition In
order to do so, we study the linear system

6AMC + [ApP(—V2C - A(y,0) +61) ¢ =G, in M (4.1)

where we recall that

Aly,0) = diag <<m—m>
2 (m—1)x(m—1)
and the matrix C is given in (3.6). Actually, a direct computation shows that the
numbers
1 m—1

].’ 5, ceey T
are the m — 1 eigenvalues of the matrix —C, so that —C is symmetric and positive
definite. Let us write

N

¢(=[-Cl7y, §=[-C]

g.
System (4.1)) becomes
SANMY + |Ay|?(6T + B)y = g, in M. (4.2)
where the matrix B is given by
1 1 N 1
B = ﬁ[—C] 2diag ((m = 7)7) (m—1)x (m-1) [-CJz.
Next, we consider the eigenvectors €1, ..., é,_1 of the matrix B, i,e

Bélz/\lél, i=1,...,m—1

and we write
m—1 m—1
b= e, g= Y Giés
i=1 i=1
Hence, system (4.1)) decouples into m — 1 scalar equations, namely

SAn i + |AuP(Ni+0)¢hi = gi, In M, i=1,....m—-1 (43

The eigenvalues A1, ..., A1 are positive, a fact that makes invertibility of each
equation in a very delicate matter.
Without any lose of generality, we study solvability theory for the model linear
equation
Ls(¢) = § Ap¢p + |An[?¢ = g, in M. (4.4)
Since we are working in the class of axially symmetric and even functions, we
only need to study solutions to

Lsy =0, in MnN{xz3 >0}
which in the arch-length variable of M reads as the ODE

d (77/1”(2!) + 1 _Eyg W(y)) + mw(y) =0, y=>0. (4.5)
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. _ 1
Let us denote ys > 0, the real number such that /1 + yZ = 75
Consider the change of variables y = sinh(t) and consider the outer region y > ys.

Let us choose T > 0 so that & cosh®(T5) = 2. Hence writing solutions to (4.5)) in
the form ¥ (y) = ¢(t), we see that the function ¢ must satisfy

Ot +ps(t) o =0, ps(t) =20 "sech®(t) t>Tj (4.6)

The following lemma gives us a precise description of the solutions to (4.6)) in
the outer region t > Tj.

Lemma 4.1. The linear ODE (4.6) has two linearly independent solutions, ¢1(t),
@a(t), satisfying that

p1(t) =t+0(), Ohpi(t) =1+0t™Y), fort>Ts (4.7)
Ga(t) =1+ 011, Oepolt) = O™ Y, fort>Ts (4.8)

provided § is small enough, which amounts to the fact that Ts is large enough. Even
more, ¢2(t) satisfies the estimate

10:02(t)] < Cllg2ll Lo (15.00) P5 (1), T > Ts. (4.9)

Proof. First let us look for a solution ¢1(t) to (4.6) of the form ¢4 (t) = tv(t). We
find that v(¢) must solve

O (t? Opv(t)) + ps(t)t? v(t) = 0.
Setting z(t) = t* 9;v(t), we obtain the first order IVP for z(t) and v(t)

0uo(t) = ~ps(O)Pe(t), Dy ult) = a(0), +(Ty) =, o(Ty) =,

Integrating each equation on the system, we find that

z(t) = zp — /t ps(T)T20(T)dT, 0(t) = o —|—/

Ts

t
—z(T)dr.

Ts 72

Hence, using this integral formulas and Fubini’s theorem, we obtain the integral

representation for z(t)

z(t) =z — vo /t ps(T)T3dT — /t %Z(T) /Tt ps(s)s?ds dr.

T5 Té
Next, we prove that z(t) is bounded. First observe that

t o]

0< / ps(T)72dr < / ps(T)TdT < COT T2 218 < OT?
Ts Ts

where C' > 0 is independent of §, provided § > 0 is small enough. On the other

hand

t

[2(t)] < C (|20 + 6~ Juol) +/ ps(7)|2(T)ldr

T,
and directly from Gronwall’s inequality we obtain that

(01 < (el + 5 ol s ([ t pa(r)ir).

T;
Since - o
/ ps(T)dr < —e 2T
Ts 5
then for ¢ small enough, and taking vy = 0, we find that |2(¢)| < C|z|, for t > Ty.
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Plugging this into the integral formula for z(t) we observe that

2(t) = 2 +/t Z(T);jrtp(;(s)SstdT.

Ts

Since z(t) is bounded, we obtain that

+(00) = Tim 2(1) :zo+/wz(7):2[mp5(s)s2dsd7

t—o0 Ts

and without any lose of generality we write

oo 1 t
2(t) :1+/ 2(7)—2/ ps(s)sidsdr, t > Ts.
t T T
Observe that
|2(t) — 1| < Cps(t) < Ce 2T ¢ > Ty,
From the integral formula for v(t), we obtain that
o) = vloe) + [ a(r)
t
so that, we may choose
1
o1(t)=t+0Q1), t>Ts5, Op1(t)=v(t)+tov(t)=1+0 (t) .

Using the reduction of order formula, we find the second solution ¢2(t), satisfying
that

1 1
P2(t) =1+ 0 (t> , Oida(t) =0 (t) :
To find estimate (4.9)), observe that 0;¢2(c0) = 0. So we obtain from (4.6)) that

Orpa(t) = — /too ps(T)p2(T)dr, t>T;s

from where
|01p2(t)| < Clld2llLoe (15,00) P5(t),  for t > T5.
This concludes the proof of the lemma. O

Next, we describe solutions to (4.5) in the whole line and in the arch-length
variable y. Let {¢1(y),%2(y)} be a fundamental set of (4.5, with

i(0) = cin, Oyi(0) = ¢i067 %, i=1,2 (4.10)
where c1,1¢2.2 — €1,2¢2,1 = 1, so that the wronskian is given by
53
W(’L[Jl,ll)Q) = Vy cR.

VT

The following proposition completes the description of the kernel.

Proposition 4.1. The fundamental set {11,102} of (4.5)) satisfies the following
estimates

Wi <CA+y)*, 19,i(y) S CO 21 +y>)7T, 0<y<ys (411)

[i(y)| < C3 T log(8)| In (1+Jyl), (1 +[yDIdyws(y)| < 71, y>ys. (4.12)



MULTIPLE CATENOIDAL END SOLUTIONS TO THE ALLEN-CAHN EQUATION IN R® 19

Proof. We pass to the sphere S? using the stereographic projection
y =tan(d), for0< 6 <b;s
where the number 6 < 05 is such that ys = tan(f;), 0 < 05 < 5. Writing
Y(y) = p(0), for 0 <6 <bs

we find that ¢ solves the equation

2
Doy p(0) — tan(0) By p(0) + 5 ©(6) = 0. (4.13)
Assume further that
1 0
=~y —= ], for0<6< b 4.14
¥(y) COS(9)7<\/5> or 5 (4.14)
so that
Dss Y(8) + 14242 2(Vos) ) y(s) =0, for0<s< =%
s (s 1 4sec s) | v(s) =0, for s s(;.f\/g.

We claim that v(s) and J5y(s) are uniformly bounded in (0, ss). To prove this
claim, we consider the pointwise energy

I5)i= 1026 + 14 5] o)

for which 5
0s J(8) = —205v(s) v(s) 1 sec?(Vd s).
Hence, for constant C' > 0 independent of § > 0, it follows that

|0s J(s)| < C J(s) % sec?(V0 s)
and consequently
0<J(s) <J(0) +C’§ /OS J(€) sec? (V&) de, for 0 < s < s5.
Using Gronwall’s inequality, we find that
J(s) < J(0)exp (Ci /055 sec?(V6€) d§) . (4.15)
We compute explicitly the integral in to find that
g /055 sec? (V6 &) de = gtan(\fés(;) = gtan(ﬁg) < ¢
where ¢y does not depend on § > 0. Hence, we find that
59 =109 + 14| hF <010, 0<s<

and so the claim is proven. Pulling back the change of variables given in (4.14]) and

since ( ) ( )
1 357 % Sin(ﬁ)'y %
2 —_
W) oW = 5 s T 2t (e) (4.16)
we find that

¥(0) = 7(0), 9, %(0) =62 8, 7(0).
and consequently we obtain .
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On the other hand, using lemma [£.1] we may find another fundamental set for

([@5), say {7#1( ),¥2(y)}, such that
Dily) =1+ ly) +O01), (1+y)on(y) =1+O0Mm 1 +y)7"), v =>u

Ua(y) =1+0M(L+y)7"), L+ y)dya(y) = Olog (L+[y) ™), ¥ > s
and with wronski determinant

0 < W (W1, ) =c(1+y?) 2

Let us consider next equation (4.5)) for ¢; in the region y > ys. Since (s),
|0sv(s)| are uniformly bounded, we find from (4.14) and (4.16)) the conditions

Vilys) = O 1),  Ayhilys) = O(51). (4.17)
and we write _ B
Vi(y) = cihr +cipha, Yy >ys, i=1,2.
A direct computation shows that

( ) Ry ( Bybalys)  —wa(ys) > , ( Viys) )
Ci2 —0y¥1(ys)  ¥1(ys) Oy1bi(ys)
From this we obtain that
ci1=0(71), cia =00 1]log(6)])
and clearly follows at once from these remarks. O

The proof of Proposition : Using proposition we choose a solution to (4.4])
defined by the variations of parameters formula

W(y) = —5 Hn(y /\/1+52w2 €)d + 54 a(y /\/1+§2w1 e

(6)d
(1.1 >
5 d

In order to estimate the size of 1, we observe that for 2 < p < oo, 8 >
0 < y < ys, it holds that

1

[ VITE @l s < C s ([ 41605 ae)”
Directly from this inequality and using , we find that
wt) [ VITEB© aee| < Co i
and since we are taking g > 5 and using again , we get that
SENVIH W W) + ) <O T [gllpp, 0<y<us  (419)

Proceeding as above, we observe that for y > ys

/ VT E ()] [5(6)] dé < C gl + / T ()] () de

and using (4 and since g > 2, we find that for some € > 0 small

pBs HI=1,2, i#]

A

/f’\/l+52\wi<s>||§<s>|ds < Clog®)|6-H s ([ 14180 tog 1+ 1))

IN

Co*llgllp.s-

A
Iy
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Hence, using again (4.12)), it holds that
1 _ ER
021+ y? [ (y)l + log2+ y) 7' [w(y)| < CO7% [gllpp, v >ws.  (4.20)
Putting together, estimate (4.19) and (4.20) we obtain that

VoI +r()D Bllzean) + og(2 + () ™ Yl ey < CO 5 [Glp (421)

Finally, observe that for 2 < p < oo, 8 < 3 and some ¢ > 0 arbitrarily small, we
have that

/M(1+r(y)ﬂ)” [An ()P [ ()P dVir < C|l(Log(r(y)+2) ™" ¥ll L~ (ar) /M(HT(Y))(B““E)pdVM-
Since (8 —4)p < —2, we obtain that

1A |5 < Cll(log(r(y) +2) ™" $ll e ary < C 757
and so, from (4.4)

p,B"

3~
¥llsp,8 < CO3gllp,8
where

1 _
1llsp.s = 1D ¢llp,s + 62 [[(1+1(y) DYl poe (ary + 1 0g(2 +7(¥)) ™" ¥l oo (s
The case p = oo is treated in an analogous fashion.

To finish the proof of Proposition we simply notice that linear system (4.1))
can be written as the fixed point problem
o =1L5'[9) — Ly [~1Am[*(A(y,0) — A(y,0)9)]
and as we observed before, it holds that

[1An | (A(-,8) = AG,0) ||, < Co.

then a direct application of the contraction mapping principle, in both of the norms

(3.20])-(3.21]) for 1), completes the proof of the proposition

4.2 The Jacobi Operator in M. To study the linearization of the system
(3.1), we also need to develop solvability theory for the equation
Tu () = Ayv+ [AyPv =g, in M. (4.22)

Operator Jj; in equation corresponds to the linearization around the
catenoid M of the mean curvature operator.

It is well known that the catenoid M is L°°-nondegenerate, in the sense that the
functions z; = v - ¢;, for i = 1,2,3 are the only bounded solutions to the equation

Ju(v) = Ayv + |Ay[Pv =0, in M,
where e, ez, e3 corresponds to the canonical basis in R®. One can check directly
that z3(y), which has the explicit expression
Y

z3(y) = \/TT,

is the only bounded axially symmetric jacobi field. Hence, using the reduction of
order formula with the ansatz

z24(y) =1+ s(y)zs(y), y#0.

y=Y(y,0)eM
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one can also deduce the existence of another axially symmetric element of the
kernel of s, with logarithmic growth, associated to the dilations of the catenoid
M, namely

2(y) =Y (,0) - v(y,0) =1 —In(y + /1 +y?)———, v=Y(y,0) € M.

T VT

We compute the derivatives of z3 and z4, respect to y, so we get

1
— =0y 4.23
019 (lyI~?) (4.23)

o

Oy Zé(y) = -

ol

0y %) = —n (y+VI+92) (1+4°) 7 - ea =0T (420

Since we are working in the class of axially symmetric functions, we use the
variations of parameters formula to define J~!(g) := v, where

Yy Yy
v(y) == —2(y) /0 VIFE9(©u(Ode +2a(y) [ VIFEg(a(@)de. (425)
for any function g satisfying that

lgllp.s = (L +7(5)")gll Lo (ary < o0

Formula (4.25)) defines a function v that solves equation (4.22]). We remark that,
under the orthogonality condition

/ T T g(6)za()de = 0 (4.26)

this solution is unique in the class of bounded functions with v/(0) = 0 and the
following lemma gives us an estimate on the size of J 1.

Lemma 4.2. Let g be an axially symmetric function satisfying condition (4.26)),

and such that ||g||p s < 00, for 1l <p<oco and2 < f <4 — %. Then, the function

v, given by formula , defines an azially symmetric solution to
Ay + |AyPo =g, in M,
such that v'(0) = 0 and the following estimate holds true
[ollzp.8 < Cligllp.s (4.27)
where
[Vll2,p,5 = 0]l oo (ary + 1777 (1) V0l oo (ar) + 1D 0]lp, -

The proof of this lemma follows calculations similar to those in the proof of
proposition (3.2)), so we leave details to the reader.

Remark 4.1: To prove lemma[£.2] we simply notice that an even axially symme-
tric function g in L' (M), automatically satisfies the orthogonality condition (4.26]).
In such a case, formula (4.25)) defines an even function.
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5. APPROXIMATION OF THE SOLUTION OF THE THEOREM |I|

To define our approximate solution to problem (L.1)), let us first observe that the
heteroclinic solution to

w’(s) +w(l—w?) =0, scR, w(+oo)==+1
is given explicitly by
w(s) = tanh (S) , s€R

and has the asymptotic properties

w(s) = 1-2eVE L0 (e ) 51
w(s) = -1+ 2¢V2s 4+ O (6’2‘/5‘”) , s<—1 (5.1)
w'(s) = 2v2e V2l 40O (6_2\/§‘S|> , sl >1

where w' = 9%,
S

5.1 The first local approximation. Let us consider the vector function
h = (hy,...,hy) given in proposition (3.1) and solving the Jacobi-Toda system.
Recall that every h; has the form

hi(y) = (z — m;”) [0 + V2 (1 - i) log (1 +y2)} + y), yeR. (5.2)

where B .
|hi(y)| < Ko tlog(247r(y)), yeM

H(Hr(y))f‘D(J‘)%lHLm(M)gKa—%+%, I=1,...,m, jeN

and where o is the unique positive real number that solves the algebraic equation
oo = age V2", (5.3)

Let us also consider a parameter vector function v = (vi,...,v,,) satisfying the
apriori estimate that

O'_iH(l"'r(Y))DVlHLw(M) + [[(log(2 4+ 7(y) )" vill e (ary < K1 a™oi  (5.4)

for some 79 > 0 small and K; > 0 a universal constant to be chosen large but
independent of o > 0.

Let us consider m normal graphs over M of the axially symmetric functions
fi=h +v;€C?*(M),l=1,...,m. With a slight abuse of notation we write

fl (Y(yag)) = fl(y)7 (y,G)ERX (0727T)7 1:17"'7m'
From --7 we observe that
fia) = ) 2 o+ V2 (1= 2~ b0~ log (144, yER  (53)

for some positive universal constant M > 0 and for every fixed j =1,...,m — 1.
In the region N, we consider as a local approximation the function

m _1\ym—1 _ )
Unte) = 3 wy(z = ) + L ) = (it 659

j=1
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where z = X,(y, 6, 2) € N,. Observe that for points x € N,, for which z is close
enough to h;(ay), we have that

Uo(z) ~ w; (2 = fi(ay) ).
Forl=1,...,m fixed, we consider the set

A = {Xa(y,e,z) sz — filay)| < % {a + V2 (1 - % - Mo-i> log (1 + (ay)2)] }

From (5.2)) it is direct to check that 4; C N,, for every a > 0 small enough. Set-
ting t = z — fi(ay), the set A; can also be describe in terms of the local coordinates
XO‘7fl (yv 97 t) as

A = {Xa,fl(y,a,t) St < % [a + V2 (1 — é — Mai> log (1 + (cvy)Q)] }

Next, with the aid of lemma [2.I] we compute the error
S(Uo) = AUp+ F(Up), ind;, I=1,....m
of the approximation Uy defined in (5.6) and where F(u) = u(1 — u?).

We proceed as in lemma 2.4 in [I0], collecting all the computations in the fo-
llowing lemma.

Lemma 5.1. Forl=1,...,m and x = X, 1, (y,0,t) € A, it holds that
()71 S(Up) = —o® (Anfi+ | An* i) w'(t)

+6 (1 _ wZ(t)) [e*\@t e*\/i(flfflfl) _ e\/ét e*ﬁ(fl+1*fl):|
— a2 [Au[2 ' (t) + o2 [f{]Pw"(t) — a¥(t + ) aslay, alt + f)) flw' ()

—a Y (Aufy—alt+ fi)alay,alt+ f)f]) wilt + fi = f;)
li—1[>1
’ + Ri(ay,t,vi,. ., Vi, Dv1,..., Dvy,) (5.7)

where R; = Ry(ay, t,p, q) is smooth on its arguments and

|DyRi(ay, t,p, )| + | DgRulay, t,p, )| + [Ri(ay, t,p,q)] < C a7 (14|ay|) el
(5.8)
for 0 < 0 <2, some0 <7 <1 and where

p=(1,--sVm), q=(Dvi,...,Dvy).
Proof. Denote
By = F((-1)"'0y), E»=Ax,, [(-1)"'Uu(x)].
We first compute E;. We begin noticing that

m

F(Uo) = Y F(wit+fi—f) + |FUo() = > F(w;(t+fi—f;))

Jj=1 j=1
Since F(u) = u(1 — u?), for u € R, we find that
0<F(u)<|l—ulll +u|, YVuel[-1,1]. (5.9)
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On the other hand, for |j — | > 1, we have that

o 5l =10= 31 o V3 (1= 2 4 00~ ) (1 + (e)?)

and recall that
a’oc = ap e~ V2o,

Hence, we obtain for |j — ] > 1 and for € € [0,1) that

e si= gl = 1031+ VB (1= 2 0 Y log(a + ()| < 1

%

(|j—l|— 1?) [a+ﬂ(1—i> log(1 + (ay)?)| +eltl.

v

Assume for the moment that 2 <1 < m — 1. For z = X, 5,(y,0,t) € A; and
1 < j <, it holds that

4 i)~ filen) = g o+ VB (1= 2 = MomH ) g1 + ()

while for | < j < m, it holds that

1 1
t+ filay) — filay) < -3 [0 +v2 (1 - == Moi) log(1 + (ay)z)] :
Using the asymptotic behavior of w(s) from (5.1)), we find that
U/(t+ fl o f]) — 1 _ 26*\/§t6*\/§(flffj) —+ O (@72\/§‘t+f’7fj‘) s 1 S j < l

wlt+ fi— f;) = -1+ 9 V2t V2(fi-f;) +0 (6—2\/§|t+fz—fj|) . l<j<m.
From (5.9) and the remarks made above, we conclude that
Z Fwj(t+ fi— f;)| <C ‘ mﬁ§267\/§|t+fszj| < Ca?tm (1+ |ay|)74 e—eltl
J=lz
l7—11=2

for some 0 < o < v/2 independent of & > 0 and 0 < 7 < 1 depending only on ¢ > 0.

From the previous estimate we also observe that

(=)' | F (Uola) = D F (wy(t+ fi = f3))| =

(=)' (Uo(@)) + Fw(t+ fi = fim1)) = Flw(t) + Fw(t+ fi — fis1)) +
+ Ri(ay,t,vi,...,Vin) (5.10)

where - -
1Dy Ri(ay, t,p)| + |Ri(ay,t,p)| < Ca®*7 (14 |ay|)~* el
for p=(vi,..., Vim).
Let us now denote
ar=wt+ fi—fi-1) =1, a=wlt+fi— fiq1)+1
From the mean value theorem, we can choose numbers s; € (0,1), for ¢ = 1,2, 3,
such that

Flw(t+ /i — fi) = F(1) + F'(ar + 5F"(1+5101) 0}
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Flw(t + i~ fir)) = F(-1) + F(=Daz + 2F"(~1 + s2a) a3

(~D)"E (Up(x)) = F(w) = F'(w)(ar + az)

+ F'(w) Y (=1 w(t+ fi = f5) = sign(l = 5)]
li— l|>2 )
1
+ 5w + 53 (1) 700 - D w(t + fi = f;) = sign(l = j)
li— l\>1
Hence, using that F”(1 (—1), we obtain that
(~)!TE (Uo) = Y (1) TF (w (¢4 fi = £)) +
j=1
+6 (1 _ wQ(t)) [e—\/ite—\/i(fl—fl—l) _ eﬂte—\/i(flﬂ—fz)}
+ Ri(ay,t,vi,...,Vim) (5.11)
where for p = (v1,...,vp)
1Dy Ri(ey,p)| + |Rilay,t,p)| < Ca®*T (1+ [ay|)~* el (5.12)

The remainder cases, namely [ = 1 and [ = m, are treated in an similar fashion,
replacing the term

e*\/itef\/i(flffl—l) _ e\/éte*\/g(fl+1*fl)

by the respective terms
V2 V2= f1) g VI VE (fm—fme)

So far, we have only written the term FE; in a convenient way. We still have to
compute Fs. In order to do so, we write

By = Ax,w(t) + Y Ax,, (D7 wit+ fi = 1))

[7=11>1
= FEy + Es.

Directly from lemma we obtain that
By = w"(t) — o (Amfi+ |Aml? i) w'(8) — 2| An [t () + 2 f] P w" (1)
—a®(t + fi) ar(ay, a(t+ f1)) L w'(t) = [ ]Pw"(t) }
—a®(t+ fi) bi(ay, a(t + fr) hpw'(t) — o’ (t + fi)® ba(ay, a(t + fi)) w'(t).

Using assumptions (5.2))-(5.4]), we can write F5; as follows
oy = w(t) — o2 (Bacfi + [ An[2 ) w' () — a2 Apf Pt (1) + [ /]2 w"(2)

— Bt + fi)ai(ay,at+ i) b W' (t) + Qu(ay, t, vy, Dv)) (5.13)
where
Q21 = Q21(ayat,p7 Q)



MULTIPLE CATENOIDAL END SOLUTIONS TO THE ALLEN-CAHN EQUATION IN R® 27

and
1D, Qa1(ay, b1, )| + | DgQa1 (ay, £, p, @) + |Qar (@, ,p, @) < Ca®(14|ay|) el
(5.14)
for some 0 < o < v/2.
Next, we compute Fos. A direct computation yields that
()" Ex o= > wi(t+fi—f)
li—11>1
2 2 / 112 n
—a® ) ([Aij + [AmP(fi + )] wit+ fi = f3) = [f;] wi(t+ fi - hj))
li-11>1
—&® (t+ fi) a(ay, at + f)) Z (i@t + fo = f;) = [P0+ fi = ;)
li—11>1
— o (t+ f1) bi (ay, a(t+ 1)) Z (fjw) — a(t+ fi)*balay,a(t+ fi)) wilt+ fi = f;)) .
li—11>1
Using the fact that for e € (0,1) and |[j — ] > 1
14 1
lt+ fi— fil = (1 - 5) {04— V2 <1 - U) log(1 + (ay)Z)} +elt|
and proceeding as above, we can write Eqo as follows
()" B = wi(t+ fi— ;) -
—a® Y (Aufi—alt+ f)alay alt+ i) f]) wilt+ fi = f;)
li—t1>1

+ Qo(ay, t,vi, ..., Vi, Dv1, ..., Dvy) (5.15)

where
Qa2 = Quo(ay,t,p,q)

and

| DpQ22(0y, t,v,9)| + | DgQ22(ay, 1, p, 4)| + Q22| < C o™ (1+|ayl)~te~¢ " (5.16)
for some 0 < p < v/2 and some 0 < 7 < 1.

Setting R; = R; + Qg + Qqq, we have that R; = Ry(ay, t, p, q) is smooth on its
arguments and

|DyRi(ay, t,p, q)| + | DgRilay, t,p, )| + [Ri(ay, t,p,q)] < C a7 (14|ay|) el

for 0 < o < v/2 and 0 < 7 < 1. Putting together (5.11))-(5.13)-(5.15) and using
that w? + F(w;) = 0, we obtain expressions (5.7) and (5.8) and the proof of the

lemma is complete. O

5.2 Improvement of the Local Approximation. For subsequents develop-
ments, it will be useful to have more precise information about the asymptotics of
the solution we are looking for, so we improve our first approximation Uy. In order
to do so, we write

6(1 — w2(t))e V2 = agw'(t) + go(t), /Rgo(t)w'(t)dt =0. (5.17)
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Using (5.17), the fact that the vector function h is an exact solution of the
Jacobi-Toda system in M and lemma (5.1]), we observe that

(—1)'71S(Uy) = —a® (Amvi + [An[Pvi) w'(¢)

+ go(—t) e VA=) go (1) e VRO 2 120 (1) — o [ AP tw (1)
+6 (1 — w(t)) o V2t o—V2(hi —hi_1) {efﬂ(vhv,,l) _ 1}
—6(1—w2(t) V2t o= V2(hit1—Mhi) [efx/i(lefvl) _ 1}
+av](2h) + v)uw" (t) — Bt + fi) ar(ay, alt + £)) W' (t)

—a’ Z (Amfi —a(t+ fi) ar(ay, ot + ) f]) wit+ fi = f;)

li=l1=1

+ Ri(ay,t,vi,...,vim, Dv1,...,Dvy,) (5.18)

where R; = Ry(ay, t, p, q) is smooth on its arguments and satisfies ([5.8)) for 0 < o <
/2 and some 0 < 7 < 1.

Let us consider 1y(t) to be the bounded solution to the equation
Ortho(t) + F'(w(t))dho(t) = go(t), tER
given explicitly by the variations of parameters formula
t o]
wnlt) =) [ w/(5) [ @l deds, (5.19)
0 s

From (5.19), we obtain the estimate

1 2v2t ) 9\ H

H( + eV X >0y ) O o R

Let us also consider functions 1 (t) and ¥2(t) so that
Outh1 (t) + F'(w(t))y1(t) = —w"(t), teR (5.20)

)SC] 7 €N.

Ontha(t) + F'(w(t))iha(t) = tw'(t), tER. (5.21)

Proceeding as before, we see that

t [ee]
valt) = —wlt) [ w/(5) [ ew(©) deds
0 s
and 11 (t) = —3tw'(t), from where the following estimate follows at once

e 10yl e < Cjy i=1,2 JEN, 0<o<V2

So, we consider as a second approximation in the region N, the function

Ur(z) = Uy + Y _j0 (5.22)

Jj=1
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where for every [ = 1,...,m and in the coordinates X, f,
(1) Moy t) = —e VAT gy 4 em V=R gy ()
+ o [y (aw)? 1 (t) + | Anr (o) [* ha (1)
The new error created reads as

S(U) = S(Uo) + Y Oudjo + F'(w;(t)dj.0

j=1

>+ Am 0 + Bi(di0) + [F'(U1) = F'(w;(t))] 5.0

j=1
Directly from (5.18)) in each one of the sets A;, reads at main order as follows
(—1)IS(U1) = — o (Apvi+ |Ap|Pv) w'(2)

61 () e VB VA ) [~ ]
-6 (1 _ wQ(t)) e\/§t e—ﬁ(hz+1—hz) [e—\/i(vz+1—vz) _ 1}
LotV 1 vu(t) — a¥(t+ i) ar (o alt + ) ()

— a® (Aufj—alt+ fi)a(ay, alt+ ) f)) wit+ fi— f;) + R (5.23)
where B B
R; = Ri(ay, t,vi, ..., Vi, Dv1, ..., Dvy,)
and
|DoR (o, t.p,)| + [DgR(ay.t.p,9)| + [R(y. t,p,q)| < Ca® Tra(y)teme! (5.24)
for some 0 < o < v/2 and some 0 < 7 < 1.
5.3 Global approximation. The approximation U; is so far defined only on
the neighborhood N, of M,. To define our global approximation, we use the non-

negative function 8 € C*°(R) from above as well as the cut-off function defined
by

Bale) = B(lzl = £ —2v2 (m+ 1) log(r(ay) +3), == Xa(y.6,2) €A,

for which we observe that (3, is supported in a region that expands logarithmically
in 7,(y). With the aid of this function, we set up as approximation in R3, the
function

w(z) = Ba(2)Ur + (1 = Ba(2))H, z€R® (5.25)
where H is the function

1, zxe St
H(z) = { (—1)", weS-

and S& = a~1S*, S* being the two connected components of R* — M for which
ST is the component containing the x3—axis.

We compute the new error as follows
S(w) = Aw+ F(w) = B4(2)S(Uy) + E
where

L = QV/BOLVUl + Aﬂa(Ul - H) + F(ﬂaUl + (1 - BQ)H) - BaF(Ul)'
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Due to the choice of 5, (x) and the explicit form of the error the term E, the
error created only takes into account values of 8, for € R3 in the region

T=Xa(®,8:2), |fl = L +4ln(ra(y) -2,
o)
and so, we get the following estimate for the term F
Dy E| + B < Ce™ar g (y).

We observe that the error E decays rapidly and is exponentially small in o > 0,
so that its contribution is basically negligible.

6. PROOF OF THEOREM 1.

The proof of Theorem 1 is quite technical, so we prefer to sketch the steps of the
proof and leave the detailed proofs of the propositions and lemmas mentioned here
for subsequent sections.

First, we introduced the norms we will use to set up an appropriate functional
analytic scheme for the proof of Theorem 1. Let us recall the notation

7"((E) = \/m, Tr = ($17$2,$3) S RS

and let us define for a > 0, u > 0 and f(z), defined in R3, the norm

1fllpu~ = sup (1 +r(a@)* [ flloe By, »>1. (6.1)
r€ER3

We also consider 0 < 0 < v/2, p > 0, @ > 0 and functions g = g(y,t) and
¢ = ¢(y,t), defined for every (y,t) € M, X R. Let us set the norms

Igllpue = sup  (1+r(ay)e|gllLo (s, (.0 (6.2)
(y,t)EMo xR
Blloo,pue = [I(1 + 7(ay)*)e 1G]] Loo (s, xr) (6.3)
[¢ll2.pp,e := ||D2 Ollpuse + 1Dlloc,ue + [18lloc,me- (6.4)
Finally, for functions v and g defined in M, we recall the norms
191lp,5 = 1L+ ()l Lo ary (6.5)

IVllsp.6 1= 81D*Vllp,p + 02 (1 +7(y) Dvllzee(ary + Illog(r(y) +2)7" V||L°°((M)~)
6.6

Now, in order to prove Theorem 1, let us look for a solution to equation (1.1]) of
the form

Ulz) = w(z) + ¢(z)

where w(z) is the global approximation defined in (5.25) and ¢ is going to be
chosen small. Hence, since F(u) = u(1 — u?), for U(z) being a genuine solution to
(1.1), we see that ¢ must solve the equation

Ap + F'(w)p + S(w)+ N(p) = 0, inR>.
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or equivalently
Ap + Fl(w)p = —S(w)—N(p)
—Ba S(U1) — E = N(yp) (6.7)
where
N(p) = F(w+ ) — F(w) — F'(w)e.
6.1 Gluing procedure: In order to solve equation (6.7, we consider a non-
negative function S € C*°(R) such that
_ Ll
B(s) = { 0, |S|

and define for I = 1,...,m and n € N, the cut off function for z = X, 5, (y,0,t) €
Na,fl

Cim(z) = B <t| - % {a +V2 <1 L Mai> log (1 + (ay)z)] +n) . (6.8)

g

IV IA

1
2

Observe that for £k # [ and n € N, (n - Ck,n = 0. Observe that for k # [,
Cl,n ' Ck,n =0.

Now we look for a solution ¢(x) with the particular form

pla) = D Cal)pi(yz) + ()

j=1

where the functions ¢;(y, z) are defined in M, x R and the function ¢ (z) is defined
in the whole R3. So, from equation (6.7) and noticing that (j o - ;3 = ¢;,3, we find
that

Z Gia[An, 5 + F'(Caw)pj + G2S(w) + GaN(p; + ) + (o (F'(w) 4 2)¢]
=1

A =2 (1= Ga)(F' (W) + 2+ [ 1= ¢s | S(w)
j=1

j=1
+ D 2V Vw950 + (1= Ga)N[ + D Gawi] = 0.

j=1 i=1
Hence, to construct a solution to (6.7)), it suffices to solve the system of PDEs

Ap— 12— [1= Ga| FwW+2)|v=—[1-) Gal|Sw) -
j=1 Jj=1

, inR3

- ZQVCM Vn.pi — 9iAG2 — | 1— ZCm N [Z Gi2i + 1)
j=1

i=1

j=1

(6.9)

An, o1+ F'(Gaw)pr = = G2S(w) — GaN (e + 1)
- CZ,Q(F/(W)—i_Q)’l/}a for |Z_fl(ay)| S pa(y)a = 13"'am (610)



32 O. AGUDELO, M. DEL PINO, AND J. WEI

where

paly) == % [aa + V2 (1 - 1) log (1 + (ay)2)] .y =Ya(y,0) € M,

Oa

Now, we extend equation to the whole M, x R. First, let us introduce the

differential operator
By = Q2[An, 5, — O — A, ]

for { =1,...,m. Recall that A, is nothing but the Laplace-Beltrami and which
in the local coordinates Y, (y, ), has the expression

a?y 9, + a?
1+ (ay)? 1+ (ay)?
Clearly, B; vanishes in the domain

It > % {aa + 2 (1 - 1) In (1+ (ozy)Q)] —1

Oa

A, = 0y +

e

We look for a solution to (6.10) having the form
Gu(y,t) =iy, t+ filaw)), == Xar5(y,0,1)
and so, instead of equation (6.10), we consider the equation
Oredr + Dar, &1+ F'(wi(t)) ¢ = — Si(w) — Bi(dn)

— [F'(G2w) = F'(wi (1)1 — G2(F'(w)+2)¢ — G2N(¢i+4), in My xR (6.11)
and where we have denoted

(71)l7151(w) = 7012 (AMVZ + ‘AM|2VI) ’LUI(t)
+6 (]. — w2(t)) 6—\/575 Cl 9 6_\/5(}” —hi_1) [e—ﬁ(vl—vl,l) . 1]

( )e\/ﬁt CZ,Z e—\/i(hz+1—hz) {e—\/i(vud—vz) _ 1}
+a?vi(2hy + v)w"(t) + G2 [—a’(t+ fi) ar(ay, ot + ) fw'(t) -

—a® (Anfj—a(t+ f)a(ay,alt+ f)f]) wit+ fi— f;) + ﬁl} (6.12)
where we recall that
1?{1 =Ri(ay,t,v1,..., Vi, Dv1,...,Dvy,)
and
|DpR(ay t,p,)| + | DgR(ay, t,p, @) + Ry, t,p,q)| < Ca® Tra(y)"e~e' (6.13)

for 0 < 0 < /2 and 0 < 7 < 1. Observe that S;(w) coincides with S(U;) where
(1.2 = 1, but we have basically cut-off the parts in S(U;) that, in the local coordi-
nates X, y,, are not defined for all ¢ € R.

Using (6.12) and (6.13]) and since the support of (; 2 is contained in a region of

the form
1] < % [aa —2 (1 = 1) In(1+ (ay)Q)]

Oq

we compute directly the size of this error to obtain that

1S(w) 2.0 < Ca® (6.14)
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for some 0 < p < v/2, some constant C' > 0 and some 0 < 7; < 7y small, indepen-
dent of a > 0.

Hence we solve system —. We first solve equation , using the fact
that the potential 2 — (1 — Y77, (j3)(F'(w) + 2) is uniformly positive, so that
the linear operator there behaves like Ags — 2. A solution ¥ = U(¢1,...,d,) is
then found using contraction mapping principle. We collect this discussion in the
following proposition, that will be proven in detail in section 7.

Proposition 6.1. Assume 0 < 0 < V2, 1 >0, p > 2 and let the functions fls be

as in (5.2)-(5.4). Then, for every a > 0 sufficiently small and for m fized functions
D1, ..., Om, satisfying that

||¢l||2,pu,g§1 lil,...,m

equation has a unique solution ¥ = U(¢p1,...,¢m). Even more, the operator
v = U(p1,...,¢m) turns out to be lipschitz in every ¢;. More precisely, ¢ =
U(p1,...,0m) satisfies that

[Wlx = 1Dy~ + 11+ r#(az)) DY oo gy + (1 + (@) ¢]| 1 (ro)
< O™V T+ aV Y (165 l2pme (6.15)
j=1

where 0 < fi < min(2u, p+ 0v/2, 24 0v2) and
19(65) — V()| x < Cava |6 — Bjll2pe (6.16)

Hence, using Proposition we solve equation (6.11]) with v = U (1, ..., dm)-

Let us set

Nl(¢1;-~-7¢l,---7¢m) = l(qj)l) [ I(Cl,QW) _Fl(w(t))]¢l
+<l,2( (W)+2 (¢17-~-7¢m) +Cl2N[¢l+\II(¢1;7¢m)]

So, setting ® = (¢1,...,dm), we only need to solve
Oudr + Ay + F(wi(t)) ¢y = — Si(w) — Ny(®), in M, xR (6.17)
forevery [ =1,...,m.

To solve system (6.17), we solve a nonlinear and nonlocal problem for ¢;, in
such a way that we eliminate the parts of the error that do not contribute to
the projections onto w’(¢). This step can be though as an improvement of the
approximation w. We use the fact that the error has the size

1S1(9)llp2,e < @*F7 (6.18)

and as we will see in section 7 for 0 < 7y < 79 N;(¢) satisfies that
ING(@)[|p,1,0 < Ca®*™ (6.19)
INi(®1) = Ni(P2)[lpap < Ca|[®1 = Pafl2p2,, (6.20)

for @1, ®5 € B, a ball of radius O(a**™) in the product norm ||®||2,52 .. A direct
application of the contraction mapping principle allows us to solve the projected
system

att¢l +AM0¢1 +F/(U)l(t))¢l = — Sl(W) 7Nl(@) -+ cl(y)w’(t), in M, xR. (621)
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/qSl W B)dt = 0, 1=1,....m, (6.22)
R
where

aly) = /R[Sl(w)+Nl(<I>)} W (tdt, Yi=1,....m.

This solution ¢;, defines a Lipschitz operator ¢; = ®;(v1, ..., v,,) for the product
norm

m
11 vim)llsps =D IVillps-
j=1

This information is collected in the following proposition

Proposition 6.2. Assume 0 < u < 2,0 < 0< 2 and p > 2. For every a > 0
small enough, there exists an universal constant C > 0, such that system (6.21)-
(6.22) has a unique solution (¢1,...,¢0m) = P(vi,...,vm), satisfying

[@l2,p,2.0 < Ca®m

and

[@(viyeeesVin) = @1,y m)ll2p2.o < C T (Viy ey Vin) — (F15 oo, V) lsp.8
for some fized B € (3,4 —49).
6.2 Solving the Jacobi-Toda system to adjust the nodal sets. First, to

estimate the size of the error of the projected problem, we borrow a result from
section 8 in [9)].

Lemma 6.1. Assume g(y,t) is a function defined in M, x R and for which

sup (1 +T(Oéy)”)egltlHgHLp(Bl(y,t)) < 00
(y,t)EMo XR

for some o, > 0 and p > 2. The function defined in M as

q(y) == /Rg (gt) w'(t)dt

satisfies
lalps <€ sup (1 +r(m)" e gl e
(y,t)EM4 xR
provided
2
w>p4—.
p
To conclude the proof of Theorem we choose the vector function v = (vy,...,vy,)

in such a way that
a(y) :/[Sl(w)+Nl(<I>)] WOt =0, Vi=1,....m.
R

Using (6.12]), we find that making these projections zero is equivalent to solve
the nonlinear and nonlocal system of equations

a2 (AMVl + |AM|2 Vl) _ \/50,0 [e_ﬁ(hl_hl’l)(Vl _ Vl+1)

—eVAhnho (g Vl)] = a’Q,(v) (6.23)
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where

Q(v) := Gia(v) + Gra(v)

Gy (v /cﬂ — a3t + f;) ar (o, alt + £7)) Fw'(t)

—a® (Anfj—a(t+ f)a(ay,alt+ fi)f]) wit+ fi— f;) + ﬁl} w'(t)dt
—age™ V2 =hi=) (e_ﬂ(vl_‘”*l) —1+V2(v, - Vkl))

+agp E_ﬂ(hwrl—hl) (6—\/§(Vz+1—w) -1+ \/E(Vl"‘l - Vl))
_/ 6 (1 — w2(t)) 67\/§t (1 — <l72)w/(t)dt eiﬁ(hl . [eiﬁ(w v - 1}
R

+/6(1—w2(t)) V2 (1 = G/ (Dt e VA [ o=VEin =) ]
R

Gy o /Nl

where we set & = (®4,...,9,,) and

a0 = 'l / 61— w?(1) = ! (1)t

Direct computations using and lemma yield the estimates
IIGz,l(V)Hp,ﬁ < Ca™

1G11(v) = GLi(¥)llp.s < Ca™lv =¥5p,5

for some 0 < 79 < 1 fixed independent of o > 0.
From (6.19) and lemma we also have that for any p > 2 and 0 < § <4 — s

1G12(v) -2 H/ N, (®)w' (t)dt < Caltm,
R .8

On the other hand, it is direct to check from (6.20)) and Proposition that
1Gr2(v) = Gia(@)[l,, 5 < Ca* ™ |v = ¥lsp,

Hence we find that
Q(V) = (Ql(V7 )7 sty Qm(va ))

satisfies
QM) |p,s < Ca™

B SCa™ [V ="sps-

1Q(v) = Q(¥)

Since we are linearizing the Jacobi-Toda system ((6.23)) around the exact solution
h, we can proceed as in the proof proposition [3.I] to solve this system. We see that

using propositions (3.2)) and (3.3) and a direct application of contraction mapping



36 O. AGUDELO, M. DEL PINO, AND J. WEI

principle in a ball of radius O(a™c 1) in the product topology [Iv|ls.p,8 vields the
existence of functions vy, ..., v, satisfying (5.4), so that

aly) = / [Si(w) + Ny(®)]w'(t)dt =0, VIi=1,...,m
R
and this completes the proof of the theorem. We leave details to the reader since
the procedure is a copy of decoupling procedure developed in subsection 3.2

In sections 7 we present the proofs of the auxiliary results mentioned in this
section.

7. GLUING REDUCTION AND SOLUTION TO THE PROJECTED PROBLEM.
In this section, we prove propositions and The notations we use in this

section have been set up in sections 4 and 5.

7.1 Solving the Gluing System. Given fixed functions ¢1,..., ¢,, such that
loill2.p,pe < 1forl=1,...,m, we solve problem . To begin with, we observe
that there exist constants a < b, independent of «, such that

0<a<Qu(x)<b, forevery z € R

where we set
Qalz) = 2— 1—292 [F'(w) +2].

Using this remark, we study the problem
A — Qo(2)Y = g(x), x€R3 (7.1)
for a given g = g(z) such that

lgllp,a,~ = sup (1 +Rﬂ(a‘r))||g”LP(Bl(z))'
r€ER3

Solvability theory for equation (7.1)) is collected in the following lemma whose
proof follows the same lines as in lemma 7.1 in [9] and [I].

Lemma 7.1. Assume p > 2 and 1 > 0. There exists a constant C > 0 and ag > 0
small enough such that for 0 < o < ag and any given g = g(x) with ||g||p,p,~ < 00,
equation (7.1)) has a unique solution 1 = ¥(g), satisfying the a-priori estimate

[¥lx < Cliglp.a.~

where
[9]lx = 1D*¥]lp,a~ + |1+ 7(az)*(2)) D[ Lo sy + (1 + 7 (az)) ]| Lo (ro)-
Now we prove Proposition Denote by X, the space of functions ¢ € W2P (R?)

loc

such that ||¢]|x < oo and let us denote by I'(g) = « the solution to the equation
(7.1) from the previous lemma. We see that the linear map I' is continuous i.e

IT@)llx < Cllgllp,a.~

with 0 < /i < min(2x, p+ 0v2, 2+ 0v/2). Using this we can recast as a fixed
point problem, in the following manner

(7.2)

Y =-T 1—ZC32 Sw) + g1 + 1-2@2 N[Z<i3¢i+¢
i=1
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where

g1 = ZQVCJQ -Vo; + ¢jAf0.

=1

Under conditions (5.2)-(5.4) and maxi<;<m ||¢1]/2,p,u,0 < 1, we estimate the size
of the right-hand side in (7.2]).

Recall that S(w) = 8,(x)S(U1) + E, where
D, E| + |E| < Ce™ar*(y).
So, we estimate directly using (8.32), to get

1—ZCJ‘2 Sw)| < Cza2(1+7’a(y))72679|t‘(1—Cj2)

Ca* 0T (1 4 7, (y) 2 (145),

IA

this means that

Q

1= Gal@) | S(w)| < Ca> F50553 (1 + Ra(a)) 24,
j=1

Consequently we get, for 0 < 1 < 2(1 + \%) that
m o
1= Ge | Sw)|| < ca’TET
=1 Dy~

for some ¢ > 0 sufficiently small
As for the second term in the right-hand side of (|7.2)), the following holds true

2V (2 Vo + ¢jAG 2] < C(1=(2) (1 + r(ay) " te 2 ¢l2,p,0.0

< CaVionva(1+ 1" (ay) | 65ll2pp.e-

This implies that
o m
potovI—e~ S Cava™® Z @5 112.p,1,0-
j=1

Finally we must check the lipschitz character of (1—=>_"" (j2) N[3_1 Giadhi +1)).
Take 1,12 € X. Then

1= (o |N [ng + 1
j=1

i=1

12V 2 - Vo + ¢A 2]

<

- N [Z Giadi + 2

i=1

F(w+Y Cudi+ 1) — F(w+ Y Gadi+ ) — F'(w)(th1 — 1))

=1 i=1

<|1- ZCjz
j=1
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< Cl1=> ¢ sw Gi1¢i + 51 + (1 — s)tba| [th1 — 9o
=1 s€[0,1] =1

< Ca®* (Z l[@illoc e + Il x + ||¢2||X> |th1 — o
i=1

So, we see that

1= Go| N lz Gi2¢i + U1
=1 i=1

- 1—ZC3‘2 N [ZC¢2¢1+¢2
=1

i=1

Py2f1,~
e _
<Cav2 6||1/)1 — Y2l oo, i~

In particular, we take advantage of the fact that N(p) ~ ¢?, to find that

1= Ga | N <Z g—m) < Ca” > 5113 0 -
=1 =1 Pi2p,~ =1

Consider I' : X — X, T' = I'(¢)) the operator given by the right-hand side of
(7.2). From the previous remarks we have that I" is a contraction provided « is
small enough and so we have found ¢ = I'(¢)) the solution to with

m
e _ e _
lellx <C | E"+a 5" o)
j=1

We can check directly that ¥(®) = ¢ is Lipschitz in ® = (41, ..., dm), i€
[W(D1) — U(P2)|Ix <

acitt- ZCJQ lN <Z Gi2¢i1 + ‘I’((I)l)) -N (Z Gi2¢i2 + W(‘Pz))]

i=1 i=1

2,p,p,p

p2p,~
< Ca?™ ([[W(@1) = W(D2)][x + |1 = Poll2ppue)

Hence for a small, we conclude

W (1) — ¥(D2)[lx < Ca™|[ D1 — Pol2,p,pue-
7.2 Solving the Projected System (6.21))-(6.22]). Now we solve system
Oy + Anr, oy + F'(wi(t)dy = — Si(w) — Ny(¢y) + a(y)w'(t), in M, xR.

/¢l(y7 tyw'(t)dt = 0.
R
To do so, we need to study solvability for the linear equation

O+ A, ¢+ F(w(t)g = g(y,t) + c(y)w'(t), in M, xR (7.3)

/RQS(y, t)w' (t)dt = 0. (7.4)

Solvability of (7.3)-(7.4]) is based upon the fact that the heteroclinic solution
w(t) is nondegenerate in the sense, that the following property holds true.
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Lemma 7.2. Assume that ¢ € L°°(R3) and assume ¢ = ¢(x1,12,t) satisfies
L(¢) := 0y + Ar2 + F'(w(t))p =0, inR* xR. (7.5)
Then ¢(x1,x9,t) = Cw'(t), for some constant C € R.

For the detailed proof of this lemma we refer the reader to [9], [I1] and references
therein.

The linear theory we need to solve system (6.22)), is collected in the following
proposition, whose proof is again contained in essence in proposition 4.1 in [9] and
[11].

Proposition 7.1. Assume p > 2, 0 < o < V2 and pn > 0. There exist C > 0,
an universal constant, and ag > 0 small such that, for every a € (0,09) and any

given g with ||gl|p.u.0 < 00, problem (7.3)-(7.4) has a unique solution (¢,c) with
10]lp. 0 < 00, satisfying the apriori estimate

1D @llp,pe + 1DBllo puse + 6lloo,pe < Cllgllppue-

Using Proposit we are ready to solve system (6.21)-(6.22)). First, recall
(6.14])

that as stated in

1S1(9)llp.2,e < Ca®*™ (7.6)
for some 0 < 71 < 79 small enough.
From the discussion in 6.2, we have a nonlocal operator ¢ = U(¢1, ..., ¢ ). We

want to solve the following problem
Recall that for ® = (¢1,..., ¢m),

Ni(®) := Bi(¢1) + [F'(Gaw) — F'(wi(t))] 1 +

+ G[F'(w) + 2]9(®) + (2N (1 + ¥(D)).
Let us denote

Ni(®) := Bi(¢n) + [F'(Gaw) — F'(wi(t))] éu
N(@) = G [F'(w) +2] U(2)

N3(®) := 2N (¢ + (D).

We need to investigate the Lipschitz character of N;, i = 1,2,3. We begin with
N3. Observe that

IN3(®1) — N3(P2)| = Q2| N (g1 + V(P1)) — N(di2 + ¥(P2))]

< CG2 Sl[lopl] |7(d11 + ¥ (P1)) + (1 = 7) (D12 + Y (di2))| - |11 — P2 + ¥ (P1) — ¥ (D)
< COY(P2)] + [¢i1 — g2l + [W(P1) — W (P2)| + [di2]-[|Q11 — Puz| + [¥(P1) — U(P2)]].

This implies that
[N3(®1) — N3((I)2)||P72#79 =
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o m m m
242 —
<C ™+ ldjilloome + Y Ids2llcomme| - D 1651 — Biallocpe -
j=1

j=1 j=1
Now we check on N1(®). Clearly, we just have to pay attention to B;(¢;). But
notice that Bj(¢;) is linear on ¢; and

Lﬁ(ay)‘i‘ 200+ 1) }5t¢l

Bl(¢l> = _a2 { l/l(ay) + 1+ (ay)z (1 ¥ (ay)2)2
—2a.f] (o) By 1 + [ f{ () ]*01e 1 + Do, 5, (1),

where the differential operator D, s, is given in (2.6). From asstmptions (5.2)-
(5.5) made on the functions f]s, we have that

IN1(®1) = Ni(@2)[lp2+p.0 < Carl|®1 = Pol|2,p,e-
Then, assuming that maxi<j<m ||@;ll2,p.u,0 < A+ | we have that
INU(®)[p,2411,0 < Ca®tT

Setting T'(g) = ¢ the linear operator given by the Lemma we recast problem
(6.21)) as the fixed point problem

¢ =T(=S(w) = Ny(®)) = T(®), I=1,...,m.
in the ball
Ba = {(I) = (¢17"'a¢m) : H(I)H** S AO&2+T1, ]: 17"'am}

where clearly we are working in the space of function ® € Wfo’cp (M, x R) endowed
with the norm

m
D wr =D & ll2p.2.0-
j=1

Observe that
[T2(@1) = Ti(@2) | < C[INy(@1) —=Ny(@2)[lpa,0 < C || ®1—Pollss, P1,P2 € Ba.

On the other hand, because C' and K are universal constants and taking A large
enough independent of a > 0, we have that

T @) < C (I1S1(W)lp2. + INi(®)llpae) < At ¢ € Ba.

Hence, the mapping 7 = (71,...,Tm) is a contraction from the ball B, onto
itself. From the contraction mapping principle we get a unique solution

D =D(vy,...,vm)

as required. As for the Lipschitz character of ®(vy,...,v,,) it comes from a lengthy
by direct computation from the fact that

”(I)(Vh s vvm) - @(Vl, s ﬁ;m)ll?mﬁ?@

m
< CZ HSj(Wavla cee 7Vm) - Sj(wavla s 7’\7m)||P12nQ+
j=1

+ D N (v, Vi) ) = NG, Vm) lpasor
=1
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We left to the reader to check on the details of the proof of the following estimate

||<I>(V1,...,Vm) —@(Vl,..,, )H?,P, 2,0 < Ca?tm ZHVJ V 4,p,8

Jj=1

for (vi,...,v;) and (v1,...,V,,) satisfying (5.2)) and ( . This completes the
proof of proposition [6.2] and consequently the proof of Theorem [I}

8. SKETCH OF THE PROOF OF THEOREM 2

This section briefly sketches first part of the proof of Theorem [2] We begin by
describing the location of the nodal set of the solutions predicted by this theorem.

8.1. Toda system in R? and its linearization. In this part we describe the
way we solve the Toda System of PDEs

Afr+ aoe_ﬂ(ﬁ_fl) = ¢, inR? (8.1)
A fy— aoe_ﬂ(ﬁ_fl) = ¢y, inR? (8.2)
where
= o' Z gy | 6(1—w?(B)e”>w(t)dt > 0.
ao = [|W L2 (R) .

A decoupling procedure similar to the one performed in section 3, implies that

system (8.1))-(8.2)) becomes
A(fg—fl)—2aoe_‘/§(f2_f1) = go—g;, inR? (8.3)
A(fi+fa) = g1+gs, mR? (8.4)

Let us look for a radially symmetric smooth solution to (8.1)-(8.2) having the
form
A@') = q@)+u(), fa(a)) = qa') +va(a’), 2’ €R? (8.5)
where the vector function (g1, ¢2) solves the system of PDEs
Aqi+age V2@ = (o inR2 (8.6)
Ago—age V2@ 1) — o inR2 (8.7)

Since we are looking for an axially symmetric nodal sets that are also symmetric
respect to the z3-axis, we assume that g» = —¢1 = g, so that the system (8.6)-(8.7)
reduces to a Liouville equation, namely

Aq—ape2V29=0, inR% (8.8)
It is known that every radially symmetric solution to (8.8)) is given by

2a 2,712y -1 /
e p7) = 55 lo (1220+pM|V>—”ﬁﬂbmuw,r>u@m

Since we are looking for smooth solutions to (8.8) with the initial conditions
q(0)=a>0, Vuq0)=0

this forces v = 1, so that

/ _ 1 \/§a0
q(w,p)—mlog<

(1+ 2|x|)) p>0. (8.10)
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From the fact that ¢(0) = a > 0, we obtain

lo \@ao —Q—a
B\ )T

Remark 8.1: Observe that p is a free parameter that determines the conditions
at the origin in . Without any loss of generality we assume that p = 1, but it is
important to keep in mind that the function ¢ is smooth respect to this parameter
p > 0. We also remark that in the case when p lies in a fixed and compact interval
of Ry, the topologies considered and the procedure we carry out below, can be done
independent of p.

Decoupling and linearizing (8.1))-(8.2)) around the exact solution (g1, q2) as we
did in section 3.2, we obtain the nonlinear system

Avy + 2vV2age 2V?%; + N(vy) = g1, inR? (8.11)
Avy =3y, inR? (8.12)

where we consider right-hand side functions g; such that
1951lp,6 := 11 + |2'|7)gjll Lorey < 00, j=1,2 (8.13)

for some p > 1 and 8 > 0 and where we have denoted
N(v1) = —e~2V24 [e—ﬁ'fl 14 \/5111} . (8.14)
Let us consider first the linear system associated to (8.11))-(8.12]), namely

Avy + 2\/§aoe*2‘/§qv1 =g, inR? (8.15)
Avy =7y, inR? (8.16)

Since our setting is radially symmetric, we deal with this system using varia-
tions of parameters formula. We solve first equation (8.15). Taking derivatives
in respect to v and p, for v = 1 and p = 1, we find that the functions
P1(r) = 0yq(r,1,1) and () = 0,q(r,1,1) span the set of radially symmetric
solutions to

A+ 2\/5(106_2\/5‘% =0, inR?
where (") (2 ) )
log(r) (r* —1 re—1
2 == -1 2 = ——
fwl(r) 7"2 + 1 ) fq/}Q(T) 7'2 + 1
Observe that 1, is clearly singular at the origin. Observe also that

Oy un(r) = LET A o) VR g

(8.17)

Var(L+ r2)? (1+12)2
so that from (8.18)) we find that
c C Cr
- < |0 < —, - < , . 1
Ccnl T 0] < g 720 (319)
We compute the wronski determinant
1
W (1,12) = 10p1P2 — 120,1p1 = o

and we observe that the function

or(r) = 241 (r) /0 (€ (€ dE + 20 (r) / Ten©ned (820
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defines a smooth solution to equation (8.15). From (8.17) and (8.18), we directly
check that 0,v1(0) = 0 and that

lv1ll2.p.8 < Cllgillp.s, 2, 8> 2

where

[villzp,8 = [1D?*v1llp,s + (142" ) Dvi ]| oo r2y + | log(2+ [2[) " o1l Lo e (8.21)

Next, we observe that (8.16)) has a radially symmetric smooth solution given by

w() = [ "€ log(€) Ful€)de + log(r) /0 " Em(e) de. (8.22)

Taking p, 5 > 2, we see directly from this formula that

[v2ll2,p,6 < Cllg2llp,5-

We are now in position to invert the linear system (8.11)-(8.12)). We collect this
information in the following lemma

Lemma 8.1. Assumep >2,0< 3 <4— % and consider a vector function (g1, go)
satisfying that
19illp.s < Ca™,  j=1,2

for some small parameter a > 0 and some k1 > 0. Then, the vector function (vy,vs)

defined (8.20))-(8.22)) is the solution to the system (8.11))-(8.12)) and satisfies that

[0jl125 < C max [Gillps = 1,2

Even more this solution turns out to be Lipschitz in the vector function (g1,g2),
namely

”vj - ﬁjHZPaB < C}?;E%XQ ”gk - gk |p,57 .7 - 132

The proof of this lemma is straightforward from the previous comments and
proceeding as in section 4. Let us remark that in the case where g;, j = 1,2, are
nonlocal operators in (vq,v2) having small Lipschitz character a direct application
of Banach fixed point theorem will also lead to the existence of a unique solution

to E11-E12).

Remark 8.2:  When looking for solutions to (8.4)-(8.3) that are symmetric
respect to the xz-axis, i.e fo = —f1 then g2 = 0 and consequently the function vy
defined in (8.22)) is zero. Hence, we deal only with the single linear equation (8.15)).

8.2 Approximate solution to the projected problem. Now that we have
described the location of the nodal set of our solution, we proceed to set up our
approximation. Consider a radially symmetric solution (¢, ¢2) to the system

Aqr +age V2(@=9) =0 Agy —age V2@ 1) =0, inR2 (8.23)
where
0y = ||w’||z22(R)/R6(1—w(t)2) 2y (1)t

Recall from the previous section that we have chosen —¢; = g2 = ¢, and the
function ¢ is a solution to the Liouville equation

Aqg— aoe*Qﬁq =0, inR?
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given explicitly by

q(z',p) = 2—\1& log ({5;0 (14 p° |x'|2)2> . (8.24)

and observe that, for every o > 0 the vector function (qi14,q2+), defined by

1 1 1 1

(@) = ——=log (= | —alaa’), doala’) = —=log( — ), r>0

1,0 (") o 0g<a2> q(az’),  qza(z’) o Og(a2)+Q(aw) r

are also smooth radially symmetric solutions to (8.23]).

Now, for o > 0 small, consider a parameter function v, satisfying that

p,8 + |1+ ) Dv|| oo (r2y [ Log (2+|2']) ~10]| Lo (r2) < Ka?|log ()|
(8.25)

for some K > 0 that will be chosen later and independent of o« > 0 and consider

the functions

2,p,8 = ||D2”|

[[v

fi0(2") = Qa (@) + via(z'), 1=1,2 (8.26)
where Vo, = —Viq = v, and v, (2') = v(az’).

Proceeding as in the proof of Theorem [I] we consider as local approximation the
function

Us(x) = w(z—fia(2)) +w(z —fau(z)) —1, xR (8.27)

As in section 5.1, let us consider the sets
1
Ay = {x =(a',2) |z —fja(2))] < 3 (fon(2') — fla(x'))}, 1=1,2
Writing z = ¢ + fj,(2’), we notice that A; can be described as

A = {x = (@, 1): 1] < 5 (faala’) - fm@c'))}, =12

Hence, we can estate the following lemma regarding the error of this approxima-
tion in the set A;.

Lemma 8.2. Forl=1,2 and every x € A;, x = (2, t), we have that

(_1)l—1 S(Uo) — _ARQflaw/(t) + (—1)l6 (1 o wQ(t)) e(—l)l—lx/it e—\/ﬁ(fza—fmc)
F |V £ P0” (1) — Arefijo ' (t + fio — fi0) + [Vl ?*w" (¢ + fia — fia)

+[(=1)1716 (1 — w?(t)) + 12(1 + (= D'w(#))] D' 2V2 o=2V(Ea—fia)

+ Ry(az’,t,v, Dv) (8.28)
where Ry = Ry(ay, t,p, q) is smooth on its arguments and
IDpRi(aa’ t,p,q)| + |DgRi(az’, t,p, )| + |Ri(ea’, t,p, q)| < Ca®*7 (1+|aa’|)~*e el
(8.29)
for some 0 < 7 < 1 small and some 0 < o < /2 and where p = v and ¢ = Dv.
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Proof. The proof of this lemma follows the same lines of lemma [5.1} with no signi-
ficant changes and actually with easier computations. So, we only remark that in
the set A4,
Up(x',t) = w(t) — w(t + f1o — f2n) — 1
where the function w(s) is the heteroclinic solution to
w” + Fw) =0, w(foc)==+1, w' >0

having the asymptotic expansion

w(s) = 1-— 9e—V2s + 2e—2V2s +0 (672\/§|5\> . 5>0 ( |

8.30

w(s) = —1+2eY2s — 2e72V2 4L 0 (6_3\/§|S|), s<0

and where these relations can be differentiated. Using that F(+1) =0,

F(Uo) = F(w(t)) = F(w(t + fia = f2a))

— (F'(w(t)) — F'(=1)) [w(t+f1q—fon)+1] + % (F"(w(t)) + F'(—=1)) [w(t+f1q—f20)+1]?

—|—O ([UJ(t + fla — fQQ) + 1]3) .
From (8.30)) we obtain that
F(Uy) = F(w(t)) — Fw(t+ fia — f20)) — 6(1 — w?(t))eY e~ V2(E2a—fia)

6 (1= (1) +2(1 — w(®)] 22te DA ) 4 0 (VA bl

Similar computations hold true in the set As and this completes the proof of the
lemma. U

Using the fact that the vector function q = (¢1,¢2) is an exact solution to the
Toda system in R? and using the function for gy described in (5.17)), we can write

expression (8.28]) as
(—1)l_1 S(Uo) = — Aszlaw’(t)

+ (—1)l6 (1 _ w2(t)) e(*l)lfl\/it 67\/5((12,:17(11,&) (6*\/§(V2a7V1a) _ 1)
(=1 go((—1)'t)e™V2@2ama1e) 4 |Gy, 2w ()
+ VVia 2V + VVie)w” (1) — Arefijo ' (t + fia — fja) + [Vija|*w" (t + fia — fia)
+[(=1)1716 (1 — w?(t)) + 12(1 + (= D)w(#))] e~D"2V2 =2V3(Ba—fia)

+ Ry(az’, t,v, Dv) (8.31)
Next, we improve the approximation by considering the function
Ui(2',z) = Up(a', 2) + 1,02, 2 — f1a) — p20(2’, 2 — f2q)

and
(=1)" o, 1) = eVt yy ((<1)'1) + [Vaua| 41 (1)
where the functions ¢ (t) is the one described in (5.19) and 1 (t) = —Stw'(t).
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We recall that
1 1 1 V2aq
/ — _ / — 1 1 1 112\2
QQa(aj) Q1a($) 2\/§ Og<a2>+2\/§ Og( 4 ( +|O£J?| ) >

so that

—V2(q2a—q1a) _— a’ 4
aoy/2 (1 + |aa’[?)?>
Proceeding as in section 5.2, we compute the new error created to find that in
the region A;, setting z =t + fj,

(—1)'1S(UL) = — Agevig w'(t)

e

— (1) 6 (1= wP(1)) VDT VRl e [ VA ) g
+ VVia (2V e + VVia)w” (1) — Apefjo W' (t + fio — fi0) + [Vija2w" (t + fia — fja)

+[(=1)'716 (1= w?() + 1201+ (=D 'w(B))] e D72V 22 B he) 4 R,
(8.32)

where
R; = Ry(az’, t,v, Dv)
and

\Dpf{l(ax’,t,p, q)| + |Dqﬁ'l(aaljv t7pa q)' + |ﬁl(axla tvpv q)| < Ca2+7(1+|a1-/|)_4e_9|t|

(8.33
for some 0 < o < v/2 and some 0 < 7 < 1. Actually, from the proof of lemma
we have that

IR;(az’, t,v, Dv)| < Ce=3V2ltta—tal 4y A

Next step, consists on defining the global approximation to the solution. We
consider again the smooth cut-off function 5 € C°(R), such that S(¢) = 1, for
|t] < 1/2 and B(t) = 0, for |t| < 1. Now, for a > 0 small we define the cut-off

function
Ba(@) = Bzl - L — 4 log(laa’| +3), == (a',2) €R®.

We see that f, is supported in a region that expands logarithmically in |az|
and we consider as global approximation the function

w(z) = Ba(@)U(@) + (1 - Bu(@))(~1). (3.34)
Recalling that F(u) = u(1 — u?), we compute the new error as follows
S(w) = Aw+ F(w) = Ba(z)S(U1) + E
where
E = 2VB, VU + ABa(Ur +1) + F(BaUi — (1= Ba)) = BaF(Un).

Due to the choice of B,(x), the error term E only takes into account values of j,
for z € R? in the region

2> L 4 al(joa’| +3) -2, == (2 2) ER®
«
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and so, we get the following estimate for the term F
\VE| + |E| < Ce™a(1+|az’|)~

We observe that the error E decays rapidly and is exponentially small in « > 0, so
that its contribution is negligible.

Remark 8.3: The local approximation U is clearly axially symmetric and even
in the z-axis this is due to the fact that the graph of the function fi,, is a reflection
through the z—axis of the graph of the function f5,. Of course, this is also true for
the global approximation w. Observe also that for the moment, we are omitting
the role of the parameter p > 0, but clearly the approximations U; and w and the
error created depend smoothly on it.

8.3. Outline of the Lyapunov-Schmidt Reduction. Let us consider first
an appropriate functional setting to work with. Consider the norms

1 fllp,pn == Su§3(1+lw’\)ﬂ 1fllLe(Bi@y, P> 1. (8.35)
S
and
[¢ll2p,~ = 1D?®llp, i~ + 1Dl 0 + [19]l00,,~ (8.36)

where 0 < i < min(2u, p+ 0v2, 2 + 0v/2).

We also consider 0 < ¢ < v/2, 4 > 0, a > 0 and functions g = g(2’,t) and
¢ = ¢(y,t), defined for every (y,t) € M, X R. Let us set the norms

I9llp e = sup (L4 |aa’|) e Mlgl| o (s, (2,0 (8:37)
(z’,t)ER2 xR
18]lo0,s0 := (1 + o’ [#)e 1G]] oo (r2 xRy (8.38)
1% 2,p,11,0 * = ||D2 ¢| P T ||D¢||oo,u,g + H(bHOO,u,g' (8.39)
Finally, for functions v and § defined in R?, we recall the norms
19llp,5 = 11+ [2'17)g]| o (re) (8.40)

[vll2,p,5 == 1D*vllp, + [(1+]2"]) Dvllpoe r2) + [[og(l2’|+2) 7" v]| Lo (re). (8.41)

Observe that the functional setting we are considering in this part is basically
the same one used for the proof of Theorem 1.

Let us recall that our goal is to find an axially symmetric solution to equation

(1.1) which is close to the function w defined in (8.34]).

We proceed as in section 6, with no significant changes, so we rather prefer to
give an outline of the scheme. We consider for | = 1,2 and n € N, the cut off
function

Cin(z) =P <|t| — % [fou (z') — f1a(2')] + n) , x=(2/,t+1fi,) ER%L  (8.42)

A crucial observation we make is that, under assumptions ({8.25)), directly from
lemma (8.2) and the choice of the functional setting, the error

(—1)1‘1Sl(w) = — AR2Via w’(t)

. (_1)1 6 (1 . w2(t)) e\/ﬁ(—l)l’lt e—\/i(qu_qla)CZ)Q |:e_\/§(v2a_vla) _ 1}
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+ VVla(QVOUa+VVla)w”(t)— Cl,QAR2 fja w/(t+fla_fjoc) + Cl,2 ‘ijoz|2w//(t+fla_fja)

G2 [(1)!716 (1 — w?(1) + 12(1 + (—1)w(t))] e~V 2V em2VEfa o) 4 ()R,
(8.43)
has the size

151(w)llp.2.0 < Ca*7. (8.44)

where 0 < p < V2 and 0 < 7; < 1 is arbitrarily close or equal to 1, in which
case p goes or equals 0, independently of @ > 0. The following proposition collects

estimates regarding (8.44)).

Proposition 8.1. Assume o € (0,4/2) and that the functions fja satisfy condition
(8.25)). Then there exist a constant C > 0 and a small number 0 < 7 < 1, both
independent of a > 0, such that

191 (W)llp.2.0 < Ca®*™ (8.45)

and
181 (w,v) = Si(W,0)[lp,2,0 < Ca® ™ {|lv — 7|

2,p.8- (8.46)
where

[vll2p.8 = 1D*v]lp,8 + [I(1+ |2')) Dol (re) + [[log(2 + |2/ )~ oll Lo rey  (8.47)

As before, we look for a solution to (|1.1) of the form
U=w+ GQa(x)p1(a’, 2 — f1a) — G3(x)pa(a’, 2 — f20) + ¢ (8.48)
so that we fall into a system of elliptic PDEs for ¢1, ¢ and 1 similar to — (6.11)).

The linear theory needed to solve this problem is a copy of the one sketched in
section 7, but applied to the system

Ap(x) — 24p(x) = h(z), xR (8.49)
Orepy (2, 1) + Apady (', ) + F'(w(t)) gy (', t) = gi(’,t) + ¢ (z")w'(t), in R* xR
(8.50)

in the class of axially symmetric functions and in the topologies induced by the
norms set above. In particular, the nonlinear nonlocal system of equations for the
functions ¢; reads as

Oy + Aredy + F'(w(t))dr = — Si(w) — Bi(¢n)

— [F'(Cow) = (=)' F'(w(t)]¢r — Ga(F'(w)+2) — G2N(¢i+¢), inR*xR

(8.51)
with
Bi(1) == —Arefin iy — 2V 110V sy + | Viia|* 0y
and
N(di+v) = F(w+¢) — F(w) — F'(w) (¢ + ) .
from where we get that
ldill2.p2.0 < Ca®T™, / (2 t)w'(H)dt =0, 1=1,2. (8.52)
R

with 7 as above.
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As we already saw, the Lyapunov-Schmidt reduction scheme is based upon the
fact that we can find functions vy, vg satisfying (8.25)) such that the functions ¢;(z’),

l=1,21in (8.50) are zero.

8.4. Solving the reduced problem. Let us recall that
w(z) = Ba(z)Ur(z) + (1 — Ba(x))(—1) (8.53)

where
Ui(z) = w(z — f1a(2")) —w(z — faa(z')) — 1

+ (bl)o(l’/, z— f1a<.’1?l)) — (bz)o(l’/, z— f2a<.’1?l>) (854)
where for [ = 1,2
Gro(al ) = (—1)1 e V2(am i)y, ((— )l“t) + Va1 (t) (8.55)
the functions v, 1, are those described in ) and -

In what comes next we make use of the symmetries we have assumed for the
nodal set and the local and global approximations. From the structure of the
equation and using the fact that the approximation w is axially symmetric
and even respect to the z—axis, we find that the functions ¢, ¢ and i share also
this symmetry.

In this setting the error Si(w) in the region 4; and in terms of the parameter
function v, reads as

S1(w) = Agevaw!(t) — 6 (1 — w?(t)) eV ™2V, [efmva 71

+ Vva(2Vda + Vv )w” () + G olrefo w'(t — 2f,) + (o VEa|[2w” (t — 2f,)

+ G [6(1—w?(1) + 12(1 — w(t)] 2V Ve 4 (,R (8.56)
with similar computations in the set A,.

In what comes next, we derive the system that governs the location of the inter-
faces, namely a system of PDE’s that will guarantee that

q@)y=0, 1=1,2.

Since the error S(w) is also axially symmetric and even in the z—variable, we
easily verify that cy(2') = —cq(2') = ¢(2').

In order to determine the function c¢(z’), for I = 1, we multiply the equation
by w and integrate in t to get that at main order

—/ Sy (w)w(t)dt — O(a* (1 + |az’]) ™) = c(z) / w'dt.
R R

This can be done since in inequality (8.45)) as 71 approaches to 1, the constant
0 goes to zero, while the constant C' > 0 remains uniformly bounded.

Hence using lemma [8.2] and setting

/|w t)|?dt, ag = ||w’ HLQ(R)/( (t))w’(t)e*\@tdt

we find that
C(;L'/) — C*Asza + 0*2\/5110 672\/§qav(1
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+ Agef, / Crow'(t — 2f,)w' (t)dt + |V, |? / Crow” (t — 2f,)w' (t)dt
R R

B

A
4 iV /R<172 [6(1 — w?()) + 2(1 — w(t))] 2V (t)dt

c

+ c*age 2V |:€_2\/§V°‘ - 1} / 6(1— wQ(t))eﬂtw/(t)(Cl,z —1)dt
R

- c*aoed‘/ﬁq” [672‘5"“ -1+ 2\/§va}

+O0(a* (1 + |az'|)™?) (8.57)
and using lemma [8.1] one finds that
(@) + c*Arevin(2') + 2V2 ¢ ag e V@ aia)y,

is lipschitz in the parameter function v,. Actually it is not hard to check from
lemma that its Lipschitz constant is of order O(a?*7), for some 0 < 7 < 7
small. Hence we see that making ¢(2’) = 0 is equivalent to a nonlinear and nonlocal
equation of the form

Av+2v2a0e" 229y = G(v), in R? (8.58)

where we conclude from (8.57) that A + B + C is the leading order term in the
expression for G(v).

In order to give a more precise expression for the Nonlinear term G(v), we recall
that w(s), the heteroclinic solution to

w”" + F(w) =0, w(+oo)==%1, w' >0

has the asymptotic behavior

w(s) = 1—2e V25 4 272V 4 0 (e_z‘/i"g‘), s>0 (8.59)
8.59
w(s) = -1+ 2eV2s — 2¢72V2 4 0 (6’3‘@'5'), s<0
and these relations can be differentiated.
Since in the set Ay
w'(t —2f,) = 2v/2eV2te=2V2a | (’)(e‘zﬁlt_?f‘”)
we obtain that
8e2V2fa | O(e=2V2It g =2V 2a) t>0
w'(t — 2f,)w'(t) =
862\/§t672\/§fa +O(673\/§|t\672\/§fa), t<0
Hence it is direct to check that
A = 8Af e V2 (£, + O(1)).
Proceeding in the same fashion, we obtain in the set A; that
8v/2e2V2a | (e~ 2V2It g=2V2Ha ) t>0

w” (t — 2f,)w'(t) =
84/22V2t—2V20a O(e‘3ﬁ‘t|e_2ﬁfa), t<0
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so that
B = 8V2|Vi,|?e 2V (£, + O(1)).
Finally, we directly check using again (8.59) that
962+ O(e V2t t>0
[6(1 — w?()) + 2(1 — w(t))] 2V ' (t) =
O(e=5V2It), t<0
from where
C = 96v2e V2 (£, + O(1)).
Hence, we obtain that

—a2G(v) = e 2V2ag, [SAfa + 8V2| V|2 + 96\/§e—Mfa}
+0(a*(1 + |az'])™3)
From this expression, we obtain that
@

G(0) = M;O (2\1/§log (;) + q(m')) Ro(2') + O(a*(1 + |ax’|)~3).

where
Ry(z') = — [8Aq +8v2|Vg|? + 96\/56_2\/5(1} e 2V
4)2' 2 + 4+ 3v2
(P
Since, so far the scheme involves the same estimations to those in proposition [6.2
we find that the function G satisfies the estimates

1G(v)[loc,3 < Ko?|log(a)|
1G(v) = G(0)]loc,3 < CaT[lv = Vll2p,p-
A direct application of lemma [8:1] and Banach Fixed point theorem completes

the construction of the solutions predicted in Theorem [2 We leave further details
to the reader.

Using the integral formula (8.20) and the last remarks, and since

P1(r) = % (log(r) — 1) + O(r~2log(r)), asr — oo

we can actually describe the asymptotic behavior for the function v(z’) as |2'| — oo,

namely
ole') = 5o (102 (35 ) B + ()| g2 + O (02 og(a) |2 Iox(l')) (5.00)
and

Bo 12/0 CaRod( = %2(34- 2v/2) > 0.

Next, we study the smooth dependence of this family of solutions respect to
the parameter « in order to obtain useful information about some elements of the
kernel of the linear equation

Agsd + F'(uy)¢ =0, in R3 (8.61)

This information is collected in the following proposition.
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Proposition 8.2. For every a > 0 small, the functions
O.un (7', 2), Opun(r',z), fori=1,2

are bounded solutions to equation (8.61). Besides, u, is smooth respect to a and
the following asymptotic formulae hold true

2
Optia (2, 2) = aldy,q(az’) [W'(z — f1a) + W' (2 — f20)]+a°O <Z e_gz_f“’“|> , i=1,2
=1

Oyug (2, 2) = [W(z — fla) —w'(z — f2q)] + a0 (Z eglzﬁ‘*)

=1

2
Oatia(2',2) = 0a (qa + Vo) [W' (2 — f1a) + W' (2 — f24)] + €O <Z e_glz_fl‘*|>
1=1
Proof. From the smoothness of these solutions we readily check the first two equal-
ities. So, we only need to take care of the last assertion.

Smoothness respect to a > 0 small is a direct consequence of the Implicit Func-
tion Theorem. We remark that following step by step the construction and taking
into account the dependence on p ~ 1 of this family of smooth solutions we have
the asymptotic behavior

ap(@) = W(z — frap(@)) = w(z — faap(a’)) — 1

+ ¢1,0($/; Z— flap(m/)) - (725270(1'/, z— f2ap(l'/))

2
+ 02730 (1 + fapa!|) 20 es ) (8.62)
=1

with 0 < o < V2.

Provided p is taken in a small, bounded and fixed interval around one, we can
recast the fact that the functions v = (v, v2), ® = (¢1, ¢2) and ¥ in (8.48) yield a
solution to equation (1.1]) as a system for (p, v, ®, ) of the form

@—H(p7v7q>,1/1)=0, ¢—ﬁ(PaV,q’,¢):07

v—T(p,v,®,¢) =0

where smooth dependence on each one of the variables, in the respective topolo-
gies described in (8.36)), (8.39) and (8.41)), is readily check from the scheme of the
construction of this family of solutions. Solvability theory of the linear problems
implies that the derivative of this system respect to (v, ®, ) is an isomorphism and
consequently, we obtain a smooth dependence of the solution respect to p. Unique-
ness from the fixed point argument in our proof guarantees that these solutions
correspond to those ones given by the Implicit Function Theorem.

In order to find the asymptotics of d,us, we first notice from (8.62)) that at main
order

Ot (7', 2) = 0,U1 (2, 2) + Oup1 — Ouha (8.63)
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We need to find the size of J,¢; in terms of o > 0 in the sets
1
A = {(,T/,Z) € R2 xR: |Z — fla‘ < 5 |f2a — f1a|)} , =12
and to fix ideas, let us localize 9, in A;. Consider cut-off functions Zl supported
in the set A;.
Set z =t + i,

L*(aa¢l) = 8ttaa¢l + AR’A’(Q)cvqsl + Fl(w(t))aa(bl + B(aa¢l)

where B(0,¢;) is a small differential operator in 9,¢;. We find that inside A;, 0, ¢,
solves at main order an equation of the form

L*(aad)l) + Bl(aa¢l) = FE), in Ba—lR(O) x R.
where
Eio = —C(A8aU1 + F'(ua)3aU)
Since we have symmetry respect to the z—axis we only focus the developments
for the set ﬁl, where. Notice for instance that in 4,

C1 (AU + F'(ua)0aUr) =
— Arzdavia W' ()= 6 (1 — w?(t)) Da (eﬁ(fl)l_lt e~ V2(d20—d1a) {eﬂ/ﬁ(mrvw) — 1D

+ 90 (2Via  Via + [VVia))w" (1) + O (a2+“(1 + |ax'|2+%—f)-le-@\tl) . (8.64)
From (8.26) and (8.64) we observe that

1
|0ava(2')| < Calog () log(2 + |az'])
a
so that and from (8.32)) it is direct to check that
Hgl(AaaUl + F'(1a)0aU1)||p2-p,0 < Ca' .
Consider functions k1, ko defined by the integrals

/ o1 (2, )’ (t)dt = ky (x’)/(w'(t))2dt + ko(z") / glw(t + f10 — foo )W’ (t)dt
R R R

/aagbg(x’,t)w’(t) = kg(x')/(w’(t))th—Fkl(x’)/ Cow(t + fao — f10)w' ()dt
R R R
so that in the set A; we have the decomposition

¢ = k1 (2)w'(t) + Crka(a) W' (t+ fro — f2n) + @1

/ prw'(t)dt =0
R

Analogously, in As, we have

52 = kg(l’l) w'(t) + Zle(I/) ’LU,(t + f2a - fla) + P2

/ paw'(t)dt =0
R
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We recall that
/qsl(x’,t)w’(t)dt =0, [=1,2.
R

and taking derivative respect to « in these orthogonality condition for ¢;, keeping
in mind that t = z — f1,, we obtain

/(’Mﬁz w'(t)dt = faafa(f)/aﬁz w”(t)dt + O(a' (1 + |aa')7%), 7> 7.
R R

so that

/ Oy w' (t)dt
R

= (9(041'”1(1 + |omc'|)_2 log(2 + |az'])).

Observe that (;NSl solves the equation
Apsdy + F'(ua)ér =

which implies that dropping the subindexes we have that the equation for the
functions ¢ have the form

L.(¢) + B(¢) = Ea — S0+ B(kw')
in B,-15(0) x R where

5*70 = ARzkl ’LUI + |Vq1a|2k1 ’UJ///

Q
+ F"(w(t)) [—(Zeﬁt + 1o (t))e V2020 =10 Ty o2 (t) | Ky w

Q2

+\/§(F’(w) — F’(l))@ﬁteiﬁ(q%‘iqm)kz —w" [ARQfla k1 + 2V 11, Vm/kl]

Qs Qu
+0 (a2+ﬂ 1+ \ay|2+%‘f)*1e*9|ﬂ) . (8.65)

Qs
for some 7 > 0 small enough.

o(r) = C1301(a' 1) = Caapa(a’,t — 2f ("))
+a?t70 ((1 + |ax’|)_26_g‘t|) +a*t70 ((1 + |a:r/|)_2e_9|t_2f“(g”/)|)

with 7 > 7 > 0 and with a similar expression for the set A,.
It is clear that the functions k;(2’), ¢}s are smooth and bounded up to their
second derivatives and actually for any £ > 0 small

I1D?killp,2—p + | Dkillos,2—p + [killoc2-p < Cal™™, 1=1,2.

Dropping the subindexes we have that the equation for the functions ¢; have the
form

L.(¢) + B(¢) = Ea — S0+ B(kw')
in B,-1(0) x R where for instance in A;

5*70 = ARzkl ’LU, + |Vq1a|2k1 w/”

Q1



MULTIPLE CATENOIDAL END SOLUTIONS TO THE ALLEN-CAHN EQUATION IN R® 55

+ F"(w(t)) [—(Zeﬁt + 1o (t))e V2020 m10) |V o2 (t) | kg w

Q2

FV2(F (w) — F'(1))eY2eV2(@a—tio) by — ! [Apefio ki + 2 Vrfia Varki]

Qs Qa

+0 (a2+ﬂ(1 + \ay|2+%*6)*1e*@|”) . (8.66)

Qs
for some 7 > 0 small enough. Let us write ¢ = @1 + @2, where
Lo($1) = 0a(2Vaia - VVia + |[VVia|) 0" (t) + Q4
with
/ Py (t)dt = 0
Then, we obtain the estimate "
ID*@1llp,2-p,0 + |1 DP1lloc,2-p,0 + |1lloc,2—p,0 < Cal™™, 7> 1.
Next, we observe that
L.(¢2) + B(g2) = g(2',1) + c(a")w'(t)

where
g(2',t) = By 4+ 062V e - VVia + |VVia 2w (t)

~Ss0—(Q1+ Q2+ Q3+ Q3) — B(#1)
and observe that || B(%1)||p3—r., < Ca®*7. Using the size of E, we obtain that
lgllp.2-p.0 < Cal*™

for some 7 > 0 small enough.
Since,

/@w’(t)dt =0
we obtain that "
I1D*0alp2-5.0 + | DP2llco.2-8.0 + [|P2llp2—p.0 < Cal ™.
Hence from , we can write in the set Ay
Oty = —Oafiaw' (t) + Oufaqw(t — 2f,)

oz (axw' (1) + czo (o w(t — 26,) + O(ar (1 + |ax’|) ~2 el
with
[2t]lcc,2-5 < C

and this completes the proof of the proposition, since the same procedure yields an
analogous expansion in the set As. O
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9. ON THE MORSE INDEX OF THE SOLUTIONS IN THEOREM 1 AND 2.

In this section we provided information about the Morse index of the solutions
found in Theorems 1 and 2. Most of the developments we carry out in this part are
motivated by those in section 11 in [9]. Hence, we simply remark the key points of
the scheme, refereing the reader to sections 10 and 11 in [9] for more details.

Let us consider the eigenvalue problem
Apyh+ (0 +N|Ay?h =0, in M, heL>®(M) (9.1)
with o ~ log(a~1!). Using the stereographic projection 6 = arctan(y), we can recast
this problem as
Agh+2(c + X\ h =0, hecL>®(S?).
By standard spectral theory on the sphere, we know that

1
Ne=gk(k+1)—0, keN

are the eigenvalues to problem (9.1), so that there are at least O(y/o) negative
eigenvalues for this problem.

Next, let us consider another related eigenvalue problem, namely

8+ A : 2 o0 (P2
sh=0, inR% helL>R). (9.2)

Apeh + —mM8M8M—
R AT )

Using the stereographic projection 8 = arctan(i—ﬂ), we can transform into

the problem
Ag:h+ (24 Nh=0, heL®(S?)
from where it is also direct to check that problem has exactly one negative
eigenvalue. On the other hand, using Fourier decomposition and maximum princi-
ple, in proposition 1 in [4], it was shown that the graph of the function described in
is non denegerate, in the sense that the space of bounded solutions to
for the case A = 0 is spanned only by the functions described in polar coordinates
by
1472 o r

_— P _
0 142"’ 211—1—7“2008( ), 221—1—7“2

sin(@), >0, 6¢€(0,2m). (9.3)

As in [9], we define the Morse index of u,, m(us), to be the largest dimension
of a vector space E of compactly supported functions for which the quadratic form

Q) = /R VP - Fua)y?, b€ B {0} (9.4)

is strictly negative.

In this part, we sketch briefly the proof of the inequalities m(uy) > co+/o for the
solutions in Theorem 1, and m(u,) > 1 for the solutions in Theorem 2.

To prove both inequalities, we follow the scheme developed in the Proof of The-
orem 2 in [9], getting information about the eigenvalue problem

Arsd + F'(ua)p + Aplaz)p =0, inR3 ¢ e L>®R3). (9.5)
where p(z) is a function such that

p(ﬂf) = ‘A]\/[|2, zeN
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a b
< < R3 —
1+|z/|4_1)(91:)_1+|$/|4, T € N
for the case in Theorem 1 and
8 3
PO = e TR

for the case in Theorem 2.
In any case, a useful characterization of m(u,) is given through the following
eigenvalue problem

Agsp + F'(ug)p + Aplax)p =0, in Cr, ¢=0, ondCg (9.6)
where C'g is the cylinder
Cr:={(2',2):|a'| <Ra™', |2|] <Ra'}.

Let mp(uq) denote the number of negative eigenvalues to , counting multi-
plicities. Then, as in [0] it is straightforward to check that

m(uq) = sup mg(ua). (9.7)
R>0
9.1 Estimates on the Morse index for solutions in Theorem|[1] Regarding

solutions of Theorem 1 and to keep computations as clear as possible we consider
only the case of two transitions, namely m = 2. We also recall the sets

A = {Xa(y,e,z) Dz = filay)| < % {a + V2 <1 . Mafi> log (1 + (ay)2)] }

g

We remark that, the solutions we have found in Theorem 1 have the asymptotic
expansion for x = X,(y,0,2) € Ny,

tal2) = w(z = fi(ay)) = w(z — f2(ay)) — 1
+ dro(y, 2 — 1(ay)) = b20(y, 2 — falay)) + O (a7 (1 + Jay2) e @) (9.8)
where for | =1,2 and t = z — fi(ay)

Dro(y, 1) = e VEOTIYo (1)) + P (B2 (1) + 0| Anr (ay) () (9.9)
and the functions 1); are those described in (5.19)), (5.21) and (5.20).

Using (9.8)-(9.9)), we find for instance in the set A; and in the coordinates Xq s,
that

F'(ug)w' (t) = F'(w)w' +
F”(’LU)’LU/ [(_2 6\/§t -|—’l/)0(t)) e—ﬁ(hz—hl) + a2[h/1]2w1(t) + 042|AM|21/12(t)}

+0 (a2+ﬂ(1 + |ay\2)*1e*@|ﬂ) . (9.10)

Since F"(w) = —6w, taking derivatives in the equations that the functions ;(t)
solve, and integrating against w’(t), we can easily check that

/F” 2eft+z/}o() dt = \f/ (1—w?)eVw'dt = \/iao/R(w'(t))Zdt

/R P )P0t = [ e =5 [ ()
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/ P () (w20 (£)dt = — / (w2t
R R
On the other hand,
F'(ug)w'(t + fi — f2) = F'(w(t + f1 — fo))w'(t + f1 — f2)

FV2(F (w) — F'(1))eY2eV2ha=m) 1 0 (a®F e t](1 4 |ay|)~417).
and since F’(w) — F'(1) = 6(1 — w?), we obtain that
ﬂ/ 6(1 — w2 (t))eV2h! () dt = \@ao/(w’(t))2dt.
R R
With the previous remarks, let us now consider a test function v(z) defined in
the region N, defined in local coordinates z = X, (y, 0, z) as
v(@) = ki(y, O)w'(z — fiey)) — ko' (2 — fa(ay)).
Using lemma together with (2.3)), and and carrying out compu-

tations similar to those in lemma 11.1 in [J], we obtain, for instance in A;, the
validity of the following expression

Ax. v+ F'(ug)v =

o, f1

AMakl U)/ — Oz2|A]\4‘2k1 tw” + 052[h/1]2k1 w/” =+ aai o f1 8y]€1 ’LUI

Q1

+ P (w(t)) [(=26 = o(t) eV 4 0[P (1) + 0| A2 (0)] Ky o

Q2
V2(F' (w) — F'(1))eV2te=V2ha=hi)
Qs
—w" [®Tn(f1)k1 + 2a f Oyky + o aro [1(f10yk1 + f1 k1))
Qa

atw/ [al_’()ayykl + abl’oaykﬂ

Qs

ot + f1)%a11) [Byykaw — 2f{0ykyw"] + O (a2+ﬁ (1+ |ay\2+%*€)—1e—9|t\) :

Qs o
(9.11)

Observe also that
[ Quitvit= [ Quitde + 0 (¥ (14 fay ) )
[t|<pa R

where

pa(y) = % [O’a + V2 <1 1 Mai> log (1 + (ozy)2)} .

Oa
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We observe also that
5
/ > Qi (t)dt = (AMQ k1 + o2 APk + V2age™ V20 () + ky) + ozaLofl@yykl) /w’(t)2dt
Ri=1 R
and

/R (Qs + Q)w'(t)dt = O(a®r(ay) )y k1 + O (a®r(ay) =) O,k

Combining these computations , we have in the set A; that

/ (Av + F'(ug)v)w'(t)dt = (An k1 + o®|Am|*kr + aarofi10yyk:) / w' (t)2dt
[t[<pa R

+V2ag e V2R =) () 4 ky) / w'(t)?dt
R

+O(a2r(ay)72)8yyk1 + O (a3r(ay)73) Oyk1 + O(aﬂﬁr(ay)”ﬁ)kl.

Regarding computations in the set As in the coordinates X, ¢, and using again

([9.9), we find in the set Ay that
F'(up)w' = F'(w)w' +
+ P! (262 = (=) eV 4 2142 (1) + 0% Ape (1]

+ 0 (a2+ﬁ(1 + |ay|2)_1e_9‘t|) (9.12)
and the interaction term this time is
Fllug)w' (t+ fo — f1) = F'(w(t + fo — fL))w'(t+ f2 — f1)

_\/i(F/(w) _ F/(l))e*\/itef\/i(j'gffl) 1+ 0 (02+T1679|t|(1 + |O(y|)74+’8) .

Consequently when testing against w’(t) we obtain
/ F" (w)(w')? (2(;@ - 1/10(—15)) dt = \/i/ 6(1 — w?)eV2'w'dt = V2 aq
R R
so that in the set A,

/ (Av+ F'(ug)v)w'(t)dt = (Anr ke + o®|An | ke + aarof10y,ks) / w'(t)2dt
[t[<pa R

+V2ag eV (ky - iy) / w'(t)*dt
R
+0(a?r(ay) )0y ks + O (a?’r(ay)_3) Ayka + O(a* T r(ay)?P)k,.
Hence, choosing functions k1 = —ko = k, with & bounded and using the fact
that
dz = /14 (ay)? (1 — & (t+ f1)*|An|?) dy dt
we observe that in the region
Wg={z €N, :r(az) < R}
it holds that

Qv,v) = //WR Vo2 — F'(ug)02dz
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a

= 2/ w/(t)th/ IVar k|? — 02| Ay 2k2 + 2v2a0e V22 =m0 k241,
R MR

+0 <a/ IV ark|? + a2(1 + (ay))2+ﬁk2dVMu> .
M
On the other hand, since
e~ V2(ha=hy) _ oPo|Ay(ay)* + O (a%’l(l + r(ay))™* log(r(ay))2)
we find that

Qv.v) =2 / (w' (1)) dt / Vo kl? — 02(20 + D) At (a9) 2K (4)dVas,

r(ay)<R

+a™ O (/ |V, k|? + a%—AM(ay)Fk?) .
r(ay)<R

Taking k(y) = z(ay), with z € C?(M) is an eigenfunction associated to a nega-
tive eigenvalue of the problem (9.1)) and taking R — oo, we obtain that

Qv,v) = a2)\/ |Ap[222dV + O (oz2+“ / |V arz|? + UlAM|22’2) .
M M
Since we can take at least O(y/c) of these eigenfunctions, we conclude that
m(uy) > /0.

9.2 Estimates on the Morse index for solutions in Theorem [2l As for
the solutions described in Theorem 2, we have the asymptotic expansion

e () =w(z —f1q) —w(z —faq) — 1

+ ¢10(a’, 2 —f1a) — ¢20(2', 2 — f2n) + O | T (1 + |z’ )" Z e~z fial
1=1,2
(9.13)
where for [ = 1,2

(=) o(a, 1) = (—1) e V2aa=qa)y (1)) 4 [V |> (£) (9.14)

and the functions v, 11 are again those described in (5.19) and (5.20). We also
recall the sets

A= {a: = (2',2) : |z — fju(2)] < = (f2a(2’) — fla(x’))}, I1=1,2

We use a test function v(z’, z) of the form
v’ 2) == k(2w (2 — fra(2))) + ko (2")w' (2 — fan (")),
and proceed as before to obtain in the set A
Av+ F'(ug)v = Arekyw’ + |Vaia|*k v
Q1

" (w(t) [ 26V + gt)) eV H w0 1 [9qua s (8)] Iy wf

Q2
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HV2(F (w) — F'(1))eY?eV2(@a—tio) by — ! [Apefio ki + 2Vrfia Varki]
Qs Qa

+0 (aHTI(l + |05I"2+%78)71679|t‘) . (9.15)

Qs
Observe also that

[ Quittit= [ Quittde + 0 (7 (14 fay ) )
[t]<pa R

where this time

pal) i= 5 (ale’) — fra(a").

We conclude that in the set A

[ o P w0t = (Saeks +Vang eV )+ k) [
It1<pa R
+0(a?*r(az’) 2Dk + O (a?’r(ax’)_s) Vkr + O(a* r(az’)* P)k,.

As before, a similar estimate holds estimate holds for the region As, namely

/ (Av + F'(ug)v) w'(t)dt = (AMLJC2 + V2ag eV (ky +k2)) / w'(t)?dt
[t|<pa R
+0(a’r(ay) *)D%ks + O (a®r(ay)~*) Vka + O(a® r(ay)**)k,.
so that for the test function
v(@',2) = k(@) [W'(2 — f1a(2")) — W' (2 — faa(2))]
it holds that

/ ! 8 !
Qv,v) = /RS (Vo] = F'(ua)v?) da'dz = 2/R2 (|Vk|2 - M‘Wk2> dx

T 2 1 2 /
+O(a /R2 (Vk +7(1—|—|ax’|2)2k dz' | .

Taking k(y) = z(ay), with z € C?(R?) an eigenfunction associated to a negative
eigenvalue of the problem (9.2)) and taking R — oo, we obtain that

Qv,v) = on)\/ w' (t)dt / p(z)22dV 4+ O (aﬂn / |VRr22|? —|—p($’)z2> .
R R2 R2

This last expression implies that m(u,) > 1, since the problem (9.2)) has exactly
one negative simple eigenvalue.

Let us next prove the following lemma involving the size of negative eigenvalues

to problem ((9.5))

Lemma 9.1. that there exists a universal constant pu > 0 such that for any eigen-
value A < 0 for the problem and any R > 0 large enough

A > —pa. (9.16)
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Proof. To prove this claim, let us consider sets ; := A; N Cg, | = 1,2, where we
recall that

1
A= {(x',t) Dt < §|f2a(x') — fla(x’)|} , oz =t+f1a(2)).
Observe that it is enough to prove that

Qu(¥, ) = /Q (IVe]? = F'(ug)9p?) da'dz > —pa? / plox)y?da’dz, 1=1,2.

9]

As in [9], consider the eigenvalue problem

Arst + F'(uo)Y + Aplaz)yp =0, in Q3 UQ,

1
=0, onl|ax'|=R, =0, |z—fla(x')\:§|f2a(:r’)—f1a(x’)|, 1=1,2.

(9.17)
For a solution 9 to (9.17)), we write in £
(@' 1) = Gaki(@)w' () + ¥
and where we can choose the functions k; so that
/ Yi-w' (t)dt = 0 (9.18)
[t|< 3 |f2a —f1al
We write
Qv v) = Qi (Gike, Gike) +2Qu (Giki i) + Qu (Wi, ¥f)

=L +1I,+111,.

By a series of lengthy calculations similar to those performed in subsection 9.1,
we obtain that

I :/w'(t)2dt/ |Vk |Q—Lk2 dz’
"k R\ (I a2

+a"0 (/R <|Vkl(m’)|2 + (1_‘_62;2)2]@12(96’)) d:d) . (9.19)

Since, T/Jll satisfies the same boundary conditions as v, we obtain that

= f O + Vb = F(ua )i o't
laz'| <R J]t|<5]f2a—f1al

- / / |vwlj_|2 - be_[attwlj_ + F’(ua)zﬁ‘ =V (f2a - fla) : v'l/}ll]
lax’|[<R J[t|< 5 |f2a —f1a]

> (3 [[1owtr 4w+t #) + a0 ([[aslar )

27 [ [ (0t P+ (90t P+ 1), (9.20)
As for I1I;, we proceed as follows. For instance in €2y it holds that
L(ki1(2)w'(t)) := Aky (2 )w' (t) + F'(ug )k (2w’ (t) =

ARQ kl ’U.)l + \Vq1a|2k1 ’U}I//
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F(w(t)) [~(26V2" + o t))e 200 =01 4 [Vaqyo 24 (t)| by '
711)” [ARZfla kl + 2 vz’fla vm/kl}

+0 (a2+T(1 + |am'|2+%_€)_16_9‘t|)
and this implies that
InL = —/C1,1L(k1($')w'(t))¢f+/ 2V 1,1V (a (2w’ (8)) i+ A 1w () (2 )37
Since wf satisfies condition ((9.18]) and using equation (9.17)), we obtain that

I = — /Q L(ky (") w' (8))¢i da' dz — / (1 = CLa) Lk (") (8))01- da'dz + 6

931

= */Q (6w(t)w' (t) + 3w(t)yo(t)) e¥2te™ V2 M2a=hiad o (2 )ypida'dz + 6
where 1
0= o(1) /R (V1 (@) + a*plax)k3(2')) da’ + of1) /Q (W2 + [V 2) de'd=.
So, we obtain that 1

1| < C’I/floﬁ/ (1+ |ax’|)*4ki2(x')dx' + l// 1+ |ozx'|)74\¢f|2dx’dz. (9.21)
R2 )

i

Putting together estimate ((9.19))-(9.20))-(9.21]) we get the estimate

Qe (0,9) > —pn o2 / (1+ Jaa') 42 (o) da.

Then inequality
Qih, 1) > —Mo?/p(wc)w?

follows since a similar procedure applies the region As. ([l

9.3. The proof of Inequality m(u,) < 1 for solutions in Theorem [2, We
begin this part by proving that eigenvalues to problem that are close to zero
are actually positive and we give a precise estimation on their size. This information
is collected in the following lemma, whose proof proceeds as in section 11 in [9],
but that we include here for the sake of completeness.

Lemma 9.2. Assume that ¢o.r and Ao,r 7# 0 are respectively an eigenfunction
and eigenvalue for problem such that

|¢a,rllLers) =1, |Aa,r|l < Ma® (9.22)

for some M — 0 as a — 0. Then there exists a positive universal constant B such
that for every o > 0 small and R large enough

Ao i= lim Ay g = a®log <1) B+ 0(?)

R—o0 (%
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and

bar(r',2) = Z(oa') [w (z = fia) — w' (z = f2o)] + O [ Y eelz el
1=1,2

where Z(z') is a scalar multiple of the function Zo(z') described in (77).

Proof. Let us consider a solution ¢ to the problem . Using assumption ([9.22))
and a sub and super solutions scheme, it can be proven that

2
6@, 2)] < C Y emelzhel]

Jj=1

for |az’| > Ry and Ry large enough. This inequality basically states that any
solution to problem ({9.6) can have values away from zero only in the regions A;.
From inequality (9.22)) we can write

A= >\04,R = Ma,R Of?a Ha,R — Ha, as R — o0
Consider again the sets
~ 1
A ={(2',2) eR* xR |z —fio| < Olfon —f1a])}, 0O € (2,1> . 1=1,2.
and consider a cut-off function El, supported in the set /Nll.

we consider a solution to the eigenvalue problem

Arsp+ F'(ua)¢ + a?uplaz’)p =0, in Cg

¢=0, ondCpg
and to fix ideas, let us localize ¢ in gl by setting
$1 = (19

which implies that %1 must solve the equation
Arsr + F'(ua)¢~51 + Oézﬂp(al‘/)% =2V (- Vo + 01AG = Fiq.
Since in the set ﬁl
|D¢| + |Do| + 6] < Ce @l z=t+f, 0<o<V2 (9.23)
we find that
|Era] < CeeMle= (=221t < 0 [02(1 4 ag’|)~++8] V117 c-alt
from where we conclude that
|Era] < Ca™7(1 4 |aa’|)720F et i Ay
forsome@>0,%<6’<1and7’>08ma11.
Setting z = t + f1,, we write inside A
Li(§1) = Oud1 + Aredpy + F'(w(t))é1 + B(1)

where N N N N
B(¢1) == —Arefi1a0i1 — 2VE1a Ve 001 + [V O

+[F'(ua) = F'(w)] ¢
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Hence, ¢; solves the equation
L.(61) + &2up(ax’)dy + B1 (1) = Ein  in By-15(0) X R.
Proceeding in the same fashion, localizing ¢ in ./12, we find that
L.(92) + a*up(aa’)ds + Ba(d2) = Eza  in B,-15(0) x R.
where
Eso :=2V (- Varga + ¢2A¢

and
Ba(2) := —Apefon 0o — 2VEaa Vi 0id2 + [Viaa|> O 2
+ [F'(ua) = F'(w)] d2
Consider functions k1, ko define by the integrals

/R(bl(a:,t)w (t)dt:kl(x)/R(w ) dt—i—k:g(x)/RClw(t+fm—f2a)w (1)t

o (2 )W (1) = k(2 w'(t))? (2 Cow 20 — f1a)W’
/R¢2( W' (t) = ka( )/R( (t)7dt + ki ( )/RC (t +foa — fra)w'(t)dt

so that in the set gl we have the decomposition

(;1 = kl(l'/) wl(t) + Zlk2(m/) wl(t + fla - f2a) + ®1

/ prw' (t)dt =0
R
Analogously, in ﬁ% we have

by = ko (') W' (t) + Coky(z) W' (t + faa — f1a) + @2

/ pow' (t)dt =0
R

From , it is clear that the functions are smooth and bounded up to their
second derivatives. B B

We do the subsequent developments for ¢, only, since for ¢ is the procedure is
the same.

Dropping again the subindexes we have that the equations for the function ¢
have the form

L.(¢) + &®up(az’)p + B(g) = Sip+ Eo + B(kw'), in By-15(0) xR

where
Sep = Arekyw' + |Vaial?ky w”

Q1
+ P (w(t)) [~(2eV% + o (t))e VR0 4 |Waa P ()] iy o

Q2
FV2(F (w) — F'(1))eV?teV2(2a i) by — o [Apafig by + 2Vfia Vak]
Qs Qa4
+0 (a2+ﬁ(1 + \ay|2+%*€>*1e*@|ﬂ) . (9.24)

Qs



66 O. AGUDELO, M. DEL PINO, AND J. WEI

for some 7 > 0 small enough. Observe that k;(z'), k1(z) are bounded in the C?
norm, in B,-1x(0).
Testing this equation against w’, we observe that

Ageky + V2ag e™V2(020 =00 () 4 ky) + oPpp(aa’)ky = B

+0(a®r(az’)?)D*ky + O (®r(az’) ™) Vki + O(a* 7 (ax’) Pk
where

- 1
B= T (6)2dt /RB(@)

We will prove that B ~ O(a2*7) for some 7 > 0 small enough.
Let us write ¢ = @1 + @2, where

L. (@1) + o*pp(ax’)pr = Qu, / prw'(t)dt =0
R
Then, we obtain the estimate
D2
Next, we observe that

L.(2) + & pplaz’) s + B(p2) = g(a’,t) + (')’ (t)

plo T [[1DP1lloc,1,0 + [[P1]l00,1,0 < Ca.

where
9(a',t) = Eq — a®pp(az’)kyw' (t) — (Q1 + Q2 + Q3 + Qs) — B(¢1)
and
/@w/(t)dt =0.
R
Observe that || B(¢1)p.2—r,0 < Ca? Using the size of E, we obtain that

1+7
p2-r0 < Cax

g
for some 7 > 0 small enough, so that we conclude
ID*@2llp2-r.0 + 1DP2llp2-r.¢ + [ P2llp2-r, < Ca'*T
and consequently
1B(#2)llp,3-7,0 < Ca®*T.
So, we decompose
-~ ~ ~ 1 -
B = By + By, Bl:W/B(SOl)
T g Jr
where
|Bi| < C, |By|<Ca”
Even more, keeping into account the procedure for oo and setting z;(az’) =
ki(2'), for I = 1,2, and using elliptic estimates in the system of equations for z1, 22

we find that
||D2Z||p,2f'r + 11 + |x/|)1_TDZ||oo <Ca
from where
1Qullp 27, < Ca®

and so _ _
1@1llp2—r.o < Ca®,  ||Billps—r < C|Blp2—r < Ca®
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and so N
|B| < Ca?'.
At this point we recall that ¢ = ¢, g has a uniform C' bound and that

Giro,r(2,2) = k1 4,0,r (@)W (2 — f10) + k24,0, r (20 (2 — f25)

2
+ 0 [a) eelmhel (9.25)
j=1
so that
Pa,R — Pa, as R — o0
uniformly on compact sets and
Arsdo + F'(ua)pa =0, in R3.
with
2
ba(2',2) = k1020 (2 — f10) + k2,0 (2 )W (2 — f20) + O | Z e 01z fial
j=1
Observe also that z; o g(2') = kl,a,R(%’) satisfies
Apzzi0,m+V2e VECT0) (29, g2y o g)Fpta,rP(E) 21,0, = O(a” (142'])727F).

ARrz22,0,R+ V2e~V2a2=a) (22,0, + 21,0, R) + P, RP(T') 22,0, = O(” (1 + |'])27F)
so that, after passing to the limit R — oo, we obtain the estimates

e e) < C [l121.0 % 22alli= (r1<e) + O(@7)] (0.26)

||Zl,a =+ 22,a
or equivalently
k1,0 + k2.0l ®2) < C (k1,0 £ k2.all Lo (jaz|<ro) + O(aT)] .

From (9.27) we know that k1 o £ k2 o can not be simultaneously zero. Then we
obtain the limit situation

ARzzl + \/56_\/5(%_(11)(22 + Zl) =0.
ARQZQ + \/éeiﬁ(qziql)(ZQ + Zl) = O

Hence, for every a > 0 small and R large enough we have the asymptotics

2
bo,r(T',2) = z1(az )0 (z — f14) + 22 (a2 )w'(z — f20) + O | @ Z e~el=—fial
=1

and the functions z = 21 + 29, 2 = 21 — 29 are bounded, no simultaneously zero and
solve the system

Ar2z + 2V/2e VAL, = 0, Az=0, inR>
Since, the bounded kernel of the operator
Ag: + 2v/2eV2@2—a1)
is spanned by the functions described in polar coordinates
—1 472 _ r T

0= AT e cos(f), Zz:= 52 sin(9), r>0, 0¢€(0,2m).
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so that
2
z(a') = Zﬁi zi(z'), Bi €R,
i=0
Since we are assuming that A # 0, we may assume from spectral theory that

/ p(0')bo - $da’ dz = 0
Cr

for every bounded ¢ solving
Ap+ F'(ua)p =0, inCr, ¢=0, ondCg.
and from proposition [8:2) we know that the functions
Oz/lua, améua, O, Uq,
are bounded solutions to the equation

A¢+ F'(ug)p =0, inR?

and passing to the limit, we obtain that

/ plaz’)po o(2',2)Z(2',2)dz = 0
R3
for any Z having the form
Z= Biawiua =+ ﬂ?)azua) BieR, i=1,23.
From the asymptotic expansion
Dutig (', 2) = W' (2 — faq — f10) — W' (2 — f2q) + O(a(1 + |ax’|) ~2eel)

we can pass to the limit as a — 0, in the orthogonality condition respect to 0,u,,
to obtain that

/ p(x')2da’ =0
R2

so that from Liouville theorem we get that Z; = 0. This implies that

2
ba,r(2',2) = %z(aaﬂ’) [W'(z — f14) + (az")w' (2 — f20,)] + O aZeiQ\Z*fﬁ*l

Jj=1

Proceeding similarly but this time using orthogonality conditions respect to
0z, Uq and asymptotic expansions

Ooruia (2, 2) = aly,qloa’) [W'(z — f1a) — W' (2 — f0)] + O(a?), i=1,2
we find that
/ p(x')z(2")z; (2" )da' =0, i=1,2.
R2

Consequently, z(z’) must be a scalar multiple of Zp(x’) and with no loss of
generality we write

2
ba,r(2', 2) = Zo(ax') [w'(z — f1a) + (ax")w'(z — f20)] + O aZe*Q‘Z’fﬂ'
=1
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To finish the proof of the lemma, let us consider again the sets ; = A; N Cg
from above and notice that

042”()(/ p(ax/)aaaua'¢adx/dz = (1/ v¢a'vaaua_F/(ua)¢a'8aua
QI,RUQZ‘R

QLRUSZQ’R
—a / G (Datie) dS
1ol (QLRUQQ,R)
Observe first that

agﬂa / p(ax/)gba - Opuadx’dz
QI,RUQQ,R
= 2a2ua/ plax’)zo(aa’)?w' (t)d2'dt + O (a7)
jaw!|<R, [t<3 (f2a—f1a)

= pollw' |22 /I /|<Rp(x’)2§dx’ +0(a") = copz,a +O(a”), ¢ > 0.

On the other hand,

a/ 2,00, (0atq)dS =
o (Ql,RUQQ,R)

‘/| ‘—R | \< 2,aUn (aaua)
az’|=R, |t ¢ 0,
! II

Clearly, the largest contribution in this integral comes from the first term, which
from the asymptotic formula (8.60]), yields that

+ /
(foa—f14) laz’|<R,|t|=3 (f2a —f1a)

1
2

I = 2ra 'R|w|3:20(R) [a0r.0qa + a0raValjp—q-1p + O(al™T)
~ 1
= foalog (a) + O (a)

with EO > 0. Hence, taking R — oo, we find that po ~ alog(a)ﬁ for some 3 > 0
and this completes the proof of the lemma. (Il

9.4 The proof of inequality m(u,) < 1 for solutions in Theorem (2). To
sketch the proof of inequality m(u,) < 1 we proceed as in the proof of the lemma
From the characterization of m(u,) in (9.7), we can take an eigenfunctions
®a, R, associated to strictly negative eigenvalue A, r < 0, which from the variational
characterization of the eigenvalues can be chosen to be decreasing in R. We also
may assume that

lba.rllco =1, /3 (') o.R bo,rdT'dz = 0 (9.27)
.

for ¢o.r an eigenfunction to problem associated to a different eigenvalue.
From inequality (9.16) we can write
Aa,R = a? Ha,Ry  Ha,R = Pa <0, as R — oco.

And proceeding as above, we find the asymptotics for ¢4 r

ba.r(7',2) = z1(az" )W (2 — f10) + 22(ax’ )0’ (2 — f24)
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2
+0 | a Z e~ 07t

j=1
with
AR22,’1 + \@eiﬁ(qziql)(ZQ + 2’1) + up(x/)zl =0.
AR2zo + \/ﬁe_ﬁ(qz_“)(zg +21) 4+ pp(z')z2 =0
where p < 0.

The case p = 0 is discarded with the help of lemma [9.2] which states that there
are not strictly negatives eigenvalues close to zero. Hence, u < 0 and we observe
that the equation for the difference 25 = z; — 29, reads as

AR222 + Mp(xl)ﬁg =0, ||22||oo < 00.

Since, the eigenspace associated to the eigenvalue u is spanned by exactly one
simple and positive eigenfunction and using as before the orthogonality condition
against 0,u, we find that

/ p(x')2edx’ =0
R3
which implies that Zo = 0. So that, we have the asymptotic expansion
bar(2',2) = z(ax’) [W' (2 — fia) + W' (2 — foa)] + @2O(e 72l
where
Agez + 2V/2eV2(@2=a) ;4 pp(x')z = 0.

From condition for eigenfunctions associated to the same eigenvalue, we
can conclude that and since there is exactly one negative eigenvalue for problem
([9-6), we conclude that this eigenvalue must be simple so that m(us) < 1 and this
concludes the proof of Theorem [2}

Acknowledgements: The first author was par
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