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Abstract. We consider the Allen-Cahn equation

ε2∆u + u− u3 = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

where Ω is a smooth and bounded domain in Rn such that the mean curvature is positive at
each boundary point. We show that there exists a sequence εj → 0 such that the Allen-Cahn
equation has a solution uεj

with an interface which approaches the boundary as j → +∞.

1. Introduction

The aim of this paper is to construct a solution with an interface near the boundary to the

Allen-Cahn equation

(1.1)

{
ε2∆u + u− u3 = 0 in Ω,
∂u
∂ν

= 0 on ∂Ω,

where ∆ =
∑n

i=1
∂2

∂x2
i

is the Laplace operator, Ω is a bounded smooth domain in Rn, ε > 0 is a

small parameter, and ν(x) denotes the unit outer normal at x ∈ ∂Ω.

Problem (1.1) and its parabolic counterpart have been a subject of extensive research for

many years. In order to describe some known results, we define the Allen-Cahn functional (see

[2])

Jε[u] =

∫

Ω

[
ε2

2
|∇u|2 − F (u)], where F (u) = −1

4
(1− u2)2.

The set {x ∈ Ω | u(x) = 0} is called the interface of u. Let PerΩ(A) be the relative perimeter of

the set A ⊂ Ω. Using Γ−convergence techniques (see [18]), Kohn and Sternberg in [11] showed

a general result stating that in a neighborhood of an isolated local minimizer of PerΩ there

exists a local minimizer to the functional Jε. They further used this idea to show the existence

of a stable solution for (1.1) in two dimensional, non-convex domains, such as a dumb-bell.

Since then, the existence of solutions with a single interface intersecting the boundary has been

established and studied by many authors, see [1], [6], [8], [10], [20], [21], [22], [23], [24], [25] and

the references therein.
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In [17], Ni and the authors showed that in the case of a ball, there are radially symmetric

solutions with arbitrarily many interfaces near the boundary. For related results see also [4],

[5], [3] and references therein. In this paper, we extend this result removing the symmetry, with

a single boundary layer.

Our main result is the following.

Theorem 1.1. Assume that the mean curvature k of ∂Ω is everywhere positive. Then there

exists a sequence εj → 0 such that problem (1.1) has a solution uεj
(x) with the following property

uεj
(x) = H(

xn

εj

− 1

2
√

2
log

1

εj

−Rεj
(z)) + O(

√
εj).

Here, if x is near the boundary, we parameterize it with z and xn, z ∈ ∂Ω being the closest

point to ∂Ω and xn = d(x, ∂Ω), while H(y) is the unique hetheroclinic solution of

(1.2) H
′′

+ H −H3 = 0, H(0) = 0, H(±∞) = ±1.

The function Rε(z) satisfies Rε(z) = γ1 log 1
k(z)

+γ2 +γ3

√
ε+O(ε), where the γi’s are universal

constants (with γ1 > 0).

To explain the features of this result we first discuss its heuristic derivation, and then our

rigorous approach to the problem.

As already remarked, the functional Jε can be interpreted as an approximation (via Γ-

convergence) of the area functional for the interface of a two-phase mixture. In [17] it was

noticed that, when the domain is the unit ball of Rn, there is an interplay between the perimeter

of an interface near the boundary and its interaction with the boundary itself. Indeed (still

in the radial case), the surface contribution to the energy of an interface H (scaled in ε) with

radius r0 is proportional to εrn−1
0 . To understand the interaction with ∂Ω, one can reason as

follows: since Neumann boundary conditions are required, to match them one can add to H a

term H ′ ( r−r0

ε

)
e−

√
2(1−r)

ε : the presence of the exponential function is justified by the asymptotics

of H at infinity, see (2.2) below. Considering the functional Jε applied to this new function,

one verifies that its expansion in ε behaves qualitatively like Gε(r0) := ε
(
rn−1
0 − e−

−2
√

2(1−r0)
ε

)
:

we refer to Section 4 in [17] for a rigorous derivation of this formula. As one can see, there is a

local maximum of Gε for 1− r0 ' ε
2
√

2
log 1

ε
, which suggests the existence of a stationary point

of Jε. In [17] this was indeed proved using a one-dimensional Lyapunov-Schmidt reduction.

Removing the symmetry, the above heuristic argument still applies when the mean curvature

of ∂Ω is positive. However, the previous approach completely breaks down and one needs to use

different arguments. The reason is due to some underlying resonance phenomena: these can be
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seen looking at the above function Gε, which possesses an unstable critical point. Considering

the linearization of (1.1) at an approximate solution, it turns out that this instability generates

a small negative eigenvalue of order ε. In the radial case, see [17], this is the only small one, and

can be taken care of with the Lyapunov-Schmidt reduction. In general more resonance occurs,

due to the vibration modes of ∂Ω: qualitatively, the small eigenvalue found before generates a

sequence of eigenvalues of the form −ε+ε2λj ' −ε+ε2j
2

n−1 , where the λj’s are the eigenvalues

of the Laplace-Beltrami operator of ∂Ω, whose asymptotics is given by the well known Weyl’s

formula. As one can see, we have an increasing number of negative eigenvalues, many of them

accumulate to zero and sometimes, depending on the value of ε, we even have the presence of

a kernel: this clearly causes difficulties if one wants to apply local inversion arguments.

To tackle this problem we take advantage of an approach used in [14], [15] (see also [12], [13]),

where similar resonance phenomena were handled for another class of singularly perturbed

equations. The main ingredient is to look at the eigenvalues (of the linearized problem) as

functions of ε, and to estimate their derivative with respect to ε. This can be rigorously done

using a linear perturbation theorem due to T.Kato, see Section 2, and by characterizing the

resonant eigenfunctions. This result gives us indeed invertibility along a suitable sequence

εj → 0, and the norm of the inverse operator along this sequence has an upper bound of order

ε
−n+1

2
j . This loss of uniform bounds as j → +∞ should be expected, since more and more

eigenvalues are accumulating near zero. Anyway, we are able to deal with this further difficulty

by choosing approximate solutions with a sufficiently high accuracy.

The plan of the paper is the following: in Section 2 we collect some preliminary results

concerning the profile H, the expressions of the quantities under interest in local coordinates,

and some spectral results. In Section 3 we turn to the construction of approximate solutions,

which is done by a careful analysis of the linearized equation in the xn component (following the

notation of Theorem 1.1 xn stands for the distance from the boundary of Ω). Finally in Section

4 we prove our main result applying Kato’s theorem and a contraction mapping argument:

the main ingredient here is the characterization of the eigenfunctions corresponding to small

eigenvalues, which is done mainly via Fourier analysis. We collect some technical results in an

appendix.
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2. Some Notation and Preliminary facts

In this section we introduce a list of useful facts, some of analytic nature involving the standard

profile H of the Allen-Cahn equation, and other of more geometric content, concerning the use

of local coordinates and the Weyl’s asymptotic formula for the eigenvalues of elliptic operators.

We finally recall a classical result due to T.Kato about the differentiability of eigenvalues of

operators depending on a real parameter.

First of all, we adopt the convention that large constants depending only on Ω are denoted

by C, and are allowed to vary, attaining larger and larger values. With the same convention,

we write O(t) to denote quantities which remains uniformly bounded by C|t| as t tends to

zero, and write o(t) to denote those which tend to zero faster than |t| in this limit. The

symbols γj, j = 1, ... will denote universal constants. Throughout the paper, we tacitely use

the standard convention of summing upper and lower indices which are repeated. Elliptic

operators will usually have a positive coefficient of second order derivatives, and we will count

their eigenvalues in decreasing order.

Let H be the unique solution of (1.2): it is easy to see that

(2.1) H(y) = tanh(

√
2

2
y),

and the following estimates hold

(2.2)





H(y)− 1 = −A0e
−√2|y| + O(e−(2

√
2)|y|) for y → +∞;

H(y) + 1 = A0e
−√2|y| + O(e−(2

√
2)|y|) for y → −∞;

H ′(y) =
√

2A0e
−√2|y| + O(e−(2

√
2)|y|) for |y| → +∞,

where A0 > 0 is a fixed constant. As a consequence of (2.2), we have

(2.3) 3

∫

R
(1−H2)H

′
e−

√
2y = −

∫

R
(H

′′′ − 2H
′
)e−

√
2y = 4A0.

Let

Z = 3(1−H2)H
′
,

f(u) = u− u3, g(u) = 3u− u3.

Then we have the following well-known result: for a proof, see Lemma 4.1 in [19].
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Lemma 2.1. Consider the following eigenvalue problem

(2.4) φ
′′

+ f
′
(H)φ = λφ, φ ∈ H1(R).

Then one has

(2.5) λ1 = 0, φ1 = cH
′
; λ2 < 0,

where the λi’s denote the eigenvalues in decreasing order (counted with multiplicity), with corre-

sponding eigenfunctions (φi)i. As a consequence (by Fredholm’s alternative), given any function

g ∈ L2(R) satisfying
∫
R gZ = 0, the following problem has a unique solution

(2.6) φ
′′

+ f
′
(H)φ = g in R,

∫

R
Zφ = 0.

Furthermore, there exists a positive constant C such that ‖φ‖H1(R) ≤ C‖g‖L2(R).

Next, we scale the equation (1.1) by 1
ε

to obtain

(2.7)

{
∆u + u− u3 = 0 in Ωε,
∂u
∂ν

= 0 on ∂Ωε,

where Ωε = Ω/ε. To consider the scaled problem (2.7), it is convenient to introduce suitable

coordinates in a tubular neighborhood of ∂Ωε. For z ∈ ∂Ωε, we can parameterize the points

y in a neighborhood of the boundary (with distance from the boundary less or equal than δ
ε
,

with δ small and fixed) as

(2.8) y = z − xnν(εz),

where ν(εz) stands for the unit outward normal to Ω at εz.

In the following, we let g denote the metric on ∂Ω (inherited from Rn), gε the one on ∂Ωε, and

gε the flat metric of Ωε, which will be expressed in the above coordinates (z, xn). If z1, . . . , zn−1

is a local set of coordinates on Ωε, and if (gε)ij denote the corresponding components of the

metric tensor, then the components of gε are given by

(2.9) (gε)IJ =

(
(gε)ij − εxn(Al

igjl + Ak
j gik) + ε2x2

nA
l
iA

k
j glk 0

0 1

)
,

for I, J = 1, . . . , n, and i, j = 1, . . . , n− 1. In the last formula, (Ai
j) are the components of the

second fundamental form namely, setting z = εz and zj = εzj, they are defined by ∂ν
∂zi

= Aj
i

∂z
∂zj

.

To deduce (2.9), we notice that

∂y

∂zi

=
∂z

∂zi

− εxn
∂ν(εz)

∂zi

;
∂y

∂xn

= −ν(εz).

Hence, since (gε)ij = 〈 ∂y
∂zi

, ∂y
∂zj
〉, and since ν(εz) is perpendicular to ∂z

∂zi
, then we get immediately

(2.9).
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The eigenvalues of the matrix (Aj
i ) (with respect to the metric g) are called principal curva-

tures of ∂Ω, and will be denoted by (ki(εz))i, i = 1, . . . , n− 1. In the following, we let

k(z) =
n−1∑
i=1

ki(z), z ∈ ∂Ω,

denote the mean curvature of ∂Ω (scaled by a factor n−1). This function enters in the expansion

of the volume element in terms of ε, since from (2.9) (see also [15], p. 123, with an obvious

change of notation) one finds

(2.10) dVgε =
√

gεdxndz = (1− εxnk(εz))dVgε
dxn + O(ε2x2

n)dVgε
dxn.

In a general system of coordinates with metric g = (gIJ)IJ , the expression for the Laplace-

Beltrami operator acting on a function u is the following

(2.11) ∆gu =
1√

det g
∂I

(
gIJ

√
det g∂Ju

)
,

where gIJ are the entries of the inverse matrix of (gIJ)IJ .

Then after some elementary computations, using the block form of the matrix in (2.9), one

finds

(2.12) ∆yu = unn −
n−1∑
i=1

ki(εz)

1− εxnki(εz)
εun + ε2∆∂Ωεxn

u.

Here we are using the standard notation un = ∂u
∂xn

, unn = ∂2

∂x2
n
, while ∆∂Ωεxn

u stands for the

operator in (2.11) freezing the coordinate xn, namely summing over i, j = 1, . . . , n− 1

∆∂Ωεxn
u =

1√
det g

∂i

(
gij

√
det g∂ju

)
(z, xn).

This operator is nothing but the Laplace-Beltrami operator for the metric g∂Ωεxn
on ∂Ωε with

coefficients ((gε)ij(·, xn))ij in the coordinates zi, . . . , zn−1. With respect to this metric, one can

introduce a corresponding gradient ∇∂Ωεxn
, defined by duality as

〈∇∂Ωεxn
u, v〉∂Ωεxn

= (gε)
ij(·, xn)

∂u

∂zi

vj, if v = vj
∂

∂zj

∈ T∂Ωε .

From the expression of gij in (2.9) then one finds the estimates

(2.13) |∇∂Ωεxn
u|2 := (gε)

ij(·, xn)
∂u

∂zi

∂u

∂zj

= (1 + O(εxn))|∇gε
u|2;

(2.14)

∫

∂Ωε

u∆∂Ωεxn
vdVg∂Ωεxn

=

∫

∂Ωε

〈∇gε
u,∇gε

u〉dVgε
+ O(εxn)‖∇gε

u‖L2(∂Ωε)‖∇gε
v‖L2(∂Ωε),

for every u, v ∈ H1(∂Ωε).
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In the following, for a fixed small constant 0 < τ < 1, we let

Γτ =
{
y ∈ Ωε : dist(y, ∂Ωε) < ε−τ

} ' ∂Ωε × (0, ε−τ ).

Considering then a function u ∈ H1(Γτ ), depending on the variables (z, xn) through the param-

eterization in (2.8), we can freeze the variable xn and define the gradient ∇gε
on the variables

z. With this convention, and using again formula (2.9) one obtains

(2.15)

∫

Γτ

|∇gεu|2dVgε = (1 + O(ε1−τ ))

∫

Γτ

|un|2dxndVgε
+ (1 + O(ε1−τ ))

∫

Γτ

|∇gε
u|2dxndVgε

.

For later purposes, it is convenient to consider a basis of eigenfunctions (ϕj)j for the following

eigenvalue problem

(2.16) −∆∂Ωϕj = λjk(z)ϕj; z ∈ ∂Ω,

satisfying the normalization conditions
∫

∂Ω
k(z)ϕiϕjdVg = δij. Such eigenvalues can be obtained

for example using the Rayleigh quotient, namely if Mj denote the family of j-dimensional

subspaces of H1(∂Ω), then one has

λj = inf
M∈Mj

sup
ϕ∈M,ϕ 6=0

∫
∂Ω
|∇∂Ωϕ|2∫

∂Ω
k(z)ϕ2

.

It is standard to check the following Weyl’s asymptotic formula ([7])

λj ' CΩj
2

n−1 as j → +∞,

for some constant CΩ depending only on Ω.

We finally recall the following theorem due to T. Kato, ([9], page 444) which will be funda-

mental for us in order to obtain invertibility of the linearized equation.

Theorem 2.2. Let T (χ) denote a differentiable family of operators from an Hilbert space X

into itself, where χ belongs to an interval containing 0. Let T (0) be a self-adjoint operator of the

form Identity - compact and let σ(0) = σ0 6= 1 be an eigenvalue of T (0). Then the eigenvalue

σ(χ) is differentiable at 0 with respect to χ. The derivative of σ is given by

∂σ

∂χ
=

{
eigenvalues of Pσ0 ◦

∂T

∂χ
(0) ◦ Pσ0

}
,

where Pσ0 : X → Xσ0 denotes the projection onto the σ0-eigenspace Xσ0 of T (0).

3. Approximate Solutions

Since our existence result is based on local inversion arguments, as explained in the intro-

duction, we need first to find approximate solutions, and this is what this section is devoted

to. We will take these functions identically equal to 1 outside some fixed neighborhood of ∂Ω,

and hence (after a scaling of the domain) it is sufficient to restrict our attention to the set
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Γ := ∂Ωε × (0, δ
ε
). On Γ, we use the coordinates (z, xn) introduced in the previous section.

Then equation (1.1) becomes

(3.1)

{
unn −

∑n−1
i=1

ki(εz)
1−εxnki(εz)

εun − ε2∆∂Ωεxn
u + u− u3 = 0, (z, xn) ∈ Γ,

un(·, 0) = 0, u(·, δ
ε
) = 1.

Let

k(εz) =
n−1∑
i=1

ki(εz), Iε = [0,
δ

ε
].

We define a norm

(3.2) ‖h‖∗ = sup
z∈∂Ω, xn∈Iε

|eσ(xn− 1
2
√

2
log 1

ε
)+h(z, xn)|

where σ > 0 is a suitable small number (to be fixed later) and x+ = max(x, 0). Similarly, for a

positive integer l we set

(3.3) ‖h‖∗,l = sup
|α|≤l

sup
z∈∂Ω, xn∈Iε

|eσ(xn− 1
2
√

2
log 1

ε
)+Dα

z h(z, xn)|,

where α stands for a multi-index. In this section we prove the following theorem.

Theorem 3.1. If σ is sufficiently small, then for every l ∈ N and for any constant C the

following property holds. Let h(z, xn) be such that

(3.4) ‖h‖∗,l < C.

Then there exists ε0 > 0 such that for ε < ε0, z ∈ ∂Ω and h satisfying (3.4), there exists a

unique solution uε(z, xn; h) to the problem

(3.5)

{
unn −

∑n−1
i=1

ki(z)
1−εxnki(z)

εun + u− u3 = ε2h(z, xn), xn ∈ Iε,

un(0) = 0, u( δ
ε
) = 1

which satisfies

(3.6) uε(z, xn; h) = uε(z, xn) + O(ε
3
2 )

in the ‖ · ‖∗ norm, where

uε(z, xn) = H(xn − 1

2
√

2
log

1

ε
−Rε(z)) +

1√
2
H

′
(− 1

2
√

2
log

1

ε
−Rε(z))e−

√
2xn

+ε

[
φ̃0(xn − 1

2
√

2
log

1

ε
−Rε(z)) + γ0H(xn − 1

2
√

2
log

1

ε
−Rε(z))e−2

√
2Rε(z)e−

√
2xn

]
.

Here Rε(z) satisfies

(3.7) Rε(z) = γ1 log
1

k(z)
+ γ2 + γ3

√
ε + O(ε),
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and φ̃0 ∈ H1(R) is the unique solution of

(3.8) φnn + (1− 3H2)φ− k(z)(H
′
+ 3γ4(H

2 − 1)e−
√

2y) = 0,

∫

R
φ(1−H2)H

′
= 0,

(here γ4 is the unique number such that (3.8) is solvable, see Lemma 2.1), and γi, i = 1, 2, 3

are universal constants.

Moreover (for some constant C depending on Ω and l), we have

(3.9) ‖uε(z, xn; h)‖∗,l ≤ C

and if h1, h2 satisfy (3.4) then

(3.10) ‖uε(z, xn; h1)− uε(z, xn; h2)‖∗,l ≤ Cε‖h1 − h2‖∗,l.

Once we have Theorem 3.1, we can prove the main result of this section, concerning existence

of approximate solutions to (2.7).

Theorem 3.2. For each fixed integer K ≥ 3, there exists an approximate solution uK
ε satisfying

(3.6) and

(3.11) ‖uK
nn −

n−1∑
i=1

ki(εz)

1− εxnki(εz)
εuK

n + ε2∆∂Ωεxn
uK + uK − (uK)3‖∗,2 ≤ CεK ,

where ∆∂Ωεxn
is the operator defined in the previous section.

Proof: Theorem 3.2 is proved by the following iteration:

u0(z, xn) = uε(z, xn; 0), h0 = 0;

uk(z, xn) = uε(z, xn; hk−1), hk−1 = −∆∂Ωεxn
uk−1,

where k = 1, ..., K − 2.

Let us consider K = 3 case first. Observe that u0 satisfies

u0
nn −

n−1∑
i=1

ki(εz)

1− εxnki(εz)
εu0

n + u0 − (u0)3 = 0,

while u1 solves

u1
nn −

n−1∑
i=1

ki(εz)

1− εxnki(εz)
εu1

n + u1 − (u1)3 + ε2∆∂Ωεxn
u0 = 0.

By (3.9), for any l ∈ N we have

‖u0‖∗,l ≤ C,

and by (3.10)

‖(u1 − u0)‖∗,l−2 ≤ Cε



10 A. MALCHIODI AND JUNCHENG WEI

which then implies that u1 satisfies

‖u1
nn −

n−1∑
i=1

ki(εz)

1− εxnki(εz)
εu1

n + ε2∆∂Ωεxn
u1 + u1 − (u1)3‖∗,l−4 ≤ Cε3.

For K > 3 (choosing l in the initial step sufficiently large depending on K), we can prove

(3.11) using an induction argument.

¤

Remark 3.3. The approximate solution uK
ε constructed in Theorem 3.2 is actually unique

(since the solution in Theorem 3.1 is unique), and smooth in ε.

In the rest of this section we prove Theorem 3.1: we begin with a series of Lemmas, the first of

which establishes the existence of uε.

Lemma 3.4. For ε sufficiently small, there exists a solution uε(z, xn; h) to (3.5) satisfying

(3.6).

Proof: the proof of the existence follows from a standard Lyapunov-Schmidt reduction method.

First, we choose an approximate solution. For a large C, let R ∈ [ 1
C
, C] be a fixed number

and let χ(t) be a cut-off function such that χ(t) = 1 for t < δ
8
, χ(t) = 0 for t > δ

2
. We set

(3.12) Hε,R(xn) :=
(
H(xn − 1

2
√

2
log

1

ε
−R) + ρε,Re−

√
2xn

)
χ(εxn) + 1− χ(εxn),

where

(3.13) ρε,R =
1√
2
H

′
(− 1

2
√

2
log

1

ε
−R).

Observe that by (2.2)

(3.14) ρε,R = A0

√
εe−

√
2R + O(εe−2

√
2R).

Then we define an operator

(3.15) S[u] := unn −
n−1∑
i=1

ki(z)

1− εxnki(z)
εun + u− u3 − ε2h(z, xn).

It is easy to show that

(3.16) S[Hε,R] = −εk(z)H
′
ε,R + 3(1−H2)ρε,Re−

√
2xn − ε2h(z, xn)

−ε2xn

n−1∑
i=1

k2
i (z)H

′
ε,R + f

′′
(H)

1

2
(ρε,R)2e−2

√
2xn + o(ε2)e−

√
2(xn−1/(2

√
2) log 1/ε)+ .
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Since (1 −H2)e−
√

2xn = O(
√

ε(1 −H2)e−
√

2y), where y = xn − 1
2
√

2
log 1

ε
− R, we see that if

σ <
√

2 in the definition of ‖ · ‖∗ then

(3.17) ‖S[Hε,R]‖∗ ≤ Cε.

Let

hε,R = H
′
ε,R +

1√
2
H

′′
ε,R(0)e−

√
2xn , Zε,R = 3(1−H2

ε,R)H
′
ε,R.

We divide now the proof of the lemma into two steps.

Step 1: there exists a unique solution φε,R of

(3.18) S[Hε,R + φε,R] = cε,RZε,R,

∫

Iε

φε,RZε,R = 0

for some constant cε,R (and with the same boundary conditions as in (3.5)). Moreover, φε,R is

unique, differentiable in z and satisfies

(3.19) e
σ(xn− 1

2
√

2
log 1

ε
)+|φε,R| ≤ Cε.

The proof is based on the contraction mapping theorem. Since the arguments are quite

standard, see e.g. [16], we postpone the details to the appendix.

Step 2: we can choose R such that cε,R = 0. Multiplying (3.18) by hε,R and integrating over

Iε, from a Taylor expansion we obtain

(3.20) cε,R

∫

Iε

Zε,Rhε,R =

∫

Iε

S[Hε,R]hε,R +

∫

Iε

[
φε,R,nn + (1− 3H2

ε,R)φε,R

]
hε,R + O(ε2| log ε|),

and we have
∫

Iε

[
φε,R,nn + (1− 3H2

ε,R)φε,R

]
hε,R =

∫

Iε

[
hε,R,nn + (1− 3H2

ε,R)hε,R

]
φε,R + O(ε) = O(ε2).

The left hand side of (3.20) can be estimated as

cε,R

∫

Iε

Zε,Rhε,R = cε,R(

∫

R
3(1−H2)(H

′
)2 + O(

√
ε)),

while for the first term in the right-hand side we can use (3.16) to obtain∫

Iε

S[Hε,R]hε,R = εk(εz)

∫

Iε

H
′
ε,Rhε,R + ρε,R

∫

Iε

3(1−H2)hε,Re−
√

2xn + O(ε2| log ε|).

Note that ∫

Iε

H
′
ε,Rhε,R =

∫

R
(H

′
)2 + O(ε) = c0 + O(ε),

ρε,R

∫

Iε

3(1−H2)hε,Re−
√

2xn =
√

ερε,Re−
√

2R

∫

R
3(1−H2)H

′
e−

√
2ydy + c2ε

3/2 + O(ε2| log ε|)
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= c1εe
−2
√

2R + c2ε
3/2 + O(ε2),

where by (2.3)

c1 = 3A0

∫

R
(1−H2)H

′
e−

√
2y = 6

√
2A2

0,

and where c2 is a fixed constant (independent of h).

In conclusion we have

(3.21)

∫

Iε

S[Hε,R]H
′
ε,R = εc0k(z)− εc1e

−2
√

2R + c2ε
3/2 + O(ε2| log ε|),

and hence we derive that cε,R = 0 if and only if the following holds

(3.22) c1e
−2
√

2R = c0k(εz) + c2

√
ε + O(ε).

The latter equation has clearly a unique solution R = Rε(z; h) satisfying (3.7).

To show that uε has the expansion (3.6), we use the equation satisfied by φε = φε,R. Letting

φε = εφ̂ε, then φ̂ε solves

φ̂ε,nn + f
′
(Hε,R)φ̂ε − k(εz)H

′
ε,R + 3(1−H2

ε,R)
ρε,R

ε
e−

√
2xn − 6Hε,R

ρ2
ε,R

ε
e−2

√
2xn = F1,ε,

with

‖F1,ε‖∗ = O(
√

ε);

∫

Iε

Zε,Rφ̂ε = 0.

We rewrite the above equation in the following way, recalling (3.14)

φ̂ε,nn + f
′
(Hε,R)φ̂ε − k(εz)H

′
ε,R + 3(1−H2

ε,R)(1 + o(1))A0e
−√2

(
xn+R− 1

2
√

2 log 1
ε

)

−6Hε,RA2
0(1 + o(1))e−2

√
2Re−2

√
2xn = F1,ε.

The last term on the left-hand side needs to be taken care of since, as ε → 0, it is not uniformly

bounded in L2(Iε). To treat it, we can add the expression γ3ρ
2
ε,RHe−2

√
2xn to φ̂ε so that we get

indeed a localized error term with uniformly bounded L2 norm. Precisely, we can write

φ̂ε = γ3ρ
2
ε,RHe−2

√
2xn − c3,ερ

2
ε,RH

′
ε,R +

√
εc4,εe

− 1
1−xn + c5,εe

− 1
1−(δ/ε−xn) + φ̂ε,1,

where c3,ε, c4,ε are some real constants which converge to some c3, c4 ∈ R as ε → 0, c5,ε → 0,

and where φ̂ε,1 satisfies the conditions
∫

Iε

Zε,Rεφ̂ε,1 = 0; (φ̂ε,1)n(0) = φ̂ε,1

(
δ

ε

)
= 0.

It is easy to see that φ̂ε,1 solves

φ̂ε,1,nn + f
′
(Hε,R)φ̂ε,1−k(z)H

′
ε,R +3(1−H2

ε,R)
ρε,R

ε
e−

√
2xn +6(H3

ε,R−Hε,R)
(ρε,R)2

ε
e−2

√
2xn = F2,ε,
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with

‖F2,ε‖∗ = O(
√

ε);

∫

Iε

Zε,Rφ̂ε,1 = 0.

Letting ε → 0 and using the expression of Hε,R, we deduce that φ̂ε,1 = φ̃0 + O(
√

ε) in the ‖ · ‖∗
norm, where φ̃0 satisfies

(3.23) φ̃0,nn + f
′
(H)φ̃0 − k(z)(H

′
+ 3γ4(1−H2)e−

√
2y) = 0,

∫

R
φ̃0(1−H2)H

′
= 0,

and where γ4 ∈ R is such that
∫
R Z(H

′
+3γ4(1−H2)e−

√
2y) = 0. This concludes the proof. ¤

Let

R0(z) = γ1 log
1

k(z)
+ γ2 + γ3

√
ε, H0(xn) = H(xn − 1

2
√

2
log

1

ε
−R0(z)),

h0(xn) = H
′
0 +

1√
2
H

′′
0 (0)e−

√
2xn .(3.24)

Note that

Rε(z) = R0(z) + O(ε).

Our next lemma shows the uniqueness of uε.

Lemma 3.5. The solution constructed in Lemma 3.4 is unique. Moreover, letting L denote

the linearized operator at uε

Lφ = φnn −
n−1∑
i=1

ki(z)

1− εxnki(z)
εφn + (1− 3u2

ε)φ,

we have

(3.25) ‖φ‖∗ ≤ C

ε
‖Lφ‖∗.

More precisely, if

(3.26) Lφ = f,

with the boundary conditions φn(0) = 0 and φ( δ
ε
) = 0, then we have

(3.27) φ = ch0 + φ⊥, where |c| = 1

ε
O

(∣∣∣∣
∫

Iε

fh0

∣∣∣∣
)

and ‖φ⊥‖∗ = O(‖f‖∗).

Furthermore, the eigenvalues for the following problem

(3.28) Lφ0 + λεφ0 = 0

satisfy

(3.29) λε
1 = −εγ5k(z) + O(ε3/2), λε

2 ≥ γ6 > 0

for some positive constants γ5, γ6 > 0.
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Proof: we first show (3.29). Let (φ0, λε) satisfy (3.28): by Lemma 2.1 it is easy to see that

either λε → 0, or λε ≥ γ6 > 0. We discuss the first case (the following argument will be used

repeatedly) decomposing φ0 as

(3.30) φ0 = cεh0 + φ⊥0 ,

∫

Iε

φ⊥h0 = 0.

Then φ⊥0 satisfies

(3.31) Lφ⊥0 + λε(φ
⊥
0 ) = −cεLh0 − cελεh0,

where

(3.32) Lh0 = 3(H2 − u2
ε)H

′
0 +

3√
2
(1− u2

ε)H
′′
0 (0)e−

√
2xn − εk(z)h

′
0 + O(ε3/2)

(in the ‖ · ‖∗ norm). Since λε → 0 and
∫

Iε
φ⊥0 h0 = 0, from Lemma 2.1 we derive that

(3.33) ‖φ⊥0 ‖∗ ≤ C|cε|(ε + |λε|).
Now multiplying (3.28) by h0 and integrating over Iε, we obtain

(3.34)

∫

Iε

(Lφ⊥0 )h0 = cε

[∫

Iε

(−Lh0)h0 − λε

∫

Iε

h2
0

]
.

By (3.33) and some computation, the left hand side of (3.34) can be estimated as∫

Iε

(Lφ⊥0 )h0 =

∫

Iε

(h
′′
0 + (1− 3u2

ε)h0)φ
⊥
0 + O(

√
εcε(ε + |λε|))

=

∫

Iε

3(H2
0 − u2

ε)φ
⊥ + O(

√
εcε(ε + |λε|)) = O(

√
εcε(ε + |λε|)),

while for the right-hand side we have

cε

[∫

Iε

(−Lh0)h0 − λε

∫

Iε

h2
0

]

= cε

[
−

∫

Iε

3(H2
0 − u2

ε)(H
′
0)

2 − 3√
2
H

′′
0 (0)

∫

Iε

(1− u2
ε)H

′
0e
−√2xn + λε

∫

Iε

h2
0 + O(ε3/2)

]
.

Notice that

3√
2
H

′′
(0)

∫

Iε

(1− u2
ε)H

′
0e
−√2xn =

√
2A0εe

−2
√

2R0

∫

R
3(1−H2)H

′
e−

√
2y + O(ε3/2)

= 4
√

2A2
0εe

−2
√

2R0 + O(ε3/2),(3.35)

and that ∫

Iε

h2
0 =

∫

R
(H

′
)2 + O(ε).

Recall that

uε = Hε,Rε + φε = H0 + Hε,Rε −H0 + φε
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(3.36) = H0 + H
′
0(R0 −Rε) +

1√
2
ρε,Rεe

−√2xn + φε + O(ε2| log ε|)

in the ‖ · ‖∗ norm. Therefore it follows that
∫

Iε

3(H2
0 − u2

ε)(H
′
0)

2 =

∫

Iε

(−6H0)(H
′
0)

2(Hε,Rε −H0 + φε) + O(ε3/2)

=

∫

Iε

(−6H0)(H
′
0)

2(Hε,Rε −H0)−
∫

Iε

(H
′′′′
0 + f

′
(H0)H

′′
0 )(φε) + O(ε3/2)

=
√

εe−
√

2Rερε,Rε

∫

R
(−6H)(H

′
)2e−

√
2y −

∫

Iε

(Lφε)H
′′
0 + O(ε3/2)

=
√

εe−
√

2Rερε,Rε

∫

R
(−6H)(H

′
)2e−

√
2y +

∫

Iε

S[Hε,Rε ]H
′′
0 + O(ε3/2)

=
√

εe−
√

2Rερε,Rε

∫

R
((−6H)(H

′
)2 + 3(1−H2)H

′′
)e−

√
2y + O(ε3/2).

Using the fact that H
′′′′ −H

′′
+ 3(1−H2)H

′′
= 6H(H

′
)2 we have

(3.37)

∫

Iε

3(H2
0 − u2

ε)(H
′
0)

2 = 4
√

2A2
0εe

−√2R0 + O(ε3/2).

Combining (3.35) and (3.37), we obtain

(3.38) λε = − 8
√

2A2
0∫

R(H
′)2

εe−2
√

2R0 + O(ε3/2) = −γ5εk(z) + O(ε3/2),

where γ5 > 0, which proves (3.29). The proof of (3.27) follows from similar arguments. Finally,

the uniqueness of uε can be deduced from (3.29), and this concludes the proof. ¤

As a consequence of Lemma 3.5, we deduce an improvement on the estimate of uε, concerning

its regularity with respect to z.

Lemma 3.6. If ‖h‖∗,l ≤ C for some integer l, then

(3.39) ‖uε(z, xn; h)‖∗,l ≤ C.

Proof: we consider the simplest case: Dα
z = ∂

∂z1
. Differentiating (3.5) with respect to z1, we

obtain that v = Dα
z1

uε(z, xn; h) satisfies

Lv + εDz1k(z)(uε)n + O(ε2) = 0

in the norm ‖ · ‖∗,l−1. By (3.29), (3.39) follows immediately. Similarly we have the estimates

for the higher-order derivatives. ¤

We are interested next in the Lipschitz dependence of uε with respect to h.



16 A. MALCHIODI AND JUNCHENG WEI

Lemma 3.7. If ‖h1‖∗, ‖h2‖∗ ≤ C and if uε(z, xn; hi) are the corresponding solutions of (3.5),

then the following estimate holds true

(3.40) ‖uε(z, xn; h1)− uε(z, xn; h2)‖∗ ≤ Cε‖h1 − h2‖∗.
More precisely, following the notation in the proof of Lemma 3.5, we have the estimate

(3.41) uε(z, xn; h1)− uε(z, xn; h2) = d0h0 + ψ0,

where

(3.42) d0 = d0(z) = O(ε‖h1 − h2‖∗), ‖ψ0‖∗ = O(ε2‖h1 − h2‖∗).

Proof: let φ = u(z, xn; h1) − u(z, xn; h2). Then by the expansion in formula (3.6), since we

control Rε(z) with a precision of order ε, we have ‖φ‖∗ = O(ε). It is easy to see that φ satisfies

L(2)φ− 6uε(z, xn; h2)φ
2 + O(‖φ‖3

∗) + ε2(h1 − h2) = 0

in the ‖ · ‖∗ norm, where L(2)φ = φnn − ε
∑n−1

i=1
ki(z)

1−εxnki(z)
φn + (1− 3uε(z, xn; h2)

2)φ.

Decomposing φ as before

φ = d0h0 + ψ0

and using (3.27), we see that

‖ψ0‖∗ = O(ε2‖h1 − h2‖∗);
d0 =

1

ε
O

(∣∣∣∣
∫

Iε

uε(dh0 + ψ)2h0

∣∣∣∣
)

+ O(ε‖h1 − h2‖∗).

Since
∫
RH(H

′
)3 = 0, the same argument as in the proof of Lemma 3.5 gives (3.42). ¤

Lemma 3.8. If h1, h2 and uε(z, xn; hi) are as in the previous lemma, then we have

(3.43) ‖u(z, xn; h1)− u(z, xn; h2))‖∗,l ≤ Cε‖h1 − h2‖∗,l.
Moreover, for any multi-index α with |α| ≤ l we have

(3.44) Dα
z (uε(z, xn; h1)− uε(z, xn; h2)) = dαh0 + ψα,

where

(3.45) dα = dα(z) = O(ε‖h1 − h2‖∗,l), ψα = O(ε2‖h1 − h2‖∗,l).

Proof: as before, let φ = uε(z, xn; h1)− uε(z, xn; h2). Then Dzφ satisfies

L(2)Dzφ− (εDzk + O(ε2x2
n))φn − 6

(
uh2

ε φDzφ + 6uh2
ε φDzu

h2
ε + φ2Dzu

h2
ε

)

+O(‖φ‖2
∗)φ + ε2Dz(h1 − h2) = 0.(3.46)

As before, we decompose Dzφ as

Dzφ = d1h0 + ψ1.
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Then using (3.41) (noting that
∫
RH(H

′
)3 = 0), the same technique as in Lemma 3.5 gives

(3.42). By induction in the length of α, we obtain the desired estimate. ¤

Proof of Theorem 3.1. If follows immediately from Lemmas 3.4 to 3.8. ¤

Finally, we analyze the dependence of uK
ε in ε: it is convenient first to scale the functions uK

ε

to Ω defining uK
ε (εx) = uK

ε (x). Then, setting vK
ε (x) = ∂uK

ε

∂ε
(εx), it is easy to see that for K ≥ 2,

vK
ε satisfies

(3.47) (vK
ε )nn −

n−1∑
i=1

ki(z)

1− εxnki(z)
ε(vK

ε )n + (1− 3(uK
ε )2)vK

ε +
2

ε
((uK

ε )3 − uK
ε ) = O(ε2)

in the ‖·‖∗ norm. The same argument as in Lemma 3.5 gives the following asymptotic expansion

in ε of vK
ε .

Lemma 3.9. For K ≥ 2, and using the notation in Theorem 3.1, one has

vK
ε (z, xn) =

∂

∂ε
uε(z, xn) + o(1) as ε → 0

in the ‖ · ‖∗ norm.

Next we differentiate (3.47) with respect to xn and let ΦK
ε = ∂

∂xn
(∂uK

ε

∂ε
). Then ΦK

ε satisfies

(3.48)

(ΦK
ε )nn−

n−1∑
i=1

ki(εx
′
)

1− εxnki(εx
′)

ε(ΦK
ε )n +(1−3(uK

ε )2)ΦK
ε −6uK

ε vK
ε

∂uK
ε

∂xn

+
2

ε
(3(uK

ε )2−1)
∂uK

ε

∂xn

= o(ε)

in the ‖ · ‖∗ norm. This formula will be used for applying Kato’s theorem in Subsection 4.3

below.

Remark 3.10. The eigenvalue estimates in Lemma 3.5 also hold when we replace uε by uK
ε .

Furthermore, it is possible to prove that the eigenfunction φ0 in (3.28) satisfies regularity esti-

mates (in z) similar to those in (3.9).

4. Proof of the main theorem

In this section we prove Theorem 1.1. As explained in the introduction, we are going to use

the contraction mapping theorem: the main difficulty in the present case is that the problem

is highly resonant, since many eigenvalues of the linearized equation are close to zero for ε

tending to zero. To tackle this problem we apply Kato’s theorem, showing the differentiability

of the small eigenvalues with respect to ε and proving that for many epsilon’s the linearized

operator at approximate solutions is invertible, although the inverse operator will be rather big
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in norm. Anyhow, if we choose approximate solutions with a sufficient accuracy, even with a

large operator we will get a contraction in a suitably small set.

We divide the arguments into three different subsections. In the first we characterize the

eigenfunctions of the linearized equation corresponding to small eigenvalues. In the second

we compute the derivative of small eigenvalues with respect to ε, and finally in the third we

perform the contraction argument.

4.1. Characterization of some eigenfunctions of the linearized operator. In this sec-

tion we study the eigenfunctions of the operator

Lεφ := Lφ + ∆∂Ωεxn

(recall the notation of Section 2) corresponding to suitably small eigenvalues. The reason is that,

in order to apply Theorem 2.2, it is necessary to consider the projection onto the eigenspace of

σ0. Precisely, the eigenvalues of Pσ0 ◦ ∂T
∂χ

(0) ◦ Pσ0 can be found using the Rayleigh quotient

Q(u) =
(Pσ0 ◦ ∂T

∂χ
(0) ◦ Pσ0u, u)X

(u, u)X

, u ∈ Xσ0 , u 6= 0.

We also notice that, multiplying the eigenvalue equation (2.16) by ϕj and integrating by parts,

given any fixed constant γ one finds

(4.49) ε2

∫

∂Ω

|∇∂Ωϕj|2 − εγ

∫

∂Ω

kϕ2
j = ε2λj − εγ := λj,ε.

Lemma 4.1. Suppose the function φ satisfies (see the notation in Section 2)

(4.50) Lεφ + λk(εz)φ = 0; ‖φ‖L2(Γτ ) = 1,

(with Neumann boundary conditions at xn = 0 and Dirichlet boundary conditions at xn = ε−τ)

with λ = o(ε) as ε → 0. Let us write

φ = ϕ(z)φ0(z, xn) + φ⊥,

where φ0(z) is the first eigenfunction (normalized in L2([0, ε−τ ]) with respect to the volume form

of gε) of L(εz) and where φ⊥ satisfies∫

[0,ε−τ ]

φ⊥(z, xn)φ0(z, xn)dVg(xn) = 0 for every z ∈ ∂Ωε.

Then, as ε → 0 (if τ is sufficiently small), writing ϕ(z) =
∑

j αjϕj(εz), one has the following

bound

(4.51) ‖φ⊥‖2
H1(Γτ ) ≤

C

εn−1

∑
j

α2
j

(
ε4 + ε4j

2
n−1

)
,

for some fixed constant C.
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Proof. First of all we notice that, by standard elliptic theory, the function φ has the same

regularity as uε, and we can assume it is of class C2. Then, we can compute the value of ϕ(z)

simply using the orthogonality condition of φ⊥ by the formula

ϕ(z) =
1∫

[0,ε−τ ]
φ2

0(z, xn)dVg(xn)

∫

[0,ε−τ ]

φ(εz, xn)φ0(εz, xn)dVg(xn).

Therefore also ϕ is a function of class C2: from this remark in particular it follows that the

series in (4.51) is convergent.

Next, in order to find estimates on φ⊥, we multiply the eigenvalue equation in (4.50) by φ⊥

and integrate on Γτ . Since Lε = L + ∆∂Ωεxn
, from the uniform invertibility of L on φ⊥, see

Lemma 3.5 (we are actually substituting [0, δ/ε] with [0, ε−τ ], but this not affects the eigenvalue

estimates), we find that
∫
Γτ

φ⊥Lφ⊥dVgε ≤ −C−1(‖φ⊥n ‖2
L2(Γτ ) + ‖φ⊥‖2

L2(Γτ )). Moreover we find

from (2.14) that ∫

∂Ωε

φ⊥∆∂Ωεxn
φ⊥dVgε = (1 + O(εxn))

∫

Γτ

|∇gε
φ⊥|2dVgε

.

From these observations and (2.15) we derive that
∫
Γτ

φ⊥Lεφ
⊥dVgε ≤ −C−1‖φ⊥‖2

H1(Γτ ), and

therefore

1

C
‖φ⊥‖2

H1(Γτ ) ≤
∣∣∣∣
∫

Γτ

Lφ0ϕφ⊥dVgε +

∫

Γτ

φ0φ
⊥∆∂Ωεxn

ϕdVgε

∣∣∣∣ +

∣∣∣∣
∫

Γτ

ϕφ⊥∆∂Ωεxn
φ0dVgε

∣∣∣∣

+

∣∣∣∣2
∫

Γτ

〈∇∂Ωεxn
ϕ,∇∂Ωεxn

φ0〉φ⊥dVgε

∣∣∣∣ + C|λ|‖φ⊥‖2
L2(Γτ ).

From the orthogonality condition on φ⊥ and from the fact that φ0 is an eigenfunction for L (up

to a small error), the first term on the right-hand side vanishes. Concerning the next two, from

the slow dependence of φ0 on z, from (2.10) and (2.13) we get the following estimate (using

also the smallness of λ)

‖φ⊥‖H1(Γτ ) ≤ Cε2‖ϕ‖L2(∂Ωε) + Cε‖∇∂Ωεxn
ϕ‖L2(∂Ωε).

Using the decomposition of ϕ into the eigenmodes of (2.16), the asymptotic formula for λj and

a change of variables we find∫

∂Ωε

ϕ(z)2dVgε
≤ C

∫

∂Ωε

k(z)ϕ(z)2dVgε
≤ 1

εn−1

∑
j

α2
j ;

∫

∂Ωε

|∇∂Ωεxn
ϕ(z)|2dVgε

≤ C
1

εn−1

∑
j

ε2j
2

n−1 α2
j .

By the last three formulas, the proof is concluded. ¤

Lemma 4.2. Suppose the same assumptions of Lemma 4.1 hold. Then, as ε → 0 one has

‖φ⊥‖H1(Γτ ) = o(ε).
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Proof. The eigenvalue equation in (4.50) can be written as

Lεφ = φ0∆∂Ωεxn
ϕ(z) + ϕ(z)Lφ0 + ϕ(z)∆∂Ωεxn

φ0

+ 2〈∇∂Ωεxn
ϕ(z),∇∂Ωεxn

φ0〉+ Lεφ
⊥ = −λk(εz)φ⊥ − λk(εz)ϕ(z)φ0.

Using the fact that Lφ0 = (εγk(εz) + O(ε
3
2 ))φ0 (we have set γ = γ5, see Lemma 3.5 and the

comments in the previous proof), then we have

Lεφ = φ0(∆∂Ωεxn
+ (εγk(εz) + O(ε

3
2 ))ϕ(z) + ϕ(z)∆∂Ωεxn

φ0

+ 2〈∇∂Ωεxn
ϕ(z),∇∂Ωεxn

φ0〉+ Lεφ
⊥ = −λk(εz)φ⊥ − λk(εz)ϕ(z)φ0.(4.52)

Writing still ϕ(z) =
∑

j αjϕj(εz), we let jε (depending on ε) be the first integer j such that

ε2λj > ε
1
2 . We multiply then the last equation by

∑
j≥jε

αjϕjφ0. Using the orthogonality of

φ⊥ to φ0, integrating by parts (to deal with the first term in the second line) (2.14) and the

self-adjointness of Lε we get

1

εn−1

∑
j≥jε

ε2α2
jλj ≤ C(ε2 + |λ|)

(
1

εn−1

∑
j≥jε

α2
j

) 1
2
(

1

εn−1

∑
j

α2
j

) 1
2

+ Cε

(
1

εn−1

∑
j

α2
j

) 1
2
(

1

εn−1

∑
j≥jε

ε2λjα
2
j

) 1
2

+

∣∣∣∣∣
∫

Γτ

φ⊥Lε(
∑
j≥jε

αjϕjφ0)dVgε

∣∣∣∣∣ .

The last term can be evaluated as in the proof of the previous lemma as
∣∣∣∣∣
∫

Γτ

φ⊥Lε(
∑
j≥jε

αjϕjφ0)dVgε

∣∣∣∣∣ ≤ Cε‖∇∂Ωεxn
ϕ‖L2(Γτ )‖φ⊥‖L2(Γτ )

≤ Cε‖φ⊥‖L2(Γτ )

(
1

εn−1

∑
j≥jε

ε2λjα
2
j

) 1
2

.

Hence from the last two formulas and from the fact that λj À 1 for j ≥ jε we get

(4.53)

(
1

ε

n−1 ∑
j≥jε

ε2λjα
2
j

) 1
2

≤ Cε




(
1

εn−1

∑
j

α2
j

) 1
2

+ ‖φ⊥‖L2(Γτ )


 .

We also notice that by the L2 normalization of φ one has

1

εn−1

∑
j

α2
j + ‖φ⊥‖2

L2(Γτ ) ≤ C.
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Then from Lemma 4.1 (dividing the j’s into {j < jε} and {j ≥ jε}), recalling our definition of

jε and (4.53) we find

‖φ⊥‖H1(Γτ ) ≤ Cε2 + Cε
5
4 + Cε

(
1

εn−1

∑
j≥jε

ε2λjα
2
j

) 1
2

≤ Cε
5
4 + Cε2(1 + ‖φ⊥‖H1(Γτ )).

Bringing the term ε2‖φ⊥‖H1(Γτ ) on the left-hand side we obtain the desired conclusion. ¤

4.2. Differentiating the small eigenvalues with respect to ε. In this subsection we dif-

ferentiate some (suitably small) eigenvalues of Lε with respect to the parameter ε. As an

application we will obtain the invertibility of Lε for a quite large family of (small) epsilon’s.

Then, as in [15], Proposition 4.3 (see also [14], Proposition 7.3), using Kato’s theorem one can

prove the following result, see the notation at the end of Section 3.

Proposition 4.3. The eigenvalues λ of the problem

(4.54) Lεu + λk(z)u = 0, in Γτ

(with Neumann boundary conditions at xn = 0 and Dirichlet boundary conditions at xn = ε−τ)

are differentiable with respect to ε, and they satisfy the following estimates

(4.55) T 1
λ,ε ≤

∂λ

∂ε
≤ T 2

λ,ε,

where

T 1
λ,ε = inf

u∈Hλ,u 6=0

∫
Γτ

(
2
ε
|∇gεu|2 + 6uK

ε vK
ε u2

)
dVgε∫

Γτ
k(z)u2dVgε

;

T 2
λ,ε = sup

u∈Hλ,u 6=0

∫
Γτ

(
2
ε
|∇gεu|2 + 6uK

ε vK
ε u2

)
dVgε∫

Γτ
k(z)u2dVgε

.

Here Hλ stands for the eigenspace for (4.54) corresponding to the eigenvalue λ, while vK
ε is

defined at the end of Section 3.

Remark 4.4. Differently from [14] and [15], we are considering the eigenvalue problem in

L2(Γτ ) (with weight k) and not in H1(Γτ ). This gives rise to two (non substantial) differences

in the above statement compared to its counterparts in [14] and [15]. First of all, in the latter

ones it is assumed that the initial eigenvalue is different from 1 (as in Theorem 2.2), since

using the H1 norm the operator is of the form Identity − compact. This is necessary for the

eigenvalue in order to have finite multiplicity and to be isolated: if instead we work with the

L2(Γτ ) norm these properties are always satisfies.

In addition since in the functional Jε ε2 appears explicitly as factor in the Dirichlet norm,

the formulas in [14] and [15] contain an extra term multiplying 2
ε
, which is not present here.
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We next give a further characterization of some eigenfunctions of Lε, in addition to the ones in

Lemmas 4.1 and 4.2, concerning in particular the function ϕ.

Lemma 4.5. Suppose the assumptions of Lemma 4.1 hold true, except that we now use the

normalization ‖φ‖H1(Γτ ) = 1. Then, in the above notation, if |λ| = O(ε2) we have

1

εn−1

∑

|λj,ε|≥ε
5
4

α2
jϕj(εz) = o(1);

1

εn−1

∑

|λj,ε|≥ε
5
4

|λj,ε|α2
jϕj(εz) = o(ε).

Proof. We define the sets

A1,ε =
{

j ∈ N : λj,ε < −ε
5
4

}
; A2,ε =

{
j ∈ N : λj,ε > ε

5
4

}
,

and the functions

ϕ1(z) =
∑

j∈A1,ε

αjϕj(εz); ϕ2(z) =
∑

j∈A2,ε

αjϕj(εz);

φ1 = ϕ1(z)φ0; φ2 = ϕ2(z)φ0.

As one can easily see from the (weighted) orthogonality of ϕ1 and ϕ2, ‖φ1‖H1(Γτ ), ‖φ2‖H1(Γτ )

and ‖ϕφ0‖L2(Γτ ) stay uniformly bounded as ε tends to zero. We multiply next the equation

in (4.50) by φ1 and integrate: by the regularity of φ0 with respect to z, see Remark 3.10 and

Lemma 4.2 we deduce

O(ε2) =

∫

Γτ

φ1LεφdVgε =

∫

Γτ

(ϕφ0 + φ⊥)Lεφ1 = o(ε)‖φ1‖H1(Γτ ) +

∫

Γτ

ϕφ0Lεφ1dVgε

= O(ε2) +

∫

Γτ

ϕφ0Lεφ1dVgε .

From the expression of Lε (see for example (4.52)) and (2.14) we get

O(ε2) =

∫

Γτ

ϕφ0

(
φ0∆∂Ωεxn

ϕ1 − εγkϕ1 + ϕ1∆∂Ωεxn
φ0 + 2〈∇∂Ωεxn

ϕ1,∇∂Ωεxn
φ0〉

)

= −1 + O(ε1−τ )

εn−1

∑
j∈A1,ε

α2
jλj,ε + O(ε2)


 1

εn−1

∑
j∈A1,ε

α2
j




1
2

‖ϕ‖L2(∂Ωε)

+ O(ε)


 1

εn−1

∑
j∈A1,ε

α2
jλj,ε




1
2

‖ϕ‖L2(∂Ωε).

Then, using the fact that for j ∈ A1,ε it is |λj,ε| ≥ ε
5
4 À ε2 and from the normalization of φ,

one finds
1

εn−1

∑
j∈A1,ε

α2
jλj,ε ≤ Cε2.
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Still from the fact that |λj,ε| > ε
5
4 for j ∈ A1,ε one also derives

1

εn−1

∑
j∈A1,ε

α2
j ≤ Cε

3
4 .

A similar argument, replacing A1,ε with A2,ε yields similar estimates, so we arrive to the con-

clusion. ¤

As an application of the above lemma, we obtain estimates of the derivatives of small eigen-

values of Lε.

Lemma 4.6. Suppose λ is as in Lemma 4.1, and assume that |λ| = O(ε2). Then, for ε

sufficiently small the eigenvalue λ is differentiable with respect to ε, and there exists a positive

constant cΩ depending on Ω such that the derivative (which is possibly a multi-valued function)

satisfies ∣∣∣∣
∂λ

∂ε
− cΩ

∣∣∣∣ = o(1) as ε → 0.

Proof. Suppose u is an eigenfunction of Lε with eigenvalue λ. Using the eigenvalue equation

and Proposition 4.3, we see that the numerator in Kato’s formula can be substituted by the

expression ∫

Γτ

(
2

ε
(1− 3(uK

ε )2)u2 + 6uK
ε

∂ũK
ε (ε·)
∂ε

u2

)
+ O(ε)‖u‖2.

By Lemmas 4.2 and 4.5 we can evaluate the latter integrand substituting to u the function

φ = φ0ϕ := φ0

∑

|λj,ε|≤ε
5
4

αjϕj(εz).

If λ we normalize ϕ so that

(4.56)

∫

Γτ

φ2
0k(εz)ϕ2(εz)dVgε = 1,

from the expansions of the metric coefficients in Section 2 we find that

∂λ

∂ε
=

∫

∂Ωε

∫ ε−τ

0

(1− εxnk(z))

(
2

ε
(1− 3(uK

ε )2)u2 + 6uK
ε

∂ũK
ε (ε·)
∂ε

u2

)
ϕ2φ2

0dxndVgε
+ o(1).

In the appendix, we shall show that the latter integrand can be estimated as

(4.57)

∫ ε−τ

0

(1− εxnk(z))

(
2

ε
(1− 3(uK

ε )2)u2 + 6uK
ε

∂ũK
ε (ε·)
∂ε

u2

)
φ2

0dxn = γ5k(z) + o(1)

as ε → 0, where γ5 > 0 is defined in (3.29). This, together with (4.56) and (4.57) concludes the

proof of the lemma. ¤

Remark 4.7. The above computations show that indeed cΩ = γ5.
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4.3. Invertibility of the linearized operator and proof of the main theorem. In this

subsection we prove our main theorem, showing that Lε is invertible for a suitable sequence

εj → 0 (actually for a larger family of epsilon’s) and applying the contraction mapping theorem.

Proposition 4.8. For K > 2, let uK
ε and Lε be as above. Then for a suitable sequence εj → 0,

the operator Lεj
: H2(Γτ ) → L2(Γτ ) is invertible and the inverse operator satisfies

∥∥∥L−1
εj

∥∥∥
L(L2(Γτ );H2(Γτ ))

≤ C

ε
n+1

2
j

, for all j ∈ N.

Proof. First of all we give an asymptotic estimate on the number Nε of negative eigenvalues

of Lε (in our notation of (4.54)). We denote the eigenvalues of Lε by (λ̃j,ε)j, in non-decreasing

order and counting them with multiplicity. From the Courant-Fisher characterization we can

write λ̃j,ε in two different ways

(4.58) −λ̃j,ε = sup
M∈Mj

inf
u∈M,u6=0

∫
Γτ

uLεudVgε∫
Γτ

ku2dVgε

; −λ̃j,ε = inf
M∈Mj−1

sup
u⊥M,u6=0

∫
Γτ

uLεudVgε∫
Γτ

ku2dVgε

.

Here Mj (resp. Mj−1) represents the family of j-dimensional (resp. j−1 dimensional) subspaces

of H2(Γτ ), and the symbol ⊥ denotes orthogonality with respect to the L2 scalar product with

weight k.

Using the first formula in (4.58) one can plug-in functions of the form φ = ϕφ0 so that (see

(4.52))

Lεφ = (φ0∆∂Ωεxn
+ (εγk(εz) + O(ε

3
2 ))ϕ(z) + ϕ(z)∆∂Ωεxn

φ0 + 2〈∇∂Ωεxn
ϕ(z),∇∂Ωεxn

φ0〉.
From the slow dependence of φ0 in z and the Weyl’s asymptotic formula one finds the lower

bound

Nε ≥ (1 + o(1))C1,Ωε−
n−1

2 ,

where C1,Ω is a fixed constant depending on Ω.

To prove a similar upper bound, we write an arbitrary function φ ∈ H2(Γτ ) as φ = ϕφ0 +φ⊥

(following the above notation). In the second expression for the eigenvalues in (4.58) we choose

j to be the fist index such that λj−1,ε > ε
5
4 (from the Weyl’s asymptotic formula we find that j =

(1+o(1))C1,Ωε−
n−1

2 as ε → 0). We write ϕ =
∑

l αlϕl, we set ε1 =
∑

l≤j−1 αlϕl, ϕ2 =
∑

l≥j αlϕl

and we define Mj−1 = span{ϕlφ0, l = 1, . . . , j−1}. From the orthogonality condition in Γτ and

the expansions of the metric gε in Section 2 we deduce that ‖ϕ1φ0‖L2(Γτ ) ≤ Cε1−τ‖φ‖L2(Γτ ).

Therefore, with some simple calculations we can write that
∫

Γτ

(ϕ1φ0)Lε(ϕ1φ0)dVgε = O(ε3−τ )‖φ‖L2(Γτ ).
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From our choice of j and the computations of the previous subsection we also deduce that (for

τ sufficiently small)
∫

Γτ

(ϕ2φ0)Lε(ϕ2φ0)dVgε ≥ Cε
1
2‖ϕ2φ0‖2

L2(Γτ );

∫

Γτ

φ⊥Lεφ
⊥dVgε ≥ C−1‖φ⊥‖2

L2(Γτ )

for some fixed constant C. Therefore, writing
∫

Γτ

φLεφdVgε =

∫

Γτ

(ϕ1φ0)Lε(ϕ1φ0)dVgε +

∫

Γτ

(ϕ2φ0)Lε(ϕ2φ0)dVgε +

∫

Γτ

φ⊥Lεφ
⊥dVgε

+ 2

∫

Γτ

(ϕ1φ0)Lε(ϕ2φ0)dVgε + 2

∫

Γτ

(ϕ1φ0)Lεφ
⊥dVgε + 2

∫

Γτ

(ϕ2φ0)Lεφ
⊥dVgε ,

using the previous four estimates, the Hölder inequality, the fact that

‖φ‖2
L2(Γτ )(1 + o(1)) = ‖ϕ1φ0‖2

L2(Γτ ) + ‖ϕ2φ0‖2
L2(Γτ ) + ‖φ⊥‖2

L2(Γτ ),

and the above asymptotics on j we deduce the lower bound

Nε ≤ (1 + o(1))C1,Ωε−
n−1

2 ,

with the same constant as before. In conclusion we find that

(4.59) Nε ∼ C1,Ωε−
n−1

2 as ε → 0.

Next, for l ∈ N, let εl = 2−l. Then from (4.59) it follows that

(4.60) Nεl+1
−Nεl

∼ C1,Ω

(
2(l+1)n−1

2 − 2l n−1
2

)
= C1,Ω(2

n−1
2 − 1)ε

−n−1
2

l .

By Lemma 4.6, the eigenvalues of Lε bounded in absolute value by o(ε) are decreasing in ε.

Equivalently, by the last equation, the number of eigenvalues which become negative, when ε

decreases from εl to εl+1, is of order ε
−n−1

2
l . Now we define

Al = {ε ∈ (εl+1, εl) : kerLε 6= ∅} ; Bl = (εl+1, εl) \ Al.

By (4.60) and the monotonicity (in ε) of the small eigenvalues, it follows that card(Al) <

Cε
−n−1

2
l , and hence there exists an interval (al, bl) such that

(4.61) (al, bl) ⊆ Bl; |bl − al| ≥ C−1 meas(Bl)

card(Al)
≥ C−1ε

n+1
2

l .

From Lemma 4.6 we deduce that

Lal+bl
2

is invertible and

∥∥∥∥L−1
al+bl

2

∥∥∥∥
L(L2(Γτ );H1(Γτ ))

≤ C

ε
n+1

2
l

.

Now it is sufficient to set εj =
aj+bj

2
. This concludes the proof.
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We consider now the problem in the whole domain Ωε, and not only in the strip Γτ . Precisely,

we first choose a cutoff function χε(t) which is identically equal to 1 for t ≤ ε−τ

2
, and which is

identically equal to 0 for t ≥ 3
4
ε−τ . We then define the function ûK

ε by

ûK
ε (z, xn) = 1− χ(xn) + χ(xn)uK

ε (z, xn).

It is easy to verify that, by the exponential convergence to 1 of uK
ε in the interior of Ωε (and also

by the decay of its derivative), that ‖Sε(û
K
ε )‖L2(Ωε) ≤ CεK+1−n−1

2 and that ‖Sε(û
K
ε )‖L∞(Ωε) ≤

CεK+1.

We also extend the function k : Γτ → R to the whole Ωε in the following way, namely by

setting

k̂(y) = 1− χ(xn/4) + χ(xn/4)k(εz),

where we are using the same parameterization as in Theorem 1.1. We consider next the eigen-

value problem

∆u + F ′′(ûK
ε )u + λk̂u = 0,

and we denote the eigenvalues by (λ̂j,ε)j, counted in decreasing order with their multiplicity.

As one can easily check, if λ is bounded from above (say, greater than −1), the corresponding

eigenfunctions decay exponentially away from ∂Ωε. Therefore, reasoning as for [14], Proposition

5.6 (see also [15], Proposition 5.1), one finds that there exists a constant C such that

|λ̂j,ε − λ̃j,ε| ≤ Ce−
C
ε provided λ̂j,ε ≤ 1 or λ̃j,ε ≤ 1.

Therefore, by Proposition 4.8 and the last formula we obtain the following result.

Corollary 4.9. For k ∈ N, let ûK
ε be as above, and define the operator L̂εu = ∆u− F ′′(uK

ε )u.

Then for a suitable sequence εj → 0, the operator L̂ε : H2(Ωε) → L2(Ωε) is invertible and the

inverse operator satisfies
∥∥∥L̂−1

ε

∥∥∥
L(L2(Ωε);H2(Ωε))

≤ C

ε
n+1

2
j

, for all j ∈ N.

We are now in position to prove our main result.

Proof of Theorem 1.1 Let (εj)j be as in Corollary 4.9. Next, we simply apply the contrac-

tion mapping theorem, looking for a solution uε of the form

uε = ûε
K + w, w ∈ H2(Ωε).

Since L̂ε is invertible for ε = εj, we can write

(4.62) Sε(ûk,ε + w) = 0 ⇔ w = F̂ε(w) := −L̂−1
ε

[
Sε(û

ε
K)− 3ûε

Kw2 − w3
]
.

For r > 0, it is convenient to introduce the set

Br =
{
w ∈ H2(Ωε) ∩ L∞(Ωε) : |||w||| ≤ r

}
.
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where we have defined |||w||| = ‖w‖H2(Ωε) + ‖w‖L∞(Ωε).

By standard elliptic regularity results and by Corollary 4.9 one finds that there exists positive

constants C (depending on Ω) and d (depending on the dimension n) such that

|||F̂ε(w)||| ≤ Cε−d
(
εK+1−n−1

2 + |||w|||2
)

;

|||F̂ε(w1)− F̂ε(w2)||| ≤ Cε−d (|||w1|||+ |||w2|||) (|||w1 − w2|||),
for ε = εj and w,w1, w2 ∈ H2(Ωε) ∩ L∞(Ωε). Then, letting r = εl, choosing first K sufficiently

large and then l depending on k and d, and reasoning as in [15], Section 5, one can show that

F̂ε is a contraction for j sufficiently large. As a consequence, we find a solution of (4.62). This

concludes the proof.

Remark 4.10. Also, from the arguments of [15], Remark 5.3, one can show that the set of

values ε for which F ′′
ε (uK

ε ) is invertible (and for which our method produces solutions of (1.1))

has density converging to 1 in smaller and smaller right neighborhoods of the origin.

5. Appendix

In this appendix we collect some useful estimates, which are technical in nature.

Proof of Step 1 in Lemma 3.4: the proof follows from a standard Lyapunov-Schmidt

reduction technique. The key is an a priori estimate for the following linear problem: let

(φ, h, c) satisfy

(5.63) φnn −
n−1∑
i=1

ki(z)

1− εxnki(z)
εφn + (1− 3H2

ε,R)φ = h + cZε,R,

∫

I−ε

φZε,R = 0,

with the boundary conditions φn(0) = 0, φ
(

δ
ε

)
= 0. Then for ε sufficiently small we have

(5.64) ‖φ‖∗ + |c| ≤ C‖h‖∗.
This problem is nothing but the linearization of (3.5) at Hε,R.

We prove the claim arguing by contradiction: suppose that there exists (φ, c, h) such that

‖h‖∗ = o(1) and ‖φ‖∗ + |c| = 1 as ε → 0. Multiplying (5.63) by H
′
ε,R and integrating over

(0, δ
ε
), using the equation satisfied by H ′ and integrating by parts we obtain that

(5.65) |c| = o(1).

Now the right-hand side of (5.63) satisfies the estimate ‖h+ cZε,R‖∗ = o(1). We first show that

‖φ‖H1(R) = o(1): to show this we rewrite (5.63) as

(5.66) φnn − (1− 3Hε,R(xn)2)φ = Fε,R(h, φ),
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where we have set

Fε,R(h, φ) = h +
n−1∑
i=1

ki(z)

1− εxnki(z)
εφn + 3(H2

ε,R −H
2

ε,R)φ + cZε,R + c(Zε,R − Zε,R);

Hε,R = H(xn − 1

2
√

2
log

1

ε
−R); Zε,R = 3(1−H

2

ε,R)H
′
ε,R.

Now it is easy to show that ‖Fε‖L2(Iε) = o(1)(1 + |c|) + o(1)‖φ‖H2(Iε) as ε → 0. Therefore

Lemma 2.1 and the contraction mapping theorem yield a solution (φ, c) of (5.63) for which

|c| + ‖φ‖H1(Iε) = o(1). Then the estimate in the ‖ · ‖∗ norm (and hence (5.64)) follows from

standard regularity results.

The next step consists in rewriting (3.18) as

φnn −
n−1∑
i=1

ki(z)

1− εxnki(z)
εφn + (1− 3H2

ε,R)φ = cZε,R − Sε(Hε,R) + (Hε,R + φ)3 −H3
ε,R − 3H2

ε,Rφ.

From a Taylor expansion of the later term one finds that

‖(Hε,R + φ)3 −H3
ε,R − 3H2

ε,Rφ‖∗ = o(1)‖φ‖2
∗ as ε → 0

for a fixed constant C. Then the conclusion follows from the estimate (5.64) and another

application of the contraction mapping theorem. ¤

Proof of (4.57): we consider the expression

(5.67)

∫ ε−τ

0

(1− εxnk(z))

(
2

ε
(1− 3(uK

ε )2) + 6uK
ε

∂ũK
ε

∂ε
(ε·)

)
φ2

0dxn.

Note that the leading order term in (5.67) equals zero since

(5.68)

∫

R
(2(1− 3H2)− 6HH

′
t)(H

′
)2 = 0.

The latter equation follows because H
′
t satisfies

(5.69) (H
′
t)
′′

+ f
′
(H)(H

′
t) + 2(H −H3) = 0

and

(5.70) (H
′
t)
′′′

+ f
′
(H)(H

′
t)
′
+ 2(1− 3H2)H

′ − 6H(H
′
)2t = 0.

Thus we need to expand (5.67) to the next order in ε: to this end, we note that we can write

(5.71) φ0 =
∂uK

ε

∂xn

+ εφ1 + o(ε)

in the ‖ · ‖∗ norm, where φ1 satisfies (after a suitable translation in xn)

(5.72) φ
′′
1 + (1− 3H2)φ1 = γ5k(z)H

′
in [0, ε−τ ],
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which some boundary conditions at xn = 0 which are described below.

To obtain (5.71), we let

ĥ0 =
∂uK

ε

∂xn

+
1√
2
τεe

−√2xn

where τε = ∂2uK
ε

∂x2
n

(0). From equation (3.5), it is easy to see that ĥ0 satisfies

(5.73) L
∂uK

ε

∂xn

= O(ε2),
∂uK

ε

∂xn

(0) = 0,

(5.74) Lĥ0 = 3τε(1− u2
ε)e

−√2xn + O(ε2), ĥ0,n(0) = 0.

We then decompose φ0 as

φ0 = ĥ0 + εφ̂⊥,

∫

Iε

ĥ0φ̂
⊥ = 0

By simple computations, one can show

(5.75) Lφ̂⊥ =
3τε√
2ε

(1− u2
ε)e

−√2xn − λε

ε
φ0 + O(ε).

Similarly to the proof of Lemma 3.5, we see that φ̂⊥ → φ̂⊥0 , which satisfies

(5.76) (φ̂⊥0 )
′′

+ (1− 3H2)φ̂⊥0 = γ5k(z)H
′ − 3k7(z)(1−H2)e−

√
2y,

∫

R
φ̂⊥0 H

′
= 0.

Here γ5 > 0 is the constant defined by (3.29) and

(5.77) k7(z) = − lim
ε→0

(
τε√
2
√

ε
)e−

√
2R(z).

We observe that in order to have solvability of this equation one needs

(5.78) k7(z) = γ5k(z)

∫
R(H

′
)2

∫
R(3(1−H2)e−

√
2yH ′)dy

=
γ5k(z)

4A0

∫

R
(H

′
)2

where we have used the following identity, which can be proved using a n integration by parts∫

R
3(1−H2)e−

√
2yH

′
= 4A0.

Finally, we let φε
1 = φ̂⊥ + τε√

2ε
e−

√
2xn . It is easy to see that φε

1 → φ1 and φ1 satisfies (5.72), with

boundary data such that

(5.79) φε
1(0) ' τε√

2ε
; (φε

1)
′(0) ' −τε

ε
.

Now we multiply (3.48) by (1−εxnk(z̄))∂uK
ε

∂xn
, use equation (5.74) and integrate by parts (noting

that ∂uK
ε

∂xn
(0) = 0, ΦK

ε (0) = 0), to obtain

(5.80)

∫ ε−τ

0

(1− εxnk(z))

(
−6uK

ε

∂ũK
ε

∂ε

∂uK
ε

∂xn

∂uK
ε

∂xn

+
2

ε
(3(uK

ε )2 − 1)
∂uK

ε

∂xn

∂uK
ε

∂xn

)
= o(ε).
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This then implies

∫ ε−τ

0

(1− εxnk(z))

(
2

ε
(1− 3(uK

ε )2) + 6uK
ε

∂ũK
ε

∂ε
(ε·)

)
φ2

0dxn

=

∫ ε−τ

0

(1− εxnk(z))

(
2

ε
(1− 3(uK

ε )2)(
∂uK

ε

∂xn

)2 + 6uK
ε

∂ũK
ε

∂ε
(
∂uK

ε

∂xn

)2

)

+ 2ε

∫ ε−τ

0

(1− εxnk(z))

(
2

ε
(1− 3(uK

ε )2)
∂uK

ε

∂xn

φ1 + 6uK
ε

∂ũK
ε

∂ε

∂uK
ε

∂xn

φ1

)
+ o(ε)

= o(ε) + 2ε

∫ ε−τ

0

(1− εxnk(z))

(
2

ε
(1− 3(uK

ε )2)
∂uK

ε

∂xn

φ1 + 6uK
ε

∂ũK
ε

∂ε

∂uK
ε

∂xn

φ1

)
.(5.81)

Note that the main term in ∂ũK
ε

∂ε
is

∂ũK
ε

∂ε
' (−xn

ε
+

1

2
√

2

1

ε
+ o(

1

ε
))H

′
.

Substituting the (more accurate) expansions for uK
ε and ∂uK

ε

∂ε
to deal with the first term (see

Theorem 3.2 and Lemma 3.9) and the equation (5.71) on φ1 into (5.81), we arrive at

(5.82) 2

∫ ε−τ

0

(1− εxnk(εz))

(
2

ε
(1− 3(uK

ε )2) + 6uK
ε

∂ũK
ε

∂ε
(ε·)

)
φ2

0dxn

= o(1) + 2

∫ ε−τ

0

(2(1− 3H2) + 6(−xn +
1

2
√

2
)HH

′
)H

′
φ1

= o(1) + 2

∫ ε−τ

0

[L(−(H
′
t)
′
+ (

1

2
√

2
log

1

ε
+ Rε +

1

2
√

2
)H

′′
)]φ1

= 2(2H
′′ − 1

2
√

2
H

′′′
)(0)φ1(0)− 2(H

′ − 1

2
√

2
H

′′
)(0)φ

′
1(0)− 2

∫ ε−τ

0

(φ
′′
1 + (1− 3H2)φ1)(H

′
t)
′

= 8A0
τε√
2
√

ε
e−

√
2R − 2(

∫

R
(H

′
(H

′
t)
′
)γ5k(z) + o(1)

= 8A0k7(z)− (

∫

R
(H

′
)2)γ5k(z) + o(1)

= γ5

∫

R
(H

′
)2k(z) + o(1) > 0.

Here we have (2.2), (5.72), (5.77), (5.78), (5.79), some integration by parts and (5.70). ¤
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