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Sobolev spaces and linear operators are important tools throughout this monograph. There-
fore we state their definition and most important results here. For a more detailed discussion
we refer to the excellent book by Gilbarg-Trudinger.

Let Ω be a bounded, open, smooth domain in Rn, where n ≥ 1. For p ≥ 1, let Lp(Ω) denote
the Lebesgue space consisting of measurable functions defined on Ω such that

‖u‖p := ‖u‖Lp(Ω) =
(∫

Ω
|u|p dx

)1/p

< ∞.

Then Lp(Ω) is a Banach space with the norm ‖u‖p. Further, the space L2(Ω) is a Hilbert space
with the scalar product

(u, v) :=
∫

Ω
uv dx.

For k = 1, 2, . . . , we define

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all |α| ≤ k},
where

α = (α1, . . . , αn), αi ∈ {0, 1, . . .}, |α| =
n∑

i=1

αi,

Dαu :=
∂|α|u

∂α1
x1
· · · ∂αn

xn

.

We also denote Hk(Ω) := W k,2(Ω), and Hk(Ω) is a Hilbert space with the scalar product

(u, v)k :=
∫

Ω

∑

|α|≤k

DαuDαv dx.
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A Banach space B∞ is said to be continuously embedded in a Banach space B∈ if there
exists a bounded, linear, one-to-one mapping of B∞ into B∈. Using the notation B∞ → B∈, we
have the following continuous Sobolev embeddings:

W k,p
0 (Ω) → L1/(1/p−k/n)(Ω) for kp < n,

W k,p
0 (Ω) → Cm(Ω̄) for 0 ≤ m < k − n

p
,

where W k,p
0 (Ω) is the Banach space which is given by the closure of Ck

0 (Ω) in W k,p(Ω). Here
Ck

0 (Ω) is the set of continuous functions u defined in Ω with compact support in Ω for which also
the partial derivatives Dαu, |α| ≤ k are continuous. Further, Ck(Ω̄) is the set of all functions in
Ck(Ω) for which all derivatives Dαu, |α| ≤ k have continuous extensions to the closure Ω̄ of Ω.
The space Ck(Ω) of functions which together with all derivatives up to order k is continuous,
is a Banach space if it is endowed with the norm

‖u‖k,∞ := max
|α|≤k

Next we present two elliptic regularity theorems.

Theorem 1 (Elliptic regularity-Lptheory.) Let u ∈ W 2,p(Ω) solve the equation

−∆u = f − f̄ in Ω,

∂u

∂ν
= 0 on ∂Ω,

where f̄ = 1
|Ω|

∫
Ω f(x) dx.

Assume that f ∈ Lp(Ω). Then there exists some c > 0 such that

‖u− ū‖2,p ≤ c‖f − f̄‖p. (0.1)

Theorem 2 (Elliptic regularity-Schauder Estimates.) Let u solve the equation

−∆u = f in Ω.

Assume that f ∈ Cα(Ω). Then there exists some c > 0 such that

‖u‖C2,α(Br(x0)) ≤ c(‖f‖Cα(B2r(x0) + ‖u‖Cα(B2r(x0))). (0.2)

for any B2r(x0) ⊂ Ω.
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A map T from a normed linear space V into itself is called a contraction mapping if there
exists θ < 1 such that

‖Tx− Ty‖ ≤ θ‖x− y‖,∀x, y ∈ V

Contraction Mapping Principle states

Theorem 3 A contraction mapping T in a Banach space V has a unique fixed point that is
there exists a unique solution x ∈ V such that x = Tx.

The Fredholm Alternative holds for compact linear operators from a linear space into itself.

Theorem 4 (Fredholm Alternative) A linear mapping T of a normed linear space into itself
is called compact if L maps bounded sequences into sequences which contain converging subse-
quences. Let T be a compact linear mapping of a normed linear space L into itself. Then either
(i) the homogeneous equation

x− Tx = 0

has a nontrivial solution x ∈ L or
(ii) for each y ∈ L the equation

x− Tx = y

has a uniquely determined solution x ∈ L. Further, in case (ii) the “solution operator” (I−T )−1

is bounded.

An example of compact operator is

T (f) =
∫

Ω
G(x, y)f(y)dy

where G(x, y) is the Green’s function of −∆.
Next, let us state Brouwer’s Fixed Theorem:

Theorem 5 (Brouwer’s Fixed Point Theorem.) Every continuous function from a closed ball
of a Euclidean space to itself has a fixed point.

Finally, we recall the mapping degree (see [?]). If Ω ⊂ Rn is a bounded region, f : Ω̄ →Rn

smooth, p a regular value of f and p /∈ f(∂Ω), then the degree deg(f, Ω, p) is defined as follows:

deg(f, Ω, p) :=
∑

y∈f−1(p)

sign det Df(y),
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where Df(y) is the Jacobi matrix of f in y. This definition of degree may be naturally extended
to non-regular values p such that deg(f, Ω, p) = deg(f, Ω, p′), where p′ is a point close to p.

The degree satisfies the following five properties and is uniquely characterised by them.
(i) If deg(f, Ω̄, p) 6= 0, then there exists x ∈ Ω such that f(x) = p.
(ii) deg(Id, Ω, y) = 1 for all y ∈ Ω.
(iii) Decomposition property:

deg(f, Ω, y) = deg(f, Ω1, y) + deg(f, Ω2, y),

where Ω1 ∩ Ω2 = ∅, Ω = Ω1 ∪ Ω2 and y 6∈ f(Ω̄ \ (Ω1 ∪ Ω2)).
(iv) Homotopy invariance:
If f and g are homotopy equivalent via a continuous homotopy F (t) such that F (0) =

f, F (1) = g and p 6∈ F (t)(∂Ω) for all 0 < t < 1, then deg(f, Ω, p) = deg(g, Ω, p).
(v) The function p 7→ deg(f, Ω, p) is locally constant on Rn \ f(∂Ω).
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