AARMS Summer School Pre-requisites

References:

[1] Chapter 5 of Gilbarg-Trudinger's book on "Elliptic Partial Differential Equations of Second Order"
[2] Appendix of Wei-Winter's book on "Mathematical Aspects of Pattern Formation in Biological Systems", Applied Mathematical Sciences Series, Vol. 189, Springer 2014 , ISBN: 978-4471-5525-6.

Sobolev spaces and linear operators are important tools throughout this monograph. Therefore we state their definition and most important results here. For a more detailed discussion we refer to the excellent book by Gilbarg-Trudinger.

Let Ω be a bounded, open, smooth domain in \mathcal{R}^{n}, where $n \geq 1$. For $p \geq 1$, let $L^{p}(\Omega)$ denote the Lebesgue space consisting of measurable functions defined on Ω such that

$$
\|u\|_{p}:=\|u\|_{L^{p}(\Omega)}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}<\infty
$$

Then $L^{p}(\Omega)$ is a Banach space with the norm $\|u\|_{p}$. Further, the space $L^{2}(\Omega)$ is a Hilbert space with the scalar product

$$
(u, v):=\int_{\Omega} u v d x
$$

For $k=1,2, \ldots$, we define

$$
W^{k, p}(\Omega):=\left\{u \in L^{p}(\Omega): D^{\alpha} u \in L^{p}(\Omega) \quad \text { for all }|\alpha| \leq k\right\},
$$

where

$$
\begin{gathered}
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{i} \in\{0,1, \ldots\},|\alpha|=\sum_{i=1}^{n} \alpha_{i} \\
D^{\alpha} u:=\frac{\partial^{|\alpha|} u}{\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}}} .
\end{gathered}
$$

We also denote $H^{k}(\Omega):=W^{k, 2}(\Omega)$, and $H^{k}(\Omega)$ is a Hilbert space with the scalar product

$$
(u, v)_{k}:=\int_{\Omega} \sum_{|\alpha| \leq k} D^{\alpha} u D^{\alpha} v d x
$$

A Banach space \mathcal{B}_{∞} is said to be continuously embedded in a Banach space \mathcal{B}_{\in} if there exists a bounded, linear, one-to-one mapping of \mathcal{B}_{∞} into \mathcal{B}_{\in}. Using the notation $\mathcal{B}_{\infty} \rightarrow \mathcal{B}_{\epsilon}$, we have the following continuous Sobolev embeddings:

$$
\begin{aligned}
& W_{0}^{k, p}(\Omega) \rightarrow L^{1 /(1 / p-k / n)}(\Omega) \quad \text { for } k p<n \\
& W_{0}^{k, p}(\Omega) \rightarrow C^{m}(\bar{\Omega}) \quad \text { for } 0 \leq m<k-\frac{n}{p}
\end{aligned}
$$

where $W_{0}^{k, p}(\Omega)$ is the Banach space which is given by the closure of $C_{0}^{k}(\Omega)$ in $W^{k, p}(\Omega)$. Here $C_{0}^{k}(\Omega)$ is the set of continuous functions u defined in Ω with compact support in Ω for which also the partial derivatives $D^{\alpha} u,|\alpha| \leq k$ are continuous. Further, $C^{k}(\bar{\Omega})$ is the set of all functions in $C^{k}(\Omega)$ for which all derivatives $D^{\alpha} u,|\alpha| \leq k$ have continuous extensions to the closure $\bar{\Omega}$ of Ω. The space $C^{k}(\Omega)$ of functions which together with all derivatives up to order k is continuous, is a Banach space if it is endowed with the norm

$$
\|u\|_{k, \infty}:=\max _{|\alpha| \leq k}
$$

Next we present two elliptic regularity theorems.
Theorem 1 (Elliptic regularity-L L^{p} theory.) Let $u \in W^{2, p}(\Omega)$ solve the equation

$$
\begin{aligned}
-\Delta u & =f-\bar{f} \quad \text { in } \Omega \\
\frac{\partial u}{\partial \nu} & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

where $\bar{f}=\frac{1}{|\Omega|} \int_{\Omega} f(x) d x$.
Assume that $f \in L^{p}(\Omega)$. Then there exists some $c>0$ such that

$$
\begin{equation*}
\|u-\bar{u}\|_{2, p} \leq c\|f-\bar{f}\|_{p} . \tag{0.1}
\end{equation*}
$$

Theorem 2 (Elliptic regularity-Schauder Estimates.) Let u solve the equation

$$
-\Delta u=f \quad \text { in } \Omega
$$

Assume that $f \in C^{\alpha}(\Omega)$. Then there exists some $c>0$ such that

$$
\begin{equation*}
\|u\|_{C^{2, \alpha}\left(B_{r}\left(x_{0}\right)\right)} \leq c\left(\|f\|_{C^{\alpha}\left(B_{2 r}\left(x_{0}\right)\right.}+\|u\|_{C^{\alpha}\left(B_{2 r}\left(x_{0}\right)\right)}\right) \tag{0.2}
\end{equation*}
$$

for any $B_{2 r}\left(x_{0}\right) \subset \Omega$.

A map T from a normed linear space V into itself is called a contraction mapping if there exists $\theta<1$ such that

$$
\|T x-T y\| \leq \theta\|x-y\|, \forall x, y \in V
$$

Contraction Mapping Principle states
Theorem 3 A contraction mapping T in a Banach space V has a unique fixed point that is there exists a unique solution $x \in V$ such that $x=T x$.

The Fredholm Alternative holds for compact linear operators from a linear space into itself.
Theorem 4 (Fredholm Alternative) A linear mapping T of a normed linear space into itself is called compact if L maps bounded sequences into sequences which contain converging subsequences. Let T be a compact linear mapping of a normed linear space L into itself. Then either (i) the homogeneous equation

$$
x-T x=0
$$

has a nontrivial solution $x \in L$ or
(ii) for each $y \in L$ the equation

$$
x-T x=y
$$

has a uniquely determined solution $x \in L$. Further, in case (ii) the "solution operator" $(I-T)^{-1}$ is bounded.

An example of compact operator is

$$
T(f)=\int_{\Omega} G(x, y) f(y) d y
$$

where $G(x, y)$ is the Green's function of $-\Delta$.
Next, let us state Brouwer's Fixed Theorem:
Theorem 5 (Brouwer's Fixed Point Theorem.) Every continuous function from a closed ball of a Euclidean space to itself has a fixed point.

Finally, we recall the mapping degree (see [?]). If $\Omega \subset \mathcal{R}^{n}$ is a bounded region, $f: \bar{\Omega} \rightarrow \mathcal{R}^{n}$ smooth, p a regular value of f and $p \notin f(\partial \Omega)$, then the degree $\operatorname{deg}(f, \Omega, p)$ is defined as follows:

$$
\operatorname{deg}(f, \Omega, p):=\sum_{y \in f^{-1}(p)} \operatorname{sign} \operatorname{det} D f(y),
$$

where $D f(y)$ is the Jacobi matrix of f in y. This definition of degree may be naturally extended to non-regular values p such that $\operatorname{deg}(f, \Omega, p)=\operatorname{deg}\left(f, \Omega, p^{\prime}\right)$, where p^{\prime} is a point close to p.

The degree satisfies the following five properties and is uniquely characterised by them.
(i) If $\operatorname{deg}(f, \bar{\Omega}, p) \neq 0$, then there exists $x \in \Omega$ such that $f(x)=p$.
(ii) $\operatorname{deg}(I d, \Omega, y)=1$ for all $y \in \Omega$.
(iii) Decomposition property:

$$
\operatorname{deg}(f, \Omega, y)=\operatorname{deg}\left(f, \Omega_{1}, y\right)+\operatorname{deg}\left(f, \Omega_{2}, y\right)
$$

where $\Omega_{1} \cap \Omega_{2}=\emptyset, \Omega=\Omega_{1} \cup \Omega_{2}$ and $y \notin f\left(\bar{\Omega} \backslash\left(\Omega_{1} \cup \Omega_{2}\right)\right)$.
(iv) Homotopy invariance:

If f and g are homotopy equivalent via a continuous homotopy $F(t)$ such that $F(0)=$ $f, F(1)=g$ and $p \notin F(t)(\partial \Omega)$ for all $0<t<1$, then $\operatorname{deg}(f, \Omega, p)=\operatorname{deg}(g, \Omega, p)$.
(v) The function $p \mapsto \operatorname{deg}(f, \Omega, p)$ is locally constant on $\mathcal{R}^{n} \backslash f(\partial \Omega)$.

