Course 2- Homework Assignment 3 (Due Date: Wednesday by 3:30pm)

You only need to hand in solutions of the two problems from the following four problems. Extra credits will be given if you hand in more problems.

You may use the following fact: consider second order ODE

$$
y^{\prime \prime}+p y^{\prime}+q(x) y=g(x)
$$

Let y_{1}, y_{2} be the set of fundamental solutions. Then all solutions are given by

$$
y=y_{1}(x) \int_{a}^{x} y_{2} W-y_{2}(x) \int_{b}^{x} y_{1} W
$$

where W is the Wronskian $W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$. Here a, b can be $\pm \infty$.

1. Consider the following simple ODE:

$$
u^{\prime \prime}(x)=f(x)
$$

where $f(x)$ decays at both ends:

$$
|f(x)| \leq C e^{-|x|}
$$

(a) Find out the unique solution u such that it decays at positive end:

$$
|u(x)| \leq C e^{-|x|} \text { for } x>0
$$

Hint: integrating the equation twice, using $+\infty$ as end point.
(b) Find out the unique solution u such that it decays at negative end:

$$
|u(x)| \leq C e^{-|x|} \text { for } x<0
$$

(c) Under what conditions on f so that we can find a bounded solution u ?
(d) Under what conditions on f so that we can find a solution u such that it decays at both ends?

$$
|u(x)| \leq C e^{-|x|} \text { for all } x
$$

2. This problem concerns the 1D Liouville equation

$$
(*) \quad u^{\prime \prime}+e^{u}=0
$$

(a) Show that a solution to $\left(^{*}\right)$ is given by

$$
u_{0}(x)=-2 \log \cosh (x)+\log 2
$$

(b) Show that the equation $\left(^{*}\right)$ is translation and scaling invariant:

$$
x \rightarrow u_{0}(x-a), \quad x \rightarrow u_{0}(\lambda x)+2 \log \lambda
$$

(c) Use (b) to find the two kernels of the linearized operator

$$
\phi^{\prime \prime}+e^{u_{0}} \phi=0
$$

Hint: differentiating the two parameters a and λ.
(d) Let f be such that

$$
|f| \leq C e^{-|x|} \forall x
$$

Find out the unique solution ϕ to

$$
\phi^{\prime \prime}+e^{u_{0}} \phi=f(x)
$$

such that it decays at positive end:

$$
|\phi(x)| \leq C e^{-|x|} \text { for } x>0
$$

Hint: use variation of parameters to find the solution formula.
(e) Under what conditions on f so that we can find a solution ϕ in (d) such that it decays at both ends?

$$
|\phi(x)| \leq C e^{-|x|} \text { for all } x
$$

3. Consider the following higher dimensional inhomogeneous Allen-Cahn in radial coordinates

$$
\epsilon^{2} r^{1-N}\left(a(r) r^{N-1} u^{\prime}\right)^{\prime}+a(r)\left(u-u^{3}\right)=0,0<r<+\infty
$$

This is the Euler-Lagrange equation of

$$
\int_{0}^{\infty}\left(\frac{\epsilon^{2}}{2}|\nabla u|^{2}+\frac{1}{4}\left(1-u^{2}\right)^{2}\right) r^{N-1} a(r) d r
$$

Find the necessary condition for which the heteroclinic solution exists:

$$
u(r) \sim \tanh \left(\frac{r-r_{0}}{\epsilon \sqrt{2}}\right)
$$

What are possible sufficient conditions?
4. This problem concerns the 2D Liouville equation in radial coordinate

$$
(* *) \quad u_{r r}+\frac{1}{r} u_{r}+e^{u}=0, u^{\prime}(0)=0
$$

(a) Show that a solution to $\left({ }^{* *}\right)$ is given by

$$
u_{0}(r)=\log \frac{8}{\left(1+r^{2}\right)^{2}}
$$

(b) Show that the equation $\left({ }^{* *}\right)$ is scaling invariant:

$$
r \rightarrow u_{0}(\lambda r)+2 \log \lambda
$$

(c) Use (b) to find the kernel of the linearized operator

$$
\phi^{\prime \prime}+\frac{1}{r} \phi^{\prime}+e^{u_{0}} \phi=0, \phi^{\prime}(0)=0
$$

(d) Let f be such that

$$
|f| \leq \frac{C}{1+r^{4}}
$$

Find out a solution to

$$
(* * *) \quad \phi^{\prime \prime}+\frac{1}{r} \phi^{\prime}+e^{u_{0}} \phi=f(r), 0<r<+\infty, \phi^{\prime}(0)=0
$$

Hint: Find the solution in the form $\phi=Z_{0}(r) \hat{\phi}(r)$, where Z_{0} is given by (c).
(e) Under what conditions on f so that we can find a solution ϕ to $\left({ }^{* * *}\right)$ such that it decays?

$$
\phi(r) \rightarrow 0 \text { as } r \rightarrow+\infty
$$

