Course 2 - Homework Assignment 1 Solution

1. (a) Using the equation

$$
w^{\prime \prime}=w-w^{p}
$$

and its first integral

$$
\left(w^{\prime}\right)^{2}=w^{2}-\frac{2}{p+1} w^{p+1},
$$

we have

$$
\begin{aligned}
\phi_{1}^{\prime \prime} & =\frac{p+1}{2}\left(w^{\frac{p-1}{2}} w^{\prime \prime}+\frac{p-1}{2} w^{\frac{p-3}{2}}\left(w^{\prime}\right)^{2}\right) \\
& =\frac{p+1}{2}\left(w^{\frac{p+1}{2}}-w^{\frac{3 p-1}{2}}+\frac{p-1}{2} w^{\frac{p+1}{2}}-\frac{p-1}{p+1} w^{\frac{3 p-1}{2}}\right) \\
& =\left(\frac{p+1}{2}\right)^{2} w^{\frac{p+1}{2}}-p w^{\frac{3 p-1}{2}} .
\end{aligned}
$$

Hence,

$$
L_{0}\left(\phi_{1}\right)=\left(\left(\frac{p+1}{2}\right)^{2}-1\right) w^{\frac{p+1}{2}}=\lambda_{1} \phi_{1} .
$$

Since the first eigenfunction is necessarily positive and other eigenfunctions are orthogonal to it, ϕ_{1} is the principal eigenfunction and λ_{1} is the principal eigenvalue.
(b) From (a),

$$
L_{0}\left(w^{r-1}\right)=\lambda_{1} w^{r-1}
$$

so

$$
L_{0}^{-1}\left(w^{r-1}\right)=\lambda_{1}^{-1} w^{r-1} .
$$

(c) It is clear that

$$
\int w^{r-1} L_{0}^{-1}\left(w^{r-1}\right)=\frac{1}{\lambda_{1}} \int w^{p+1} .
$$

2. First we show that w decays exponentially. In fact since $w(\infty)=0$ we see that for $r>r_{1} w^{p-1}<\frac{3}{4}$ and hence for $r>r_{1} w$ satisfies

$$
\Delta w=\left(1-w^{p-1}\right) w \geq \frac{1}{4} w
$$

Next we note that the function $e^{-\frac{1}{2} r}$ satisfies

$$
\Delta\left(e^{-\frac{1}{2} r}\right) \leq \frac{1}{4} e^{-\frac{1}{2} r}
$$

By comparison principle for $r>r_{1}$

$$
w(r) \leq w\left(r_{1}\right) e^{-\frac{1}{2}\left(r-r_{1}\right)}
$$

Similarly since

$$
\Delta w_{r}-w_{r}+p w^{p-1} w_{r}=\frac{N-1}{r^{2}} w_{r}
$$

and $p w^{p-1}$ is small near ∞, w_{r} decays exponentially at ∞. This fact implies that when we integrate by parts below, the boundary terms all vanish.

Following the hint and integrating on $(0, \infty)$, we have

$$
\begin{aligned}
0 & =\int r w_{r}\left(r^{N-1} w_{r}\right)_{r}+\int r^{N} w_{r}\left(-w+w^{p}\right) \\
& =-\int r^{N-1} w_{r}\left(r w_{r r}+w_{r}\right)+\int r^{N}\left(-\frac{w^{2}}{2}+\frac{w^{p+1}}{p+1}\right)_{r} \\
& =-\int r^{N}\left(\frac{w_{r}}{2}\right)_{r}-\int r^{N-1} w_{r}^{2}+\int N r^{N-1}\left(\frac{w^{2}}{2}-\frac{w^{p+1}}{p+1}\right) \\
& =\left(\frac{N}{2}-1\right) \int r^{N-1} w_{r}^{2}+\frac{N}{2} \int r^{N-1} w^{2}-\frac{N}{p+1} \int r^{N-1} w^{p+1}
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\int w\left(r^{N-1} w_{r}\right)_{r}+\int r^{N-1} w\left(-w+w^{p}\right) \\
& =-\int r^{N-1} w_{r}^{2}-\int r^{N-1} w^{2}+\int r^{N-1} w^{p+1}
\end{aligned}
$$

Multiplying the second by $(N / 2-1)$ and adding it to the first, we have

$$
\begin{aligned}
0 & =\int r^{N-1} w^{2}+\left(\frac{N}{2}-1-\frac{N}{p+1}\right) \int r^{N-1} w^{p+1} \\
& =\int r^{N-1} w^{2}+\frac{(N-2) p-(N+2)}{2(p+1)} \int r^{N-1} w^{p+1} .
\end{aligned}
$$

Therefore, if $p \geq \frac{N+2}{N-2}$, then the right hand side is strictly positive, unless $w \equiv 0$.
3. Let

$$
f(t)=\int\left(|\nabla u+t \phi|^{2}+(u+t \phi)^{2}\right)
$$

and

$$
g(t)=\left(\int|u+t \phi|^{p+1}\right)^{-\frac{2}{p+1}} .
$$

We compute

$$
\begin{aligned}
f^{\prime}(t) & =2 \int(\nabla u \cdot \nabla \phi+u \phi)+2 t \int\left(|\nabla \phi|^{2}+\phi^{2}\right) \\
g^{\prime}(t) & =-2 \frac{\int|u+t \phi|^{p-1}(u+t \phi) \phi}{\left(\int|u+t \phi|^{p+1}\right)^{\frac{2}{p+1}+1}}, \\
f(0) & =\int\left(|\nabla u|^{2}+u^{2}\right), \\
f^{\prime}(0) & =2 \int(\nabla u \cdot \nabla \phi+u \phi), \\
f^{\prime \prime}(0) & =2 \int\left(|\nabla \phi|^{2}+\phi^{2}\right), \\
g(0) & =\left(\int|u|^{p+1}\right)^{-\frac{2}{p+1}}, \\
g^{\prime}(0) & =-2 \frac{\int|u|^{p-1} u \phi}{\left(\int|u|^{p+1}\right)^{\frac{2}{p+1}+1}}, \\
g^{\prime \prime}(0) & =2(p+3) \frac{\left(\int|u|^{p-1} u \phi\right)^{2}}{\left(\int|u|^{p+1}\right)^{\frac{2}{p+1}+2}}-2 p \frac{\int|u|^{p-1} \phi^{2}}{\left(\int|u|^{p+1}\right)^{\frac{2}{p+1}+1}} .
\end{aligned}
$$

The first derivative is therefore

$$
\rho^{\prime}(0)=2\left(\int|u|^{p+1}\right)^{-\frac{2}{p+1}}\left(\left(\int(\nabla u \cdot \nabla \phi+u \phi)\right)-c_{1}\left(\int|u|^{p-1} u \phi\right)\right)
$$

where

$$
c_{1}=\frac{\int\left(|\nabla u|^{2}+u^{2}\right)}{\int|u|^{p+1}}
$$

Since u is the minimizer of $E[u]$, we have $\rho^{\prime}(0)$ and so

$$
\int\left(-\Delta u+u-c_{1}|u|^{p-1} u\right) \phi=0
$$

for any test function ϕ, from which we get the Euler-Lagrange equation

$$
\Delta u-u+c_{1}|u|^{p-1} u=0
$$

Before computing $\rho^{\prime \prime}(0)$, we wish to simply the calculations by choose $c_{1}=1$ by a scaling argument. In fact, $E[u]$ is scaling invariant, i.e. $E[u]=E[\lambda u]$ for any $\lambda>0$. By going through the whole argument with λu instead, the Euler-Lagrange equation is

$$
\lambda \Delta u-\lambda u+c_{1} \lambda^{p}|u|^{p-1} u=0
$$

If we choose λ such that $c_{1} \lambda^{p-1}=1$, then we could have assumed, without loss of generality, that $c_{1}=1$. Note also the consequence

$$
\int(\nabla u \cdot \nabla \phi+u \phi)=\int|u|^{p-1} u \phi .
$$

Finally, we compute the second derivative by

$$
\begin{aligned}
f^{\prime \prime}(0) g(0) & =2 \frac{\int\left(|\nabla \phi|^{2}+\phi^{2}\right)}{\left(\int|u|^{p+1}\right)^{\frac{2}{p+1}}}, \\
2 f^{\prime}(0) g^{\prime}(0) & =-8 \frac{\left(\int|u|^{p-1} u \phi\right)^{2}}{\left(\int|u|^{p+1}\right)^{\frac{2}{p+1}+1}}, \\
f(0) g^{\prime \prime}(0) & =2(p+3) \frac{\left(\int|u|^{p-1} u \phi\right)^{2}}{\left(\int|u|^{p+1}\right)^{\frac{2}{p+1}+1}}-2 p \frac{\int|u|^{p-1} \phi^{2}}{\left(\int|u|^{p+1} \frac{2}{p+1}\right.}, \\
\rho^{\prime \prime}(0) & =f^{\prime \prime}(0) g(0)+2 f^{\prime}(0) g^{\prime}(0)+f(0) g^{\prime \prime}(0) \\
& =2\left(\int|u|^{p+1}\right)^{-\frac{2}{p+1}}\left(\int\left(|\nabla \phi|^{2}+\phi^{2}\right)-p \int|u|^{p-1} \phi^{2}+(p-1) \frac{\left(\int|u|^{p-1} u \phi\right)^{2}}{\left(\int|u|^{p+1}\right)^{\frac{2}{p+1}+1}}\right) .
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
H(t) & =\tanh \left(\frac{t}{\sqrt{2}}\right) \\
H^{\prime}(t) & =\frac{1}{\sqrt{2}} \operatorname{sech}^{2}\left(\frac{t}{\sqrt{2}}\right) \\
H^{\prime \prime}(t) & =\operatorname{sech}^{2}\left(\frac{t}{\sqrt{2}}\right) \tanh \left(\frac{t}{\sqrt{2}}\right) \\
& =\left(1-\tanh ^{2}\left(\frac{t}{\sqrt{2}}\right)\right) \tanh \left(\frac{t}{\sqrt{2}}\right) \\
& =H(t)-H^{3}(t)
\end{aligned}
$$

(b) Write $\rho(t)=E[u+t \phi]$.

$$
\begin{aligned}
\rho^{\prime}(0) & =\int\left(\nabla u \cdot \nabla \phi+\frac{1}{2}\left(1-u^{2}\right)(-2 u \phi)\right) \\
& =\int\left(-\Delta u-u+u^{3}\right) \phi .
\end{aligned}
$$

Hence the result follows.
(c) For steady states $H^{\prime \prime}=0$, so

$$
\begin{aligned}
-H+\frac{H^{2}}{1+a H^{2}} & =0 \\
-H\left(1+a H^{2}-H\right) & =0 \\
h_{ \pm} & =\frac{1 \pm \sqrt{1-4 a}}{2 a} .
\end{aligned}
$$

Now we compute the integral

$$
\begin{aligned}
F\left(h_{+}\right) & =\int_{0}^{h_{+}}\left(-H+\frac{H^{2}}{1+a H^{2}}\right) d H \\
& =\int_{0}^{h_{+}}\left(-H+\frac{1}{a}-\frac{1}{a\left(1+a H^{2}\right)}\right) d H \\
& =-\frac{h_{+}^{2}}{2}+\frac{h_{+}}{a}-\frac{1}{a \sqrt{a}} \tan ^{-1}\left(\sqrt{a} h_{+}\right) .
\end{aligned}
$$

Since $a h_{+}^{2}=h_{+}-1$, the equation for which the integral is zero is

$$
-\frac{h_{+}-1}{2}+h_{+}-\frac{1}{\sqrt{a}} \tan ^{-1}\left(\sqrt{a} h_{+}\right)=0
$$

or

$$
\frac{1}{\sqrt{a}} \tan ^{-1}\left(\sqrt{a} h_{+}\right)=\frac{h_{+}+1}{2} .
$$

For $a=a_{0}$, we integrate the equation as follows.

$$
\begin{aligned}
\frac{\left(H^{\prime}\right)^{2}}{2}+F(H) & =0 \\
H^{\prime} & = \pm \sqrt{-2 F(H)}
\end{aligned}
$$

An implicit solution is given by

$$
\begin{aligned}
t & =\int_{0}^{t} \frac{H^{\prime}}{\sqrt{-2 F(H)}} d t \\
& =\int_{H(0)}^{H(t)} \frac{d s}{\sqrt{-2 F(s)}} .
\end{aligned}
$$

5. (a) If $u(x)=H(a \cdot x+b)$, then $\Delta u=|a|^{2} H^{\prime \prime}(a \cdot x+b)$. Therefore the condition is $|a|=1$.
(b) This is the same as 4 (b).
(c) Since $|a|=1$, there is a j such that $a_{j} \neq 0$. Let $\psi=\frac{\partial u}{\partial x_{j}}=a_{j} H^{\prime}(a \cdot x+b) \neq 0$, which satisfies the equation $\Delta \psi=\left(3 u^{2}-1\right) \psi$. Let ϕ be any smooth function with compact support. Testing the linearized equation with ϕ^{2} / ψ (tricky!), we have

$$
\begin{aligned}
\int\left(3 u^{2}-1\right) \phi^{2} & =\int \frac{\phi^{2} \Delta \psi}{\psi} \\
& =-\int \nabla \psi \cdot \nabla\left(\frac{\phi^{2}}{\psi}\right) \\
& =-\int \nabla \psi \cdot\left(\frac{2 \psi \phi \nabla \phi-\phi^{2} \nabla \psi}{\psi^{2}}\right)
\end{aligned}
$$

Notice that the integration by parts is justified by the (exponential) decay of ψ near ∞. Now we complete the trick by

$$
\begin{aligned}
\int\left(|\nabla \phi|^{2}+\left(3 u^{2}-1\right) \phi^{2}\right) & =\int\left(|\nabla \phi|^{2}-2 \nabla \phi \cdot \frac{\phi \nabla \psi}{\psi}+\frac{\phi^{2}|\nabla \psi|^{2}}{\psi^{2}}\right) \\
& =\int\left|\nabla \phi-\frac{\phi \nabla \psi}{\psi}\right|^{2} \\
& \geq 0
\end{aligned}
$$

If equality holds, then

$$
\nabla \phi-\frac{\phi \nabla \psi}{\psi} \equiv 0 .
$$

This implies

$$
\nabla\left(\frac{\phi}{\psi}\right)=\frac{\psi \nabla \phi-\phi \nabla \psi}{\psi^{2}} \equiv 0
$$

which is impossible unless $\phi \equiv 0$ since ψ does not have a compact support.

