
Course 2 - Homework Assignment 1 Solution

1. (a) Using the equation
w′′ = w − wp

and its first integral

(w′)2 = w2 − 2

p + 1
wp+1,

we have

φ′′1 =
p + 1

2

(
w

p−1
2 w′′ +

p− 1

2
w

p−3
2 (w′)2

)

=
p + 1

2

(
w

p+1
2 − w

3p−1
2 +

p− 1

2
w

p+1
2 − p− 1

p + 1
w

3p−1
2

)

=

(
p + 1

2

)2

w
p+1
2 − pw

3p−1
2 .

Hence,

L0(φ1) =

((
p + 1

2

)2

− 1

)
w

p+1
2 = λ1φ1.

Since the first eigenfunction is necessarily positive and other eigenfunctions are orthogonal
to it, φ1 is the principal eigenfunction and λ1 is the principal eigenvalue.

(b) From (a),
L0(w

r−1) = λ1w
r−1,

so
L−1

0 (wr−1) = λ−1
1 wr−1.

(c) It is clear that ∫
wr−1L−1

0 (wr−1) =
1

λ1

∫
wp+1.

2. First we show that w decays exponentially. In fact since w(∞) = 0 we see that for r > r1 wp−1 < 3
4

and hence for r > r1 w satisfies

∆w = (1− wp−1)w ≥ 1

4
w

Next we note that the function e−
1
2
r satisfies

∆(e−
1
2
r) ≤ 1

4
e−

1
2
r

By comparison principle for r > r1

w(r) ≤ w(r1)e
− 1

2
(r−r1)

Similarly since

∆wr − wr + pwp−1wr =
N − 1

r2
wr
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and pwp−1 is small near∞, wr decays exponentially at∞. This fact implies that when we integrate
by parts below, the boundary terms all vanish.

Following the hint and integrating on (0,∞), we have

0 =

∫
rwr(r

N−1wr)r +

∫
rNwr(−w + wp)

= −
∫

rN−1wr(rwrr + wr) +

∫
rN

(
−w2

2
+

wp+1

p + 1

)

r

= −
∫

rN
(wr

2

)
r
−

∫
rN−1w2

r +

∫
NrN−1

(
w2

2
− wp+1

p + 1

)

=

(
N

2
− 1

) ∫
rN−1w2

r +
N

2

∫
rN−1w2 − N

p + 1

∫
rN−1wp+1,

and

0 =

∫
w(rN−1wr)r +

∫
rN−1w(−w + wp)

= −
∫

rN−1w2
r −

∫
rN−1w2 +

∫
rN−1wp+1.

Multiplying the second by (N/2− 1) and adding it to the first, we have

0 =

∫
rN−1w2 +

(
N

2
− 1− N

p + 1

) ∫
rN−1wp+1

=

∫
rN−1w2 +

(N − 2)p− (N + 2)

2(p + 1)

∫
rN−1wp+1.

Therefore, if p ≥ N+2
N−2

, then the right hand side is strictly positive, unless w ≡ 0.

3. Let

f(t) =

∫
(|∇u + tφ|2 + (u + tφ)2)

and

g(t) =

(∫
|u + tφ|p+1

)− 2
p+1

.
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We compute

f ′(t) = 2

∫
(∇u · ∇φ + uφ) + 2t

∫
(|∇φ|2 + φ2),

g′(t) = −2

∫ |u + tφ|p−1 (u + tφ)φ
(∫ |u + tφ|p+1) 2

p+1
+1

,

f(0) =

∫
(|∇u|2 + u2),

f ′(0) = 2

∫
(∇u · ∇φ + uφ),

f ′′(0) = 2

∫
(|∇φ|2 + φ2),

g(0) =

(∫
|u|p+1

)− 2
p+1

,

g′(0) = −2

∫ |u|p−1 uφ
(∫ |u|p+1) 2

p+1
+1

,

g′′(0) = 2(p + 3)

(∫ |u|p−1 uφ
)2

(∫ |u|p+1) 2
p+1

+2
− 2p

∫ |u|p−1 φ2

(∫ |u|p+1) 2
p+1

+1
.

The first derivative is therefore

ρ′(0) = 2

(∫
|u|p+1

)− 2
p+1

((∫
(∇u · ∇φ + uφ)

)
− c1

(∫
|u|p−1 uφ

))

where

c1 =

∫
(|∇u|2 + u2)∫ |u|p+1 .

Since u is the minimizer of E[u], we have ρ′(0) and so
∫

(−∆u + u− c1 |u|p−1 u)φ = 0

for any test function φ, from which we get the Euler-Lagrange equation

∆u− u + c1 |u|p−1 u = 0.

Before computing ρ′′(0), we wish to simply the calculations by choose c1 = 1 by a scaling argument.
In fact, E[u] is scaling invariant, i.e. E[u] = E[λu] for any λ > 0. By going through the whole
argument with λu instead, the Euler-Lagrange equation is

λ∆u− λu + c1λ
p |u|p−1 u = 0.

If we choose λ such that c1λ
p−1 = 1, then we could have assumed, without loss of generality, that

c1 = 1. Note also the consequence
∫

(∇u · ∇φ + uφ) =

∫
|u|p−1 uφ.
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Finally, we compute the second derivative by

f ′′(0)g(0) = 2

∫
(|∇φ|2 + φ2)
(∫ |u|p+1) 2

p+1

,

2f ′(0)g′(0) = −8

(∫ |u|p−1 uφ
)2

(∫ |u|p+1) 2
p+1

+1
,

f(0)g′′(0) = 2(p + 3)

(∫ |u|p−1 uφ
)2

(∫ |u|p+1) 2
p+1

+1
− 2p

∫ |u|p−1 φ2

(∫ |u|p+1) 2
p+1

,

ρ′′(0) = f ′′(0)g(0) + 2f ′(0)g′(0) + f(0)g′′(0)

= 2

(∫
|u|p+1

)− 2
p+1




∫
(|∇φ|2 + φ2)− p

∫
|u|p−1 φ2 + (p− 1)

(∫ |u|p−1 uφ
)2

(∫ |u|p+1) 2
p+1

+1


 .

4. (a)

H(t) = tanh

(
t√
2

)

H ′(t) =
1√
2
sech 2

(
t√
2

)

H ′′(t) = sech 2

(
t√
2

)
tanh

(
t√
2

)

=

(
1− tanh2

(
t√
2

))
tanh

(
t√
2

)

= H(t)−H3(t)

(b) Write ρ(t) = E[u + tφ].

ρ′(0) =

∫ (
∇u · ∇φ +

1

2
(1− u2)(−2uφ)

)

=

∫
(−∆u− u + u3)φ.

Hence the result follows.

(c) For steady states H ′′ = 0, so

−H +
H2

1 + aH2
= 0

−H(1 + aH2 −H) = 0

h± =
1±√1− 4a

2a
.
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Now we compute the integral

F (h+) =

∫ h+

0

(
−H +

H2

1 + aH2

)
dH

=

∫ h+

0

(
−H +

1

a
− 1

a(1 + aH2)

)
dH

= −h2
+

2
+

h+

a
− 1

a
√

a
tan−1(

√
ah+).

Since ah2
+ = h+ − 1, the equation for which the integral is zero is

−h+ − 1

2
+ h+ − 1√

a
tan−1(

√
ah+) = 0,

or
1√
a

tan−1(
√

ah+) =
h+ + 1

2
.

For a = a0, we integrate the equation as follows.

(H ′)2

2
+ F (H) = 0

H ′ = ±
√
−2F (H)

An implicit solution is given by

t =

∫ t

0

H ′
√
−2F (H)

dt

=

∫ H(t)

H(0)

ds√
−2F (s)

.

5. (a) If u(x) = H(a · x + b), then ∆u = |a|2 H ′′(a · x + b). Therefore the condition is |a| = 1.

(b) This is the same as 4(b).

(c) Since |a| = 1, there is a j such that aj 6= 0. Let ψ =
∂u

∂xj

= ajH
′(a ·x+ b) 6= 0, which satisfies

the equation ∆ψ = (3u2−1)ψ. Let φ be any smooth function with compact support. Testing
the linearized equation with φ2/ψ (tricky!), we have

∫
(3u2 − 1)φ2 =

∫
φ2∆ψ

ψ

= −
∫
∇ψ · ∇

(
φ2

ψ

)

= −
∫
∇ψ ·

(
2ψφ∇φ− φ2∇ψ

ψ2

)
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Notice that the integration by parts is justified by the (exponential) decay of ψ near ∞. Now
we complete the trick by

∫
(|∇φ|2 + (3u2 − 1)φ2) =

∫ (
|∇φ|2 − 2∇φ · φ∇ψ

ψ
+

φ2 |∇ψ|2
ψ2

)

=

∫ ∣∣∣∣∇φ− φ∇ψ

ψ

∣∣∣∣
2

≥ 0

If equality holds, then

∇φ− φ∇ψ

ψ
≡ 0.

This implies

∇
(

φ

ψ

)
=

ψ∇φ− φ∇ψ

ψ2
≡ 0,

which is impossible unless φ ≡ 0 since ψ does not have a compact support.
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