AARMS SUMMER SCHOOL-LECTURE VII: INTRODUCTION TO INFINITE DIMENSIONAL REDUCTION METHODS FOR SOLVING PDE'S

MANUEL DEL PINO AND JUNCHENG WEI

1. Back to Allen Cahn in \mathbb{R}^{2}

We consider the functional

$$
J(u)=\int_{\mathbb{R}^{2}}\left(\varepsilon^{2} \frac{|\nabla u|^{2}}{2}+\frac{\left(1-u^{2}\right)^{2}}{4}\right) a(x) d x .
$$

Critical points of J are solutions of

$$
\varepsilon^{2} \operatorname{div}(a(x) \nabla u)+a(x)\left(1-u^{2}\right) u=0
$$

where we suppose $0<\alpha \leq a(x) \leq \beta$. This equation is equal to

$$
\begin{equation*}
\varepsilon^{2} \Delta u+\varepsilon^{2} \frac{\nabla a}{a}(x) \nabla u+\left(1-u^{2}\right) u=0 . \tag{1.1}
\end{equation*}
$$

Using the change of variables $v(x)=u(\varepsilon x)$, we find the equation

$$
\begin{equation*}
\Delta v+\varepsilon \frac{\nabla a}{a}(x) \nabla v+\left(1-v^{2}\right) v=0 \tag{1.2}
\end{equation*}
$$

We will study the problem: Given a curve Γ in \mathbb{R}^{2} we want to find a solution $u_{\varepsilon}(x)$ to (1.1) such that $u_{\varepsilon}(x) \approx w\left(\frac{z}{\varepsilon}\right)$, for points $x=y+z \nu(y)$, $y \in \Gamma,|z|<\delta$, where $\nu(y)$ is a vector perpendicular to the curve and $w(t)=\tanh \left(\frac{t}{\sqrt{2}}\right)$, which solves the problem

$$
w^{\prime \prime}+\left(1-w^{2}\right) w=0, \quad w(\pm \infty)= \pm 1
$$

First issue: Laplacian near Γ, which we will consider as smooth as we need.

Assume: Γ is parametrized by arc-length

$$
\gamma:[0, l] \rightarrow \mathbb{R}^{2}, s \rightarrow \gamma(s),|\dot{\gamma}(s)|=1, l=|\Gamma| .
$$

Convention: $\nu(s)$ inner unit normal at $\gamma(s)$. We have that $|\nu(s)|^{2}=1$, which implies that $2 \nu \dot{\nu}=0$, so we take $\dot{\nu}(s)=-k(s) \dot{\gamma}(s)$, where $k(s)$ is the curvature.

Coordinates: $x(s, t)=\gamma(s)+z \nu(s), s \in(0, l)$ and $|z|<\delta$. If we take a compact supported function $\psi(x)$ near Γ, and we call $\tilde{\psi}(s, z)=$ $\psi(\gamma(s)+z \nu(s))$, then $\frac{\partial \tilde{\psi}}{\partial s}=\nabla \psi \cdot[\dot{\gamma}+z \dot{\nu}]=(1-k z) \nabla \psi \cdot \dot{\gamma}$ and $\frac{\partial \tilde{\psi}}{\partial t}=$
$\nabla \psi \cdot \nu$. Observe that $\nabla \psi=(\nabla \psi \cdot \dot{\gamma}) \dot{\gamma}(\nabla \cdot \nu) \nu$. This means that $\nabla \psi=\frac{1}{1-k z} \frac{\partial \tilde{\psi}}{\partial s} \dot{\gamma}+\frac{\partial \tilde{\psi}}{\partial z} \nu$, and $|\nabla \psi|^{2}=\frac{1}{(1-k z)^{2}}\left|\tilde{\psi}_{s}\right|^{2}+\left|\tilde{\psi}_{z}\right|^{2}$. Then

$$
\int_{\mathbb{R}^{2}}|\nabla \psi(x)|^{2} d x=\iint\left(\frac{1}{(1-k z)^{2}}\left|\tilde{\psi}_{s}\right|^{2}+\left|\tilde{\psi}_{z}\right|^{2}\right)(1-k z) d s d z
$$

$\psi \rightarrow \psi+t \varphi$ and differentiating at $t=0$ we get

$$
\int \nabla \psi \nabla \varphi d x=\iint \frac{1}{(1-k z)} \tilde{\psi}_{s} \tilde{\varphi}_{s}+\tilde{\psi}_{z} \tilde{\varphi}_{z}(1-k z) d s d z
$$

So
$-\int \Delta \psi \varphi d x=-\iint \frac{1}{(1-k z)}\left(\left(\frac{1}{(1-k z)} \tilde{\psi}_{s}\right)_{s}+\left(\tilde{\psi}_{z}(1-l z)\right)_{z}\right) \tilde{\varphi}(1-k z) d s d z$
then

$$
\Delta \tilde{\psi}=\frac{1}{(1-k z)} \frac{\partial}{\partial s}\left(\frac{1}{1-k z} \tilde{\psi}_{s}\right)+\tilde{\psi}_{z z}-\frac{k}{1-k z} \tilde{\psi}_{z}
$$

We just say

$$
\Delta \tilde{\psi}=\frac{1}{1-k z}\left(\frac{1}{1-k z} \psi_{s}\right)_{s}+\psi_{z z}-\frac{k}{1-k z} \psi_{z}
$$

Near $\Gamma(x=\gamma(s)+z \nu(s))$, we have the new equation for $u \rightarrow \tilde{u}(s, z)$
$S[u]=\varepsilon^{2} \frac{1}{1-k z}\left(\frac{1}{1-k z} u_{s}\right)_{s}+\varepsilon^{2} u_{z z}+\left(1-u^{2}\right) u-\frac{\varepsilon^{2} k}{1-k z} u_{z}+\frac{\varepsilon^{2}}{1-k z} \frac{a_{s}}{a} u_{s}+\frac{\varepsilon^{2}}{1-k z} \frac{a_{z}}{a} u_{z}=0$
we want a solution $u(s, z) \approx w\left(\frac{z}{\varepsilon}\right)$.

$$
S\left[w\left(\frac{z}{\varepsilon}\right)\right]=\varepsilon\left[\frac{a_{z}}{a}-\frac{k(s)}{1-k(s) z}\right] w^{\prime}\left(\frac{z}{\varepsilon}\right)
$$

The condition we ask (geodesic condition) is $\frac{a_{z}}{a}(s, 0)=k(s)$. In v language we want

$$
\Delta v+\varepsilon \frac{\nabla a}{a}(\varepsilon x) \cdot \nabla v+f(v)=0
$$

transition on $\Gamma_{\varepsilon}=\frac{1}{\varepsilon} \Gamma$. we use coordinates relative to Γ_{ε} rather than Γ

$$
X_{\varepsilon}(s, z)=\frac{1}{\varepsilon} \gamma(\varepsilon s)+z \nu(\varepsilon s), \quad|z|<\delta / \varepsilon
$$

Laplacian for coordinates relative to Γ_{ε} are

$$
\Delta \psi=\frac{1}{(1-\varepsilon k(\varepsilon s) z)}\left(\frac{1}{(1-\varepsilon k(\varepsilon s) z)} v_{s}\right)_{s}+\psi_{z z}-\frac{\varepsilon k(\varepsilon s)}{(1-\varepsilon k(\varepsilon s) z)}+\varepsilon \frac{a_{s}}{a} \frac{1}{(1-\varepsilon k(\varepsilon s) z)^{2}} v_{s}+\varepsilon \frac{a_{z}}{a} v_{z}+
$$

where we use the computation $\frac{\partial \gamma(\varepsilon s)}{\partial s}=-k(\varepsilon) \dot{\gamma}_{\varepsilon}(s)$, where $k_{\varepsilon}=\varepsilon k(\varepsilon s)$

Hereafter we use \tilde{s} instead of s and \tilde{z} instead of \tilde{z}. Observation: The operator is closed to the Laplacian on (\tilde{s}, \tilde{z}) variables, at least on the curve Γ, if we assume the validity of the relation

$$
a_{\tilde{z}}(\tilde{s}, 0)=k(\tilde{s}) a(\tilde{s}, 0), \quad \forall \tilde{s} \in(0, l)
$$

We can write this relation also like $\partial_{\nu} a=k a$ on Γ (Geodesic condition). This relation means that Γ is a critical point of curve length weighted by a. Let $L_{a}[\Gamma]=\int_{\Gamma} a d l$. Consider a normal perturbation of Γ, say $\Gamma_{h}:=\{\gamma(\tilde{s})+h(\tilde{s}) \nu(\tilde{s}) \mid \tilde{s} \in(0, l)\},\|h\|_{C^{2}(\Gamma)} \ll 1$. We want: first variation along this type of perturbation be equal to zero. This is

$$
\left.D L_{a}\left[\Gamma_{h}\right]\right|_{h=0}=0
$$

This means

$$
\left.\frac{\partial}{\partial \lambda} L\left[\Gamma_{\lambda h}\right]\right|_{h=0}=0
$$

or just $\langle D L(\Gamma), h\rangle=0$ for all h. Observe that

$$
L\left(\Gamma_{\lambda h}\right)=\int_{0}^{l} a(\gamma(\tilde{s})+h(\tilde{s}) \nu(\tilde{s})) \cdot\left|\dot{\gamma}(\tilde{s})_{\lambda h}\right| d \tilde{s}
$$

and also $\dot{\gamma}_{\lambda h}(\tilde{s})=\dot{\gamma}(\tilde{s})+\lambda \dot{h} \nu+\lambda h \dot{\nu}$, and $\dot{\nu}=-k \dot{\gamma}$. With the taylor expansion
$\left(1-2 k \lambda h+\lambda^{2} k^{2} h^{2}+\lambda^{2} \dot{h}^{2}\right)^{1 / 2}=1+\frac{1}{2}\left(-2 k \lambda h+\lambda^{2} k^{2} h^{2}+\lambda^{2} \dot{h}^{2}\right)-\frac{1}{8} 4 k^{2} \lambda^{2} h^{2}+O\left(\lambda^{2} h^{3}\right)$
and
$a\left(\gamma((\tilde{s}))+\lambda h(\tilde{s} \nu(\tilde{s}))=a(\tilde{s}, \lambda h(\tilde{s}))=a(\tilde{s}, 0)+\lambda a_{\tilde{z}}(\tilde{s}, 0) h(\tilde{s})+\frac{1}{2} \lambda^{2} a_{\tilde{z} \tilde{z}}(\tilde{s}, 0) h(\tilde{s})^{2}+O\left(\lambda^{3} h^{3}\right)\right.$.
we conclude

$$
L_{h}\left[\Gamma_{\lambda h}\right]=L_{a}(\Gamma)=\lambda \int_{0}^{l}\left(-k a+a_{\tilde{z}}\right)(\tilde{s}, 0) h(\tilde{s}) d \tilde{s}+\lambda^{2} \int_{0}^{l}\left(a \frac{\dot{h}^{2}}{2}+a_{\tilde{z}} k^{2} h^{2}+\frac{1}{2} a_{\tilde{z} \tilde{z}} h^{2}\right)+O\left(\lambda^{3} h^{3}\right)
$$

This tells us:

$$
\left.\frac{\partial}{\partial \lambda} L_{h}\left[\Gamma_{\lambda h}\right]\right|_{\lambda=0}=0 \Leftrightarrow k(\tilde{s}) a(\tilde{s}, 0)=a_{\tilde{z}}(\tilde{s}, 0)
$$

the geodesic condition. Also we conclude that

$$
\left.\frac{\partial^{2}}{\partial \lambda^{2}} L\left(\Gamma_{\lambda h}\right)\right|_{\lambda=0}=\int_{0}^{l}\left(a \dot{h}^{2}-2 k^{2} a+a_{\tilde{z} \tilde{z}} h^{2}\right) d \tilde{s}=-\int_{0}^{l}(a(\tilde{s}, 0) \dot{h} \tilde{s})^{\prime} h+\left(2 a(\tilde{s}, 0) k^{2}-a_{\tilde{z} \tilde{z}}(\tilde{s}, 0) h\right) h
$$

This can be expressed as $D^{2} L(\Gamma)=J_{a}$, which means $D^{2} L(\Gamma)[h]^{2}=$ $-\int_{0}^{l} J_{a}[h] h . J_{a}[h]$ is called the Jacobi operator of the geodesic Γ. Assumption: J_{a} is invertible.

We assume that if $h(\tilde{s}), \tilde{s} \in(0, l)$ is such that $h(0)=h(l), \dot{h}(0)=\dot{h}(l)$ and $J_{a}[h]=0$ then $h \equiv 0 . \operatorname{Ker}\left(J_{a}\right)=\{0\}$, in the space of l-periodic C^{2} functions. This implies (exercise) that the problem

$$
J_{a}[h]=g, g \in C(0, l), g(0)=g(l), h(0)=h(l), \dot{h}(0)=\dot{h}(l)
$$

has a unique solution ϕ. Moreover $\|\phi\|_{C^{2, \alpha}(0, l)} \leq C\|g\|_{C^{\alpha}(0, l)}$.
Remember that the equation in coordinates (s, z) is

$$
\begin{gathered}
E(v)=\frac{1}{(1-\varepsilon k(\varepsilon s) z)}\left(\frac{1}{(1-\varepsilon k(\varepsilon s) z)} v_{s}\right)_{s}+v_{z z}-\frac{\varepsilon k(\varepsilon s)}{(1-\varepsilon k(\varepsilon s) z)} v_{z}+ \\
\varepsilon \frac{a_{\tilde{s}}}{a} \frac{1}{(1-\varepsilon k(\varepsilon s) z)^{2}} v_{s}+\varepsilon \frac{a_{\tilde{z}}}{a} v_{z}+f(v)=0
\end{gathered}
$$

Change of variables: Fix a function $h \in C^{2, \alpha}(0, l)$ with $\|h\| \leq 1$ and do the change of variables $z-h(\varepsilon s)=t$ and take as first approximation $v_{0} \equiv w(t)$. Let us see that $v_{0}(s, z)=w(z-h(\varepsilon s))$ so

$$
\begin{aligned}
& E\left(v_{0}\right)=\frac{1}{1-\varepsilon k z}\left(\frac{1}{1-\varepsilon k z} w^{\prime}(-\dot{h}(\varepsilon s, \varepsilon z))_{s}+w^{\prime \prime}+f(w)\right. \\
& +\varepsilon\left(\frac{a_{\tilde{z}}}{a}(\varepsilon s, \varepsilon z)-\frac{k(\varepsilon s)}{1-k(\varepsilon s) \varepsilon z}\right) w^{\prime}-\varepsilon \dot{h} \frac{\varepsilon}{(1-\varepsilon k z)^{2}} \frac{a_{\tilde{s}}}{a} w^{\prime}
\end{aligned}
$$

Error in terms of coordinates $(s, t) z=t+h(\varepsilon s)$:

$$
\begin{aligned}
& E\left(v_{0}\right)(s, t)=\varepsilon w^{\prime}(t)\left[\frac{a_{\tilde{z}}}{a}(\varepsilon s, \varepsilon(t+h))-\frac{k(\varepsilon s)}{1-k(\varepsilon s)(t+h) \varepsilon}\right]-\frac{\varepsilon^{2} w^{\prime}}{(1-k \varepsilon(t+h))^{2}} h^{\prime \prime} \\
& +\frac{1}{(1-k \varepsilon(t+h))^{2}} w^{\prime \prime} \dot{h}^{2} \varepsilon^{2}-\frac{1}{(1-\varepsilon k(t+h))^{3}} \varepsilon^{2} \dot{k}(t+h) \dot{h} w^{\prime}(t)-\varepsilon \dot{h} \frac{\varepsilon}{(1-\varepsilon k z)^{2}} \frac{a_{\tilde{s}}}{a} w^{\prime}
\end{aligned}
$$

In fact

$$
\left|E\left(v_{0}\right)(t, s)\right| \leq C \varepsilon^{2} e^{-\sigma|t|}
$$

$\sigma<1$, and

$$
\left\|e^{\sigma|t|} E\left(v_{0}\right)\right\|_{C^{0, \alpha}\left(|t|<\frac{\delta}{\varepsilon}\right)} \leq C \varepsilon^{2}
$$

Formal computation: We would like $\int_{-\delta / \varepsilon}^{\delta / \varepsilon} E\left(v_{0}\right)(s, y) w^{\prime}(t) d t \approx 0$. Observe that

$$
-\varepsilon^{2} h^{\prime \prime}(\varepsilon s) \int_{|t|<\delta / \varepsilon} \frac{w^{\prime 2}}{(1-k \varepsilon(t+h))}=-\varepsilon^{2} h^{\prime \prime} \int_{\mathbb{R}} w^{\prime 2} d t+O\left(\varepsilon^{3}\right)
$$

Also

$$
\begin{gathered}
\dot{h}^{2} \varepsilon^{2} \int \frac{1}{1-\varepsilon k(t+h)} w^{\prime \prime} w^{\prime} d t=0+O\left(\varepsilon^{3}\right) . \\
\varepsilon^{2} \dot{h} \int \frac{a_{s}}{a}(\varepsilon s, \varepsilon(t+h)) w^{\prime 2} /(1+k \varepsilon(t+h))^{2}=\varepsilon^{2} \dot{h} \frac{a_{\tilde{s}}}{a}(\varepsilon s, 0) \int w^{\prime 2}+O\left(\varepsilon^{3}\right)
\end{gathered}
$$

and finally

$$
\varepsilon \int_{|t|<\delta / \varepsilon} w^{\prime 2}\left(\frac{a_{\tilde{z}}}{a}(\varepsilon s, \varepsilon(t+h))-\frac{k(\varepsilon s)}{1-k(\varepsilon s)(t+h) \varepsilon}\right)=\varepsilon^{2} \int_{\mathbb{R}} w^{\prime}(t)^{2}\left(\varepsilon^{2}\right)\left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s, 0)-k^{2}\right) h(\varepsilon s)+O(\varepsilon
$$

Then

$$
\frac{-\int E w^{\prime} d t}{\varepsilon^{2} \int w^{\prime 2}}=h^{\prime \prime}+h^{\prime} \frac{a_{\tilde{s}}}{a}-\left(\left(\frac{a_{\tilde{z}}}{a}\right)_{\tilde{z}}(\varepsilon s, 0)-k^{2}\right) h+O(\varepsilon)
$$

we call $\tilde{s}=\varepsilon s$, and we conclude that the right hand side of the above equality is equal to

$$
\frac{1}{a(\tilde{s}, 0)}\left((a(\tilde{s}, 0)) h^{\prime}(\tilde{s})^{\prime}+\left(2 k^{2} a(\tilde{s}, 0)-a_{\tilde{z} \tilde{z}}(\tilde{s}, 0)\right) h\right)+O(\varepsilon)
$$

and this is equal to

$$
\frac{1}{a(\tilde{s}, 0)}\left(J_{a}[h]+O(\varepsilon)\right)
$$

We need the equation for $v(s, z)=\tilde{v}(s, z-h(\varepsilon s))$. We have

$$
\frac{\partial v}{\partial s}=\frac{\partial \tilde{v}}{\partial s}-\frac{\partial \tilde{v}}{\partial t} \dot{h} \varepsilon
$$

We write $z=t+h$, so we have

$$
\begin{aligned}
& S(\tilde{v})=\frac{1}{(1-\varepsilon k z)}\left(\frac{\partial}{\partial s}-\varepsilon \dot{h} \frac{\partial}{\partial t}\right)\left[\frac{1}{1-\varepsilon k(t+h)}\left(\frac{\partial}{\partial s}-\varepsilon \dot{h} \frac{\partial}{\partial t}\right)\right] \tilde{v}+\tilde{v}_{t t} \\
& \quad \varepsilon\left[-\frac{k}{1-\varepsilon k z}+\frac{a_{\tilde{z}}}{a}\right] \tilde{v}_{t}+\varepsilon \frac{a_{\tilde{s}}}{a} \frac{1 \quad 2}{1-k \varepsilon z}\left[\tilde{v}_{s}-\varepsilon \dot{h} \tilde{v}_{t}\right]+f(\tilde{v})=0
\end{aligned}
$$

The first term of this equation is equal to

$$
\begin{aligned}
& \frac{1}{1-\varepsilon k z}\left\{\frac{\varepsilon(\varepsilon \dot{k}(t+h)+\varepsilon k \dot{h})}{(1-\varepsilon k(t+h))^{2}}\left(\tilde{v}_{s}-\varepsilon \dot{h} v_{t}\right)+\frac{1}{1-k \varepsilon(t+h)}\left(-\varepsilon^{2} h^{\prime \prime} v_{t}-2 \varepsilon \dot{h} \tilde{v}_{t} s\right)+\frac{1}{1+\varepsilon k(t+h)} \tilde{v}_{s} s\right\} \\
& -\varepsilon \dot{h}\left\{\frac{\varepsilon k}{(1-\varepsilon k(t+h))^{2}}\left(\tilde{v}_{s}-\varepsilon \dot{h} \tilde{h}_{t}\right)+\frac{1}{1-\varepsilon k(t+h)}\left(-\varepsilon \dot{h} \tilde{v}_{t t}\right)\right\}+f(\tilde{v})=0
\end{aligned}
$$

Let us observe that for $|t|<\delta / \varepsilon, \delta \ll 1$
$S[\tilde{v}](s, t)=\tilde{v}_{s s}+\tilde{v}_{t t}+O(\varepsilon) \partial_{t s} \tilde{v}+O(\tilde{\varepsilon}) \partial_{t t} \tilde{v}+O(\varepsilon k(|t|+1)) \partial_{s s} \tilde{v}+O(\varepsilon) \partial_{t} \tilde{v}+O(\varepsilon) \partial_{s} \tilde{v}+f(v)=0$
We will call the operator that appears in the equation $B[\tilde{v}]$. We look for a solution of the form $\tilde{v}(s, t)=w(t)+\phi(s, t)$. The equation for ϕ is

$$
\phi_{s s}+\phi_{t t}+f^{\prime}(w(t)) \phi+E+B(\phi)+N(\phi)=0, \quad|t|<\delta / \varepsilon
$$

where $E=S(w(t))=O\left(\varepsilon^{2} e^{-\sigma t}\right), N(\phi)=f(w+\phi)-f(w)-f^{\prime}(w) \phi$, $s \in(0, l / \varepsilon)$. We use the notation $L(\phi)=\phi_{s s}+\phi_{t t}+f^{\prime}(w(t)) \phi$. We also need the boundary condition $\phi(0, t)=\phi(l / \varepsilon, t)$ and $\phi_{s}(0, t)=\phi_{s}(l / \varepsilon, t)$.

It is natural to study the linear operator in \mathbb{R}^{2} and the linear projected problem

$$
\phi_{s s}+\phi_{t t}+f^{\prime}(w(t)) \phi+g(t, s)=c(s) w^{\prime}(t)
$$

where $c(s)=\frac{\int_{\mathbb{R}} g(t, s) w^{\prime}(t) d t}{\int_{\mathbb{R}} w^{\prime}(t)^{2} d t}$ and under the orthogonally condition

$$
\int_{-\infty}^{\infty} \phi(s, t) w^{\prime}(t) d t=0, \quad \forall s \in \mathbb{R}
$$

Basic ingredient: (Even more general) Consider the problem in $\mathbb{R}^{m} \times$ \mathbb{R}, with variables (y, t) :

$$
\Delta_{y} \phi+\phi_{t t}+f^{\prime}(w(t)) \phi=0, \quad \phi \in L^{\infty}\left(\mathbb{R}^{m} \times \mathbb{R}\right)
$$

If ϕ is a solution of the above problem, then $\phi(y, t)=\alpha w^{\prime}(t)$ some $\alpha \in \mathbb{R}$. Ingredient: $\exists \gamma>0: \quad \int_{\mathbb{R}} p^{\prime}(t)^{2}-f^{\prime}(w(t)) p(t)^{2} \geq \gamma \int_{\mathbb{R}} p^{2}(t) d t$ for all $p \in H^{1}$ with $\int_{\mathbb{R}} p w^{\prime}=0 . \quad \psi(y)=\int_{\mathbb{R}} \phi^{2}(y, t) d t$. This is well defined (as we will see) Indeed: It turns out that $|\phi(y, t)| \leq C e^{-\sigma t}$, $\sigma<\sqrt{2}$, thanks to the fact that $\phi \in L^{\infty}$. We use $x=(y, t)$ and we obtain

$$
\Delta_{x} \phi-\left(2-3\left(1-w(t)^{2}\right)\right) \phi=0
$$

Observe that $1-w(t)^{2}$ is small if $|t| \gg 1$. Fix $0<\sigma<\sqrt{2}$, for $|t|>R_{0}$ we have $2-3\left(1-w^{2}(t)\right)>\sigma^{2}$. Let

$$
\bar{\phi}_{\rho}(y, t)=\rho \sum_{i=1}^{n} \cosh \left(\sigma y_{i}\right)+\rho \cosh (\sigma t)+\|\phi\|_{\infty} e^{\sigma R_{0}} e^{-\sigma|t|}
$$

We have that

$$
\phi(y, t) \leq \bar{\phi}_{\rho}(y, t), \quad \text { for }|t|=R_{0}
$$

also true that for $|t|+|y|>R_{\rho} \gg 1, \phi(y, t) \leq \bar{\phi}_{\rho}$.

$$
-\Delta_{x} \phi+\left(2-3\left(1-w(t)^{2}\right)\right) \bar{\phi}=\left(2-\sigma^{2}-3\left(1-w(t)^{2}\right) \bar{\phi}_{\rho}\right)>0
$$

for $|t|>R_{0}$. So is a supersolution of the operator

$$
-\Delta_{x} \phi+\left(2-3\left(1-w(t)^{2}\right)\right) \phi
$$

in D_{ρ}, which implies that $\phi \leq \bar{\phi}_{\rho}$ for $|t|>R_{0}$. This implies that $|\phi(x)| \leq C \bar{\phi}_{\rho}$ for all x, and we conclude the assertion taking $\rho \rightarrow 0$. If ϕ solves $-\Delta \phi+\left(1-3 w^{2}\right) \phi=0$, then $\|\phi\|_{C^{2, \alpha}}\left(B_{1}\left(x_{0}\right)\right) \leq C\|\phi\|_{L^{\infty}\left(B_{2}\left(x_{0}\right)\right)}$. This implies that also

$$
\left|\phi_{y}\right|+\left|\phi_{y y}\right| \leq C e^{-\sigma t} .
$$

Let $\phi(\tilde{y}, t)=\phi(y, t)-\frac{\int \phi(y, \tau) w^{\prime}(\tau) d \tau}{\int w^{\prime 2}} w^{\prime}$. We call $\beta(y)=\frac{\int \phi(y, \tau) w^{\prime}(\tau) d \tau}{\int w^{\prime 2}}$

$$
\Delta \tilde{\phi}+f^{\prime}(w) \tilde{\phi}=\Delta \phi+f^{\prime}(w) \phi+\left(\Delta_{y} \beta\right) w^{\prime}+\beta\left(\Delta w^{\prime}+f^{\prime}(w)\right) w^{\prime}=0
$$

because $\Delta_{y} \beta=0$ by integration by parts. Let $\psi(y)=\int_{\mathbb{R}} \tilde{\phi}^{2} d t$.
$\Delta_{y} \psi=\int_{\mathbb{R}} \nabla_{y}\left(2 \tilde{\phi} \nabla_{y} \tilde{\phi}\right) d t=2 \int\left|\nabla_{y} \tilde{\phi}\right|^{2} d t+2 \int \tilde{\phi} \Delta_{y} \tilde{\phi}=2 \int\left|\nabla_{y} \tilde{\phi}\right|^{2}-2 \int \tilde{\phi}\left[\tilde{\phi}_{t t}+f^{\prime}(w) \tilde{\phi}\right] d t$
Using $2 \int\left|\nabla_{y} \tilde{\phi}\right|^{2} d t+2 \int\left(\tilde{\phi}_{t}^{2}-f^{\prime}(w) \tilde{\phi}^{2}\right)$ This implies that $\Delta \psi \geq 2 \gamma \psi$ which implies $-\Delta \psi+2 \gamma \psi \leq 0,0 \leq \psi \leq c$.

We obtain that $\psi \equiv 0$ and this implies $\tilde{\phi}=0$. This implies that $\phi(t)=\left(\int \phi w^{\prime}\right) w^{\prime}=\beta(y) w^{\prime}$ and $\Delta \beta=0, \beta \in L^{\infty}$. Liouville implies that $\beta=$ constant so $\phi=$ constantw $^{\prime}$.

Lemma: L^{∞} a priori estimates for the linear projected problem: $\exists C:\|\phi\|_{\infty} \leq C\|g\|_{\infty}$.

Proof: If not exists $\left\|g_{n}\right\|_{\infty} \rightarrow 0$ and $\left\|\phi_{n}\right\|_{\infty}=1$.

$$
L\left[\phi_{n}\right]=-g_{n}+c_{n}(t) w^{\prime}(t)=h_{n}(t)
$$

and $h_{n} \rightarrow 0$ in L^{∞}. $\left\|\phi_{n}\right\|=1$ which implies that $\exists\left(y_{n}, t_{n}\right):\left|\phi\left(y_{n}, t_{n}\right)\right| \geq$ $\gamma>0$. Assume that $\left|t_{n}\right| \leq C$ and define $\tilde{\phi}(y, t)=\phi_{n}\left(y_{n}+y, t\right)$. Then

$$
\Delta \tilde{\phi}_{n}+f^{\prime}(w(t)) \tilde{\phi}_{n}=\tilde{h}_{n}
$$

but $f^{\prime}(w(t)) \tilde{\phi}_{n}$ is uniformly bounded and the right hand side goes to 0 . This implies that $\|\phi\|_{C^{1}\left(\mathbb{R}^{m+1}\right)} \leq C$ This implies that $\tilde{\phi}_{n} \rightarrow \tilde{\phi}$ passing to subsequence, and the convergence is uniformly on compacts, where $\Delta \tilde{\phi}+f^{\prime}(w) \tilde{\phi}=0, \tilde{\phi} \in L^{\infty}$. We conclude after a classic argument that $\tilde{\phi}=0$. We have also that $\left\|e^{\sigma|t|} \phi\right\|_{\infty} \leq C\left\|e^{\sigma|t|} g\right\|_{\infty}, 0<\sigma<\sqrt{2}$. Elliptic regularity implies that $\left\|e^{\sigma|t|} \phi\right\|_{C^{2, \sigma}} \leq\left\|e^{\sigma|t|} g\right\|_{C^{0}, \sigma}$.

Existence: Assume g has compact support and take the weak formulation: Find $\phi \in H$ such that $\int_{\mathbb{R}^{m+1}} \nabla \phi \nabla \psi-f^{\prime}(w) \phi \psi=\int g y$, for all $\psi \in H$, where $H=\left\{f \in H^{1}\left(\mathbb{R}^{m+1}\right) \mid \int_{\mathbb{R}} \psi w^{\prime} d t=0, \forall y \in \mathbb{R}^{m}\right\}$. Let us see that $a(\psi, \psi)=\int|\nabla \psi|^{2}-f^{\prime}(w) \psi^{2} \geq \gamma \int \psi^{2}+\psi^{2}$. So $a(\psi, \psi) \geq C\|\psi\|_{H^{1}\left(\mathbb{R}^{m+1}\right)}^{2}$ This implies the unique existence solution. Observe that

$$
\int\left(\Delta \phi+f^{\prime}(w) \phi+g\right) \psi=0
$$

for all $\psi \in H$. Let $\psi \in H^{1}$ and $\psi=\tilde{\psi}-\frac{\int \tilde{\psi} w^{\prime} d t}{\int w^{\prime 2}} w^{\prime}=\Pi(\tilde{\psi})$. We have that

$$
\int d y \int g \Pi(\tilde{\psi}) d t=\int \Pi(g) \psi
$$

which implies that $\Pi\left(\Delta \phi+f^{\prime}(w) \phi+g\right)=0$ if and only if $\Delta \phi+$ $f^{\prime}(w)+\phi+g=\frac{\int\left(\Delta \phi+f^{\prime}(w)+g\right)}{\int w^{\prime 2}} w^{\prime}$ Regularity implies that $\phi \in L^{\infty}$ and $\|\phi\|_{\infty} \leq C\|g\|_{\infty}$. Approximating $g \in L^{\infty}$ by $g_{R} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ locally over compacts. This implies existence result.

We can bound ϕ in other norms. For example if $0<\sigma<\sqrt{2}$, then

$$
\left\|e^{\sigma|t|} \phi\right\|_{\infty} \leq C\left\|e^{\sigma|t|} g\right\|_{\infty}
$$

Indeed, $f^{\prime}(w)<-\sigma^{2}-\eta$ if $|t|>R$, with $\eta=\left(2-\sigma^{2}\right) / 2$. We set

$$
\bar{\phi}=M e^{-\sigma|t|}+\rho \sum_{i=1}^{n} \cosh \left(\sigma y_{i}\right)+\rho \cosh (\sigma t) .
$$

Therefore

$$
-\Delta \bar{\phi}+\left(-f^{\prime}(w)\right) \bar{\phi} \geq-\delta \bar{\phi}+\left(\sigma^{2}+\eta\right) \bar{\phi}=\eta \bar{\phi}>\tilde{g}=-g+c(y) w^{\prime}(t)
$$

if $M \geq \frac{A}{\eta}\left\|e^{\sigma|t|} g\right\|_{\infty}$. In addition we have $\bar{\phi} \geq \phi$ on $|t|=R$ if $M \geq$ $\|\phi\|_{\infty} e^{\sigma R}$. By an standard argument based on maximum principle, we conclude that $\phi \leq \bar{\phi}$. This means, letting $\rho \rightarrow 0, \phi \leq M e^{-\sigma|t|}$, where $M \geq C \max \left\{\|\phi\|_{\infty},\left\|g e^{\sigma|t|}\right\|_{\infty}\right\}$. Since $\|\phi\|_{\infty} \leq C\|g\|_{\infty} \leq C\left\|g e^{\sigma|t|}\right\|_{\infty}$, we can take $M=C\left\|g e^{\sigma|t|}\right\|_{\infty}$. Finally, we conclude $\left\|\phi e^{\sigma|t|}\right\|_{\infty} \leq\left\|g e^{\sigma|t|}\right\|_{\infty}$.

Reminder: If $\Delta \phi=p$ implies that

$$
\|\nabla \phi\|_{L^{\infty}\left(B_{1}(0)\right)} \leq C\left[\|\phi\|_{L^{\infty} B_{2}(0)}+\|p\|_{L^{\infty}\left(B_{1}(0)\right)}\right]
$$

Remember that

$$
\|p\|_{C^{0, \alpha}(A)}=\|p\|_{\infty}+[\phi]_{0, \alpha, A}
$$

where $[\phi]_{0, \alpha, A}=\sup _{x_{1}, x_{2} \in A, x_{1} \neq x_{2}} \frac{\left|p\left(x_{1}\right)-p\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}}$. Also we have the following interior Schauder estimate: for $0<\alpha<1$

$$
\|\phi\|_{C^{2, \sigma}\left(B_{1}\right)} \leq C\left[\|\phi\|_{L^{\infty}\left(B_{2}(0)\right)}+\|p\|_{C^{0, \alpha}\left(B_{2}(0)\right)}\right] .
$$

Conclusion: If ϕ solves the equation in \mathbb{R}^{n+1} then

$$
\|\phi\|_{C^{2, \alpha}\left(\mathbb{R}^{n+1}\right)} \leq C\|g\|_{C^{0, \alpha}\left(\mathbb{R}^{n+1}\right)}
$$

Sketch of the proof of this fact: Fix $x_{0} \in \mathbb{R}^{n+1}$, then

$$
C[\phi]_{0, \alpha, B_{1}\left(x_{0}\right)} \leq\|\nabla \phi\|_{L^{\infty}\left(B_{1}\left(x_{0}\right)\right)} \leq C\left[\|\phi\|_{\infty}+\|g\|_{\infty}\right] \leq C\|g\|_{\infty}
$$

This implies that $\|\phi\|_{C^{0, \alpha}\left(B_{1}\left(x_{0}\right)\right)} \leq C\|g\|_{\infty}$, which implies $\|\phi\|_{C^{0, \alpha}\left(\mathbb{R}^{n}\right)} \leq$ $C\|g\|_{\infty}$. Clearly $\|p\|_{C^{0, \alpha}\left(B_{2}\left(x_{0}\right)\right)} \leq C\|g\|_{\infty}$, so $\|\phi\|_{C^{0, \alpha}\left(B_{1}\left(x_{0}\right)\right)} \leq C\|g\|_{C^{0, \alpha}\left(\mathbb{R}^{n+1}\right)}$, from where we deduce the estimate.

We also get

$$
\left\|e^{\sigma|t|} \phi\right\|_{C^{2, \alpha}\left(\mathbb{R}^{n+1}\right)} \leq C\left\|e^{\sigma|t|} g\right\|_{C^{0, \alpha}\left(\mathbb{R}^{n+1}\right)}
$$

The proof of this fact is very similar to the previous one (use that $g \leq e^{-\sigma\left|t_{0}\right|\left\|g e^{\sigma|t|}\right\|}$, for $\left|t_{0}\right| \gg 1$).

Another result is the following

$$
\left\|\left(1+|y|^{2}\right)^{\mu / 2} \phi\right\|_{\infty} \leq C\left\|\left(1+|y|^{2}\right)^{\mu / 2} g\right\|_{\infty}
$$

In order to prove this result we define $\rho(y)=\left(1+|y|^{\mu}\right)$ and we consider $\tilde{\phi}=\rho(\delta y) \phi$. Observe that
$\Delta \phi=\rho^{-1} \Delta \tilde{\phi}-2 \delta \nabla \tilde{\phi} \nabla\left(\rho^{-1}(\delta y)\right)+\tilde{\phi} \delta^{2} \Delta\left(\rho^{-1}\right)(\delta y)=f^{\prime}(w) \phi+g-c w^{\prime}$
We get $L[\tilde{\phi}]+O\left(\delta^{2}\right) \tilde{\phi}+O(\delta) \nabla \tilde{\phi}=\rho\left(g-c w^{\prime}\right)$. We get

$$
\|\nabla \tilde{\phi}\|_{\infty}+\|\tilde{\phi}\|_{\infty} \leq C\left[\delta^{2}\|\tilde{\phi}\|_{\infty}+\delta\|\nabla \tilde{\phi}\|_{\infty}+\|\rho g\|_{\infty}\right] .
$$

If δ is small we conclude that

$$
\|\tilde{\phi}\|_{\infty}+\|\nabla \tilde{\phi}\|_{\infty} \leq C\|\rho g\|_{\infty}
$$

and we obtain

$$
\|\rho \phi\| C \leq\|\rho g\|
$$

Our setting:

$$
\begin{equation*}
\varepsilon^{2}\left[\delta u+\frac{\nabla a}{a} \cdot \nabla u\right]+f(u)=0 \tag{1.3}
\end{equation*}
$$

We want a solution to (1.3) $u_{\varepsilon}(x) \approx W(z / \varepsilon)$. Writing $x=y+z \gamma(y)$, $|z|<\delta$, we have

$$
\Delta v+\nabla a(\varepsilon x) / a \cdot \nabla v+f(v)=0
$$

in $\Gamma_{\varepsilon}=\frac{1}{\varepsilon} \Gamma: x=y+z \nu(\varepsilon y)$, which means $x=\frac{1}{\varepsilon} \gamma(\varepsilon s)+z \nu(\varepsilon s)$. Remember that $|\dot{\gamma}(\tilde{s})|=1$ which implies $\dot{\nu}(\tilde{s})=-k(\tilde{s}) \dot{\gamma}(\tilde{s})$. We also set $z=h(\varepsilon s)+t . x=\frac{1}{\varepsilon} \gamma(\varepsilon s)+(t+h(\varepsilon s)) \nu(\varepsilon s)$. We assume $\|h\|_{\alpha,(0, l)} \leq 1$, for $0<\alpha<1$. We wrote Δ_{x} in terms of this coordinates (t, s) and the equations $S(v)=0$ is rewritten taking as first approximation $w(t)$. We evaluated $S(w(t))$ and got that $S(w(t))=0$.

From the expression of Δ_{x} we get $\left(x=\frac{1}{\varepsilon} \gamma(\varepsilon s)+(t+h(\varepsilon s)) \nu(\varepsilon s)\right)$

$$
\Delta_{x} v=\partial_{s s}+\partial_{t t}+\varepsilon\left[b_{1}^{\varepsilon}(t, s) \partial_{s s}+b_{2}^{\varepsilon} \partial_{t t}+b_{3}^{\varepsilon} \partial_{s t}+b_{4}^{\varepsilon} \partial_{t}+b_{5}^{\varepsilon} \partial_{s}\right]
$$

$\left|\varepsilon b_{i}\right| \leq C \delta$ in the region $|t|<\delta / \varepsilon$. The coefficients are periodic (same values at $s=0$ and $s=l / \varepsilon)$. Our equation reads

$$
\partial_{s s} v+\partial_{t t} v+B_{\varepsilon}[v]+f(v)=0, \quad \text { for } s \in(0, l / \varepsilon),|t|<\delta / \varepsilon .
$$

This expression does not make sense globally. We consider $\delta \ll 1$. We define

$$
H(x)= \begin{cases}-1 & \text { in } \Omega_{-}^{\varepsilon} \\ +1 & \text { in } \Omega_{+}^{\varepsilon}\end{cases}
$$

where Ω_{+}^{ε} is a bounded component of $\mathbb{R}^{2} \backslash \Gamma$, and Ω_{-}^{ε} the other. For the equation

$$
\Delta v+\varepsilon \frac{\nabla a}{a} \cdot \nabla v+f(v)=0
$$

we take as first (global) approximation

$$
v_{0}(x)=w(t) \eta_{3}+\left(1-\eta_{4}\right) H(x)
$$

where

$$
\eta_{l}(x)=\left\{\begin{array}{cc}
\eta\left(\frac{\varepsilon|t|}{l \delta}\right) & \text { if }|t|<2 \delta l / \varepsilon \\
0 & \text { otherwise }
\end{array}\right.
$$

Look for a solution of the form $v=v_{0}+\tilde{\phi}$, so

$$
\Delta_{x} \tilde{\phi}+\varepsilon \frac{\nabla a}{a} \cdot \nabla \tilde{\phi}+f^{\prime}\left(v_{o}\right) \tilde{\phi}+E+N(\tilde{\phi})=0
$$

where $E=S\left(v_{0}\right)$ and $N(\tilde{\phi})=f\left(v_{0}+\tilde{\phi}\right)-f\left(v_{0}\right)-f^{\prime}\left(v_{0}\right) \tilde{\phi}$.
We write $\tilde{\phi}=\eta_{3} \phi+\psi$. We require that ϕ and ψ solve the system
$\Delta_{x} \psi-2 \psi+\left(2+f^{\prime}\left(v_{0}\right)\right)\left(1-\eta_{1}\right) \psi+\varepsilon \frac{\nabla a}{a} \nabla \psi+\left(1-\eta_{1}\right) E+\left(1-\eta_{1}\right) N\left(\eta_{3} \phi+\psi\right)+\nabla \eta_{3} \nabla \phi+\nabla \eta_{3} \nabla \phi+\varepsilon-$
$\eta_{3}\left[\Delta_{x} \phi+f^{\prime}(w(t)) \phi+\eta_{1}\left(2+f^{\prime}(w(t))\right) \psi+\eta_{1} E+\eta_{1} N(\phi+\psi)+\varepsilon \frac{\nabla a}{a} \cdot \nabla \phi\right]=0$.
We need that the ϕ above satisfies the equation just for $|t|<6 \delta / \varepsilon$. We assume that $\phi(s, t)$ is defined for all s and t (and it is l / ε - periodic in $s)$. We require that ϕ satisfies globally
$\phi_{t t}+\phi_{s s}+\eta_{6} B_{\varepsilon}[\phi]+f^{\prime}(w(t)) \phi+\eta_{1} E+\eta_{1} N(\phi+\psi)+\eta_{1}\left(2+f^{\prime}(w)\right) \psi=0$ and $\phi \in L^{\infty}(\mathbb{R} n+1)$ and periodic in s. Notice that $\phi_{t t}+\phi_{s s}+\eta_{6} B_{\varepsilon}[\phi]=$ $\Delta_{x} \phi$ inside the support of η_{3}. Rather than solving this problem directly we solve the projected problem
$\phi_{t t}+\phi_{s s}+\eta_{6} B_{\varepsilon}[\phi]+f^{\prime}(w(t)) \phi+\eta_{1} E+\eta_{1} N(\phi+\psi)+\eta_{1}\left(2+f^{\prime}(w)\right) \psi=c(s) w^{\prime}(t)$
and $\int_{\mathbb{R}} \phi w^{\prime}(t) d t=0$. We solve (1)-(1.4) first, then we find h such that $c(s) \equiv 0$. We consider ϕ with $\|\phi\|_{\infty}+\|\nabla \phi\|_{\infty} \leq \varepsilon$. The operator $-\Delta \psi+2 \psi$ is invertible $L^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow C^{1}\left(\mathbb{R}^{2}\right)$. We conclude that if $g \in L^{\infty}$ the exist a unique solution $\psi=T[g] \in C^{1}\left(\mathbb{R}^{2}\right)$ with $\|\phi\|_{C^{1}} \leq C\|g\|_{\infty}$ of equation $-\Delta \psi+2 \psi=g$ in \mathbb{R}^{2}. Observe that (1) is equivalent to
$\psi=T\left[\left(2+f^{\prime}\left(v_{0}\right)\right)\left(1-\eta_{1}\right) \psi+\varepsilon \frac{\nabla a}{a} \nabla \psi+\left(1-\eta_{1}\right) E+\left(1-\eta_{1}\right) N\left(\eta_{3} \phi+\psi\right)+\nabla \eta_{3} \nabla \phi+\nabla \eta_{3} \nabla \phi+\varepsilon \frac{\nabla a}{a} \nabla\right.$
Using contraction mapping in C^{1} on $\|\psi\|_{C^{1}} \leq C \varepsilon$, we conclude that there exist a unique solution of the this problem $\psi=\psi(\phi, h)$ such that

$$
\|\psi\| \leq C\left[\varepsilon^{2}+\varepsilon\|\phi\|_{C^{1}}\right] .
$$

Even more, $\left\|\psi\left(\phi_{1}, h\right)-\psi\left(\phi_{2}, h\right)\right\|_{C^{1}} \leq C \varepsilon\left\|\phi_{1}-\phi_{2}\right\|_{C^{1}}$.

