AARMS SUMMER SCHOOL–LECTURE VII: INTRODUCTION TO INFINITE DIMENSIONAL REDUCTION METHODS FOR SOLVING PDE'S

MANUEL DEL PINO AND JUNCHENG WEI

1. Back to Allen Cahn in \mathbb{R}^2

We consider the functional

$$J(u) = \int_{\mathbb{R}^2} \left(\varepsilon^2 \frac{|\nabla u|^2}{2} + \frac{(1-u^2)^2}{4} \right) a(x) dx.$$

Critical points of J are solutions of

$$\varepsilon^{2} \operatorname{div}(a(x)\nabla u) + a(x)(1-u^{2})u = 0,$$

where we suppose $0 < \alpha \leq a(x) \leq \beta$. This equation is equal to

(1.1)
$$\varepsilon^2 \Delta u + \varepsilon^2 \frac{\nabla a}{a} (x) \nabla u + (1 - u^2) u = 0.$$

Using the change of variables $v(x) = u(\varepsilon x)$, we find the equation

(1.2)
$$\Delta v + \varepsilon \frac{\nabla a}{a}(x)\nabla v + (1 - v^2)v = 0.$$

We will study the problem: Given a curve Γ in \mathbb{R}^2 we want to find a solution $u_{\varepsilon}(x)$ to (1.1) such that $u_{\varepsilon}(x) \approx w(\frac{z}{\varepsilon})$, for points $x = y + z\nu(y)$, $y \in \Gamma$, $|z| < \delta$, where $\nu(y)$ is a vector perpendicular to the curve and $w(t) = \tanh(\frac{t}{\sqrt{2}})$, which solves the problem

$$w'' + (1 - w^2)w = 0, \quad w(\pm \infty) = \pm 1.$$

First issue: Laplacian near Γ , which we will consider as smooth as we need.

Assume: Γ is parametrized by arc-length

 $\gamma:[0,l]\to \mathbb{R}^2,\;s\to\gamma(s),\;|\dot\gamma(s)|=1,l=|\Gamma|.$

Convention: $\nu(s)$ inner unit normal at $\gamma(s)$. We have that $|\nu(s)|^2 = 1$, which implies that $2\nu\dot{\nu} = 0$, so we take $\dot{\nu}(s) = -k(s)\dot{\gamma}(s)$, where k(s) is the curvature.

Coordinates: $x(s,t) = \gamma(s) + z\nu(s), s \in (0,l)$ and $|z| < \delta$. If we take a compact supported function $\psi(x)$ near Γ , and we call $\tilde{\psi}(s,z) = \psi(\gamma(s) + z\nu(s))$, then $\frac{\partial \tilde{\psi}}{\partial s} = \nabla \psi \cdot [\dot{\gamma} + z\dot{\nu}] = (1 - kz)\nabla \psi \cdot \dot{\gamma}$ and $\frac{\partial \tilde{\psi}}{\partial t} = \frac{1}{2}$

 $\nabla \psi \cdot \nu$. Observe that $\nabla \psi = (\nabla \psi \cdot \dot{\gamma})\dot{\gamma}(\nabla \cdot \nu)\nu$. This means that $\nabla \psi = \frac{1}{1-kz} \frac{\partial \tilde{\psi}}{\partial s} \dot{\gamma} + \frac{\partial \tilde{\psi}}{\partial z} \nu$, and $|\nabla \psi|^2 = \frac{1}{(1-kz)^2} |\tilde{\psi}_s|^2 + |\tilde{\psi}_z|^2$. Then

$$\int_{\mathbb{R}^2} |\nabla \psi(x)|^2 dx = \iint \left(\frac{1}{(1-kz)^2} |\tilde{\psi}_s|^2 + |\tilde{\psi}_z|^2 \right) (1-kz) ds dz$$

 $\psi \rightarrow \psi + t \varphi$ and differentiating at t=0 we get

$$\int \nabla \psi \nabla \varphi dx = \iint \frac{1}{(1-kz)} \tilde{\psi}_s \tilde{\varphi}_s + \tilde{\psi}_z \tilde{\varphi}_z (1-kz) ds dz$$

So

$$-\int \Delta\psi\varphi dx = -\iint \frac{1}{(1-kz)} \left(\left(\frac{1}{(1-kz)}\tilde{\psi}_s\right)_s + (\tilde{\psi}_z(1-lz))_z \right) \tilde{\varphi}(1-kz) ds dz$$

then

$$\Delta \tilde{\psi} = \frac{1}{(1-kz)} \frac{\partial}{\partial s} \left(\frac{1}{1-kz} \tilde{\psi}_s\right) + \tilde{\psi}_{zz} - \frac{k}{1-kz} \tilde{\psi}_z$$

We just say

$$\Delta \tilde{\psi} = \frac{1}{1 - kz} \left(\frac{1}{1 - kz} \psi_s\right)_s + \psi_{zz} - \frac{k}{1 - kz} \psi_z$$

Near Γ $(x = \gamma(s) + z\nu(s))$, we have the new equation for $u \to \tilde{u}(s, z)$

$$S[u] = \varepsilon^2 \frac{1}{1 - kz} (\frac{1}{1 - kz} u_s)_s + \varepsilon^2 u_{zz} + (1 - u^2)u - \frac{\varepsilon^2 k}{1 - kz} u_z + \frac{\varepsilon^2}{1 - kz} \frac{a_s}{a} u_s + \frac{\varepsilon^2}{1 - kz} \frac{a_z}{a} u_z = 0$$

we want a solution $u(s, z) \approx w(\frac{z}{a})$

we want a solution $u(s, z) \approx w(\frac{z}{\varepsilon})$.

$$S[w(\frac{z}{\varepsilon})] = \varepsilon \left[\frac{a_z}{a} - \frac{k(s)}{1 - k(s)z}\right] w'(\frac{z}{\varepsilon})$$

The condition we ask (geodesic condition) is $\frac{a_z}{a}(s,0) = k(s)$. In v language we want

$$\Delta v + \varepsilon \frac{\nabla a}{a} (\varepsilon x) \cdot \nabla v + f(v) = 0$$

transition on $\Gamma_{\varepsilon} = \frac{1}{\varepsilon} \Gamma$. we use coordinates relative to Γ_{ε} rather than Γ

$$X_{\varepsilon}(s,z) = \frac{1}{\varepsilon}\gamma(\varepsilon s) + z\nu(\varepsilon s), \quad |z| < \delta/\varepsilon$$

Laplacian for coordinates relative to Γ_{ε} are

$$\Delta \psi = \frac{1}{(1 - \varepsilon k(\varepsilon s)z)} \left(\frac{1}{(1 - \varepsilon k(\varepsilon s)z)} v_s \right)_s + \psi_{zz} - \frac{\varepsilon k(\varepsilon s)}{(1 - \varepsilon k(\varepsilon s)z)} + \varepsilon \frac{a_s}{a} \frac{1}{(1 - \varepsilon k(\varepsilon s)z)^2} v_s + \varepsilon \frac{a_z}{a} v_z$$

where we use the computation $\frac{\partial \gamma(\varepsilon s)}{\partial \varepsilon} = -k(\varepsilon) \dot{\gamma}_{\varepsilon}(s)$, where $k_{\varepsilon} = \varepsilon k(\varepsilon s)$

utation $\frac{\partial \langle \varepsilon \rangle}{\partial s} = -k(\varepsilon)\gamma_{\varepsilon}(s)$, where $k_{\varepsilon} = \varepsilon k(\varepsilon s)$ ւբ

Hereafter we use \tilde{s} instead of s and \tilde{z} instead of \tilde{z} . Observation: The operator is closed to the Laplacian on (\tilde{s}, \tilde{z}) variables, at least on the curve Γ , if we assume the validity of the relation

$$a_{\tilde{z}}(\tilde{s},0) = k(\tilde{s})a(\tilde{s},0), \quad \forall \tilde{s} \in (0,l).$$

We can write this relation also like $\partial_{\nu}a = ka$ on Γ (Geodesic condition). This relation means that Γ is a critical point of curve length weighted by a. Let $L_a[\Gamma] = \int_{\Gamma} adl$. Consider a normal perturbation of Γ , say $\Gamma_h := \{\gamma(\tilde{s}) + h(\tilde{s})\nu(\tilde{s})|\tilde{s} \in (0,l)\}, \|h\|_{C^2(\Gamma)} \ll 1$. We want: first variation along this type of perturbation be equal to zero. This is

$$DL_a[\Gamma_h]|_{h=0} = 0$$

This means

$$\frac{\partial}{\partial\lambda} L[\Gamma_{\lambda h}]|_{h=0} = 0$$

or just $\langle DL(\Gamma), h \rangle = 0$ for all h. Observe that

$$L(\Gamma_{\lambda h}) = \int_0^l a(\gamma(\tilde{s}) + h(\tilde{s})\nu(\tilde{s})) \cdot |\dot{\gamma}(\tilde{s})_{\lambda h}| d\tilde{s}$$

and also $\dot{\gamma}_{\lambda h}(\tilde{s}) = \dot{\gamma}(\tilde{s}) + \lambda \dot{h}\nu + \lambda h\dot{\nu}$, and $\dot{\nu} = -k\dot{\gamma}$. With the taylor expansion

$$(1 - 2k\lambda h + \lambda^2 k^2 h^2 + \lambda^2 \dot{h}^2)^{1/2} = 1 + \frac{1}{2}(-2k\lambda h + \lambda^2 k^2 h^2 + \lambda^2 \dot{h}^2) - \frac{1}{8}4k^2\lambda^2 h^2 + O(\lambda^2 h^3) + O(\lambda$$

and

$$a(\gamma(\tilde{s})) + \lambda h(\tilde{s}\nu(\tilde{s})) = a(\tilde{s},\lambda h(\tilde{s})) = a(\tilde{s},0) + \lambda a_{\tilde{z}}(\tilde{s},0)h(\tilde{s}) + \frac{1}{2}\lambda^2 a_{\tilde{z}\tilde{z}}(\tilde{s},0)h(\tilde{s})^2 + O(\lambda^3 h^3).$$

we conclude

$$L_h[\Gamma_{\lambda h}] = L_a(\Gamma) = \lambda \int_0^l (-ka + a_{\tilde{z}})(\tilde{s}, 0)h(\tilde{s})d\tilde{s} + \lambda^2 \int_0^l (a\frac{\dot{h}^2}{2} + a_{\tilde{z}}k^2h^2 + \frac{1}{2}a_{\tilde{z}\tilde{z}}h^2) + O(\lambda^3h^3)$$

This tells us:

$$\frac{\partial}{\partial\lambda}L_h[\Gamma_{\lambda h}]|_{\lambda=0} = 0 \Leftrightarrow k(\tilde{s})a(\tilde{s},0) = a_{\tilde{z}}(\tilde{s},0),$$

the geodesic condition. Also we conclude that

$$\frac{\partial^2}{\partial\lambda^2} L(\Gamma_{\lambda h})|_{\lambda=0} = \int_0^l (a\dot{h}^2 - 2k^2 a + a_{\tilde{z}\tilde{z}}h^2)d\tilde{s} = -\int_0^l (a(\tilde{s},0)\dot{h}\tilde{s})'h + (2a(\tilde{s},0)k^2 - a_{\tilde{z}\tilde{z}}(\tilde{s},0)h)h$$

This can be expressed as $D^2L(\Gamma) = J_a$, which means $D^2L(\Gamma)[h]^2 = -\int_0^l J_a[h]h$. $J_a[h]$ is called the Jacobi operator of the geodesic Γ . Assumption: J_a is invertible.

We assume that if $h(\tilde{s})$, $\tilde{s} \in (0, l)$ is such that h(0) = h(l), $\dot{h}(0) = \dot{h}(l)$ and $J_a[h] = 0$ then $h \equiv 0$. $Ker(J_a) = \{0\}$, in the space of *l*-periodic C^2 functions. This implies (exercise) that the problem

$$J_a[h] = g, g \in C(0, l), g(0) = g(l), h(0) = h(l), \dot{h}(0) = \dot{h}(l)$$

has a unique solution ϕ . Moreover $\|\phi\|_{C^{2,\alpha}(0,l)} \leq C \|g\|_{C^{\alpha}(0,l)}$. Remember that the equation in coordinates (s, z) is

$$\begin{split} E(v) &= \frac{1}{(1 - \varepsilon k(\varepsilon s)z)} \left(\frac{1}{(1 - \varepsilon k(\varepsilon s)z)} v_s \right)_s + v_{zz} - \frac{\varepsilon k(\varepsilon s)}{(1 - \varepsilon k(\varepsilon s)z)} v_z + \\ & \varepsilon \frac{a_{\tilde{s}}}{a} \frac{1}{(1 - \varepsilon k(\varepsilon s)z)^2} v_s + \varepsilon \frac{a_{\tilde{z}}}{a} v_z + f(v) = 0 \end{split}$$

Change of variables: Fix a function $h \in C^{2,\alpha}(0,l)$ with $||h|| \leq 1$ and do the change of variables $z - h(\varepsilon s) = t$ and take as first approximation $v_0 \equiv w(t)$. Let us see that $v_0(s, z) = w(z - h(\varepsilon s))$ so

$$E(v_0) = \frac{1}{1 - \varepsilon kz} \left(\frac{1}{1 - \varepsilon kz} w'(-\dot{h}(\varepsilon s, \varepsilon z))_s + w'' + f(w)\right)$$
$$+ \varepsilon \left(\frac{a_{\tilde{z}}}{a}(\varepsilon s, \varepsilon z) - \frac{k(\varepsilon s)}{1 - k(\varepsilon s)\varepsilon z}\right) w' - \varepsilon \dot{h} \frac{\varepsilon}{(1 - \varepsilon kz)^2} \frac{a_{\tilde{s}}}{a} w'$$

Error in terms of coordinates $(s, t) z = t + h(\varepsilon s)$:

$$\begin{split} E(v_0)(s,t) &= \varepsilon w'(t) \left[\frac{a_{\tilde{z}}}{a} (\varepsilon s, \varepsilon(t+h)) - \frac{k(\varepsilon s)}{1-k(\varepsilon s)(t+h)\varepsilon} \right] - \frac{\varepsilon^2 w'}{(1-k\varepsilon(t+h))^2} h'' \\ &+ \frac{1}{(1-k\varepsilon(t+h))^2} w'' \dot{h}^2 \varepsilon^2 - \frac{1}{(1-\varepsilon k(t+h))^3} \varepsilon^2 \dot{k}(t+h) \dot{h} w'(t) - \varepsilon \dot{h} \frac{\varepsilon}{(1-\varepsilon kz)^2} \frac{a_{\tilde{s}}}{a} w' \\ \text{In fact} \end{split}$$

$$|E(v_0)(t,s)| \le C\varepsilon^2 e^{-\sigma|t|}$$

 $\sigma < 1$, and

$$||e^{\sigma|t|}E(v_0)||_{C^{0,\alpha}(|t|<\frac{\delta}{\varepsilon})} \le C\varepsilon^2$$

Formal computation: We would like $\int_{-\delta/\varepsilon}^{\delta/\varepsilon} E(v_0)(s,y)w'(t)dt \approx 0$. Observe that

$$-\varepsilon^2 h''(\varepsilon s) \int_{|t|<\delta/\varepsilon} \frac{w'^2}{(1-k\varepsilon(t+h))} = -\varepsilon^2 h'' \int_{\mathbb{R}} w'^2 dt + O(\varepsilon^3)$$

Also

$$\dot{h}^2 \varepsilon^2 \int \frac{1}{1 - \varepsilon k(t+h)} w'' w' dt = 0 + O(\varepsilon^3).$$
$$\varepsilon^2 \dot{h} \int \frac{a_s}{a} (\varepsilon s, \varepsilon(t+h)) w'^2 / (1 + k\varepsilon(t+h))^2 = \varepsilon^2 \dot{h} \frac{a_{\tilde{s}}}{a} (\varepsilon s, 0) \int w'^2 + O(\varepsilon^3)$$

and finally

$$\varepsilon \int_{|t|<\delta/\varepsilon} w'^2 \left(\frac{a_{\tilde{z}}}{a}(\varepsilon s,\varepsilon(t+h)) - \frac{k(\varepsilon s)}{1-k(\varepsilon s)(t+h)\varepsilon}\right) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\left(\frac{a_{\tilde{z}}}{a}\right)(\varepsilon s,0) - k^2\right) h(\varepsilon s) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) \left(\varepsilon^2 (\varepsilon s,0) - k^2\right) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w'(t)^2 (\varepsilon^2) h(\varepsilon s,0) + O(\varepsilon s) = \varepsilon^2 \int_{\mathbb{R}} w$$

Then

$$\frac{-\int Ew'dt}{\varepsilon^2 \int w'^2} = h'' + h'\frac{a_{\tilde{s}}}{a} - \left(\left(\frac{a_{\tilde{z}}}{a}\right)_{\tilde{z}}(\varepsilon s, 0) - k^2\right)h + O(\varepsilon)$$

we call $\tilde{s} = \varepsilon s$, and we conclude that the right hand side of the above equality is equal to

$$\frac{1}{a(\tilde{s},0)}((a(\tilde{s},0))h'(\tilde{s})' + (2k^2a(\tilde{s},0) - a_{\tilde{z}\tilde{z}}(\tilde{s},0))h) + O(\varepsilon)$$

and this is equal to

$$\frac{1}{a(\tilde{s},0)}(J_a[h] + O(\varepsilon))$$

We need the equation for $v(s, z) = \tilde{v}(s, z - h(\varepsilon s))$. We have

$$\frac{\partial v}{\partial s} = \frac{\partial \tilde{v}}{\partial s} - \frac{\partial \tilde{v}}{\partial t} \dot{h}\varepsilon$$

We write z = t + h, so we have

$$S(\tilde{v}) = \frac{1}{(1 - \varepsilon kz)} \left(\frac{\partial}{\partial s} - \varepsilon \dot{h} \frac{\partial}{\partial t}\right) \left[\frac{1}{1 - \varepsilon k(t+h)} \left(\frac{\partial}{\partial s} - \varepsilon \dot{h} \frac{\partial}{\partial t}\right)\right] \tilde{v} + \tilde{v}_{tt}$$
$$\varepsilon \left[-\frac{k}{1 - \varepsilon kz} + \frac{a_{\tilde{z}}}{a}\right] \tilde{v}_t + \varepsilon \frac{a_{\tilde{s}}}{a} \frac{1}{1 - k\varepsilon z} \left[\tilde{v}_s - \varepsilon \dot{h} \tilde{v}_t\right] + f(\tilde{v}) = 0$$

The first term of this equation is equal to

$$\frac{1}{1-\varepsilon kz} \{ \frac{\varepsilon(\varepsilon \dot{k}(t+h)+\varepsilon k\dot{h})}{(1-\varepsilon k(t+h))^2} (\tilde{v}_s - \varepsilon \dot{h}v_t) + \frac{1}{1-k\varepsilon(t+h)} (-\varepsilon^2 h'' v_t - 2\varepsilon \dot{h}\tilde{v}_t s) + \frac{1}{1+\varepsilon k(t+h)} \tilde{v}_s s \} -\varepsilon \dot{h} \{ \frac{\varepsilon k}{(1-\varepsilon k(t+h))^2} (\tilde{v}_s - \varepsilon \dot{h}\tilde{v}_t) + \frac{1}{1-\varepsilon k(t+h)} (-\varepsilon \dot{h}\tilde{v}_{tt}) \} + f(\tilde{v}) = 0 \}$$

Let us observe that for $|t| < \delta/\varepsilon, \ \delta \ll 1$

$$S[\tilde{v}](s,t) = \tilde{v}_{ss} + \tilde{v}_{tt} + O(\varepsilon)\partial_{ts}\tilde{v} + O(\tilde{\varepsilon})\partial_{tt}\tilde{v} + O(\varepsilon k(|t|+1))\partial_{ss}\tilde{v} + O(\varepsilon)\partial_t\tilde{v} + O(\varepsilon)\partial_s\tilde{v} + f(v) = 0$$

We will call the operator that appears in the equation $B[\tilde{v}]$. We look for a solution of the form $\tilde{v}(s,t) = w(t) + \phi(s,t)$. The equation for ϕ is

$$\phi_{ss} + \phi_{tt} + f'(w(t))\phi + E + B(\phi) + N(\phi) = 0, \quad |t| < \delta/\varepsilon$$

where $E = S(w(t)) = O(\varepsilon^2 e^{-\sigma t})$, $N(\phi) = f(w + \phi) - f(w) - f'(w)\phi$, $s \in (0, l/\varepsilon)$. We use the notation $L(\phi) = \phi_{ss} + \phi_{tt} + f'(w(t))\phi$. We also need the boundary condition $\phi(0, t) = \phi(l/\varepsilon, t)$ and $\phi_s(0, t) = \phi_s(l/\varepsilon, t)$.

It is natural to study the linear operator in \mathbb{R}^2 and the linear projected problem

$$\phi_{ss} + \phi_{tt} + f'(w(t))\phi + g(t,s) = c(s)w'(t)$$

where $c(s) = \frac{\int_{\mathbb{R}} g(t,s)w'(t)dt}{\int_{\mathbb{R}} w'(t)^2 dt}$ and under the orthogonally condition
$$\int_{-\infty}^{\infty} \phi(s,t)w'(t)dt = 0, \quad \forall s \in \mathbb{R}$$

Basic ingredient: (Even more general) Consider the problem in $\mathbb{R}^m \times \mathbb{R}$, with variables (y, t):

$$\Delta_y \phi + \phi_{tt} + f'(w(t))\phi = 0, \quad \phi \in L^{\infty}(\mathbb{R}^m \times \mathbb{R})$$

If ϕ is a solution of the above problem, then $\phi(y,t) = \alpha w'(t)$ some $\alpha \in \mathbb{R}$. Ingredient: $\exists \gamma > 0$: $\int_{\mathbb{R}} p'(t)^2 - f'(w(t))p(t)^2 \geq \gamma \int_{\mathbb{R}} p^2(t)dt$ for all $p \in H^1$ with $\int_{\mathbb{R}} pw' = 0$. $\psi(y) = \int_{\mathbb{R}} \phi^2(y,t)dt$. This is well defined (as we will see) Indeed: It turns out that $|\phi(y,t)| \leq Ce^{-\sigma t}$, $\sigma < \sqrt{2}$, thanks to the fact that $\phi \in L^{\infty}$. We use x = (y,t) and we obtain

$$\Delta_x \phi - (2 - 3(1 - w(t)^2))\phi = 0$$

Observe that $1 - w(t)^2$ is small if $|t| \gg 1$. Fix $0 < \sigma < \sqrt{2}$, for $|t| > R_0$ we have $2 - 3(1 - w^2(t)) > \sigma^2$. Let

$$\bar{\phi}_{\rho}(y,t) = \rho \sum_{i=1}^{n} \cosh(\sigma y_i) + \rho \cosh(\sigma t) + \|\phi\|_{\infty} e^{\sigma R_0} e^{-\sigma|t|}.$$

We have that

$$\phi(y,t) \le \bar{\phi}_{\rho}(y,t), \quad \text{for } |t| = R_0$$

also true that for $|t| + |y| > R_{\rho} \gg 1$, $\phi(y, t) \leq \overline{\phi}_{\rho}$.

$$-\Delta_x \phi + (2 - 3(1 - w(t)^2))\bar{\phi} = (2 - \sigma^2 - 3(1 - w(t)^2)\bar{\phi}_\rho) > 0$$

for $|t| > R_0$. So is a supersolution of the operator

$$-\Delta_x \phi + (2 - 3(1 - w(t)^2))\phi$$

in D_{ρ} , which implies that $\phi \leq \bar{\phi}_{\rho}$ for $|t| > R_0$. This implies that $|\phi(x)| \leq C\bar{\phi}_{\rho}$ for all x, and we conclude the assertion taking $\rho \to 0$. If ϕ solves $-\Delta\phi + (1-3w^2)\phi = 0$, then $\|\phi\|_{C^{2,\alpha}}(B_1(x_0)) \leq C \|\phi\|_{L^{\infty}(B_2(x_0))}$. This implies that also

$$\begin{aligned} |\phi_y| + |\phi_{yy}| &\leq Ce^{-\sigma t}. \\ \text{Let } \phi(\tilde{y}, t) &= \phi(y, t) - \frac{\int \phi(y, \tau)w'(\tau)d\tau}{\int w'^2} w'. \text{ We call } \beta(y) = \frac{\int \phi(y, \tau)w'(\tau)d\tau}{\int w'^2} \\ \Delta \tilde{\phi} + f'(w)\tilde{\phi} &= \Delta \phi + f'(w)\phi + (\Delta_y\beta)w' + \beta(\Delta w' + f'(w))w' = 0 \end{aligned}$$

6

because $\Delta_y \beta = 0$ by integration by parts. Let $\psi(y) = \int_{\mathbb{R}} \tilde{\phi}^2 dt$.

$$\Delta_y \psi = \int_{\mathbb{R}} \nabla_y (2\tilde{\phi} \nabla_y \tilde{\phi}) dt = 2 \int |\nabla_y \tilde{\phi}|^2 dt + 2 \int \tilde{\phi} \Delta_y \tilde{\phi} = 2 \int |\nabla_y \tilde{\phi}|^2 - 2 \int \tilde{\phi} [\tilde{\phi}_{tt} + f'(w)\tilde{\phi}] dt$$

Using $2\int |\nabla_y \tilde{\phi}|^2 dt + 2\int (\tilde{\phi}_t^2 - f'(w)\tilde{\phi}^2)$ This implies that $\Delta \psi \geq 2\gamma \psi$ which implies $-\Delta \psi + 2\gamma \psi \leq 0, \ 0 \leq \psi \leq c$.

We obtain that $\psi \equiv 0$ and this implies $\phi = 0$. This implies that $\phi(t) = (\int \phi w')w' = \beta(y)w'$ and $\Delta\beta = 0, \beta \in L^{\infty}$. Liouville implies that $\beta = constant$ so $\phi = constantw'$.

Lemma: L^{∞} a priori estimates for the linear projected problem: $\exists C : \|\phi\|_{\infty} \leq C \|g\|_{\infty}.$

Proof: If not exists $||g_n||_{\infty} \to 0$ and $||\phi_n||_{\infty} = 1$.

$$L[\phi_n] = -g_n + c_n(t)w'(t) = h_n(t)$$

and $h_n \to 0$ in L^{∞} . $\|\phi_n\| = 1$ which implies that $\exists (y_n, t_n) \colon |\phi(y_n, t_n)| \ge \gamma > 0$. Assume that $|t_n| \le C$ and define $\tilde{\phi}(y, t) = \phi_n(y_n + y, t)$. Then

$$\Delta \phi_n + f'(w(t))\phi_n = h_n$$

but $f'(w(t))\tilde{\phi}_n$ is uniformly bounded and the right hand side goes to 0. This implies that $\|\phi\|_{C^1(\mathbb{R}^{m+1})} \leq C$ This implies that $\tilde{\phi}_n \to \tilde{\phi}$ passing to subsequence, and the convergence is uniformly on compacts, where $\Delta \tilde{\phi} + f'(w)\tilde{\phi} = 0$, $\tilde{\phi} \in L^{\infty}$. We conclude after a classic argument that $\tilde{\phi} = 0$. We have also that $\|e^{\sigma|t|}\phi\|_{\infty} \leq C \|e^{\sigma|t|}g\|_{\infty}$, $0 < \sigma < \sqrt{2}$. Elliptic regularity implies that $\|e^{\sigma|t|}\phi\|_{C^{2,\sigma}} \leq \|e^{\sigma|t|}g\|_{C^{0,\sigma}}$.

Existence: Assume g has compact support and take the weak formulation: Find $\phi \in H$ such that $\int_{\mathbb{R}^{m+1}} \nabla \phi \nabla \psi - f'(w) \phi \psi = \int gy$, for all $\psi \in H$, where $H = \{f \in H^1(\mathbb{R}^{m+1}) | \int_{\mathbb{R}} \psi w' dt = 0, \forall y \in \mathbb{R}^m\}$. Let us see that $a(\psi, \psi) = \int |\nabla \psi|^2 - f'(w) \psi^2 \geq \gamma \int \psi^2 + \psi^2$. So $a(\psi, \psi) \geq C \|\psi\|_{H^1(\mathbb{R}^{m+1})}^2$ This implies the unique existence solution. Observe that

$$\int (\Delta \phi + f'(w)\phi + g)\psi = 0$$

for all $\psi \in H$. Let $\psi \in H^1$ and $\psi = \tilde{\psi} - \frac{\int \tilde{\psi} w' dt}{\int w'^2} w' = \Pi(\tilde{\psi})$. We have that

$$\int dy \int g \Pi(\tilde{\psi}) dt = \int \Pi(g) \psi$$

which implies that $\Pi(\Delta \phi + f'(w)\phi + g) = 0$ if and only if $\Delta \phi + f'(w) + \phi + g = \frac{\int (\Delta \phi + f'(w) + g)}{\int w'^2} w'$ Regularity implies that $\phi \in L^{\infty}$ and $\|\phi\|_{\infty} \leq C \|g\|_{\infty}$. Approximating $g \in L^{\infty}$ by $g_R \in C_c^{\infty}(\mathbb{R}^N)$ locally over compacts. This implies existence result.

We can bound ϕ in other norms. For example if $0 < \sigma < \sqrt{2}$, then

$$\|e^{\sigma|t|}\phi\|_{\infty} \le C \|e^{\sigma|t|}g\|_{\infty}$$

Indeed, $f'(w) < -\sigma^2 - \eta$ if |t| > R, with $\eta = (2 - \sigma^2)/2$. We set

$$\bar{\phi} = M e^{-\sigma|t|} + \rho \sum_{i=1}^{n} \cosh(\sigma y_i) + \rho \cosh(\sigma t).$$

Therefore

 $-\Delta\bar{\phi} + (-f'(w))\bar{\phi} \geq -\delta\bar{\phi} + (\sigma^2 + \eta)\bar{\phi} = \eta\bar{\phi} > \tilde{g} = -g + c(y)w'(t)$ if $M \geq \frac{A}{\eta}\|e^{\sigma|t|}g\|_{\infty}$. In addition we have $\bar{\phi} \geq \phi$ on |t| = R if $M \geq \|\phi\|_{\infty}e^{\sigma R}$. By an standard argument based on maximum principle, we conclude that $\phi \leq \bar{\phi}$. This means, letting $\rho \to 0$, $\phi \leq Me^{-\sigma|t|}$, where $M \geq C \max\{\|\phi\|_{\infty}, \|ge^{\sigma|t|}\|_{\infty}\}$. Since $\|\phi\|_{\infty} \leq C\|g\|_{\infty} \leq C\|ge^{\sigma|t|}\|_{\infty}$, we can take $M = C\|ge^{\sigma|t|}\|_{\infty}$. Finally, we conclude $\|\phi e^{\sigma|t|}\|_{\infty} \leq \|ge^{\sigma|t|}\|_{\infty}$.

Reminder: If $\Delta \phi = p$ implies that

$$\|\nabla\phi\|_{L^{\infty}(B_{1}(0))} \leq C[\|\phi\|_{L^{\infty}B_{2}(0)} + \|p\|_{L^{\infty}(B_{1}(0))}]$$

Remember that

$$||p||_{C^{0,\alpha}(A)} = ||p||_{\infty} + [\phi]_{0,\alpha,A}$$

where $[\phi]_{0,\alpha,A} = \sup_{x_1,x_2 \in A, x_1 \neq x_2} \frac{|p(x_1) - p(x_2)|}{|x_1 - x_2|^{\alpha}}$. Also we have the following interior Schauder estimate: for $0 < \alpha < 1$

 $\|\phi\|_{C^{2,\sigma}(B_1)} \le C[\|\phi\|_{L^{\infty}(B_2(0))} + \|p\|_{C^{0,\alpha}(B_2(0))}].$

Conclusion: If ϕ solves the equation in \mathbb{R}^{n+1} then

 $\|\phi\|_{C^{2,\alpha}(\mathbb{R}^{n+1})} \le C \|g\|_{C^{0,\alpha}(\mathbb{R}^{n+1})}.$

Sketch of the proof of this fact: Fix $x_0 \in \mathbb{R}^{n+1}$, then

$$C[\phi]_{0,\alpha,B_1(x_0)} \le \|\nabla\phi\|_{L^{\infty}(B_1(x_0))} \le C[\|\phi\|_{\infty} + \|g\|_{\infty}] \le C\|g\|_{\infty}$$

This implies that $\|\phi\|_{C^{0,\alpha}(B_1(x_0))} \leq C \|g\|_{\infty}$, which implies $\|\phi\|_{C^{0,\alpha}(\mathbb{R}^n)} \leq C \|g\|_{\infty}$. Clearly $\|p\|_{C^{0,\alpha}(B_2(x_0))} \leq C \|g\|_{\infty}$, so $\|\phi\|_{C^{0,\alpha}(B_1(x_0))} \leq C \|g\|_{C^{0,\alpha}(\mathbb{R}^{n+1})}$, from where we deduce the estimate.

We also get

$$\|e^{\sigma|t|}\phi\|_{C^{2,\alpha}(\mathbb{R}^{n+1})} \le C \|e^{\sigma|t|}g\|_{C^{0,\alpha}(\mathbb{R}^{n+1})}.$$

The proof of this fact is very similar to the previous one (use that $g \leq e^{-\sigma |t_0| ||g e^{\sigma |t|}||}$, for $|t_0| \gg 1$).

Another result is the following

$$\|(1+|y|^2)^{\mu/2}\phi\|_{\infty} \le C\|(1+|y|^2)^{\mu/2}g\|_{\infty}$$

In order to prove this result we define $\rho(y) = (1 + |y|^{\mu})$ and we consider $\tilde{\phi} = \rho(\delta y)\phi$. Observe that

 $\Delta \phi = \rho^{-1} \Delta \tilde{\phi} - 2\delta \nabla \tilde{\phi} \nabla (\rho^{-1}(\delta y)) + \tilde{\phi} \delta^2 \Delta (\rho^{-1})(\delta y) = f'(w)\phi + g - cw'$ We get $L[\tilde{\phi}] + O(\delta^2)\tilde{\phi} + O(\delta)\nabla \tilde{\phi} = \rho(g - cw')$. We get

 $\|\nabla \tilde{\phi}\|_{\infty} + \|\tilde{\phi}\|_{\infty} \le C[\delta^2 \|\tilde{\phi}\|_{\infty} + \delta \|\nabla \tilde{\phi}\|_{\infty} + \|\rho g\|_{\infty}].$

If δ is small we conclude that

$$\|\tilde{\phi}\|_{\infty} + \|\nabla\tilde{\phi}\|_{\infty} \le C \|\rho g\|_{\infty}$$

and we obtain

$$\|\rho\phi\|C \le \|\rho g\|.$$

Our setting:

(1.3)
$$\varepsilon^2 [\delta u + \frac{\nabla a}{a} \cdot \nabla u] + f(u) = 0$$

We want a solution to (1.3) $u_{\varepsilon}(x) \approx W(z/\varepsilon)$. Writing $x = y + z\gamma(y)$, $|z| < \delta$, we have

$$\Delta v + \nabla a(\varepsilon x)/a \cdot \nabla v + f(v) = 0,$$

in $\Gamma_{\varepsilon} = \frac{1}{\varepsilon}\Gamma$: $x = y + z\nu(\varepsilon y)$, which means $x = \frac{1}{\varepsilon}\gamma(\varepsilon s) + z\nu(\varepsilon s)$. Remember that $|\dot{\gamma}(\tilde{s})| = 1$ which implies $\dot{\nu}(\tilde{s}) = -k(\tilde{s})\dot{\gamma}(\tilde{s})$. We also set $z = h(\varepsilon s) + t$. $x = \frac{1}{\varepsilon}\gamma(\varepsilon s) + (t + h(\varepsilon s))\nu(\varepsilon s)$. We assume $||h||_{\alpha,(0,l)} \leq 1$, for $0 < \alpha < 1$. We wrote Δ_x in terms of this coordinates (t, s) and the equations S(v) = 0 is rewritten taking as first approximation w(t). We evaluated S(w(t)) and got that S(w(t)) = 0.

From the expression of Δ_x we get $(x = \frac{1}{\varepsilon}\gamma(\varepsilon s) + (t + h(\varepsilon s))\nu(\varepsilon s))$

$$\Delta_x v = \partial_{ss} + \partial_{tt} + \varepsilon [b_1^{\varepsilon}(t,s)\partial_{ss} + b_2^{\varepsilon}\partial_{tt} + b_3^{\varepsilon}\partial_{st} + b_4^{\varepsilon}\partial_t + b_5^{\varepsilon}\partial_s]$$

 $|\varepsilon b_i| \leq C\delta$ in the region $|t| < \delta/\varepsilon$. The coefficients are periodic (same values at s = 0 and $s = l/\varepsilon$). Our equation reads

$$\partial_{ss}v + \partial_{tt}v + B_{\varepsilon}[v] + f(v) = 0, \text{ for } s \in (0, l/\varepsilon), |t| < \delta/\varepsilon.$$

This expression does not make sense globally. We consider $\delta \ll 1.$ We define

$$H(x) = \begin{cases} -1 & \text{in } \Omega_{-}^{\varepsilon} \\ +1 & \text{in } \Omega_{+}^{\varepsilon} \end{cases}$$

where Ω^{ε}_{+} is a bounded component of $\mathbb{R}^2 \setminus \Gamma$, and Ω^{ε}_{-} the other. For the equation

$$\Delta v + \varepsilon \frac{\nabla a}{a} \cdot \nabla v + f(v) = 0$$

we take as first (global) approximation

$$v_0(x) = w(t)\eta_3 + (1 - \eta_4)H(x)$$

where

$$\eta_l(x) = \begin{cases} \eta\left(\frac{\varepsilon|t|}{l\delta}\right) & \text{if } |t| < 2\delta l/\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

Look for a solution of the form $v = v_0 + \tilde{\phi}$, so

$$\Delta_x \tilde{\phi} + \varepsilon \frac{\nabla a}{a} \cdot \nabla \tilde{\phi} + f'(v_o) \tilde{\phi} + E + N(\tilde{\phi}) = 0$$

where $E = S(v_0)$ and $N(\tilde{\phi}) = f(v_0 + \tilde{\phi}) - f(v_0) - f'(v_0)\tilde{\phi}$.

We write $\tilde{\phi} = \eta_3 \phi + \psi$. We require that ϕ and ψ solve the system

$$\Delta_x \psi - 2\psi + (2 + f'(v_0))(1 - \eta_1)\psi + \varepsilon \frac{\nabla a}{a} \nabla \psi + (1 - \eta_1)E + (1 - \eta_1)N(\eta_3 \phi + \psi) + \nabla \eta_3 \nabla \phi + \nabla \eta_3 \nabla \phi + \varepsilon \frac{\nabla a}{a} \eta_3 \left[\Delta_x \phi + f'(w(t))\phi + \eta_1(2 + f'(w(t)))\psi + \eta_1 E + \eta_1 N(\phi + \psi) + \varepsilon \frac{\nabla a}{a} \cdot \nabla \phi \right] = 0.$$

We need that the ϕ above satisfies the equation just for $|t| < 6\delta/\varepsilon$. We assume that $\phi(s, t)$ is defined for all s and t (and it is l/ε - periodic in s). We require that ϕ satisfies globally

$$\phi_{tt} + \phi_{ss} + \eta_6 B_{\varepsilon}[\phi] + f'(w(t))\phi + \eta_1 E + \eta_1 N(\phi + \psi) + \eta_1 (2 + f'(w))\psi = 0$$

and $\phi \in L^{\infty}(\mathbb{R}n + 1)$ and periodic in s. Notice that $\phi_{tt} + \phi_{ss} + \eta_6 B_{\varepsilon}[\phi] = 0$

 $\Delta_x \phi$ inside the support of η_3 . Rather than solving this problem directly we solve the projected problem (1.4)

$$\phi_{tt} + \phi_{ss} + \eta_6 B_{\varepsilon}[\phi] + f'(w(t))\phi + \eta_1 E + \eta_1 N(\phi + \psi) + \eta_1 (2 + f'(w))\psi = c(s)w'(t)$$

and $\int_{\mathbb{R}} \phi w'(t) dt = 0$. We solve (1)-(1.4) first, then we find h such that $c(s) \equiv 0$. We consider ϕ with $\|\phi\|_{\infty} + \|\nabla\phi\|_{\infty} \leq \varepsilon$. The operator $-\Delta \psi + 2\psi$ is invertible $L^{\infty}(\mathbb{R}^3) \to C^1(\mathbb{R}^2)$. We conclude that if $g \in L^{\infty}$ the exist a unique solution $\psi = T[g] \in C^1(\mathbb{R}^2)$ with $\|\phi\|_{C^1} \leq C \|g\|_{\infty}$ of equation $-\Delta \psi + 2\psi = g$ in \mathbb{R}^2 . Observe that (1) is equivalent to

$$\psi = T[(2+f'(v_0))(1-\eta_1)\psi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)E + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + (1-\eta_1)N(\eta_3\phi + \psi) + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi + \varepsilon \frac{\nabla a}{a}\nabla\psi + \nabla\eta_3\nabla\phi + \nabla\eta_3\nabla\phi$$

Using contraction mapping in C^1 on $\|\psi\|_{C^1} \leq C\varepsilon$, we conclude that there exist a unique solution of the this problem $\psi = \psi(\phi, h)$ such that

$$\|\psi\| \le C[\varepsilon^2 + \varepsilon \|\phi\|_{C^1}].$$

Even more, $\|\psi(\phi_1, h) - \psi(\phi_2, h)\|_{C^1} \le C\varepsilon \|\phi_1 - \phi_2\|_{C^1}.$

10