
AARMS Summer School Lecture VI: Finite-dimensional reduction method to Gierer-
Meinhardt system

[1] Chapters 2 of Wei-Winter’s book on ”Mathematical Aspects of Pattern Formation in Bi-
ological Systems”, Applied Mathematical Sciences Series, Vol. 189, Springer 2014 , ISBN:
978-4471-5525-6.

In this lecture, we discuss the application of the Liapunov-Schmidt reduction method to the
full Gierer-Meinhardt system

1 Existence of spikes for the Gierer-Meinhardt system

in one dimension

In this chapter we give a full account of the existence of multiple spikes for the Gierer-Meinhardt
system in an interval on the real line. Without loss of generality, we assume that this interval
is (−1, 1). We will construct the solution by a rigorous approach based on (i) the Liapunov-
Schmidt reduction to deduce a finite-dimensional problem and (ii) a fixed-point argument (e.g.
using the mapping degree) to solve this finite-dimensional problem. Here we present a simpli-
fication in the case of two spikes. The time-dependent problem consists of a two-component
reaction-diffusion system of activator-inhibitor type with no-flux (Neumann) boundary condi-
tions and can be stated as follows:





At = ε2A′′ − A + A2

H
, x ∈ (−1, 1), t > 0,

τHt = DH ′′ −H + A2, x ∈ (−1, 1), t > 0,

A′(±1, t) = H ′(±1, t) = 0, t > 0.

(1.1)

This system has three parameters, namely two diffusivities and one time relaxation constant
which satisfy

0 < ε ¿ 1, 0 < D < ∞, τ ≥ 0.

Throughout this chapter, we assume that

D and τ are real constants which are independent of ε.
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The corresponding stationary problem is given by





ε2A′′ − A + A2

H
= 0, x ∈ (−1, 1),

DH ′′ −H + A2 = 0, x ∈ (−1, 1),

A′(±1) = H ′(±1) = 0.

(1.2)

Before giving a full discussion of the problem, let us summarise what we mean by a spike. It
is a pattern which is narrowly concentrated near a point in the domain which is characterised
by its profile, amplitude and position. The pattern is observed in the activator component and
the inhibitor component plays a stabilising role. A multi-spike steady state consisting of N
spikes satisfies

aε ∼ ξi,εw
(

x− tεi
ε

)
as ε → 0, i = 1, . . . , N,

where the profile function w is the unique solution of the problem





w′′ − w + w2 = 0 in R,

w > 0, w(0) = maxy∈R w(y),

w(y) → 0 as |y| → ∞
(1.3)

and the notation A(ε) ∼ B(ε) means that limε→0
A(ε)
B(ε)

= c0 > 0, for some positive number c0.
Existence and uniqueness have been proved in Section 13.2. Below we will first compute the
amplitudes ξi,ε. We will also determine the positions tεi of the spike centres which will approach
certain limiting locations t0i as ε → 0. Some multiple spike patterns are displayed in Figures
2.1 and 2.2.

Problem (1.2) has been studied by numerous authors. Let us first recall several important
results on the formation of spiky patterns.

2 Symmetric multi-spike solutions: A rigorous proof of

existence

I. Takagi [?] first established the existence of N -spike steady-state solutions with maxima lo-
cated exactly at

t0j = −1 +
2j − 1

N
, j = 1, . . . , N, (2.4)
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for ε ¿ 1 and ε2 ¿ D. These solutions are periodic and they are obtained by first constructing
a single spike on a smaller interval and then using periodic continuation to extend the solution
to multiple spikes on the original domain. We call them symmetric N−spike solutions since
all the spikes have the same amplitudes, and in this special case they are exact copies of each
other. Takagi’s proof uses the implicit function theorem to construct single spikes. The implicit
function theorem is applied in a suitable functional space of even functions. The argument of
the existence proof is very elegant since the linearised operator around a suitable approximate
solution restricted to this space of even functions is invertible, see Sect. 3.1. These solutions
are close to the approximate solution

A ∼ ξεw
(

x

ε

)
, H(0) = ξε

for suitable amplitude ξε and given shape function w solving (1.3). Note that w is given by

w(y) =
3

2 cosh2 y
2

. (2.5)

Therefore single-spike solutions are even functions defined on the interval (− 1
N

, 1
N

) with the
boundary conditions

A′
(
− 1

N

)
= A′

(
1

N

)
= H ′

(
− 1

N

)
= H ′

(
1

N

)
= 0.

Because of these properties, the periodic continuation of the solution from the interval
(
− 1

N
, 1

N

)

to the whole domain (−1, 1) is a symmetric multi-spike solution.
The following figures show symmetric two-spike and five-spike steady states.

figure=bookpic1.eps,height=7cm
Figure 2.1 A symmetric two-spike steady state is displayed (activator Aε solid line, inhibitor Hε

dashed line) for parameters ε = 0.02 and D = 0.10.
figure=bookpic2.eps,height=7cm

Figure 2.2 A symmetric five-spike steady state is displayed (activator Aε solid line, inhibitor Hε

dashed line) for parameters ε = 0.02 and D = 0.04.

3 Asymmetric multi-spike solutions: A formal deriva-

tion

Using matched asymptotic expansions, Ward and Wei in [?] showed that for any given positive
integer N and under the condition D < DN , where the sequence D1 > D2 > · · · > DN > . . . > 0
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has been stated explicitly, problem (1.2) has asymmetric N−spike solutions if ε is small
enough. These asymmetric solutions are generated by two different types of spikes which we
call type A or type B, respectively. For any given order, e.g.

ABAABBB . . .ABBBA . . .B,

there is a corresponding asymmetric N−spike solution such that the two types of spikes follow
this order. In each of the resulting subintervals the two types of spikes are given asymptotically
by the formula

A ∼ ξi,εw
(

x− tεi
ε

)
, H(tεi) = ξi,ε, (3.6)

where tεi is the centre of the spike, ξi,ε its amplitude and w, given by (2.5), is its shape function.
Here ξi can either be small (for type A spikes) or large (for type B spikes). It is also seen that
for the small spikes the subinterval is small and for the large spikes the subinterval is large.
Further, the small spikes are exact copies of each other as are the large spikes.

The following figure shows asymmetric four-spike steady states.

figure=bookpic4.eps,height=7cm
Figure 2.3 An asymmetric four-spike steady state is displayed (activator Aε solid line, inhibitor

Hε dashed line) for parameters ε = 0.02 and D = 0.0465. Note that the spikes have the order ABBA.
First we start from (1.2) in a small interval (−l, l): Let A and H be even functions in the

set (compare Section 13.1)

H2
N(−l, l) := {v ∈ H2(−1, 1) : v′(−1) = v′(1) = 0}

satisfying 



ε2A′′ − A +
A2

H
= 0 in (−l, l),

DH ′′ −H + A2 = 0 in (−l, l),

A(x) > 0, H(x) > 0 in (−l, l).

(3.7)

Consider the single-spike solution which was constructed by I. Takagi [?]. By some simple
computations based on (4.13) below, it follows that we have

H(l) = c(D)b

(
l√
D

)
+ o(1) as ε → 0, (3.8)
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where c(D) is some positive constant depending on D only and the function b(z) is given by

b(z) :=
sinh(z)

cosh2(z)
. (3.9)

We note that b(0) = limz→∞ b(z) = 0 and b has a unique maximum for which cosh2 zmax = 2
and b(zmax) = 1

2
.

The approach now is to fix l and find a positive number l̄ such that

b

(
l√
D

)
= b

(
l̄√
D

)
, 0 < l < l̄ < 1, (3.10)

which will imply that H(l) = H(l̄) + o(1). This shows that if there exists a solution to (3.10),
then H(l) and H(−̄l) can be matched. Using the fact that w decays exponentially, solutions of
(3.7) in different subintervals can be connected.

It turns out that for D small enough (3.10) is always solvable. Now (3.10) has to be solved
together with the following constraint to fit N spikes into the interval (−1, 1):

N1l + N2l̄ = 1, N1 + N2 = N. (3.11)

For a solution l of (3.10) and (3.11) and j = 1, . . . , N we set

lj = l or lj = l̄, (3.12)

where the order of l’s and l̄’s can be chosen arbitrarily under the constraint that the number
of j’s such that lj = l is N1 and the number of j’s such that lj = l̄ is N2.

Finally, we compute t0j = limε→0 tεj, j = 1, . . . , N such that

t0j+1 − t0j = lj + lj+1, j = 1, . . . , N − 1

and t01 = −1+l1, t0N = 1−lN . This concludes the formal construction of asymmetric multi-spike
solutions.

4 Existence of symmetric and asymmetric multiple spikes:

A unified rigorous approach

In this section and Chapter 4, we present a unified approach to a rigorous theoretical treatment
of the existence and stability of general N−spike (symmetric or asymmetric) solutions for
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the Gierer-Meinhardt system (1.2) on the interval (−1, 1). The existence proof firstly uses
Liapunov-Schmidt reduction to deduce a finite-dimensional problem and secondly a fixed-point
argument (e.g. using the mapping degree) to solve the finite-dimensional problem.

The stability is shown by first separating the problem into the case of large eigenvalues which
tend to a nonzero limit and the case of small eigenvalues which tend to zero as ε → 0. Large
eigenvalues are then explored by studying nonlocal eigenvalue problems. Small eigenvalues are
calculated explicitly by an asymptotic analysis with rigorous error estimates. It turns out that
for the case of symmetric N -spike solutions the instability always arises first from the small
eigenvalues.

Finally, in Section 4 we state results on the existence of multiple clusters for (1.2) for which
different spikes may approach the same point.

We note also that in [?] an alternative dynamical systems approach is used to study the
stability of symmetric spikes.

Before stating our main results, we introduce some notation. Let L2(−1, 1) and H2(−1, 1)
be the usual Lebesgue and Sobolev spaces (see Section 13.1). Let Ω = (−1, 1) and GD(x, z) be
the following Green’s function:





DG′′
D(x, z)−GD(x, z) + δz(x) = 0 in (−1, 1),

G′
D(−1, z) = G′

D(1, z) = 0.
(4.13)

We can calculate explicitly

GD(x, z) =





θ
sinh(2θ)

cosh[θ(1 + x)] cosh[θ(1− z)], −1 < x < z < 1,

θ

sinh(2θ)
cosh[θ(1− x)] cosh[θ(1 + z)], −1 < z < x < 1,

(4.14)

where

θ =
1√
D

. (4.15)

We set

KD(|x− z|) =
1

2
√

D
e
− 1√

D
|x−z|

(4.16)

to be the non-smooth part of GD(x, z), and we define the regular part HD of GD by HD =
KD−GD . Note that GD is C∞ for (x, z) ∈ Ω×Ω\{x = z} and HD is C∞ for all (x, z) ∈ Ω×Ω.

We use the notation e.s.t to denote an exponentially small term of order O(e−d/ε) for some
d > 0 in a suitable norm. By C we denote a generic constant which may change from line to
line.
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For simplicity of presentation, we will assume that the number of spikes is given by

N = 2. (4.17)

Let t0 = (t01, t
0
2) be fixed, where −1 < t01 < t2 < 1 are two different points in (−1, 1). Using

the unique solution w of (1.3), we set

ξε :=
(
ε

∫

R
w2(z) dz

)−1

(4.18)

and define
ξ̂i = ξi,ε(ξε)

−1. (4.19)

Next we introduce several matrices for later use: Let

GD(t) = (GD(ti, tj)), (4.20)

where the Green’s function GD has been defined in (4.14) and t = (t1, t2) ∈ (−1, 1)2 with
−1 < t1 < t2 < 1 is arbitrary. Then we introduce the matrix

B = (bij), where bij = GD(t0i , t
0
j)ξ̂

0
j . (4.21)

Remark 4.1 Since the matrix B is of the form GDD, where GD is a symmetric and D is a
diagonal matrix, the eigenvalues of B are real.

Next we compute the partial derivatives of GD(ti, tj). Recall that

GD(ti, tj) = KD(|ti − tj|)−HD(ti, tj).

For i 6= j, we define

∇tiG(ti, tj) :=
∂

∂x
G(x, tj)|x=t0i

.

For i = j, we have that KD(|ti − tj|) = KD(0) = 1
2
√

D
is a constant and we set

∇tiGD(ti, ti) = −∇tiHD(ti, ti) := − ∂

∂x
HD(x, ti)|x=ti .

Similarly, we define

∇ti∇tjGD(ti, tj) =




− ∂

∂x
|x=ti

∂
∂y
|y=tiHD(x, y) if i = j,

∂
∂x
|x=ti

∂
∂y
|y=tjGD(x, y) if i 6= j.

(4.22)
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Then the following two matrices of first and second order derivatives of GD can be introduced:

∇GD(t) = (∇tiGD(ti, tj)), ∇2GD(t) = (∇ti∇tjGD(ti, tj)). (4.23)

In order to guarantee the existence of two-spike solutions, we make the following three
assumptions. The first two assumptions will ensure that we can find suitable amplitudes for
the spikes. This can be seen by the following leading-order computation: Substituting (3.6)
into (1.2) and using (4.19), we compute

ξ̂i ∼
2∑

j=1

G(tεi , t
ε
j)(ξ̂j)

2

which gives condition (H1). Then the nondegeneracy with respect to the amplitudes (ξ̂1, ξ̂2) is
given by

det


∇(ξ̂1,ξ̂2)




2∑

j=1

G(tεi , t
ε
j)(ξ̂j)

2 − ξ̂i




i=1,2


 6= 0

which implies condition (H2). We now state these two conditions.
(H1) For given t0 ∈ (−1, 1)2 with −1 < t01 < t02 < 1, there exists a solution (ξ̂0

1(t), ξ̂
0
2(t)) of the

equation
2∑

j=1

GD(t0i , t
0
j)(ξ̂

0
j )

2 = ξ̂0
i , i = 1, 2. (4.24)

(H2) We have
1

2
6∈ σ(B), (4.25)

where σ(B) is the set of eigenvalues of B.
Applying the implicit function theorem to equation (4.24) for t = (t1, t2) in a small neigh-

bourhood of t0 = (t01, t
0
2) , the linearised operator is invertible by assumption (H2). Thus there

exists a unique solution ξ̂(t) = (ξ̂1(t), ξ̂2(t)) of the equation

2∑

j=1

GD(ti, tj)ξ̂
2
j = ξ̂i, i = 1, 2, (4.26)

if t is sufficiently close to t0.
Our final assumption assures that we will be able to choose suitable positions for the spikes.

It is stated in terms of a vector field F (t) which is defined by

F (t) = (F1(t), F2(t)),
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where

Fi(t) =
2∑

l=1

(∇tiGD(ti, tl))ξ̂
2
l (4.27)

= −(∇tiHD(ti, ti))ξ̂
2
i + (∇tiGD(ti, t3−i))ξ̂

2
3−i, i = 1, 2,

and a matrix M(t) which is given by

M(t) = (ξ̂−1
i ∇tjFi(t)). (4.28)

In Section 3.4 we will see how these expressions for F (t) and M(t) will naturally appear in an
explicit calculation. We now state our third condition:

(H3) We assume that at the point t0 = (t01, t
0
2) given in (H1) we have

F (t0) = 0, (4.29)

det (M(t0)) 6= 0. (4.30)

Let us now calculate the matrix M(t). We first compute the derivatives of ξ̂(t). Using
(4.26), it follows that locally around t0 the function ξ̂(t) is C1 and we can calculate

∇tj ξ̂i = 2
2∑

l=1

GD(ti, tl)ξ̂l∇tj ξ̂l +
2∑

l=1

(
∂

∂tj
GD(ti, tl)

)
ξ̂2
l .

For i 6= j, we have

∇tj ξ̂i = 2
2∑

l=1

GD(ti, tl)ξ̂l∇tj ξ̂l +∇tjGD(ti, tj)ξ̂
2
j ,

where

∇tjGD(ti, tj) =
∂

∂tj
GD(ti, tj).

For i = j, we get

∇ti ξ̂i = 2
2∑

l=1

GD(ti, tl)ξ̂l∇ti ξ̂l +
2∑

l=1

∂

∂ti
(GD(ti, tl))ξ̂

2
l

= 2
2∑

l=1

GD(ti, tl)ξ̂l∇ti ξ̂l +∇tiGD(ti, ti)ξ̂
2
i +

2∑

l=1

∇tiGD(ti, tl)ξ̂
2
l .
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Note that by (H3) we have
2∑

l=1

∇tiGD(ti, tl)ξ̂
2
l = 0.

Then, recalling that
(∇tjGD(ti, tj)) = (∇GD(t))T ,

setting
H(t) = (ξ̂i(t)δij) (4.31)

and using matrix notation
∇ξ(t) = (∇tj ξ̂i(t)), (4.32)

we have
∇ξ(t) = (I − 2GD(t)H(t))−1(∇GD(t))T (H(t))2. (4.33)

Let

Q = (qij) =

((
−θ2

ξ̂i

+
θ3

2

)
δij

)
. (4.34)

Using (4.33), we now compute M(t). First note that for i 6= j we have
(

2∑

l=1

∂

∂tj
∇tiGD(ti, tl)

)
ξ̂2
l = (∇ti∇tjGD(ti, tj))ξ̂

2
j

and for i = j we get
(

2∑

l=1

∂

∂ti
∇tiGD(ti, tl)

)
ξ̂2
l =

(
∂2

∂t2i
GD(ti, t3−i)

)
ξ̂2
3−i −

∂2

∂x2

∣∣∣∣∣
x=ti

HD(x, ti)ξ̂
2
i + (∇ti∇tiGD(ti, ti))ξ̂

2
i

= θ2
2∑

l=1

GD(ti, tl)ξ̂
2
l − θ2KD(0)ξ̂2

i +∇ti∇tiGD(ti, ti)ξ̂
2
i

= θ2ξ̂i − θ3

2
ξ̂2
i +∇ti∇tiGD(ti, ti)ξ̂

2
i

since
∂2

∂t2i
GD(ti, t3−i)−GD(ti, t3−i) = 0,

∂2

∂x2

∣∣∣∣∣
x=ti

HD(ti, ti)−HD(ti, ti) = 0.

In vector notation we get

M(t) = (H(t))−1(∇2GD(t)−Q)(H(t))2+2(H(t))−1∇GD(t)H(t)(I−2GD(t)H(t))−1(∇GD(t))T (H(t))2

= (H(t))−1
[
∇2GD(t)−Q+ 2∇GD(t)H(t)(I − 2GD(t)H(t))−1(∇GD(t))T

]
(H(t))2 (4.35)

Our first result can be stated as follows:
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Theorem 1 Assume that assumptions (H1), (H2) and (H3) are satisfied. Then for ε ¿ 1,
problem (1.2) has an N-spike solution which satisfies in the limit ε → 0:

Aε(x) =
N∑

j=1

ξεξ̂
0
j w

(
x− tεj

ε

)
+ o(1) in H2

N(−1, 1), (4.36)

Hε(t
ε
i)ξεξ̂

0
i + o(1), i = 1, . . . , N, (4.37)

tεi → t0i , i = 1, . . . , N. (4.38)

Theorem 1 for the case N = 2 will be proved in the following subsections.

Remark 4.2 In the case of symmetric N-spike solutions, conditions (H2) and (H3) are not
needed for the existence proof since in the construction of solutions one can restrict the function
space to the class of symmetric functions (see for example [?]). Note that then for all ε small
enough the spikes are exact copies of each other and thus they are placed equidistantly. For use
in the stability proof the three assumptions (H1), (H2) and (H3) will be computed in Chapter
4, Subsection 1.3 in the case of symmetric spikes.

Remark 4.3 Our results will provide a rigorous proof for the existence and stability of asym-
metric N−spike solutions which consist of spikes with different amplitudes after the three as-
sumptions (H1), (H2) and (H3) have been verified.

4.1 Some preliminaries

In this subsection, we consider the following vectorial linear operator:

LΦ := Φ′′ − Φ + 2wΦ− 2B
∫
R wΦ dy∫
R w2 dy

w2, (4.39)

where B is given by (4.21) and

Φ =




φ1

φ2
...
φN



∈ (H2(R))N .

In this subsection, we consider a general positive integer N for later use. Set

L0u := u′′ − u + 2wu, where u ∈ H2(R). (4.40)
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Then, using Remark 4.1, the conjugate operator of L under the scalar product in L2(R) is
given by

L∗Ψ = Ψ′′ −Ψ + 2wΨ− 2BT

∫
R w2Ψ dy∫
R w2 dy

w, (4.41)

where

Ψ =




ψ1

ψ2
...
ψN



∈ (H2(R))N .

We obtain the following result.

Lemma 4.1 Assume that assumption (H2) holds. Then

Ker(L) = X0 ⊕X0 ⊕ · · · ⊕X0, (4.42)

where
X0 = span {w′(y)}

and
Ker(L∗) = X0 ⊕X0 ⊕ · · · ⊕X0. (4.43)

Proof: Let us first prove (4.42). Suppose that

LΦ = 0.

We diagonalise B such that
P−1BP = J,

where P is an orthogonal matrix. Note that by Remark 4.1 J has diagonal form, i.e.,

J =




σ1 0
σ2

. . .

0 σN




with suitable real numbers σj for j = 1, . . . , N . Defining

Φ = P Φ̃,
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we have

Φ̃′′ − Φ̃ + 2wΦ̃− 2

∫
R w(JΦ̃) dy∫
R w2 dy

w2 = 0. (4.44)

For l = 1, . . . , N we consider the l-th equation of system (4.44):

φ̃′′l − φ̃l + 2wφ̃l − 2σl

∫
R wφ̃l dy∫
R w2 dy

w2 = 0. (4.45)

By Theorem ?? (3) below, the last equation (4.45) implies that

φ̃l ∈ X0, l = 1, . . . , N. (4.46)

Here we have used condition (H2) which gives 2σl 6= 1. Thus (4.42) is proved.
To prove (4.43), we proceed in the same way for L∗. Using σ(B) = σ(BT ), the l-th equation

of the diagonalised system is given by

ψ̃′′l − ψ̃l + 2wψ̃l − 2σl

∫
R wpψ̃l dy∫
R wr dy

w = 0, l = 1, . . . , N. (4.47)

Multiplying (4.47) by w and integrating over the real line, we obtain

(1− 2σl)
∫

R
w2ψ̃l dy = 0,

which implies that ∫

R
w2ψ̃l dy = 0,

since by (H2) we know that 2σl 6= 1. Thus all the nonlocal terms vanish and we have

L0ψ̃l = 0, l = 1, . . . , N. (4.48)

This implies that ψ̃l ∈ X0 for l = 1, . . . , N . Now (4.43) follows.
As a consequence of Lemma 4.1, we have

Lemma 4.2 The operator
L : (H2(R))N → (L2(R))N

is invertible if it is restricted as follows

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(R))N → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(R))N .

Moreover, L−1 is bounded.

Proof: This follows from the Fredholm Alternative (see Theorem ??) and Lemma 4.1.
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4.2 Study of the approximate solutions

Let −1 < t01 < t02 < 1 be two points satisfying the assumptions (H1) – (H3) and again we will
use the notation t0 = (t01, t

0
2).. Let ξ̂0 = (ξ̂0

1 , ξ̂
0
2) be the unique solution of (4.24).

We first construct an approximate two-spike solution to (1.2) which concentrates near these
prescribed two points.

Let −1 < t1 < t2 < 1 be such that t = (t1, t2) ∈ Bc0ε(t
0), where the constant c0 will be

chosen below. Set

wj(x) = w
(

x− tj
ε

)
(4.49)

and

r0 =
1

10

(
min(t01 + 1, 1− t02,

1

2
|t02 − t01|)

)
. (4.50)

Let χ : R → [0, 1] be a smooth cut-off function such that

χ(x) = 1 for |x| < 1 and χ(x) = 0 for |x| > 2. (4.51)

We now define our approximate solution. Firstly, we set

w̃j(x) = wj(x)χ
(

x− tj
r0

)
. (4.52)

Then it is easy to see that w̃j(x) ∈ H2
N(−1, 1) satisfies

ε2w̃′′
j − w̃j + w̃2

j = e.s.t. (4.53)

in L2(−1, 1) where e.s.t. denotes an exponentially small term.
Secondly, we let ξ̂(t) = (ξ̂1, ξ̂2) be the unique solution of (4.26) and put

wε,t(x) =
2∑

j=1

ξ̂jw̃j(x). (4.54)

For any function A ∈ H2(−1, 1) we define T [A] to be the unique solution of the linear
problem 




DT [A]′′ − T [A] + ξεA
2 = 0, −1 < x < 1,

T [A]′(−1) = T [A]′(1) = 0,
(4.55)

where ξε was defined in (4.18). Then the solution T [A] is unique and positive.
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For A = wε,t, where t ∈ Bc0ε(t
0), we now compute

τi := T [A](ti). (4.56)

From (4.55), we have

τi = ξε

∫ 1

−1
GD(ti, z)A2(z) dz

= ξεε
2∑

j=1

ξ̂2
j

∫ 1

−1
GD(ti, z)w̃2

j (z) dz (1 + O(ε))

= ξεε
2∑

j=1

ξ̂2
j

[
GD(ti, tj)

∫ +∞

−∞
w2

j (y) dy + O(ε)
]

=
2∑

j=1

GD(ti, tj)ξ̂
2
j + O(ε),

where we have used (4.18). Thus we have derived the following system of algebraic equations:

τi =
2∑

j=1

GD(ti, tj)ξ̂
2
j + O(ε). (4.57)

By the implicit function theorem and assumptions (H1), (H2), the system (4.57) has a unique
solution

τi = ξ̂i + O(ε), i = 1, 2.

Hence
T [A](ti) = ξ̂i + O(ε). (4.58)

Next for x = ti + εy and A = wε,t we calculate

T [A](x)− T [A](ti) = ξε

∫ 1

−1
[GD(x, z)−GD(ti, z)]A2(z) dz

= ξεξ̂
2
i

∫ 1

−1
[GD(x, z)−GD(ti, z)]w̃2

i (z) dz

+ξεξ̂
2
3−i

∫ 1

−1
[GD(x, z)−GD(ti, z)]w̃2

3−i(z) dz

= ξεξ̂
2
i

∫ 1

−1
[KD(|x− z|)−KD(|ti − z|)]w̃2

i (z) dz

15



−ξεξ̂
2
i

∫ 1

−1
[HD(x, z)−HD(ti, z)]w̃2

i (z) dz

+ξεξ̂
2
3−i

∫ 1

−1
[GD(x, z)−GD(ti, z)]w̃2

3−i(z) dz

= ε2ξεξ̂
2
i

∫ +∞

−∞

[
1

2D
|z| − 1

2D
|y − z|

]
w2(|z|) dz (1 + O(ε|y|))

+εξ̂2
i [−y∇tiHD(ti, ti) + O(εy2)]

+ε[y∇tiGD(ti, t3−i)ξ̂
2
3−i + O(εy2)]

= ε
[
ξ̂2
i P

i(|y|)− ξ̂2
i y∇tiHD(ti, ti) + y∇tiGD(ti, t3−i)ξ̂

2
3−i + O(εy2)

]
, (4.59)

where

P i(|y|) =
(∫ +∞

−∞
w2

)−1 ∫ +∞

−∞

[
1

2D
|z| − 1

2D
|y − z|

]
w2(|z|) dz. (4.60)

Note that P i is an even function.
Let us now define the rescaled domain Ωε =

(
−1

ε
, 1

ε

)
and the operator

S : H2
N(Ωε) → L2(Ωε), S[A] := A′′ − A +

A2

(T [A])
, (4.61)

where T [A] has been introduced in (4.55). Then, choosing A = wε,t, we compute S[wε,t] as
follows:

S[wε,t] = w′′
ε,t − wε,t +

w2
ε,t

T [wε,t]

=
2∑

j=1

ξ̂j(w̃
′′
j − w̃j) +

w2
ε,t

T [wε,t]
+ e.s.t.

=




(∑2
j=1 ξ̂jw̃j

)2

T [wε,t]
−

2∑

j=1

ξ̂jw̃
2
j


 + e.s.t.

= E1 + E2 + e.s.t. in L2
(
−1

ε
, 1

ε

)
, (4.62)

where

E1 =




(∑2
j=1 ξ̂jw̃j

)2

T [wε,t](tj)
−

2∑

j=1

ξ̂w̃2
j


 (4.63)
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and

E2 =




(∑2
j=1 ξ̂jw̃j

)2

T [wε,t](x)
−

(∑2
j=1 ξ̂jw̃j

)2

T [wε,t](tj)


 . (4.64)

For E1, we calculate using (4.58)

E1 =

(∑2
j=1 ξ̂jw̃j

)2

T [wε,t](tj)
−

2∑

j=1

ξ̂jw̃
2
j

=
2∑

j=1


 ξ̂2

j

ξ̂j + O(ε)
− ξ̂j


 w̃2

j = O(ε)
2∑

j=1

ξ̂jw̃
2
j . (4.65)

Thus we have
‖E1‖L2(− 1

ε
, 1
ε )

= O(ε). (4.66)

For E2, we calculate

E2 = −
2∑

j=1

(ξ̂jw̃j)
2

(T [wε,t](tj))2
(T [wε,t](x)− T [wε,t](tj)) + O




2∑

j=1

|T [wε,t](x)− T [wε,t](tj)|2w̃2
j




= −
2∑

j=1

ξ̂jw̃
2
j

T [wε,t](x)− T [wε,t](tj)

T [wε,t](tj)
+ O


ε2y2

2∑

j=1

w̃2
j




= −ε
2∑

j=1

w̃2
j

{
ξ̂2
j P

j(|y|)− ξ̂2
j y∇tjHD(tj, tj) + y∇tjGD(tj, t3−j)ξ̂

2
l

}
+ O


ε2y2

2∑

j=1

w̃2
j


 . (4.67)

This implies that
‖E2‖L2(− 1

ε
, 1
ε )

= O(ε). (4.68)

Combining (4.66) and (4.68), we conclude that

‖S[wε,t]‖L2(− 1
ε
, 1
ε )

= O(ε) (4.69)

The estimates in this subsection show that the approximate solution solves the system up
to a small error.
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4.3 The Liapunov-Schmidt reduction method

In this subsection, we use the Liapunov-Schmidt reduction method to solve the problem

S[wε,t + v] =
2∑

j=1

βj
dw̃j

dx
(4.70)

for real constants βj and a function v ∈ H2
N(−1

ε
, 1

ε
) which is small in the H2-norm, where w̃j

and wε,t are given by (4.52) and (4.54), respectively.
To this end, we need to study the linearised operator

L̃ε,t : H2(Ωε) → L2(Ωε)

defined by

L̃ε,t := S ′ε[A]φ = φ′′ − φ +
2Aφ

T [A]
− A2

(T [A])2
(T ′[A]φ),

where A = wε,t, and, for given φ ∈ L2(Ω), we denote by T ′[A]φ the unique solution of the linear
problem 




D(T ′[A]φ)′′ − (T ′[A]φ) + 2ξεAφ = 0, −1 < x < 1,

(T ′[A]φ)′(−1) = (T ′[A]φ)′(1) = 0.
(4.71)

We define the approximate kernel and cokernel, respectively, as follows:

Kε,t := span

{
dw̃i

dx
: i = 1, 2

}
⊂ H2

N(Ωε),

Cε,t := span

{
dw̃i

dx
: i = 1, 2

}
⊂ L2(Ωε).

Recall the definition of the following vectorial linear operator introduced in (4.39):

LΦ := Φ′′ − Φ + 2wΦ− 2B
∫
R wΦ∫
R w2

w2,

where

Φ =

(
φ1

φ2

)
∈ (H2(R))2.

By Lemma 4.1, we know that

L : (X0 ⊕X0)
⊥ ∩ (H2(R))2 → (X0 ⊕X0)

⊥ ∩ (L2(R))2
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is invertible with a bounded inverse.
We will see that this system is the limit of the linear operator L̃ε,t as ε → 0. To this end,

we introduce the projection π⊥ε,t : L2(Ωε) → C⊥ε,t and study the linear operator Lε,t := π⊥ε,t ◦ L̃ε,t.
By letting ε → 0, we will show that Lε,t : K⊥ε,t → C⊥ε,t is invertible with a bounded inverse
provided ε is small enough. This statement is contained in the following proposition.
There exist positive constants ε̄, δ̄, λ such that for all ε ∈ (0, ε̄) and all t ∈ Ω2 satisfying

min
(
|1 + t1|, |1− t2|, 1

2
|t1 − t2|

)
> δ̄ we have

‖Lε,tφ‖L2(Ωε) ≥ λ‖φ‖H2(Ωε) for all φ ∈ K⊥ε,t. (4.72)

Further, the linear operator
Lε,t = π⊥ε,t ◦ L̃ε,t : K⊥ε,t → C⊥ε,t

is surjective. Proof of Proposition 4.3: This proof follows the method of Liapunov-Schmidt
reduction.

Suppose (4.72) is false. Then there are sequences {εk}, {tk}, {φk} such that εk → 0, tk ∈ Ω2

with min
(
|1 + tk1|, |1− tk2|, 1

2
|tk1 − tk2|

)
> δ̄ and φk = φεk

∈ K⊥εk,tk , k = 1, 2, . . . such that

‖Lεk,tkφk‖L2(Ωεk
) → 0 as k →∞, (4.73)

‖φk‖H2(Ωεk
) = 1, k = 1, 2, . . . . (4.74)

By using the cut-off function introduced in (4.51), we define φε,i, i = 1, 2, 3 for ε > 0 small
enough as follows:

φε,i(x) = φε(x)χ
(

x− ti
r0

)
, x ∈ Ω, i = 1, 2, (4.75)

φε,3(x) = φε(x)−
2∑

i=1

φε,i(x), x ∈ Ω.

After rescaling, first the functions φε,i are defined only on Ωε. Then, by a standard result (see
[?], Section 7.12), they can be extended to R such that for ε small enough their norms in
H2(R) are bounded by a constant independent of ε and t. In the following we will study this
extension, where for simplicity of notation we use the same notation for the original functions
and its extension. Since for i = 1, 2 both sequences {φk

i } := {φεk,i} (k = 1, 2, . . .) are bounded
in H2

loc(R), they have weak limits in H2
loc(R) and thus also strong limits in L2

loc(R) and L∞loc(R).
We denote these limits by φi. Further, by a barrier argument, these functions have uniform
exponential decay, and the limits are also strong in H2(R) and L∞(R) sense. Thus φ =
(φ1, φ2)

T solves the system Lφ = 0 with the operator L introduced in (4.39). By Lemma 4.1,
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we know that φ ∈ Ker(L) = X0 ⊕X0. Since φk ∈ calK⊥
εk,tk , by taking the limit k →∞ we get

φ ∈ Ker(L)⊥ and so φ = 0.
By elliptic estimates, we derive ‖φk

i ‖H2(R) → 0 as k → ∞ for i = 1, 2 and φk
3 → φ3 in

H2(R), where φ3 satisfies
∆φ3 − φ3 = 0 in R.

Therefore we conclude φ3 = 0 and ‖φk
3‖H2(R) → 0 as k →∞. This contradicts ‖φk‖H2(Ωεk

) = 1.
To complete the proof of Proposition 4.3, we just need to show that the conjugate operator

of Lε,t (denoted by L∗ε,t) is injective from K⊥ε,t to C⊥ε,t. Note that L∗ε,tψ = πε,t ◦ L̃∗ε,t with

L̃∗ε,tψ = ε2∆ψ − ψ +
2Aψ

(T [A])
− T ′[A]

A2ψ

(T [A])2
.

The proof for L∗ε,t follows exactly along the same lines as the proof for Lε,t and is therefore
omitted.

Now we have derived all the techical tools needed to solve the equation

π⊥ε,t ◦ Sε(wε,t + φ) = 0. (4.76)

Since the restriction of the linear operator Lε,t to K⊥ε,t is invertible we can write (4.76) in
equivalent form as

φ = −(L−1
ε,t ◦ π⊥ε,t ◦ Sε(wε,t))− (L−1

ε,t ◦ π⊥ε,t ◦Nε,t(φ)) =: Mε,t(φ), (4.77)

where L−1
ε,t is the inverse of Lε,t,

andthenonlinearoperatorsNε,t(φ) = Sε(wε,t + φ)− Sε(wε,t)− S ′ε(wε,t)φ (4.78)

and Mε,t(φ) introduced in (4.77) are both defined for φ ∈ H2
N(Ωε).

Finally, we show that the operator Mε,t is a contraction on

Bε,δ ≡ {φ ∈ H2
N(Ωε) : ‖φ‖H2(Ωε) < δ}

if δ and ε are suitably chosen. First, from (4.69) and Proposition 4.3 we know that

‖Mε,t(φ)‖H2(Ωε) ≤ λ−1(‖π⊥ε,t ◦Nε,t(φ)‖L2(Ωε) +
∥∥∥π⊥ε,t ◦ Sε(wε,t)

∥∥∥
L2(Ωε)

)

≤ λ−1C0(c(δ)δ + ε),

where λ > 0 is independent of δ > 0, ε > 0 and c(δ) → 0 as δ → 0. Similarly, we have

‖Mε,t(φ)−Mε,t(φ
′)‖H2(Ωε) ≤ λ−1C0(c(δ)δ)‖φ− φ′‖H2(Ωε),
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where c(δ) → 0 as δ → 0. If we choose

δ = C1ε, where λ−1C0 < C1 and ε small enough, (4.79)

then Mε,t maps from Bε,δ into Bε,δ and is a contraction mapping in Bε,δ. Now the existence of a
fixed point φε,t ∈ Bε,δ follows from the standard contraction mapping principle. Thus we have
rigorously constructed as solution φε,t ∈ H2

N(Ωε) of (4.77).
We summarise our result as follows:

Lemma 4.3 There exist ε > 0 δ > 0 such that for every pair of ε, t with 0 < ε < ε and t ∈ Ω2,
1 + t1 > δ, 1− t2 > δ, 1

2
|t2− t1| > δ there is a unique φε,t ∈ K⊥ε,t satisfying Sε(wε,t + φε,t) ∈ Cε,t.

Further, we have the estimate
‖φε,t‖H2(Ωε) ≤ C1ε, (4.80)

where C1 has been defined in (4.79) .

4.4 The reduced problem

In this subsection, we solve the reduced problem and conclude the proof of our main existence
result given in Theorem 1.

By Lemma 4.3, for every t ∈ Bc0ε(t
0), there exists a unique solution φε,t ∈ K⊥ε,t such that

S[wε,t + φε,t] = vε,t ∈ Cε,t. (4.81)

Now we are going to determine the position tε = (tε1, t
ε
2) ∈ Bc0ε(t

0) such that also

S[wε,tε + φε,tε ] ⊥ Cε,tε . (4.82)

Then, by combining (4.81) and (4.82), we have found tε = (tε1, t
ε
2) ∈ Bc0ε(t

0) and φε,tε ∈ K⊥ε,tε

such that S[wε,tε + φε,tε ] = 0. This means that we have found a solution of (1.2) and Theorem
1 follows in the case of two spikes.

To this end, we introduce the vector field

Wε,i(t) := ε−1
∫ 1

−1
S[wε,t + φε,t]

dw̃i

dx
dx,

Wε(t) := (Wε,1(t),Wε,2(t)) : Bc0ε(t
0) →R2.

Then Wε(t) is a continuous map in t and our problem is reduced to finding a zero of the
vector field Wε(t).
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Next we explicitly calculate Wε(t):

Wε,i(t) = ε−1
∫ 1

−1
S[wε,t + φε,t]

dw̃i

dx
dx

= ε−1
∫ 1

−1
S[wε,t]

dw̃i

dx
dx + ε−1

∫ 1

−1
S ′ε[wε,t]φε,t

dw̃i

dx
dx + ε−1

∫ 1

−1
Nε(φε,t)

dw̃i

dx
dx

= I1 + I2 + I3,

where I1, I2 and I3 are defined by the last equality.
The computation of I3 is the easiest: Note that by Taylor expansion for (4.78), the first

term in the expansion of Nε is quadratic in φε,t and so

I3 = O(ε). (4.83)

We will now compute I1 and I2. The result will be that I1 is the leading term and I2 = O(ε).
For I1, we have

I1 = ε−1
∫ 1

−1
(E1 + E2)

dw̃i

dx
dx = ε−1

∫ 1

−1
E2

dw̃i

dx
dx + O(ε),

where E1 and E2 were defined in (4.63) and (4.64), respectively. Here we have used that E1 is
an even function.

We calculate by (4.67)

ε−1
∫ 1

−1
E2

dw̃i

dx
dx

=
2∑

j=1

∇tiGD(ti, tj)ξ̂
2
j

∫

R
yw2(y)w′(y) dy + O(ε)

=
2∑

j=1

∇tiGD(ti, tj)ξ̂
2
j

1

3

∫

R
w3 dy + O(ε).

Thus we have

I1 =
2∑

j=1

∇tiGD(ti, tj)ξ̂
2
j

1

3

∫

R
w3(y) dy + O(ε). (4.84)

For I2, we calculate

εI2 =
∫ 1

−1
S ′[wε,t](φε,t)

dw̃i

dx
dx
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=
∫ 1

−1

[
ε2∆φε,t − φε,t +

2wε,tφε,t

T [wε,t]
− w2

ε,t

(T [wε,t])2
(T ′[wε,t]φε,t)

]
dw̃i

dx
dx

=
∫ 1

−1

[
ε2∆

dw̃i

dx
− dw̃i

dx
+

dw̃i

dx

2wε,t

T [wε,t]

]
φε,t dx−

∫ 1

−1

w2
ε,t

(T [wε,t])2
(T ′[wε,t]φε,t)

dw̃i

dx
dx

=
∫ 1

−1

(
2

ξ̂iw̃i

T [wε,t]
− 2w̃i

)
φε,t

dw̃i

dx
dx−

∫ 1

−1

w2
ε,t

(T [wε,t])2
(T ′[wε,t]φε,t)

dw̃i

dx
dx = O(ε2),

since ∥∥∥∥∥

(
2ξ̂iw̃i

T [wε,t]
− 2w̃i

)
φε,t

∥∥∥∥∥
L2(Ωε)

= O(ε), ‖φε,t‖H2(Ωε) = O(ε),

|T ′[wε,t](φε,t)(ti)| = O(ε), |T ′[wε,t](φε,t)(ti + εy)− T ′[wε,t](φε,t)(ti)| = O(ε2|y|).
Combining I1 and I2, we have

Wε,i(t) =
2∑

j=1

∇tiGD(ti, tj)ξ̂
2
j

1

3

∫

R
w3 dy + O(ε)

= Fi(t)
1

3

∫

R
w3 dy + O(ε),

where Fi(t) was defined in (4.27). By assumption (H3), we have F (t0) = 0 and

det(∇t0F (t0)) 6= 0.

This implies

Wε(t) = −c1H(t0)M(t0)(t− t0) + O(|t− t0|2 + ε), c1 = −1

3

∫

R
w3 dy = −2.4. (4.85)

Then by standard degree theory (see Appendix 13.1) we conclude that for ε small enough
there exists tε ∈ Bc0ε(t

0) such that Wε(t
ε) = 0. Here it is important to note that, by choosing

c0 large enough (independent of ε) , the leading term in (4.85) dominates the error terms for all
t ∈ Bc0ε(t

0) and ε small enough. We have thus proved the following proposition: For ε small
enough there exist points tε with tε → t0 such that Wε(t

ε) = 0.
Finally, we conclude the proof of Theorem 1.

Proof of Theorem 1: By Proposition 4.4, there exist tε → t0 such that Wε(t
ε) = 0. This

implies S[wε,tε + φε,tε ] = 0. Let Aε = ξε(wε,tε + φε,tε) and Hε = ξεT [wε,tε + φε,tε ]. By the
maximum principle, it follows that Aε > 0 and Hε > 0. Then (Aε, Hε) satisfies all the properties
of Theorem 1.

23


