
AARMS SUMMER SCHOOL–LECTURE V: AN INTRODUCTION
TO THE FINITE AND INFINITE DIMENSIONAL REDUCTION

METHOD

MANUEL DEL PINO AND JUNCHENG WEI

1. Introduction: What is finite dimensional Liapunov-Schmidt
reduction method?

We briefly introduce the abstract set-up of the finite dimensional Lyapunov-
Schmidt reduction (although it is always used in a framework that occurs often in
bifurcation theory).

Let X,Y be Banach spaces and S(u) be a C1 nonlinear map from X to Y . To
find a solution to the nonlinear equation

S(u) = 0, (1.1)

a natural way is to find approximations first and then to look for genuine solutions as
(small) perturbations of approximations. Assume that Uλ are the approximations,
where λ ∈ Λ is the parameter (we think of Λ as the configuration space). Writing
u = Uλ + φ, then solving S(u) = 0 amounts to solving

L[φ] + E + N(φ) = 0, (1.2)

where

L[φ] = S′(Uλ)[φ], E = S(Uλ), and N(φ) = S(Uλ + φ)− S(Uλ)− S′(Uλ)[φ].

Here S′(Uλ) is the Fréchet derivative of S at Uλ, E denotes the error of approx-
imation, and N(φ) denotes the nonlinear term. In order to solve (1.2), we try to
invert the linear operator L so that we can rephrase the problem as a fixed point
problem. That is, when L has a uniformly bounded inverse in a suitable space, one
can rewrite the equation (1.2) as

φ = −L−1[E + N(φ)] = A(φ).

What is left is to use fixed point theorems such as contraction mapping theorem.
The finite dimensional Lyapunov-Schmidt reduction deals with the situation

when the linear operator L is Fredholm and its eigenfunction space associated
to small eigenvalues has finite dimensional. Assuming that {Z1, . . . ,Zn} is a basis
of the eigenfunction space associated to small eigenvalues of L, we can divide the
procedure of solving (1.2) into two steps:
[(i)] solving the projected problem for any λ ∈ Λ,





L[φ] + E + N(φ) =
n∑

j=1

cjZj ,

〈φ,Zj〉 = 0, ∀ j = 1, . . . , n,

where cj may be constant or function depending on the form of 〈φ,Zj〉.
1
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[(ii)] solving the reduced problem

cj(λ) = 0, ∀ j = 1, . . . , n,

by adjusting λ in the configuration space.

The original finite dimensional Liapunov-Schmidt reduction method was first
introduced in a seminal paper by Floer and Weinstein [?] in their construction of
single bump solutions to one dimensional nonlinear Schrodinger equations (Oh [?]
generalized to high dimensional case)

ε2∆u− V (x)u + up = 0, u > 0, u ∈ H1(RN ) (1.3)

On the other hand, Bahri [?] and Bahri-Coron [?] developed the reduction method
for critical exponent problems. In the last fifteen years, there are renewed efforts in
refining the finite dimensional reduction method by many authors. When combined
with variational methods, this reduction becomes ”localized energy method”. For
subcritical exponent problems, we refer to Ambrosetti-Malchiodi [?], Gui-Wei [?],
Malchiodi [?], Li-Nirenberg [?], Lin-Ni-Wei [?], Ao-Wei-Zeng [?], Wei-Yan [?] and
the references therein. The localized energy method in degenerate setting is done by
Byeon-Tanaka [?, ?]. For critical exponents, we refer to Bahri-Li-Rey [?], Del Pino-
Felmer-Musso [?], Del Pino-Kowalczyk-Musso [?], Li-Wei-Xu [?], Rey-Wei [?, ?] and
Wei-Yan [?] and the references therein. Many new features of the finite dimensional
reduction are found in the references mentioned.

In the following we shall use the model problem (1.3) to give an introductory
description of this method.

1.1. Model Problem: Schrodinger equation in dimension N. We start with
the following model problem to illustrate the idea of finite dimensional reduction
method: {

ε2∆u− V (x)u + up = 0 in RN

0 < u in RN , u(x) → 0, as |x| → ∞ (1.4)

We consider 1 < p < ∞ if N ≤ 2, and 1 < p < N+2
N−2 if N ≥ 3. Without loss of

generality we assume that the function V (x) is a positive function satisfying

0 < α ≤ V (x) ≤ β < +∞. (1.5)

The basic building block that we consider is{
∆w − w + wp = 0 in RN

0 < w in RN , w(x) → 0, as |x| → ∞ (1.6)

We look for a solution w = w(|x|), a radially symmetric solution. w(r) satisfies
the ordinary differential equation{

w′′ + N−1
r w′ − w + wp = 0 r ∈ (0,∞)

w′(0) = 0, 0 < w in (0,∞) w(|x|) → 0, as |x| → ∞ (1.7)

We collect the following basic properties of w, whose proof can be found in the
appendix of the book [?].

Proposition 1.1. (a) There exist a solution w(r) to (1.7);
(b) w(r) satisfies the decay estimate w(r) = A0r

−N−1
2 er(1 + O( 1

r ));
(c) w(r) is nondegenerate, i.e., the only bounded solution to

L(φ) = ∆φ + pw(x)p−1φ− φ = 0, φ ∈ L∞(RN ) (1.8)
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is a linear combination of the functions ∂w
∂xj

(x), j = 1, . . . , N .

We want to solve the problem{
ε2∆ũ− V (x)ũ + ũp = 0 in RN

0 < ũ in RN ũ(x) → 0, as |x| → ∞ (1.9)

We fix a point ξ ∈ RN . Observe that Uε,ξ(y) := V (ξ)
1

p−1 w
(√

V (ξ)y−ξ
ε

)
, is a

solution of the rescaled equation

ε2∆u− V (ξ)u + up = 0.

We will look for a solution of (1.9) such uε(x) ≈ Uε,ξ(y) for some ξ ∈ RN . We
define wλ = λ

1
p−1 w(

√
λx).

Let us observe that if ũ satisfies (1.9), then u(x) = ũ(εz) satisfies the problem{
∆u− V (εz)u + up = 0 in RN

0 < u in RN u(x) → 0, as |x| → ∞ (1.10)

Let ξ′ = ξ
ε . We want a solution of (1.10) with the form u(z) = wλ(z − ξ′) + φ̃(z),

with λ = V (ξ) and φ̃ being small compared with wλ(z − ξ′).

1.2. Equation in terms of φ. Let φ(x) = φ̃(x−ξ′). Then φ satisfies the equation

∆x[wλ(x) + φ(x)]− V (ξ + εx)[wλ(x) + φ(x)] + [wλ(x) + φ(x)]p = 0.

We can write this equations as

∆φ− V (ξ)φ + pwp−1
λ (x)φ− E + B(φ) + N(φ) = 0 (1.11)

where E = (V (ξ + εx) − V (ξ))wλ(x), B(φ) = (V (ξ) − V (ξ + εx))φ and N(φ) =
(wλ + φ)p − wp

λ − pwp−1
λ φ.

We first consider the linear problem for λ = V (ξ),{
L(φ) = ∆φ− V (ξ + εx)φ + pwλ(x)φ = g −∑N

i=1 ci
∂w
∂xi∫

RN φ∂wλ

∂xi
= 0, i = 1, . . . , N

(1.12)

The c′is are defined such that∫

RN

(L(φ)− g)
∂wλ

∂xi
dx = 0, i = 1, . . . , N (1.13)

which is equivalent to∫

RN

(L(
∂wλ

∂xi
)φ− g

∂wλ

∂xi
)dx = 0, i = 1, . . . , N (1.14)

Denoting
L0(φ) = ∆φ− V (ξ)φ + pwλ(x)φ

and using the fact that

L0(
∂wλ

∂xi
) = 0

we see that (1.14) can be further simplified as follows∫

RN

((V (ξ)− V (ξ + εx))
∂wλ

∂xi
φ− g

∂wλ

∂xi
)dx = 0, i = 1, . . . , N (1.15)

Since ∫
∂wλ

∂xi

∂wλ

∂xj
=

∫

RN

(
∂w

∂x1
)2δij
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we find that

ci =

∫
RN ((V (ξ)− V (ξ + εx))∂wλ

∂xi
φ− g ∂wλ

∂xi
)dx∫

RN (∂wλ

∂x1
)2

, i = 1, . . . , N (1.16)

In the following we shall solve the following:

Problem: Given g ∈ L∞(RN ) we want to find φ ∈ L∞(RN ) solution to the problem
(1.12)-(1.16).

1.3. A linear problem. Let us assume that V ∈ C1(RN ), ‖V ‖C1 < ∞. We
assume in addition that |ξ| ≤ M0 and 0 < α ≤ V . Then we have

Proposition 1.2. There exists ε0, C0 > 0 such that ∀0 < ε ≤ ε0, ∀|ξ| ≤ M0,
∀g ∈ L∞(RN ) ∩ C(RN ), there exist a unique solution φ ∈ L∞(RN ) to (1.12),
φ = T [g] satisfies

‖φ‖C1 ≤ C0‖g‖∞
Proof. We divide the proof into two steps.

Step 1-a priori estimates: We first obtain a priori estimates of the problem
(1.12) on bounded domains BR(0): There exist R0, ε0, C0 such that ∀ε < ε0,
R > R0, |ξ| ≤ M0 such that ∀φ, g ∈ L∞ solving L(φ) = g − ∑

i ci
∂wλ

∂xi
in BR,∫

BR
φ∂wλ

∂xi
= 0 and φ = 0 on ∂BR, we have

‖φ‖C1(BR) ≤ C0‖g‖∞

We prove first ‖φ‖∞ ≤ C0‖g‖∞. Assuming the opposite, then there exist se-
quences φn, gn, ε → 0, Rn →∞, |ξn| ≤ M0 such that

L(φn) = gn −
∑

i

cn
i

∂wλ

∂xi
.

The first fact is that cn
i → 0 as n →∞. This fact follows just after multiplying

the equation against ∂wλ

∂xi
and integrating by parts, as we did in (1.16).

We observe that if ∆φ = g in B2 then there exist C such that

‖∇φ‖L∞(B1) ≤ C[‖g‖L∞(B2) + ‖φ‖L∞(B2)]

where B1 and B2 are concentric balls. This implies that ‖∇φn‖L∞(B) ≤ C a given
bounded set B, ∀n ≥ n0. Hence passing to a subsequence we obtain φn → φ
uniformly on compact sets, and φ ∈ L∞(RN ). Observe that ‖φn‖∞ = 1, and this
implies that ‖φ‖∞ ≤ 1. We can also assume that up to a subsequence ξn → ξ0.

Since φ satisfies the equation ∆φ− V (ξ0)φ + pwp−1
λ0

(x)φ = 0, where λ0 = V (ξ0),

we have that φ ∈ Span
{

∂wλ0
∂x1

, . . . ,
∂wλ0
∂xN

}
. Taking limits in the orthogonality

condition (1.12) we obtain that
∫
RN φ(wλ0)∂xi = 0, i = 1, . . . , N . This implies

that φ = 0 and hence ‖φn‖L∞(BM (0)) → 0, ∀M < ∞. Maximum principle yields
that ‖φn‖L∞(BRn\BM0

→ 0, since |φn| = o(1) on ∂BRn \ BM0 and ‖gn‖∞ → 0.
Therefore we arrive at ‖φn‖∞ → 0, which is a contradiction. This implies that
‖φ‖L∞(BR) ≤ C0‖g‖L∞(BR) uniformly on large R. The C1 estimate follows from
elliptic local boundary estimates for elliptic operators.



REDUCTION METHOD 5

Step 2-Existence: Recall that g ∈ L∞. We want to solve (1.12). We claim that
solving (1.12) is equivalent to finding

φ ∈ X = {ψ ∈ H1
0 (BR) :

∫
ψ

∂wλ

∂xi
= 0, i = 1, . . . , N}

such that∫
∇φ∇ψ +

∫
V (ξ + εx)φψ − pwp−1φψ +

∫
gψ = 0, ∀ψ ∈ X.

Take general Ψ ∈ H1
0 . We can decompose into Ψ = ψ − ∑

i αi
∂wλ

∂xi
, with αi =

∫
Ψ

∂wλ
∂xi∫

(
∂wλ
∂xi

)2
. We have

−
∫

∆(
∑

i

αi
∂wλ

∂xi
)∇φ +

∫
V (ξ)(

∑

i

αi(
∂wλ

∂xi
)φ− pwp−1(

∑

i

αi
∂wλ

∂xi
)φ = 0

which implies that ∫
∇φ∇Ψ +

∫
V (ξ)φΨ− pwp−1φΨ

−
∫

(V (ξ)− V (ξ + εx))(Ψ−
∑

i

αi
∂wλ

∂xi
) +

∫
g(Ψ−

∑

i

αi
∂wλ

∂xi
)

=
∫

[(V (ξ + εx)− V (ξ))φ + g](Ψ−
∑

i

αi
∂wλ

∂xi
)

Let ΠX(Ψ) =
∑

i αi
∂wλ

∂xi
. Then the above integral equals

∫
ΠX([(V (ξ + εx)− V (ξ))φ + g]φ)Ψ

This implies that

−∆φ + V (ξ)φ− pwp−1φ + ΠX([(V (ξ + εx)− V (ξ))φ + g]φ) = 0.

The problem is formulated weakly as∫
∇φ∇ψ +

∫
(V (ξ + εx)− pwp−1)φψ +

∫
gψ = 0, φ ∈ X, ∀ψ ∈ X

which can be written as φ = A[φ] + g̃, where A is a compact operator. The a priori
estimate implies that the only solution when g = 0 of this equation is φ = 0. We
conclude existence by Fredholm alternative. Finally we let R → +∞ and obtain
the existence in the whole space, thanks to the a priori estimate in Step 1.

¤

Next we consider the assembly of multiple spikes. We look for a solution of (1.10)
which near xj = ξ′j = ξj/ε, j = 1, . . . , k looks like v(x) ≈ wλj (x− ξ′j), λj = V (ξj),
where wλ = λ1/(p−1)w(

√
λy).

Let ξ1, ξ2, . . . ξk ∈ RN be such that |ξ′j − ξ′l| À 1, if j 6= l. We look for a solution
v(x) ≈ ∑k

j=1 wλj (x − ξ′j), λj = V (ξj). We assume V ∈ C2(RN ) and ‖V ‖C2 < ∞,

0 < α ≤ V . We use the notation Wj = wλj (x−ξ′j), λj = V (ξj) and W =
∑k

j=1 Wj .
Setting v = W + φ, then φ solves the problem

∆φ− V (εx)φ + pW p−1φ + E + N(φ) = 0 (1.17)
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where

E = ∆W − V W + W p, N(φ) = (W + φ)p −W p − pW p−1φ.

Observe that ∆W =
∑

j ∆Wj =
∑

j λjWj −W p
j . So we can write

E =
∑

j

(λj − V (εx))Wj + (
∑

j

Wj)p −
∑

j

W p
j .

Our next objective is to solve the approximate linearized projected problem.

1.4. Linearized (projected) problem. We use the following notation Zi
j = ∂Wj

∂xi
.

The linearized projected problem is the following

∆φ− V (εx)φ + pW p−1φ + g =
∑

i,j

ci
jZ

i
j , (1.18)

with the orthogonality condition
∫

φZi
j = 0, ∀i, j. The Zi

j ’s are “nearly orthogonal”
if the centers ξ′j are far away one to each other. The ci

j ’s are, by definition, the
solution of the linear system∫

RN

(∆φ− V (εx)φ + pW p−1φ + g)Zi0
j0

=
∑

i,j

ci
j

∫

RN

Zi
jZ

i0
j0

,

for i0 = 1, . . . , N , j0 = 1, . . . , k. The ci
j ’s are indeed uniquely determined provided

that |ξ′l − ξ′j | > R0 À 1, because the matrix with coefficients αi,j,i0,j0 =
∫

Zi
jZ

i0
j0

is
“nearly diagonal”, which means

αi,j,i0,j0 =
{

1
N

∫ |∇Wj |2 if (i, j) = (i0, j0),
o(1) if not

Moreover by a similar argument leading to (1.15) we have

|ci0
j0
| ≤ C

∑

i,j

∫
|φ|[|λj − V |+ p|W p−1−W p−1

j |]|Zi
j |+

∫
|g||Zi

j | ≤ C(‖φ‖∞ + ‖g‖∞)

with C is uniform for large R0. Furthermore if we rescale x = ξ′ + y, we get

|(λj − V (εx))Zi
j | ≤ |(V (ξj)− V (ξj + εy))||∂wλj

∂yi
| ≤ Cεe−

√
α
2 |y|,

because |∂wλj

∂yi
| ≤ Ce−|y|

√
λj |y|−(N−1)/2. Observe also that

|(W p−1 −W p−1
j )Zi

j | = |((1−
∑

l 6=j

Wl

Wj
)p−1 − 1)|W p−1

j Zi
j .

We estimate the interactions at each spike in two regions.
Observe that if |x− ξ′j | < δ0 minj1 6=j2 |ξ′j1 − ξ′j2 |, then

Wl(x)
Wj(x)

≈ e−
√

λl|x−ξ′l|

e−
√

λj |x−ξ′j |
<

e−
√

λl|x−ξ′l|

e−
√

λjδ0 minj1 6=j2 |ξ′j1−ξ′j2 |

If δ0 ¿ 1 but fixed, we conclude that e−
√

λl|ξ′j−ξ′l|+δ0(
√

λl−
√

λj) minj1 6=j2 |ξ′j1−ξ′j2 | <

e−ρ minj1 6=j2 |ξ′j1−ξ′j2 | ¿ 1. Thus we conclude that if |x− ξ′j | < δ0 minj1 6=j2 |ξ′j1 −xi′j2 |
then

|(W p−1 −W p−1
j )Zi

j | ≤ e−ρ minj1 6=j2 |ξ′j1−ξ′j2 |e−
α
2 |x−ξ′j |.
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On the other hand if |x− ξ′j | > δ0 minj1 6=j2 |ξ′j1 − ξ′j2 |, then

|(W p−1 −W p−1
j )Zi

j | ≤ C|Zi
j | ≤ Ce−ρ minj1 6=j2 |ξ′j1−ξ′j2 |e−

α
2 |x−ξ′j |

As a conclusion we obtain the following estimate

|ci0
j0
| ≤ C(ε + e−ρ minj1 6=j2 |ξ′j1−ξ′j2 |)‖φ‖∞ + ‖g‖∞ (1.19)

Lemma 1.1. Given k ≥ 1, there exist R0, C0, ε0 such that for all points ξ′j with
|ξ′j1 − ξ′j2 | > R0, j = 1, . . . , k and all ε < ε0 then exist a unique solution φ to the
linearized projected problem with

‖φ‖∞ ≤ C0‖g‖∞.

Proof. As before we first prove the a priori estimate ‖φ‖∞ ≤ C0‖g‖∞. If not there
exist εn → 0, ‖φn‖∞ = 1, ‖gn‖ → 0, ξ′nj with minj1 6=j2 |ξ′nj1 − ξ′nj2 | → ∞. We denote
Wn =

∑
j Wjn , and we have

∆φn − V (εnx)φn + pW p−1
n φn + gn =

∑

i,j

(ci
j)n(zi

j)n

Our first observation is that (ci
j)n → 0 (which follows from the same estimate

for ci0
j0

). Next we claim that ∀R > 0 ‖φn‖L∞(B(ξ′nj ,R)) → 0, j = 1, . . . , k. If not,

there exist j0 ‖φn‖L∞(B(ξ′nj0 ,R)) ≥ γ > 0. We denote φ̃n(y) := φn(ξ′nj0 + y). We

have ‖φ̃n‖L∞(B(0,R)) ≥ γ > 0. Since |∆φ̃n| ≤ C, ‖φ̃n‖∞ ≤ 1. This implies that
‖∇φ̃n‖ ≤ C. Passing to a subsequence we may assume φ̃n → φ̃ uniformly on
compacts sets. Observe that also V (εn(ξ′nj0 + y)) = V (εnξ′nj0 ) + O(εn|y|) → λj0 over
compact sets and Wn(ξ′nj0 + y) → Wλj0

(y) uniformly on compact sets. This implies
that φ̃ is a solution of the problem

∆φ̃− λj0 φ̃ + pwp−1
λ0

˜p− 1 = 0,

∫
φ̃

∂Wλj0

∂yi
dy = 0, i = 1, . . . , N

Nondegeneracy of wλj0
implies that φ̃ =

∑
i αi

∂wλj0
∂yi

. The orthogonality condition
implies that αi = 0, ∀i = 1, . . . , N . This implies that φ̃ = 0 but ‖φ̃‖L∞(B(0,R)) ≥
γ > 0, a contradiction.

Now we prove: ‖φn‖L∞(RN \ ∪nB(ξ′nj , R)) → 0, provided that R À 1 and fixed
so that φn → 0 in the sense of ‖φn‖∞ (again a contradiction). We will denote
Ωn = RN \ ∪nB(ξ′nj , R). For R À 1 the equation for φn has the form

∆φn −Qnφn + gn = 0

where Qn = V (εx)− pW p−1
n ≥ α

2 > 0 for some R sufficiently large (but fixed).

Let us take for σ2 < α/2

φ̄ = δ
∑

j

eσ|x−ξ′nj | + µn.

We denote ϕ(y) = eσ|y|, r = |y|. Observe that ∆ϕ−α/2ϕ = eσ|y|(σ2+ N−1
|y| −α/2) <

0 if |y| > R À 1. Then

−∆φ̄ + Qnφ̄− gn > −∆φ̄ +
α

2
φ̄− ‖gn‖∞ >

α

2
µn − ‖gn‖∞ > 0 (1.20)
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if we choose µn ≥ ‖gn‖∞ 2
α . In addition we take µn =

∑
j ‖φn‖L∞(B(ξn

j ,R)) +
‖gn‖∞ 2

α . Maximum principle implies that φn(x) ≤ φ̄ for all x ∈ Ωn. Taking δ → 0
this implies that φn(x) ≤ µn, for all x ∈ Ωn. It is also true that |φn(x)| ≤ µn for
all x ∈ Ωc

n, and this implies that ‖φn‖L∞(RN ) → 0. ¤

Remark: If in addition we have the following decay for the error

θn = ‖gn


∑

j

e−ρ|x−ξ′nj |



−1

‖∞ → 0

with ρ < α/2, then we can use as a barrier function

φ̄ = δ
∑

j

eσ|x−ξ′nj | + µn

∑

j

e−ρ|x−ξ′nj |

with µn = eρR
∑

j ‖φn‖L∞(B(ξ′nj ,R)) + θn. It is easy to see that φ̄ is a super solution
of the equation in (∪jB(ξj , R))c and we have |φn| ≤ φ̄. Letting δ → 0 we get
|φn(x)| ≤ µn

∑
j e−ρ|x−ξ′nj |. As a conclusion we also get the a priori estimate

‖φ



k∑

j=1

e−ρ|x−ξ′j |



−1

‖∞ ≤ C‖g



k∑

j=1

e−ρ|x−ξ′j |



−1

‖∞

provided that 0 ≤ ρ < α/2, |ξ′j1 − ξ′j2 | > R0 À 1, ε < ε0.

We now give the proof of existence.

Proof. Let g be compactly supported smooth functions. The weak formulation for

∆φ− V (εx)φ + pW p−1φ + g =
∑

i,j

ci
jZ

i
j ,

∫
φZi

j = 0, ∀i, j (1.21)

is to find φ ∈ X = {φ ∈ H1(RN ) :
∫

φZi
j = 0, ∀i, j} such that

∫

RN

∇φ∇ψ + V φψ − pwp−1φψ − gψ = 0, ∀ψ ∈ X. (1.22)

Assume φ solves (1.21). For g ∈ L2, we decompose g = g̃ + Π[g] where
∫

g̃Zi
j = 0

for all i, j, and Π is the orthogonal projection of g onto the space spanned by the
Zi

j ’s.
Let ψ ∈ H1(RN ). We now use ψ − Π[ψ] as a test function in (1.22). Then if

ϕ ∈ C∞c (RN ), then we have
∫

RN

∇ϕ∇(Π[ψ]) = −
∫

RN

∆ϕΠ[ψ] = −
∫

RN

Π[∆ϕ]ψ. (1.23)

On the other hand, we have Π[∆ϕ] =
∑

i,j αi,jZ
i
j , where

∑
αi,j

∫
Zi,jZi0,j0 =

∫
∆ϕZj0

i0
=

∫
ϕ∆Zj0

i0
(1.24)

Then ‖Π[∆ϕ]‖L2 ≤ C‖ϕ‖H1 . By density argument it is also true for ϕ ∈ H1 where
∆ϕ ∈ H−1. Therefore∫

∇φ∇ψ +
∫

(V φ− pW p−1φ− g)ψ =
∫

Π(V φ− pW p−1φ + g)ψ (1.25)
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It follows that φ solves in weak sense

−∆φ + V φ− pW p−1φ− g = Π[−∆φ + V φ− pW p−1φ− g] (1.26)

and Π[−∆φ + V φ − pW p−1φ − g] =
∑

i,j cj
iZij. Therefore by definition φ solves

(1.22) implies that φ solves (1.26). Classical regularity gives that this weak solution
is solution of (1.26) in strong sense, in particular φ ∈ L∞ so that

‖φ‖∞ ≤ C‖g‖∞. (1.27)

Now we give the proof of existence for (1.21). We take g compactly supported.
The equation (1.26) can be written in the following way (using Riesz theorem):

〈φ, ψ〉H1 + 〈B[φ], ψ〉H1 = 〈g̃, ψ〉H1 (1.28)

or φ + B[φ] = g̃, φ ∈ X. We claim that B is a compact operator. Indeed if φn ⇀ 0
in X, then φn → 0 in L2 over compacts and

|〈B[φn], ψ〉| ≤ |
∫

pW p−1φnψ| ≤ (
∫

pwp−1φ2
n)1/2(

∫
pW p−1ψ2)1/2 (1.29)

which yields

|〈B[φn], ψ〉| ≤ c(
∫

pW p−1φ2
n)1/2‖ψ‖H1 (1.30)

Take ψ = B[φn], which implies

‖B[φn]‖H1 ≤ c(
∫

pW p−1φ2
n)1/2 → 0. (1.31)

This gives that B is a compact operator.
Now we prove existence with the aid of Fredholm alternative. Problem (1.21) is

solvable if for g̃ = 0 the only solution to (1.22) is φ = 0. But φ + B[φ] = 0 implies
solve (1.21)(strongly) with g = 0. This implies φ ∈ L∞, and the a priori estimate
implies φ = 0. Considering gΞBR(0) we conclude that

‖φR‖∞ ≤ ‖g‖∞ (1.32)

Taking R →∞ then along a subsequence φR → φ uniform over compacts we obtain
a solution to (1.21).

¤

Next we want to study the dependence and regularity of the solution with respect
to the parameters. Let g ∈ L∞. We denote φ = Tξ′ [g], where ξ′ = (ξ′1, . . . , ξ

′
k). We

want to analyze derivatives ∂ξ′ji
Tξ′ [g]. We know that ‖Tξ′ [g]‖ ≤ C0‖g‖∞. First we

make a formal differentiation. We denote Φ = ∂φ
∂ξ′i0j0

.

We have ∆φ−V φ+ pW p−1φ+ g =
∑

i,j ci
jZ

i
j and

∫
φZi

j = 0, for all i, j. Formal
differentiation yields

∆Φ− V Φ + pW p−1Φ + +∂ξi0j0
(W p−1)φ−

∑

i,j

ci
j∂ξi0j0

Zj
i =

∑

i,j

c̃i
jZ

i
j (1.33)

where formally c̃j
i = ∂ξi0j0

cj
i . The orthogonality conditions is reduced to

∫

RN

ΦZi
j =

{
0 if j 6= j0

− ∫
φ∂ξi0j0Zi

j0
if j = j0

(1.34)
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Let us define Φ̃ = Φ−∑
i,j αi,jZ

i
j . We want

∫
Φ̃Zi

j = 0, for all i, j. We need

∑

i,j

αi,j

∫
Zi

jZ
ī
j̄ =

{
0 if j̄ 6= j0

− ∫
φ∂ξi0j0Zi

j0
if j̄ = j0

(1.35)

The system has a unique solution and |αi,j | ≤ C‖φ‖∞ (since the system is almost
diagonal). So we have the condition

∫
Φ̃Zi

j = 0, for all i, j. We add to the equa-
tion the term

∑
i,j αi,j(∆− V + pW p−1)Zi

j , so Φ̃ satisfies the equation∆φ− V φ +
pW p−1φ + g =

∑
i,j ci

jZ
i
j

∆Φ̃−V Φ̃+pW p−1Φ̃+∂ξi0j0
(W p−1)φ−

∑

i,j

ci
j∂ξi0j0

Zj
i =

∑

i,j

c̃i
jZ

i
j−

∑

i,j

αi,j(∆−V +pW p−1)Zi
j

(1.36)
This implies ‖Φ̃‖ ≤ C(‖h‖+ ‖g‖) ≤ C‖g‖∞ and hence ‖Φ‖ ≤ C‖g‖∞.

The above formal procedure can be made rigorous by performing the analysis
discretely, namely we consider solutions corresponding to ξ and ξ + h respectively.
Then we consider the quotient and pass the limit in h. We omit the details. In
conclusion the map ξ → ∂ξφ is well defined and continuous (into L∞). Besides we
also have ‖∂ξφ‖∞ ≤ C‖g‖∞, and this implies

‖∂ξTξ[φ]‖ ≤ C‖g‖ (1.37)

1.5. Nonlinear projected problem. Consider now the nonlinear projected prob-
lem

∆φ− V φ + pwp−1φ + E + N(φ) =
∑

i,j

cj
iZ

i
j ,

∫
φZj

i = 0, ∀i, j (1.38)

We solve this by fixed point. We have φ = T (E + N(φ)) =: M(φ). We define
Λ = {φ ∈ C(RN ) ∩ L∞(RN ) : ‖φ‖∞ ≤ M‖E‖∞}. Remember that E =

∑
i(λj −

V (εx))Wj + (
∑

j Wj)p −∑
j W p

j . Observe that

|E| ≤ ε
∑

i

e−σ|x−ξ′j | + ce−δ0 minj1 6=j2 |ξ′j1−ξ′j2 |
∑

j

e−σ|x−ξ′j | (1.39)

so, for existence we have ‖E‖ ≤ C[ε + e−δ0 minj1 6=j2 |ξ′j1−ξ′j2 |] =: ρ (see that ρ is
small). Contraction mapping implies there exists a unique solution φ = Φ(ξ) and
‖Φ(ξ)‖ ≤ Mρ. The proof is standard and hence omitted.

1.6. Differentiability in ξ′ of Φ(ξ′). As before the solutions obtained for the
nonlinear projected problem has more regularity. In fact we can write the equation
for Φ as

Φ− T ′ξ(E
′
ξ + N ′

ξ(φ)) = A(Φ, ξ′) = 0 (1.40)

If (DΦA)(Φ(ξ′), ξ′) is invertible in L∞, then Φ(ξ′) turns out to be of class C1. This
is a consequence of the fixed point characterization, i.e., DΦA(Φ(ξ′), ξ′) = I + o(1)
(the order o(1) is a direct consequence of fixed point characterization). Then it is
invertible. Contraction mapping theorem yields the existence of C1 derivative of
A(Φ, ξ′) in (φ, ξ′). This implies Φ(ξ′) is C1. With a little bit of more work we can
show that ‖D′

ξΦ(ξ′)‖ ≤ Cρ (just using the derivative given by the implicit function
theorem).
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1.7. Solving the reduced problem: direct method. By (1.38), to solve (1.17),
we need to find ξ′ such that the reduced problem

ci
j = 0, ∀i, j (1.41)

to get a solution to the original problem (1.10). There are two ways to solve the
reduced problem (1.41): the first one is the direct method, and the second one is
the variational reduction method. We describe the first method first by proving
the following

Theorem 1. (Oh [?]) Assume that ξ0
j , j = 1, ..., k are k distinct non-degenerate

critical points of V . Then there exist a solution uε to the original problem with

uε(x) ≈
k∑

j=1

wV (ξε
j )(x− ξε

j /ε), ξε
j → ξ0

j

Proof. To solve the problem (1.41) we first obtain the asymptotic formula for ci
j .

To this end we multiply the equation (1.38) by Zi0
j0

and integrate by parts. We
obtain ∫

RN

Zi
jZ

i0
j0

ci
j =

∫

RN

(V (ξj + εx)− V (ξj))wξj Z
i0
j0

+ O(ε2)

and thus
ci0
j0
∼ ∂i0V (ξ0

j ) + O(ε)

The nondegeneracy of the critical point ∇V (ξ0
j ) and implicit function theorem

yields the existence of ξj = ξ0
j + O(ε) such that (1.41) holds.

¤

The direct method can be used to construct multiple spike solutions for problems
without variational structure, such as Gierer-Meinhardt system. For this application
we refer to [?].

1.8. Solving the reduced problem: variational reduction. If the problem
concerned has a variational structure, it is more appropriate to use a variational
reduction method to solve (1.41). This method gives much stronger results under
very weak assumptions.

We now describe the procedure that we call Variational Reduction in which the
problem of finding ξ′ with ci

j = 0, for all i, j, is equivalent to finding a critical point
of a reduced functional of ξ′.

Define an energy functional

J(v) =
1
2

∫

RN

|∇v|2 + V (εx)v2 − 1
p + 1

∫

RN+1
vp+1
+ (1.42)

where v ∈ H1(RN ) and 1 < p < N+2
N−2 . Since p is subcritical, by standard elliptic

regularity arguments and Maximum Principle v is a solution of the problem

∆v − V v + vp = 0, v → 0 (1.43)

if and only if v ∈ H1(RN ) and J ′(v) = 0. Observe that 〈J ′(v), ϕ〉 =
∫ ∇v∇ϕ +

V vϕ− vp
+ϕ.

We will prove the following Variational Reduction Principle
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Theorem 2. v = Wξ′∗ + φ(ξ′) is a solution of the original problem (for ρ ¿ 1) if
and only if

∂ξ′J(Wξ′ + φ(ξ′))|ξ′=ξ′∗ = 0. (1.44)

Proof. Indeed, observe that v(ξ′) := Wξ′ + φ(ξ′) solves the problem ∆v(ξ′) −
V (εx)v(ξ′) + v(ξ′)p =

∑
i,j ci

jZ
i
j and also that

∂ξ′j0i0
J(v(ξ′)) = 〈J ′(v(ξ′)), ∂ξ′j0i0

v(ξ′)〉 = −
∑

j,i

ci
j

∫
Zi

j∂ξ′j0i0
v = −

∑

i,j

ci
j

∫
Zj

i (∂ξ′j0i0
Wξ′+∂ξ′j0i0

φ(ξ′)).

(1.45)
Recall that Wξ′ =

∑k
j=1 wλj

(x− ξ′j),

∂ξ′j0i0
W ′

ξ = ∂ξ′j0i0
wλj0(ξ′)(x−ξ′j) = (∂λwλ(x−ξ′j0))|λ=λj0

−∂xi0
wλj0

(x−ξ′j0) = O(e−δ|x−ξ′0|)o(ε)−Zj0i0 (x)

(1.46)
This is because ∂λwλ = O(e−δ|x−ξ′0|). On the other hand since

∫
Zj

i φ(ξ′) = 0 we
have ∫

Zj
i ∂ξ′j0i0

φ(ξ′) = −
∫

φ(ξ′)∂ξ′j0i0
Zj

i

which is small thanks to the fact that |φ| ≤ Cρe−δ|x−ξ′j0 |. Finally, observe that

−
∫

Zi
j(∂ξ′j0i0

W ′
ξ + ∂ξ′j0i0

φ) =
∫

Zi
jZ

i0
j0

+ O(ρ) (1.47)

The matrix of these numbers is invertible provided ρ ¿ 1.
¤

We now discuss several applications of the reduction principle.

Theorem 3. (del Pino and Felmer [?]) Assume that there exists an open, bounded
set Λ ⊂ RN such that

inf
∂Λ

V > inf
Λ

V, (1.48)

then there exist a solution to the original problem, vε with vε(x) = wV (ξε)((x −
ξε)/ε) + o(1) and V (ξε) → minΛ V , ξ = ξε.

Theorem 4. (del Pino-Felmer [?]) Assume that Λ1, . . . , Λk are disjoint bounded
sets with

inf
Λj

V < inf
∂Λj

V, j = 1, · · · , k.

Then there exist a solution uε to the original problem with

uε(x) ≈
k∑

j=1

wV (ξε
j )(x− ξε

j /ε), ξε
j ∈ Λj

and V (ξε
j ) → infΛj V . The same result holds if the minimum is replaced by maxi-

mum.

Theorem 5. (Kang-Wei [?]) Let Γ be a bounded open set such that

max
Γ

V (x) > max
∂Γ

V (x)

Then for any positive integer K there exists a solution uε such that

uε(x) ≈
k∑

j=1

wV (ξε
j )(x− ξε

j /ε), ξε
j ∈ Λ, V (ξε

j ) → max
Λ

V (x)
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Proof. Assume that j = 1 first so that v(ξ′) = Wξ′ + φ(ξ′). Then we can compute
the reduced energy as follows:

J(v(ξ′)) = J(Wξ′ + φ(ξ′)) + 〈J ′(W ′
ξ + φ),−φ〉+

1
2
J ′′(W ′

ξ + (1− t)φ)[φ]2 (1.49)

(This follows from Taylor expansion of the function α(t) = J(Wξ′ + (1 − t)φ).)
Observe that 〈J ′(W ′

ξ + φ),−φ〉 =
∑

i,j ci
j

∫
Zj

i φ = 0. Also observe that

J ′′(W ′
ξ + (1− t)φ)[φ]2 =

∫
|∇φ|2 + V (εx)φ2 − p(W ′

ξ + (1− t)φ)φ2 = O(ε2) (1.50)

uniformly on ξ′ because ∇φ, φ = O(εe−δ|x−ξ′|). We call Φ(ξ) := J(v(ξ′)) =
J(Wξ′) + O(ε2), and

J(Wξ′) =
1
2

∫
|∇Wξ′ |2 +V (ξ)W 2

ξ′−
1

p + 1

∫
W p+1

ξ′ +
∫

(V (εx)−V (ξ′))W 2
ξ′ (1.51)

Taking λ = V (ξ), we have that
∫
|∇wλ(x)|2 = λ−N/2

∫
|∇w(λ1/2x)|2λ1+2/(p−1)λN/2dx = λ−N/2+p+1/p−1|∇w(y)|2dy

(1.52)
and

λ

∫
w2

λ(x) = λ−N/2p+1/p−1

∫
w(y)p+1dy (1.53)

This implies that

1
2

∫
|∇Wξ′ |2 + V (ξ

′
)W 2

ξ′ −
1

p + 1

∫
W p+1

ξ′ = V (ξ′)p+1/p−1−N/2cp,N (1.54)

and we also have ∫
(V (εx)− V (ξ′))wλ(x− ξ′)2 = O(ε) (1.55)

uniformly in ξ′.
In summary we have the following asymptotic expansion of the reduced energy

Φ(ξ) = J(v(ξ′)) = V (ξ)p+1/p−1−N/2cp,N + O(ε) (1.56)

To prove Theorem 3 we observe that p+1
p−1 − N

2 > 0. Then ∀ε ¿ 1 we have

inf
ξ∈Λ

Φ(ξ) < inf
ξ∈∂Λ

Φ(ξ) (1.57)

and therefore Φ has a local minimum ξε ∈ Λ and V (ξε) → minΛ V . The same
procedure also works for local maximums.

For several separated local minimums, the proof is similar. In fact when |ξj1 −
ξj2 | > δ, for all j1 6= j2, we have ρ = e−δ0 minj1 6=j2 |ξ′j1−ξ′j2 | + ε ≤ e−δ0δ/ε + ε < 2ε.
So we obtain

|∇xφ(ξ′)|+ |φ(ξ′)| ≤ Cε
∑

j

e−δ0|x−ξ′j | (1.58)

Now we get
J(v(ξ′)) =

∑

j

V (εξ
′
j)

p+1/p−1−N/2cp,N + O(ε) (1.59)

εξ′ = (ξ1, . . . , ξk) implies for several minimal points on the Λj we have the result
desired.
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Finally we prove the existence of multiply interacting spikes. The computations
are little bit involved since we have to measure precisely the interactions. The
reduced energy functional takes the following form:

J(v(ξ′)) =
∑

j

V (εξj)p+1/p−1−N/2(cp,N+o(1))−(1+o(1))
∑

i6=j

e−mini 6=j(
√

V (ξi),V (ξj))|ξ
′−ξ

′
j |.

(1.60)
We shall take the following configuration space

Σ = {(ξ1, ..., ξk) | ξi ∈ Λ, min
i6=j

|ξi − ξj | > ρε log
1
ε
}

and prove that the following maximization problem attains a solution in the interior
part of the set Σ:

min
(ξ1,...,ξk)∈Σ

J(v(ξ′))

¤
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