AARMS SUMMER SCHOOL-LECTURE IV:
 INTRODUCTION TO LYAPUNOV SMICHDT REDUCTION METHODS FOR SOLVING PDE'S

MANUEL DEL PINO AND JUNCHENG WEI

1. Allen Cahn Equation

Energy: Phase transition model.
Let $\Omega \subseteq \mathbb{R}^{N}$ of a "binary mixture": Two materials coexisting (or one material in two phases). We can take as an example of this: Water in solid phase $(+1)$, and water in liquid phase (-1). The configuration of this mixture in Ω can be described as a function

$$
u^{*}(x)= \begin{cases}+1 & \text { in } \Lambda \\ -1 & \text { in } \Omega \backslash \Lambda\end{cases}
$$

where Λ is some open subset of Ω. We will say that u^{*} is the phase function.

Consider the functional

$$
\frac{1}{4} \int_{\Omega}\left(1-u^{2}\right)^{2}
$$

minimizes if $u=1$ or $u=-1$. Function u^{*} minimize this energy functional. More generally this well happen for

$$
\int_{\Omega} W(u) d x
$$

where $W(u)$ minimizes at 1 and -1 , i.e. $W(+1)=W(-1)=0$, $W(x)>0$ if $x \neq 1$ or $x \neq-1, W^{\prime \prime}(+1), W^{\prime \prime}(-1)>0$.
1.1. The gradient theory of phase transitions. Possible configurations will try to make the boundary $\partial \Lambda$ as nice as possible: smooth and with small perimeter. In this model the step phase function u^{*} is replaced by a smooth function u_{ε}, where $\varepsilon>0$ is a small parameter, and

$$
u_{\varepsilon}(x) \approx \begin{cases}+1 & \text { inside } \Lambda \\ -1 & \text { inside } \Omega \backslash \Lambda\end{cases}
$$

and u_{ε} has a sharp transition between these values across a "wall" of width roughly $O(\varepsilon)$: the interface (thin wall).

In grad theory of phase transitions we want minimizers, or more generally, critical points u_{ε} of the functional

$$
J_{\varepsilon}(u)=\varepsilon \int_{\Omega} \frac{|\nabla u|^{2}}{2}+\frac{1}{\varepsilon} \int_{\Omega} \frac{\left(1-u^{2}\right)^{2}}{4}
$$

Let us observe that the region where $\left(1-u_{\varepsilon}^{2}\right)>\gamma>0$ has area of order $O(\varepsilon)$ and the size of the gradient of u_{ε} in the same region is $O\left(\varepsilon^{2}\right)$ in such a way $J\left(u_{\varepsilon}\right)=O(1)$. We will find critical points u_{ε} to functionals of this type so that $J\left(u_{\varepsilon}\right)=O(1)$.

Let us consider more generally the case in which the container isn't homogeneous so that distinct costs are paid for parts of the interface in different locations

$$
J_{\varepsilon}(u)=\int_{\Omega}\left(\varepsilon \frac{|\nabla u|^{2}}{2}+\frac{1}{\varepsilon} \frac{\left(1-u^{2}\right)^{2}}{4}\right) a(x) d x
$$

$a(x)$ non-constant, $0<\gamma \leq a(x) \leq \beta$ and smooth.
1.2. Critical points of J_{ε}. First variation of J_{ε} at u_{ε} is equal to zero.

$$
\left.\frac{\partial}{\partial t} J_{\varepsilon}\left(u_{\varepsilon}+t \varphi\right)\right|_{t=0}=D J_{\varepsilon}\left(u_{\varepsilon}\right)[\varphi]=0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

We have

$$
J_{\varepsilon}\left(u_{\varepsilon}+t \varphi\right)=
$$

i.e. $\forall \varphi \in C_{c}^{\infty}(\Omega)$

$$
0=D J_{\varepsilon}\left(u_{\varepsilon}\right)[\varphi]=\varepsilon \int_{\Omega}\left(\nabla u_{\varepsilon} \nabla \varphi\right) a+\frac{1}{\varepsilon} \int_{\Omega} W^{\prime}\left(u_{\varepsilon}\right) \phi a .
$$

If $u_{\varepsilon} \in C^{2}(\Omega)$

$$
\int_{\Omega}\left(-\varepsilon \nabla \cdot\left(a \nabla u_{\varepsilon}\right)+\frac{a}{\varepsilon} W^{\prime}\left(u_{\varepsilon}\right)\right) \varphi=0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

This give us the weighted Allen Cahn equation in Ω

$$
-\varepsilon \nabla \cdot(a \nabla u)+\frac{a}{\varepsilon} u\left(1-u^{2}\right)=0 \text { in } \Omega .
$$

We will assume in the next lectures $\Omega=\mathbb{R}^{N}$, where $N=1$ or $N=2$. If $N=1$ weight Allen Cahn equation is

$$
\begin{equation*}
\varepsilon^{2} u^{\prime \prime}+\varepsilon^{2} u^{\prime} \frac{a^{\prime}}{a}+\left(1-u^{2}\right) u=0, \text { in }(-\infty, \infty) . \tag{1.1}
\end{equation*}
$$

Look for u_{ε} that connects the phases -1 and +1 from $-\infty$ to ∞. Multiplying (1.1) against u^{\prime} and integrating by parts we obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d}{d x}\left(\varepsilon \frac{u^{\prime 2}}{2}-\frac{\left(1-u^{2}\right)^{2}}{4}\right)+\int_{-\infty}^{\infty} \frac{a^{\prime}}{a} u^{\prime 2}=0 \tag{1.2}
\end{equation*}
$$

Assume that $u(-\infty)=-1, u(\infty)=1, u^{\prime}(-\infty)=u^{\prime}(\infty)=0, a>0$, then (1.2) implies that

$$
\frac{\left(1-u^{2}\right)^{2}}{4}+\int_{-\infty}^{\infty} \frac{a^{\prime}}{a} u^{\prime 2}=0
$$

from which we conclude that unless a is constant, we need a^{\prime} to change sign. So: if a is monotone and $a^{\prime} \neq 0$ implies the non-existence of solutions as we look for. We need the existence (if $a^{\prime} \neq 0$) of local maximum or local minimum of a. We will prove that under some general assumptions on $a(x)$, given a local max. or local min. x_{0} of a non-degenerate $\left(a^{\prime \prime}\left(x_{0}\right) \neq 0\right)$, then a solution to (1.1) exists, with transition layer.

We consider first the problem with $a \equiv 1, \varepsilon=1$:

$$
\begin{equation*}
W^{\prime \prime}+\left(1-W^{2}\right) W=0, \quad W(-\infty)=-1, W(\infty)=1 \tag{1.3}
\end{equation*}
$$

The solution of this problem is

$$
W(t)=\tanh \left(\frac{t}{\sqrt{2}}\right)
$$

This solution is called "the heteroclinic solution", and it's the unique solution of the problem (1.3)up to translations.

Observation 1.1. This solution exists also for the problem

$$
\begin{equation*}
w^{\prime \prime}+f(w)=0, \quad w(-\infty)=-1, w(\infty)=1 \tag{1.4}
\end{equation*}
$$

where $f(w)=-W^{\prime}(w)$. Solutions satisfies $\frac{w^{\prime 2}}{2}-W(w)=E$, where E is constant, and $w(-\infty)=-1$ and $w(\infty)=1$ if and only if $E=0$. This implies

$$
\int_{0}^{w} \frac{d s}{\sqrt{2 w(s)}}=t
$$

$t(w) \rightarrow \infty$ if $w \rightarrow 1$, and $t(w) \rightarrow-\infty$ if $w \rightarrow-1$, so the previous relation defines a solution w such that $w(0)=0$, and $w(-\infty)=-1$, $w(\infty)=1$.

If we wright the Hamiltonian system associated to the problem we have:

$$
p^{\prime}=-f(q), \quad q^{\prime}=p
$$

Trajectories lives on level curves of $H(p, q)=\frac{p^{2}}{2}-W(q)$, where $W(q)=$ $\frac{\left(1-q^{2}\right)^{2}}{4}$.

Let $x_{0} \in \mathbb{R}$ (we will make assumptions on this point). Fix a number $h \in \mathbb{R}$ and set

$$
v(t)=u\left(x_{0}+\varepsilon(t+h)\right), \quad v^{\prime}(t)=\varepsilon u^{\prime}\left(x_{0}+\varepsilon(t+h)\right)
$$

Using (1.1), we have

$$
\varepsilon^{2} u^{\prime \prime}\left(x_{0}+\varepsilon(t+h)\right)=-\varepsilon^{2} \frac{a^{\prime}}{a} u^{\prime}\left(x_{0}+\varepsilon(t+h)\right)-\left(1-v^{2}(t)\right) v(t)
$$

so we have the problem

$$
\begin{equation*}
v^{\prime \prime}(t)+\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) v^{\prime}(t)+\left(1-v(t)^{2}\right) v(t)^{2}=0, \quad w(-\infty)=-1, w(\infty)=1 . \tag{1.5}
\end{equation*}
$$

Let us observe that if $\varepsilon=0$ the previous problem becomes formally in (1.3), so is natural to look for a solution $v(t)=W(t)+\phi$, with ϕ a small error in ε.

Assumptions:

(1) There exists $\beta, \gamma>0$ such that $\gamma \leq a(x) \leq \beta, \forall x \in \mathbb{R}$
(2) $\left\|a^{\prime}\right\|_{L^{\infty}(\mathbb{R})},\left\|a^{\prime \prime}\right\|_{L^{\infty}(\mathbb{R})}<+\infty$
(3) x_{0} is such that $a^{\prime}\left(x_{0}\right)=0, a^{\prime \prime}\left(x_{0}\right) \neq 0$, i.e. x_{0} is a non-degenerate critical point of a.

Theorem 1.1. $\forall \varepsilon>0$ sufficiently small, there exists a solution $v=v_{\varepsilon}$ to (1.5) for some $h=h_{\varepsilon}$, where $\left|h_{\varepsilon}\right| \leq C \varepsilon$ and $v_{\varepsilon}(t)=w(t)+\phi_{\varepsilon}(t)$ and

$$
\left\|\phi_{\varepsilon}\right\| \leq C \varepsilon
$$

Proof. We write in (1.5) $v(t)=w(t)+\phi(t)$. From now on we write $f(v)=v\left(1-v^{2}\right)$. We get

$$
\begin{gathered}
w^{\prime \prime}+\phi^{\prime \prime}+\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) \phi^{\prime}+\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) w^{\prime}+f(w+\phi)-f(w)-f^{\prime}(w) \phi+f(w)+f^{\prime}(w) \phi=0 \\
\phi(-\infty)=\phi(\infty)=0
\end{gathered}
$$

It can be written in the following way

$$
\begin{equation*}
\phi^{\prime \prime}+f^{\prime}(w(t)) \phi+E+B(\phi)+N(\phi)=0, \quad \phi(-\infty)=\phi(\infty)=0 \tag{1.6}
\end{equation*}
$$

where

$$
\begin{aligned}
B(\phi) & =\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) \phi^{\prime}, \\
N(\phi) & =f(w+\phi)-f(w)-f^{\prime}(w)=-3 w \phi^{2}-\phi^{3}, \\
E & =\varepsilon \frac{a^{\prime}}{a}\left(x_{0}+\varepsilon(t+h)\right) w^{\prime} .
\end{aligned}
$$

We consider the problem

$$
\begin{equation*}
\phi^{\prime \prime}+f^{\prime}(w(t)) \phi+g(t)=0, \quad \phi \in L^{\infty}(\mathbb{R}), \tag{1.7}
\end{equation*}
$$

and we want to know when (1.7) is solvable. We will assume $g \in$ $L^{\infty}(\mathbb{R})$. Multiplying (1.7) against w^{\prime} we get

$$
\int_{-\infty}^{\infty}\left(w^{\prime \prime \prime}+f^{\prime}(w) w^{\prime}\right) \phi+\int_{-\infty}^{\infty} g w^{\prime}=0
$$

the first integral is zero because (1.4). We conclude that a necessary condition is

$$
\int_{-\infty}^{\infty} g w^{\prime}=0 .
$$

This condition is actually sufficient for solvability. In fact, we write $\phi=w^{\prime} \Psi$, we have

$$
\phi^{\prime \prime}+f^{\prime}(w) \phi=g \Leftrightarrow w^{\prime} \Psi+2 w^{\prime \prime} \Psi^{\prime}=-g
$$

Multiplying this last expression by w^{\prime} (integration factor), we get

$$
\left(w^{\prime 2} \Psi^{\prime}\right)^{\prime}=g w^{\prime} \Rightarrow w^{\prime} 2 \Psi^{\prime}(t)=-\int_{-\infty}^{\infty} g(s) w^{\prime}(s) d s
$$

Let us choose

$$
\Psi(t)=-\int_{0}^{t} \frac{d \tau}{w^{\prime 2}(\tau)} \int_{-\infty}^{\tau} g(s) w^{\prime}(s) d s
$$

Then the function

$$
\phi(t)=-w^{\prime}(t) \int_{0}^{t} \frac{d \tau}{w^{\prime 2}(\tau)} \int_{-\infty}^{\tau} g(s) w^{\prime}(s) d s
$$

Recall that

$$
w^{\prime}(t) \approx 2 \sqrt{2} e^{-\sqrt{2}|t|}
$$

Claim: if $\int_{-\infty}^{\infty} g w^{\prime}=0$ then we have

$$
\|\phi\|_{\infty} \leq C\|g\|_{\infty}
$$

In fact, if $t>0$

$$
|\phi(t)| \leq\left|w^{\prime}(t)\right| \int_{0}^{t} \frac{C}{e^{-2 \sqrt{2} \tau}}\left|\int_{\tau}^{\infty} g w^{\prime} d s\right| d \tau \leq C\|g\|_{\infty} e^{-\sqrt{2} t} \int_{0}^{t} e^{\sqrt{2} \tau} d \tau \leq C\|g\|_{\infty} .
$$

For $t<0$ a similar estimate yields, so we conclude

$$
|\phi(t)| \leq C\|g\|_{\infty} .
$$

The solution of (1.7) is not unique because if ϕ_{1} is a solution implies that $\phi_{2}=\phi_{1}+C w^{\prime}(t)$ is also a solution. The solution we found is actually the only one with $\phi(0)=0$. For $g \in L^{\infty}$ arbitrary we consider the problem

$$
\begin{equation*}
\phi^{\prime \prime}+f^{\prime}(w) \phi+\left(g-c w^{\prime}\right)=0, \text { in } \Re, \quad \phi \in L^{\infty}(\mathbb{R}) \tag{1.8}
\end{equation*}
$$

where $C=C(g)=\frac{\int_{-\infty}^{\infty} g w^{\prime}}{\int_{-\infty}^{\infty} w^{\prime 2}}$.

Lemma 1.1. $\forall g \in L^{\infty}(\mathbb{R})$ (1.8) has a solution which defines a operator $\phi=T[g]$ with

$$
\|T[g]\|_{\infty} \leq C\|g\|_{\infty} .
$$

In fact if $\hat{T}[\hat{g}]$ is the solution find in the previous step then $\phi=\hat{T}[g-$ $\left.C(g) w^{\prime}\right]$ solves (1.8) and

$$
\begin{equation*}
\|\phi\|_{\infty} \leq C\|g\|_{\infty}+|C(g)| C \leq C\|g\|_{\infty} \tag{1.9}
\end{equation*}
$$

Proof. Back to the original problem: We solve first the projected problem

$$
\phi^{\prime \prime}+f^{\prime}(w) \phi+E+B(\phi)+N(\phi)=C w^{\prime}, \quad \phi \in L^{\infty}(\mathbb{R})
$$

where

$$
C=\frac{\int_{\mathbb{R}}(E+B(\phi)+N(\phi)) w^{\prime}}{\int_{\mathbb{R}} w^{\prime 2}}
$$

We solve first (1.9) and then we find $h=h_{\varepsilon}$ such that in (1.9) $\mathrm{C}=0$ in such a way we find a solution to the original problem. We assume $|h| \leq 1$. It's sufficient to solve

$$
\phi=T[E+B(\phi)+N(\phi)]:=M[\phi] .
$$

We have the following remark

$$
|E| \leq C \varepsilon^{2}, \quad\|B(\phi)\|_{\infty} \leq C \varepsilon\left\|\phi^{\prime}\right\|_{\infty}, \quad\|N(\phi)\| \leq C\left(\left\|\phi^{2}\right\|_{\infty}+\left\|\phi^{3}\right\|_{\infty}\right)
$$

where C is uniform on $|h| \leq 1$. We have

$$
\|M\|_{\infty}+\left\|\frac{d}{d t} M\right\|_{\infty} \leq C\left(\|E\|_{\infty}+\|B(\phi)\|_{\infty}+\|N(\phi)\|_{\infty} \leq C\left(\varepsilon^{2}+\varepsilon\left\|\phi^{\prime}\right\|_{\infty}+\left\|\phi^{2}\right\|_{\infty}+\left\|\phi^{3}\right\|_{\infty}\right)\right.
$$

then if $\|\phi\|_{\infty}+\left\|\phi^{\prime}\right\|_{\infty} \leq M \varepsilon^{2}$ we have

$$
\|M\|_{\infty}+\left\|\frac{d}{d t} M\right\|_{\infty} \leq C^{*} \varepsilon^{2}
$$

We define the space $X=\left\{\phi \in C^{1}(\mathbb{R}):\|\phi\|_{\infty}+\left\|\phi^{\prime}\right\|_{\infty} \leq C^{*} \varepsilon^{2}\right\}$. Let us observe that $M(X) \subset X$. In addition

$$
\left\|M\left(\phi_{1}\right)-M\left(\phi_{2}\right)\right\|_{\infty}+\left\|\frac{d}{d t}\left(M\left(\phi_{1}\right)-M\left(\phi_{2}\right)\right)\right\|_{\infty} \leq C \varepsilon\left(\left\|\phi_{1}-\phi_{2}\right\|_{\infty}+\left\|\phi_{1}^{\prime}-\phi_{2}^{\prime}\right\|_{\infty}\right)
$$

So if ε is small M is a contraction mapping which implies that there exists a unique $\phi \in X$ such that $\phi=M[\phi]$.

In summary: We found for each $|h| \leq 1$

$$
\phi=\Phi(h), \text { solution of1.7 }
$$

. We recall that

$$
h \rightarrow \Phi(h)
$$

is continuous (in $\left\|\|_{C^{1}}\right.$). Notice that from where we deduce that M is continuous in h.

The problem is reduced to finding h such that $C=0$ in (1.7) for $\phi \Phi(h)=$. Let us observe that

$$
\left.C=0 \Leftrightarrow \alpha_{\varepsilon}(h):=\int_{\mathbb{R}}\left(E_{h}+B[\Phi(h)]\right)+N[\Phi(h)]\right) w^{\prime}=0
$$

Let us observe that if we call $\psi(x)=\frac{a^{\prime}}{a}(x)$, then
$\psi\left(x_{0}+\varepsilon(t+h)\right)=\psi\left(x_{0}\right)+\psi^{\prime}\left(x_{0}\right) \varepsilon(t+h)+\int_{0}^{1}(1-s) \psi^{\prime \prime}\left(x_{0}+s \varepsilon(t+h)\right) \varepsilon^{2}(t+h)^{2} d s$
We add the assumption $a^{\prime \prime \prime} \in L^{\infty}(\mathbb{R})$ in order to have $\psi^{\prime \prime} \in L^{\infty}(\mathbb{R})$. We deduce that

$$
\int E_{h} w^{\prime}=\varepsilon^{2} \psi^{\prime}\left(x_{0}\right) \int(t+h) w^{\prime}(t)^{2}+\varepsilon^{3} \int_{\mathbb{R}}\left(\int_{0}^{1}(1-s) \psi^{\prime \prime}\left(x_{0}+s \varepsilon(t+h)\right) d s\right)(t+h)^{2} w^{\prime}(t) d t
$$

We recall that: $\int_{\mathbb{R}} t w^{\prime}(t)^{2}$ and

$$
\left|\int_{\mathbb{R}}(B[\phi(h)]+N[\phi(h)]) w^{\prime}\right| \leq C\left(\varepsilon\|\Phi(h)\|_{C^{1}}+\|\Phi(h)\|_{L^{\infty}}\right) \leq C \varepsilon^{3}
$$

So, we conclude that

$$
\alpha_{\varepsilon}(h)=\psi^{\prime}\left(x_{0}\right) \varepsilon^{2}(h+O(\varepsilon))
$$

and the term inside the parenthesis change sign. This implies that $\exists h_{\varepsilon}:\left|h_{\varepsilon}\right| \leq M \varepsilon$ such that $\alpha_{\varepsilon}(h)=0$, so $C=0$.

Observe that
$\bar{L}(\phi)=\phi^{\prime \prime}-2 \phi+\varepsilon \psi+3\left(1-w^{2}\right) \phi+\frac{1}{2} f^{\prime \prime}(w+s \phi) \phi \phi+O\left(\varepsilon^{2}\right) e^{-\sqrt{2}|t|}=0, \quad|t|>R$
We consider $t>R$. Notice that $\frac{1}{2} f^{\prime \prime}(w+s \phi) \phi=O\left(\varepsilon^{2}\right)$. Then using $\hat{\phi}=\varepsilon e^{-|t|}+\delta e^{|t|}$. Then using maximum principle and after taking $\delta \rightarrow 0$, we obtain $\phi \leq \varepsilon e^{-|t|}$.

A property: We call

$$
\mathcal{L}(\phi)=\phi^{\prime \prime}+f^{\prime}(w) \phi, \quad \phi \in H^{2}(\mathbb{R}) .
$$

We consider the bilinear form associated

$$
B(\phi, \phi)=-\int_{\mathbb{R}} \mathcal{L}(\phi) \phi=\int_{\mathbb{R}} \phi^{\prime 2}-f^{\prime}(w)^{2} \phi^{2}, \quad \phi \in H^{1}(\mathbb{R})
$$

Claim: $B(\phi, \phi) \geq 0, \forall \phi \in H^{1}(\mathbb{R})$ and $B(\phi, \phi)=0 \Leftrightarrow \phi=c w^{\prime}(t)$. In fact: $J^{\prime \prime}(w)[\phi, \phi]=B(\phi, \phi)$. We give now the proof of the claim:

Take $\phi \in C_{c}^{\infty}(\mathbb{R})$. Write $\phi=w^{\prime} \Psi \Longrightarrow \Psi \in C_{c}^{\infty}(\mathbb{R})$. Observe that $\mathcal{L}\left[w^{\prime} \Psi\right]=\frac{1}{w^{\prime}}\left(w^{\prime 2} \Psi^{\prime}\right)^{\prime}$ and

$$
B(\phi, \phi)=-\int \frac{1}{w^{\prime}}\left(w^{\prime 2} \Psi^{\prime}\right)^{\prime} w^{\prime} \Psi=\int_{\mathbb{R}} w^{\prime 2} \Psi^{\prime 2}, \quad \forall \phi \in C_{c}^{\infty}(\mathbb{R})
$$

Same is valid for all $\phi \in H^{1}(\mathbb{R})$, by density. So $B(\phi, \phi)=\int_{\mathbb{R}}\left|\phi^{\prime}\right|^{2}-$ $f^{\prime}(w) \phi^{2}=\int_{\mathbb{R}} w^{\prime} 2\left|\Psi^{\prime}\right|^{2} \geq 0$ and $B(\phi, \phi)=0 \Leftrightarrow \Psi^{\prime}=0$ which implies $\phi=c w^{\prime}$.

Corollary 1.1. Important for later porpuses There exists $r>0$ such that if $\phi \in H^{1}(\mathbb{R})$ and $\int_{\mathbb{R}} \phi w^{\prime}=0$ then

$$
B(\phi, \phi) \geq \gamma \int_{\mathbb{R}} \phi^{2}
$$

Proof. If not there exists $\phi_{n} \int H^{1}(\mathbb{R})$ such that $0 \leq B\left(\phi_{n}, \phi_{n}\right)<\frac{1}{n} \int_{\mathbb{R}} \phi_{n}^{2}$. We may assume without loss of generality $\int \phi_{n}^{2}=1$ which implies that up to subsequence

$$
\phi_{n} \rightharpoonup \phi \in H^{1}(\mathbb{R})
$$

and $\phi_{n} \rightarrow \phi$ uniformly and in L^{2} sense on bounded intervals. This implies that

$$
0=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \phi_{n} w^{\prime}=\int_{\mathbb{R}} \phi w^{\prime}
$$

On the other hand

$$
\int\left|\phi_{n}^{\prime}\right|^{2}+2 \int \phi_{n}^{2}-3 \int\left(1-w^{2}\right) \phi_{n}^{2} \rightarrow 0
$$

and also $\int\left|\phi_{n}^{\prime}\right|^{2}+2 \int \phi_{n}^{2}-3 \int\left(1-w^{2}\right) \phi_{n}^{2} \rightarrow \int\left|\phi^{\prime}\right|^{2}+2 \int \phi^{2}-3 \int\left(1-w^{2}\right) \phi^{2}$, so $B(\phi, \phi)=0$, and $\int w^{\prime} \phi=0$ so $\phi=0$. But also

$$
2 \leq 3 \int\left(1-w^{2}\right) \phi_{n}^{2}+o(1)
$$

which implies that $2 \leq 3 \int\left(1-w^{2}\right) \phi^{2}$ and this means that $\phi \neq 0$, so we obtain a contradiction.

Observation 1.2. If we choose $\delta=\frac{\gamma}{2\left\|f^{\prime}\right\|_{\infty}}$ then

$$
\int \phi^{\prime 2}-(1+\delta) f^{\prime}(w) \phi^{2} \geq 0 .
$$

This implies in fact that

$$
B(\phi, \phi) \geq \alpha \int \phi^{\prime 2}
$$

2. Nonlinear Schrödinger eqution (NLS)

$$
\varepsilon i \Psi_{t}=\varepsilon^{2} \Delta \Psi-W(x) \Psi+|\Psi|^{p-1} \Psi .
$$

A first fact is that $\int_{\mathbb{R}^{N}}|\Psi|^{2}=$ constant. We are interested into study solutions of the form $\left.\Psi_{(} x, t\right)=e^{-i E t} u(x)$ (we will call this solutions standing wave solution). Replacing this into the equation we obtain

$$
\varepsilon E u=\varepsilon^{2} \Delta u-W u-|u|^{p-1} u
$$

whose transforms into

$$
\varepsilon^{2} \Delta u-(W-\lambda) u+|u|^{p-1} u=0, \quad u(x) \rightarrow 0, \text { as }|x| \rightarrow \infty
$$

choosing $E=\frac{\lambda}{\varepsilon}$. We define $V(x)=(W(x)-\lambda)$

2.1. The case of dimension 1.

$$
\begin{equation*}
\varepsilon^{2} u^{\prime \prime}-V(x) u+u^{p}=0, \quad x \in \mathbb{R}, \quad 0<u(x) \rightarrow 0, \text { as }|x| \rightarrow \infty, p>1 . \tag{2.1}
\end{equation*}
$$

Assume: $V \geq \gamma>0, V, V^{\prime}, V^{\prime \prime}, V^{\prime \prime \prime} \in L^{\infty}$, and $V \in C^{3}(\mathbb{R})$. Starting point

$$
\begin{equation*}
w^{\prime \prime}-w+w^{p}=0, \quad w>0, \quad w(\pm \infty)=0, p>1 \tag{2.2}
\end{equation*}
$$

There exists a homoclinic solution

$$
w(t)=\frac{C_{p}}{\cosh \left(\frac{p-1}{2} t\right)^{\frac{2}{p-1}}}, \quad C_{p}=\left(\frac{p+1}{2}\right)^{\frac{1}{p-1}}
$$

Let us observe that $w(t) \approx 2^{2 /(p-1)} C_{p} e^{-|t|}$ as $t \rightarrow \infty$ and also that $W(t+c)$ satisfies same equation.

Staid at x_{0} with $V\left(x_{0}\right)=1$ we want $u_{\varepsilon}(x) \approx w\left(\frac{x-x_{0}}{\varepsilon}\right)$ of the problem (2.1).

Observation 2.1. Given x_{0} we can assume $V\left(x_{0}\right)=1$. Indeed writing

$$
u(x)=\lambda^{\frac{2}{p-1}} v\left(\lambda x_{0}+(1-\lambda) x_{0}\right)
$$

we obtain the equation

$$
\varepsilon^{2} v^{\prime \prime}(y)-\hat{V}(y) v+v^{p}=0
$$

where $y=\lambda x_{0}+(1-\lambda) x_{0}$, and $\hat{V}(y)=V\left(\frac{y-(1-\lambda) x_{0}}{\lambda}\right)$. Then choosing $\lambda=\sqrt{V\left(x_{0}\right.}$, we obtain $\hat{V}\left(x_{0}\right)=1$.
Theorem 2.1. We assume $V\left(x_{0}\right)=1, V^{\prime}\left(x_{0}\right)=0, V^{\prime \prime}\left(x_{0}\right) \neq 0$. Then there exists a solution to (2.1) with the form

$$
u_{\varepsilon}(x) \approx w\left(\frac{x-x_{0}}{\varepsilon}\right) .
$$

We define $v(t)=u\left(x_{0}+\varepsilon(t+h)\right)$, with $|h| \leq 1$. Then v solves the problem

$$
\begin{equation*}
v^{\prime \prime}-V\left(x_{0}+\varepsilon(t+h) v+v^{p}=0, \quad v(\pm \infty)=0\right. \tag{2.3}
\end{equation*}
$$

We define $v(t)=w(t)+\phi(t)$, so ϕ solves

$$
\begin{equation*}
\phi^{\prime \prime}-\phi+p w^{p-1} \phi-\left(V\left(x_{0}+\varepsilon(t+h)\right)-V\left(x_{0}\right)\right) \phi+(w+\phi)^{p}-w^{p}-p w^{p-1} \phi \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
-\left(V\left(x_{0}+\varepsilon(t+h)\right)-V\left(x_{0}\right)\right) w(t)=0 \tag{2.5}
\end{equation*}
$$

So we want a solution of

$$
\begin{equation*}
\phi^{\prime \prime}-\phi+p w^{p-1} \phi+E+N(\phi)+B(\phi)=0, \quad \phi(\pm)=0 . \tag{2.6}
\end{equation*}
$$

Observe that

$$
E=\frac{1}{2} V^{\prime \prime}\left(x_{0}+\xi \varepsilon(t+h)\right) \varepsilon^{2}(t+h)^{2} w(t)
$$

so $|E| \leq C \varepsilon^{2}\left(t^{2}+1\right) e^{-|t|} \leq C e^{-\sigma t}$ for $0<\sigma<1$.
We won't have a solution unless V^{\prime} doesn't change sign and $V \neq 0$. For instance consider $V^{\prime}(x) \geq 0$, and after multiplying the equation by u^{\prime} and integrating by parts, we see that $\int_{\mathbb{R}} v^{\prime} \frac{u^{2}}{2}=0$, which by ODE implies that $u \equiv 0$, because u and u^{\prime} equals 0 on some point.

2.2. Linear projected problem.

$$
L(\phi)=\phi^{\prime \prime}-\phi+p w^{p-1} \phi+g=0, \quad \phi \in L^{\infty}(\mathbb{R})
$$

For solvability we have the necessary condition $\int L(\phi) w^{\prime}=0$. Assume g such that $\int_{\mathbb{R}} g w^{\prime}=0$. We define $\phi=w^{\prime} \Psi$, but we have the problem that $w^{\prime}(0)=0$. We conclude that $\left(w^{2} \Psi^{\prime}\right)^{\prime}+w^{\prime} g=0$ for $t \neq 0$. We take for $t<0$

$$
\phi(t)=w^{\prime}(t) \int_{t}^{-1} \frac{d \tau}{w^{\prime}(\tau)^{2}} \int_{-\infty}^{\tau} g(s) w^{\prime}(s) d s
$$

and for $t>0$

$$
\phi(t)=w^{\prime}(t) \int_{1}^{t} \frac{d \tau}{w^{\prime}(\tau)^{2}} \int_{\tau}^{\infty} g(s) w^{\prime}(s) d s
$$

In order to have a solution of the problem we need $\phi\left(0^{-}\right)=\phi\left(0^{+}\right)$.

$$
\phi\left(0^{-}\right)=\lim _{t \rightarrow 0^{-}} \frac{-\int_{-1}^{t} \frac{d \tau}{w^{\prime}(\tau)^{2}} \int_{-\infty}^{\tau} g(s) w^{\prime}(s) d s}{\frac{1}{w^{\prime}(t)}}=\lim _{t \rightarrow 0^{-}} \frac{-\frac{1}{w^{\prime}(t)^{2}} \int_{-\infty}^{t} g w^{\prime}}{-\frac{1}{w^{\prime}(t)^{2}} w^{\prime \prime}(t)}=\frac{1}{w^{\prime \prime}(0) \int_{-\infty}^{0} g w^{\prime}}
$$

and

$$
\phi\left(0^{+}\right)=-\frac{1}{w^{\prime \prime}(0) \int_{0}^{\infty} g w^{\prime}}
$$

and the condition is satisfies because of the assumption of orthogonality condition.

We get $\|\phi\|_{\infty} \leq C\|g\|_{\infty}$. In fact we get also: $\forall 0<\sigma<1, \exists C>0$:

$$
\left\|\phi e^{\sigma t}\right\|_{L^{\infty}}+\left\|\phi^{\prime} e^{\sigma t}\right\|_{L^{\infty}} \leq C\left\|g e^{\sigma t}\right\|
$$

Observation: We use $g=g-c w^{\prime}$. (Correct this part!!!!)
2.3. Method for solving. In this section we consider a smooth radial cut-off function $\eta \in C^{\infty}(\mathbb{R})$, such that $\eta(s)=1$ for $s<1$ and $\eta(s)=0$ if $s>2$. For $\delta>0$ small fixed, we consider $\eta_{k, \varepsilon}=\eta\left(\frac{\varepsilon|t|}{k \delta}\right), k \geq 1$.
2.3.1. The gluing procedure. Write $\tilde{\phi}=\eta_{2, \varepsilon} \phi+\Psi$, then ϕ solves (2.5) if and only if

$$
\begin{gather*}
\eta_{2, \varepsilon}\left[\phi^{\prime \prime}+\left(p w^{p-1}-1\right) \phi+B(\phi)+2 \phi^{\prime} \eta_{2, \varepsilon}^{\prime}\right] \tag{2.7}\\
+\left[\Psi^{\prime \prime}+\left(p w^{p-1}-1\right) \Psi+B \Psi\right]+E+N\left(\eta_{2, \eta} \phi+\Psi\right)=0 . \tag{2.8}
\end{gather*}
$$

(ϕ, Ψ) solves (2.8) if is a solution of the system
$\phi^{\prime \prime}-\left(1-p w^{p-1}\right) \phi+\eta_{1, \varepsilon} E+\eta_{3, \varepsilon} B(\phi)+\eta_{1, \varepsilon} p w^{p-1} \Psi+\eta_{1, \eta} N(\phi+\Psi)=0$

$$
\begin{gather*}
\Psi^{\prime \prime}-\left(V\left(x_{0}+\varepsilon(t+h)\right)-p w^{p-1}\left(1-\eta_{1, \varepsilon}\right)\right) \Psi \tag{2.10}\\
+\left(1-\eta_{1, \varepsilon}\right) E+\left(1-\eta_{1, \varepsilon}\right) N\left(\eta_{2, \varepsilon} \phi+\Psi\right)+2 \phi^{\prime} \eta_{2, \varepsilon}^{\prime}+\eta_{2, \varepsilon}^{\prime \prime} \phi=0 \tag{2.11}
\end{gather*}
$$

We solve first (2.11). We look first the problem

$$
\Psi^{\prime \prime}-W(x) \Psi+g=0
$$

where $0<\alpha \leq W(x) \leq \beta$, W continuous and $g \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. We claim that (2.3.1) has a unique solution $\phi \in L^{\infty}(\mathbb{R})$. Assume first that g has compact support and consider the well defined functional in $H^{1}(\mathbb{R})$

$$
J(\Psi)=\frac{1}{2} \int_{\mathbb{R}}\left|\Psi^{\prime}\right|^{2}+\frac{1}{2} \int_{\mathbb{R}} w \Psi^{2}-\int_{\mathbb{R}} g \Psi .
$$

Also, this functional is convex and coercive. This implies that J has a minimizer, unique solution of (2.3.1) in $H^{1}(\mathbb{R})$ and it is bounded. Now we consider the problem

$$
\Psi_{R}^{\prime \prime}-W \Psi_{R}+g \eta\left(\frac{|t|}{R}\right)=0
$$

Let us see that Ψ_{R} has a uniform bound. Take $\varphi(t)=\frac{\|g\|_{\infty}}{\alpha}+\rho \cosh \left(\frac{\sqrt{\alpha}}{2}|t|\right)$ for $\rho>0$ very small. Since $\Psi_{R} \in L^{\infty}(\mathbb{R})$ we have

$$
\Psi_{R} \leq \varphi(t), \quad \text { for }|t|>t_{\rho, R} .
$$

Let us observe that in $\left[-t_{\rho, R}, t_{\rho, R}\right]$

$$
\varphi^{\prime \prime}-W \varphi+g \eta\left(\frac{|t|}{R}\right)<0
$$

From (2.3.1), we see that $\gamma=\left(\Psi_{R}-\varphi\right)$ satisfies

$$
\begin{equation*}
\gamma^{\prime \prime}-W \gamma>0 . \tag{2.12}
\end{equation*}
$$

Claim: $\gamma \leq 0$ on \mathbb{R}. It's for $|t|>t_{\rho, R}$ if $\gamma(\bar{t})>0$ there is a global maximum positive $\gamma \in\left[-t_{\rho, R}, t_{\rho, R}\right]$. This implies that $\gamma^{\prime \prime}(t) \leq 0$ which is a contradiction with (2.12). This implies that $\Psi_{R}(t) \leq \frac{\|g\|_{\infty}}{\alpha}+$ $\rho \cosh \left(\frac{\sqrt{\alpha}}{2} t\right)$. Taking the limit ρ going to 0 we get $\Psi_{R} \leq \frac{\|g\|_{\infty}}{\alpha}$, and similarly we can conclude that

$$
\left\|\Psi_{R}\right\|_{L^{\infty}} \leq \frac{\|g\|_{\infty}}{\alpha}, \quad \forall R
$$

Passing to a subsequence we get a solution $\Psi=\lim _{R \rightarrow \infty} \Psi_{R}$, and the convergence is uniform over compacts sets, to (2.3.1) with

$$
\|\Psi\|_{\infty} \leq \frac{\|g\|_{\infty}}{\alpha}
$$

. Also, the same argument shows that the solution is unique (in L^{∞} sense). Besides: We observe that if $\left\|e^{\sigma|t|} g\right\|_{\infty}<\infty, 0<\sigma<\sqrt{\alpha}$ then

$$
\left\|e^{\sigma|t|} \Psi\right\|_{\infty} \leq C\left\|e^{\sigma|t|} g\right\|
$$

The proof of this fact is similar to the previous one. Just take as the function φ as follows

$$
\varphi=M \frac{\left\|e^{\sigma|t|} g\right\|_{\infty}}{\alpha} e^{-\sigma|t|}+\rho \cosh \left(\frac{\sqrt{\alpha}}{2}|t|\right) .
$$

Observe now that Ψ satisfies (2.11) if and only if

$$
\Psi=\left(-\frac{d^{2}}{d t^{2}}+W\right)^{-1}[F[\Psi, \phi]]
$$

where $W(x)=V\left(x_{0}+\varepsilon(t+h)\right)-p w^{p-1}\left(1-\eta_{1, \varepsilon}\right)$ and $F[\phi]=\left(1-\eta_{1, \varepsilon}\right) E+$ $\left(1-\eta_{1, \varepsilon}\right) N\left(\eta_{2, \varepsilon} \phi+\Psi\right)+2 \phi^{\prime} \eta_{2, \varepsilon}^{\prime}+\eta_{2, \varepsilon}^{\prime \prime} \phi$. The previous result tell us that the inverse of the operator $\left(-\frac{d^{2}}{d t^{2}}+W\right)$ is well define. Assume that $\|\phi\|_{C^{1}}:=\|\phi\|_{\infty}+\left\|\phi^{\prime}\right\|_{\infty} \leq 1$, for some $\sigma<1$ and $\|\Psi\|_{\infty} \leq \rho$, where ρ
is a very small positive number. Observe that $\left\|\left(1-\eta_{1, \varepsilon}\right) E\right\|_{\infty} \leq e^{-c \delta / \varepsilon}$. Furthermore, we have

$$
|F(\Psi, \phi)| \leq e^{-c \delta / \varepsilon}+c \varepsilon\|\phi\|_{C^{1}}+\|\phi\|_{\infty}^{2}+\|\Psi\|_{\infty}^{2}
$$

This implies that

$$
\|M[\Psi]\| \leq C_{*}\left[\mu+\|\Psi\|_{\infty}^{2}\right]
$$

where $\mu=e^{-c \delta / \varepsilon}+c \varepsilon\|\phi\|_{C^{1}}+\|\phi\|_{\infty}^{2}$. If we assume $\mu<\frac{1}{4 C_{2} 2}$, and choosing $\rho=2 C_{*} \mu$, we have

$$
\|M[\Psi]\|<\rho
$$

If we define $X=\left\{\Psi \mid\|\Psi\|_{\infty}<\rho\right\}$, then M is a contraction mapping in X. We conclude that

$$
\left\|M\left[\Psi_{1}\right]-M\left[\Psi_{2}\right]\right\| \leq C_{*} C\left\|\Psi_{1}-\Psi_{2}\right\|, \quad \text { where } C_{*} C<1 .
$$

Conclusion: There exists a unique solution of (2.11) for given ϕ (small in C^{1}-norm) such that

$$
\|\Psi(\phi)\|_{\infty} \leq\left[e^{-c \delta / \varepsilon}+\varepsilon\|\phi\|_{C^{1}}+\|\phi\|_{\infty}^{2}\right]
$$

Besides: If $\|\phi\| \leq \rho$, independent of ε, we have

$$
\begin{equation*}
\left\|\Psi\left(\phi_{1}\right)-\Psi\left(\phi_{2}\right)\right\|_{\infty} \leq o(1)\left\|\phi_{1}-\phi_{2}\right\| . \tag{2.13}
\end{equation*}
$$

Next step: Solver for (2.9), with $\|\phi\|$ very small, the problem
$\phi^{\prime \prime}-\left(1-p w^{p-1}\right) \phi+\eta_{1, \varepsilon} E+\eta_{3, \varepsilon} B(\phi)+\eta_{1, \varepsilon} p^{p-1} \Psi+\eta_{1, \eta} N(\phi+\Psi)-c w^{\prime}=0$ where $c=\frac{1}{\int w^{\prime 2}} \int_{\mathbb{R}}\left(\eta_{3, \varepsilon} B(\phi)+\eta_{1, \varepsilon} p w^{p-1} \Psi+\eta_{1, \eta} N(\phi+\Psi)\right) w^{\prime}$. To solve (2.13) we write it as

$$
\phi=T\left[\eta_{3, \varepsilon} B \phi\right]+T\left[N(\phi+\Psi(\phi))+p w^{p-1} \Psi(\phi)\right]+T[E]=: Q[\phi]
$$

Choosing δ sufficiently small independent of ε we conclude that $Q(x) \subseteq$ X, and Q is a contraction in X for $\|\cdot\|_{C^{1}}$. This implies that (2.13) has a unique solution ϕ with $\|\phi\|_{C^{1}}<M \varepsilon^{2}$. Also the dependence $\phi=\Phi(h)$ is continuous. Now we only need to adjust h in such a way that $c=0$. After some calculations we obtain

$$
0=K \varepsilon^{2} V^{\prime \prime}\left(x_{0}\right) h+O\left(\varepsilon^{3}\right)+O\left(\delta \varepsilon^{2}\right) .
$$

So we can find $h=h_{\varepsilon}$ and $\left|h_{\varepsilon}\right| \leq C \varepsilon$, such that $c=0$.

