
AARMS Summer School Lecture III: Extensions of Nonlocal Eignevalue Problem
(NLEP)

[1] Chapters 8 and 9 of Wei-Winter’s book on ”Mathematical Aspects of Pattern Formation in
Biological Systems”, Applied Mathematical Sciences Series, Vol. 189, Springer 2014 , ISBN:
978-4471-5525-6.

In this lecture, we discuss two extensions of the theory of NLEP.

1 Shadow system in finite domains

We consider monotone solutions for the shadow Gierer-Meinhardt system





At = ε2∆A− A + A2

ξ
, x ∈ Ω, t > 0,

τξt = −ξ + 1
|Ω|

∫
Ω A2 dx,

A > 0, ∂A
∂ν

= 0 on ∂Ω,

(1.1)

where ε > 0, τ > 0 are positive constants, ∆ :=
∑N

i=1
∂2

∂x2 is the usual Laplace operator and
Ω ⊂ Rn is a bounded and smooth domain. Note that we that here ε > 0 is a fixed positive
number and we do not assume that ε is small which stands in marked contrast to all the previous
chapters.

Problem (1.1) is derived, at least formally, by taking the limit D → +∞ in the Gierer-
Meinhardt system (??). For further details concerning the derivation of (1.1) from (??), we
refer to [?, ?, ?, ?].

We first consider the one-dimensional case N = 1. In Subsection 1.3, we will study some
extensions to higher dimensions. Due to rescaling and translation with respect to the spatial
variable, we may assume that Ω = (0, 1). Thus we have





At = ε2Axx − A + A2

ξ
, 0 < x < 1, t > 0,

τξt = −ξ +
∫ 1
0 A2 dx,

A > 0, Ax(0, t) = Ax(1, t) = 0.

(1.2)

Setting u(x) = ξ−1A(x), then (A, ξ) is a monotone decreasing steady-state of (1.2) if and
only if :

ξ−1 =
∫ 1

0
u2(x)dx
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and
ε2uxx − u + u2 = 0, ux(x) < 0, 0 < x < 1, ux(0) = ux(1) = 0. (1.3)

We let

L :=
1

ε
(1.4)

and rescale u(x) = wL(y), where y = Lx. Then wL solves

w
′′
L − wL + w2

L = 0, w′
L(y) < 0, 0 < y < L, w′

L(0) = w′
L(L) = 0. (1.5)

Now (1.5) has a a nontrivial solution if and only if

ε <
1

π
which is equivalent to L > π). (1.6)

On the other hand, if ε ≥ 1
π

(or L ≤ π), then wL = 1. This follows for example from (1.34)
below.

By Theorem 1.1 of [?] we know that any stable solution to (1.2) is asymptotically monotone.
More precisely, if (A(x, t), ξ(t)), t ≥ 0 is a linearly neutrally stable solution to (1.2), then there
exists t0 > 0 such that

Ax(x, t0) 6= 0 for all (x, t) ∈ (0, 1)× [t0, +∞). (1.7)

This implies that all non-monotone steady-state solutions are linearly unstable. Hence we will
concentrate on monotone solutions. Obliviously are two monotone solutions, the monotone
increasing and the monotone decreasing one, and they are related by reflection. Without loss
of generality, we will study the the monotone decreasing solution which we denote by uε. By
[?] it has the least energy among all positive solutions of (1.3). If L ≤ π, then wL = 1. For the
solutions to (1.2) we set

AL(x) = ξLwL(Lx), ξ−1
L =

∫ 1

0
w2

L(Lx)dx. (1.8)

In [?] and [?], under the assumption that L is sufficiently large, it has been shown that that
(AL, ξL) is linearly stable for τ small enough by the SLEP (singular limit eigenvalue problem)
approach. In [?], it has been proved that for ε sufficiently small uε is linearly stable for τ small
enough, using the NLEP (nonlocal eigenvalue problem) method.

Then the question arises if these stability results can be extended to the case of finite ε
(corresponding to finite L). This is of huge practical relevance since in real-life experiments
the physical constants are fixed and it is often hard to justify that they are small in a suitable
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sense. Therefore the results in this chapter will be useful for experimentalists and inform the
setting up of models, testing of hypotheses and prediction of results. In fact, we will derive
results on the stability of steady states for all finite ε (or L).

We begin our analysis by introducing some notation. For I = (0, L) and φ ∈ H2(I) we set

L[φ] = φ
′′ − φ + 2wLφ. (1.9)

In Subsection 1.1, we will show that the spectrum of L is given by

λ1 > 0, λj < 0, j = 2, 3, . . . . (1.10)

This implies for L : H2(I) → L2(I) that its inverse

(H1c) L−1 exists.

Next we state

Theorem 1 Assume that L > π and

(H2c)
∫ L

0
wLL−1wL dy > 0.

Then the steady state (AL, ξL) to (1.2) given in (1.8) is linearly stable for τ small enough.

Thus to determine the stability we only have to compute the integral
∫ L
0 wLL−1wL dy.

Whereas for general L this is quite hard, in the limiting cases L → +∞ or L → π this
can be achieved by asymptotic analysis (see Lemma 1.2 below). If L is sufficiently large, we
will see that (H2c) is valid. In particular, Theorem 1 recovers results of [?] and [?]. On the
other hand, if L is near π, then wL ∼ 1, L−1wL ∼ 1, and thus

∫ L
0 wLL−1wL dy > 0.

For finite τ , we have the following result.

Theorem 2 Assume that (H2c) holds and let L > π. Then there is a unique τc > 0 such that
for τ < τc, (AL, ξL) is stable and for τ > τc it is unstable. At τ = τc there exists a unique Hopf
bifurcation. The Hopf bifurcation is transversal, i.e.

dλR

dτ
|τ=τc > 0, (1.11)

where λR is the real part of the eigenvalue.

By the results of Subsection 1.1, will calculate that
∫ L
0 wLL−1wL dy > 0 for all L > π using

Weierstrass p(z) functions and Jacobi elliptic integrals. Then we have
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Theorem 3 Assume that L > π. Then there exists a unique τc > 0 such that for τ < τc,
(AL, ξL) is stable and for τ > τc, (AL, ξL) is unstable. At τ = τc, there exists a Hopf bifurcation.
Furthermore, the Hopf bifurcation is transversal.

Thus for the shadow Gierer-Meinhardt system we have given a complete picture of the stability
of nontrivial monotone solutions for all τ > 0 and L > 0. Note that in case L ≤ π we
necessarily have wL ≡ 1 and there are only trivial monotone solutions. We remark that singular
perturbation which can be applied in case ε is small enough can not be used here.

In the previous chapters, we have considered the existence and stability of multiple spikes for
small activator diffusivity ε2 and finite inhibitor diffusivity D. Now we study the complementary
case of finite ε2 and infinite D.

1.1 Some properties of the function wL

In this subsection, we consider the the unique solution of the boundary value problem

w
′′
L − wL + w2

L = 0, w′
L(0) = w′

L(L) = 0, w′
L(y) < 0 for 0 < y < L. (1.12)

Using Weierstrass functions and elliptic integrals we will derive some properties of wL.
Recall that

L[φ] = φ
′′ − φ + 2wLφ.

Our first result is

Lemma 1.1 For the eigenvalue problem




Lφ = λφ, 0 < y < L,

φ′(0) = φ′(L) = 0.
(1.13)

the eigenvalues satisfy
λ1 > 0, λj < 0, j = 2, 3, . . . . (1.14)

The eigenfunction Φ1 to the eigenvalue λ1 can be chosen to be positive.

Proof: Let λ1 ≥ λ2 ≥ . . . be the eigenvalues of L. It is well-known that λ1 > λ2 and that the
eigenfunction Φ1 to λ1 can be made positive. Further, we have

−λ1 = min∫ L

0
φ2 dy=1

(∫ L

0
(|φ′|2 + φ2 − 2wLφ2) dy

)
(1.15)
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≤
(∫ L

0
w2

L dy

)−1 (∫ L

0
(|w′

L|2 + w2
L − 2wLw2

L) dy

)
< 0.

By a standard argument (see Theorem 2.11 of [?]) it follows that λ2 ≤ 0. We include a
proof for the convenience of the reader. Using the variational characterisation of λ2, we get

−λ2 = sup
v∈H1(I)

inf
φ∈H1(I),φ6≡0

[∫ L
0 (|φ′|2 + φ2 − 2wLφ2) dy

∫ L
0 φ2 dy

: v 6≡ 0,
∫ L

0
φv dy = 0

]
. (1.16)

Since wL has least energy, namely

E[wL] = inf
u6≡0,u∈H1(I)

E[u],

where

E[u] =

∫ L
0 (|u′|2 + u2) dy

(
∫ L
0 u3 dy)

2
3

and so for
h(t) = E[wL + tφ], φ ∈ H1(I).

we know that h(t) attains its minimum at t = 0. Thus we get

h
′′
(0) = 2

[ ∫ L

0
(|φ′|2 + φ2) dy − 2

∫ L

0
wLφ2 dy + 2

(
∫ L
0 w2

Lφ dy)2

∫ L
0 w3

L dy

]

× 1
(∫ L

0 w3
L dy

)2/3
≥ 0.

By (1.16), we see that

−λ2 ≥ inf∫ L

0
φw dy=0

[ ∫ L

0
(|φ′|2 + φ2) dy − 2

∫ L

0
wLφ2 dy + 2

(
∫ L
0 w2

Lφ dy)2

∫ L
0 w3

L dy

]

× 1
(∫ L

0 w3
L dy

)2/3
≥ 0.

Now from the proof of uniqueness of wL, Appendix B, we can conclude that λ2 < 0.
By Lemma 1.1, we know that L−1 exists. In the next step we calculate the integral∫ L

0 wLL−1wL dy. Using a perturbation argument, we get
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Lemma 1.2 We have

lim
L→π

∫ L

0
wLL−1wL dy = π, (1.17)

lim
L→+∞

∫ L

0
wLL−1wL dy =

3

4

∫ ∞

0
w2
∞ dy, (1.18)

where w∞(y) is given by

w
′′ − w + w2 = 0, w′(0) = 0, w′(y) < 0, w(y) > 0, 0 < y < +∞. (1.19)

We will compute
∫ L
0 wLL−1wL dy by using elliptic integrals and derive the following result.

Lemma 1.3 We have ∫ L

0
wLL−1wL dy > 0

for all L > π.

Before proving Lemma 1.3, we rewrite wL using Weierstrass functions. An introduction to
Weierstrass functions can be found in [?].

Let wL(0) = M, wL(L) = m.
From (1.12), we have

(w′
L)2 = w2

L −
2

3
w3

L −M2 +
2

3
M3 (1.20)

and

−m2 +
2

3
m3 = −M2 +

2

3
M3. (1.21)

From (1.21), we deduce that
Mm

M + m
= M + m− 3

2
. (1.22)

Now let

ŵ = −1

6
wL +

1

12
. (1.23)

Elementary calculations give

(ŵ′)2 = 4ŵ3 − g2ŵ − g3 = 4(ŵ − e1)(ŵ − e2)(ŵ − e3), (1.24)

where

g2 =
1

12
, g3 = − 1

216
− 1

36

(
−M2 +

2

3
M3

)
, (1.25)
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e1 =
1

6
(M + m)− 1

6
, e2 = −1

6
m +

1

12
, e3 = −1

6
M +

1

12
. (1.26)

For the Weierstrass function p(z) we have [?]:

ŵ(x) = p(x + α; g2, g3) (1.27)

for some constant α. From now on, we will avoid the arguments g2 and g3 of p.
We get

p(fi) = ei, p′(fi) = 0, i = 1, 2, 3, f1 + f2 + f3 = 0 (1.28)

which implies that
ŵ(x) = p(f3 + x), L = f1. (1.29)

The Weierstrass function ζ(z) satisfies

ζ(z) =
1

z
−

∫ z

0

(
p(u)− 1

u2

)
du

and so we get
ζ ′(u) = −p(u), ζ(fi) = ηi, i = 1, 2, 3, η1 + η2 + η3 = 0. (1.30)

We calculate

∫ L

0
ŵ(x)dx =

∫ f1

0
p(f3 + x)dx = −ζ(u)|−f2

f3
= ζ(f3) + ζ(f2) (1.31)

= −ζ(f1) = −ζ(L).

This implies that

∫ L

0
w2

L dy =
∫ L

0
wL dy =

∫ L

0

(
−6ŵ +

1

2

)
dy = 6ζ(L) +

L

2
. (1.32)

By the formulas on page 649 of [?], we get

ζ(L) =
K(k)

3L
[3E(k) + (k − 2)K(k)], (1.33)

e1 =
(2− k)K2(k)

3L2
,

e2 =
(2k − 1)K2(k)

3L2
,
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e3 =
−(k + 1)K2(k)

3L2
,

where e1, e2 and e3 are given in (1.26) and

e1e2 + e2e3 + e1e3 = −1

4
g2 = − 1

48
.

Here E(k) and K(k) denote Jacobi elliptic integrals defined as

E(k) =
∫ π

2

0

√
1− k2 sin2 ϕdϕ, K(k) =

∫ π
2

0

1√
1− k2 sin2 ϕ

dϕ.

We get
L = 2(k2 − k + 1)

1
4 K(k). (1.34)

Now (1.34) implies
dL

dk
=

4K2((2k − 1)K2 + 4KK ′(k2 − k + 1))

L3
, (1.35)

where the argument k of K has been omitted. By (1.34), for every L > π there is a unique k.
Further, we have dk

dL
> 0 and

(2k − 1)K + 4K ′(k2 − k + 1) > 0. (1.36)

Now we come to the Proof of Lemma 1.3:
We set φL = L−1wL and so φL solves

φ
′′
L − φL + 2wLφL = wL, φ′L(0) = φ′L(L) = 0.

Set

φL = wL +
1

2
yw′

L(y) + Ψ. (1.37)

Then Ψ(y) satisfies
Ψ
′′ −Ψ + 2wLΨ = 0,

Ψ′(0) = 0, Ψ′(L) = −1

2
Lw

′′
L(L). (1.38)

Next we set Ψ0 = ∂wL

∂M
. Then Ψ0 solves

Ψ
′′
0 −Ψ0 + 2wLΨ0 = 0, (1.39)
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Ψ0(0) = 1, Ψ′
0(0) = 0.

Integration of (1.39) gives

Ψ′
0(L) =

∫ L

0

∂wL

∂M
dy − 2

∫ L

0
wL

∂wL

∂M
dy

=
d

dM

(∫ L

0
(wL − w2

L) dy

)
−

(
wL(L)− w2

L(L)
) dL

dM
.

Using the equation for wL, we have
∫ L
0 (wL − w2

L) dy = 0. Thus we obtain

Ψ′
0(L) = −(wL(L)− w2

L(L))
dL

dM
. (1.40)

Comparing (1.38) and (1.40), we have

Ψ(x) =
L

2

(
dL

dM

)−1

Ψ0(x). (1.41)

Thus we get ∫ L

0
wLφL dy =

∫ L

0

(
wL +

1

2
yw′

L + Ψ
)

wL dy

=
3

4

∫ L

0
w2

L dy +
1

4
Lw2

L(L) +
L

2

(
dL

dM

)−1 ∫ L

0
wLΨ0 dy. (1.42)

Further, we have ∫ L

0
wLΨ0 dy =

∫ L

0
wL

∂wL

∂M
dy

=
1

2

d

dM

∫ L

0
w2

L dy − 1

2
w2

L(L)
dL

dM

=
1

2

[
d

dL

∫ L

0
w2

L dy − w2
L(L)

]
dL

dM
. (1.43)

Substituting (1.43) into (1.42), we obtain

∫ L

0
wLφL dy =

3

4

∫ L

0
w2

L dy +
1

4
L

d

dL

∫ L

0
w2

L dy (1.44)

=
L−2

4

d

dL

(
L3

∫ L

0
w2

L dy

)
.
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By (1.32) and (1.34), we derive

L3
∫ L

0
w2

L dy = L3
∫ L

0
wL dy = 2L2K[3E + (k − 2)K] +

L4

2

= 8
√

k2 − k + 1K3
[
3E + (k − 2 +

√
k2 − k + 1)K

]
. (1.45)

If 2k − 1 ≥ 0, we compute
1

8

d

dk

(
L3

∫ L

0
w2

L

)
> 0.

If 2k − 1 < 0, using (1.36) and

dK

dk
=

E − (k′)2K

k(k′)2
,

dE

dk
=

E −K

k
,

where k′ =
√

1− k2, we have

1

8

d

dk

(
L3

∫ L

0
w2

L

)
=

d

dk

[√
k2 − k + 1K3[3E + ρkK]

]

=
√

k2 − k + 1K2

[
9
dK

dk
E + 3K

dE

dk
+

dρk

dk
K2 + 4ρkK

dK

dk
+

2k − 1

2(k2 − k + 1)
K[3E + ρkK]

]

=
√

k2 − k + 1K2

[
3
d(EK)

dk
+ 2E

(
dK

dk
+

2k − 1

4(k2 − k + 1)
K

)
+ 4

dK

dk
(E + ρkK)

]

+
√

k2 − k + 1K2

[
K

(
dρk

dk
K +

2k − 1

2(k2 − k + 1)
(2E + ρkK)

) ]
,

where ρk = k− 2 +
√

k2 − k + 1. In the previous expression each term is positive which follows
from basic calculations.

This completes the proof.

1.2 Nonlocal Eigenvalue Problems

Since the nonlocal eigenvalue problem in this problem is defined in a finite interval in contrast
to all previous studies in the book we have to derive and study it afresh.

Linearising (1.2) around the steady state

AL = ξwL(Lx), ξ−1
L =

∫ 1

0
w2

L(Lx)dx, (1.46)
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we get the eigenvalue problem

ε2φxx − φ + 2wLφ− ηw2
L = λφ, (1.47)

−η + 2ξL

∫ 1

0
wLφ dx = τλη.

We also rescale:
y = Lx. (1.48)

Solving the second equation for η and putting it into the first equation, we derive the following
NLEP:

φ
′′ − φ + 2wLφ− 2

1 + τλ

∫ L
0 wLφ dy
∫ L
0 w2

L dy
w2

L = λφ, y ∈ (0, L), (1.49)

with
φ′(0) = φ′(L) = 0

and
λ = λR +

√−1λI ∈ C. (1.50)

In this subsection, we assume that τ = 0. Thus (1.49) can be written as

Lγ[φ] := L[φ]− γ

∫ L
0 wLφ dy
∫ L
0 w2

L dy
w2

L = λφ, φ′(0) = φ′(L) = 0. (1.51)

Then we have

Lemma 1.4 Suppose that γ 6= 1. Then λ = 0 is not an eigenvalue of (1.49).

Proof: Supposing λ = 0, we get

0 = L[φ]− γ

∫ L
0 wLφ dy
∫ L
0 w2

L dy
w2

L

= L
(
φ− γ

∫ L
0 wLφ dy
∫ L
0 w2

L dy
wL

)
.

By Lemma 1.1,

φ− γ

∫ L
0 wLφ dy
∫ L
0 w2

L dy
wL = 0.
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Multiplying this equation by wL and integrating, we get

(1− γ)
∫ L

0
wLφ dy = 0.

Hence, since γ 6= 1, we have ∫ L

0
wLφ dy = 0.

This implies
L[φ] = 0

and by Lemma 1.1 we get
φ = 0.

Next we prove that the unstable eigenvalues are bounded uniformly in τ .

Lemma 1.5 Let λ be an eigenvalue of (1.49) with Re(λ) ≥ 0. Then there is a constant C
independent of τ > 0 which satisfies

|λ| ≤ C. (1.52)

Proof: We multiply (1.49) by the complex conjugate φ̄ of φ and integrate. Then we get

λ
∫ L

0
|φ|2 dy = −

∫ L

0
(|φ′|2 + |φ|2 − 2wL|φ|2) dy

− 2

1 + τλ

(
∫ L
0 wLφ dy)(

∫ L
0 w2

Lφ̄ dy)
∫ L
0 w2

L dy
, (1.53)

where |φ|2 = φφ̄. Using ∣∣∣∣
1

1 + τλ

∣∣∣∣ ≤ for Re(λ) ≥ 0, (1.54)

we have ∣∣∣∣∣
2

1 + τλ

(
∫ L
0 wLφ dy)(

∫ L
0 w2

Lφ̄ dy)
∫ L
0 w2

L dy

∣∣∣∣∣ ≤ C
∫ L

0
|φ|2 dy, (1.55)

where C is independent of τ .
Now (1.52) follows from (1.53) and (1.55).
Next we study the eigenvalue problem (1.49) and complete the proof of Theorem 1. We

remark that the operator Lγ is not self-adjoint.
Assuming that τ = 0, we have
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Lemma 1.6 Assume that (H2c) holds, i.e.

∫ L

0
wLL−1wL dy > 0. (1.56)

Let λ be an eigenvalue of (1.51). Then

Re(λ) < 0.

The proof of Lemma 1.6 requires the following result:

Lemma 1.7 Assuming that (H2c) is valid, there is a1 > 0 such that

Q[φ, φ] :=
∫ L

0
(|φ′|2 + φ2 − 2wLφ2) dy +

2
∫ L
0 w2

Lφ dy
∫ L
0 wLφ dy

∫ L
0 w2

L dy
(1.57)

−
∫ L
0 w3

L dy
(∫ L

0 w2
L dy

)2

(∫ L

0
wLφ dy

)2

≥ a1d
2
L2(φ,X1) for all φ ∈ H1(0, L).

Here X1 = span {w} and dL2 denotes distance in L2-norm.

Using Lemma 1.7, we have

Lemma 1.8 Let (λ, φ) satisfy (1.49) with Re(λ) ≥ 0. Assuming that (H2c) is valid, we get

Re[λ̄χ(τλ)− λ] + |χ(τλ)− 1|2
(∫ L

0 w3
L dy

∫ L
0 w2

L dy

)
≤ 0, (1.58)

where

χ(τλ) =
2

1 + τλ
. (1.59)

and λ̄ denotes the conjugate of λ.

Proof of Lemma 1.8: Let (λ, φ) solve (1.49) and set λ = λR +
√−1λI and φ = φR +

√−1φI .
Let χ(τλ) be given in (1.59). By (1.49) and its complex conjugate, we have

Lφ− χ(τλ)

∫ L
0 wLφ dy
∫ L
0 w2

L dy
w2

L = λφ, (1.60)

Lφ̄− χ̄(τλ)

∫ L
0 wLφ̄ dy
∫ L
0 w2

L dy
w2

L = λ̄φ̄. (1.61)
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We multiply (1.60) by φ̄ and integrate by parts to get

−λ
∫ L

0
|φ|2 dy − χ(τλ)

(
∫ L
0 wLφ dy)(

∫ L
0 w2

Lφ̄ dy)
∫ L
0 w2

L dy
(1.62)

=
∫ L

0
(|φ′|2 + |φ|2) dy − 2

∫ L

0
wL|φ|2 dy.

Multiplication of (1.61) by wL gives

∫ L

0
w2

Lφ̄ dy − χ̄(τλ)

∫ L
0 wLφ̄ dy
∫ L
0 w2

L dy

∫ L

0
w3

L dy = λ̄
∫ L

0
wLφ̄ dy. (1.63)

Multiplying (1.63) by
∫ L
0 wLφ dy and substituting the result into (1.62), we have

∫ L

0
(|φ′|2 + |φ|2 − 2wL|φ|2) dy + λ

∫ L

0
|φ|2 dy (1.64)

= −χ(τλ)

[
λ̄ + χ(τλ)

(∫ L
0 w3

L dy
∫ L
0 w2

L dy

) ] | ∫ L
0 wLφ dy|2
∫ L
0 w2

L dy
.

We express (1.64) by the quadratic functional Q defined in Lemma 1.7. Using (1.63), we have

[
Re[λ̄χ(τλ)− λ] + |χ(τλ)− 1|2

(∫ L
0 w3

L dy
∫ L
0 w2

L dy

) ] | ∫ L
0 wLφ dy|2
∫ L
0 w2

L dy
(1.65)

= −Q[φR, φR]−Q[φI , φI ]− Re(λ)

[∫ L

0
|φ|2 dy − | ∫ L

0 wLφ dy|2
∫ L
0 w2

L dy

]
≤ 0.

The lemma follows.
Finally, we prove Proof of Lemma 1.6:
Assuming τ = 0, from (1.58) we get

Re[λ̄χ(τλ)− λ] + |χ(τλ)− 1|2
(∫ L

0 w3
L dy

∫ L
0 w2

L dy

)

= (γ − 1)Re(λ) + |γ − 1|2
(∫ L

0 w3
L dy

∫ L
0 w2

L dy

)
≤ 0

which implies

Re(λ) ≤ −(γ − 1)

(∫ L
0 w3

L dy
∫ L
0 w2

L dy

)
< 0
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since γ > 1.
Finally, we prove Proof of Lemma 1.7:
The operator

L1φ := Lφ−
∫ L
0 wLφ dy
∫ L
0 w2

L dy
w2

L

−
∫ L
0 w2

Lφ dy
∫ L
0 w2

L dy
wL +

∫ L
0 w3

L dy
∫ L
0 wLφ dy

(
∫ L
0 w2

L dy)2
wL (1.66)

is self-adjoint and

Q[φ, φ] ≥ 0 ⇐⇒ L1 has no positive eigenvalues.

Simple computations give
L1wL = 0.

If L1φ = 0, then we have
Lφ = c1(φ)wL + c2(φ)w2

L,

where

c1(φ) =

∫ L
0 w2

Lφ dy
∫ L
0 w2

L dy
−

∫ L
0 w3

L dy
∫ L
0 wLφ dy

(
∫ L
0 w2

L dy)2
, (1.67)

c2(φ) =

∫ L
0 wLφ dy
∫ L
0 w2

L dy
. (1.68)

Thus we get
φ− c1(φ)(L−1wL)− c2(φ)wL = 0. (1.69)

Substitution of (1.69) into (1.67) gives

c1(φ) = c1(φ)

∫ L
0 w2

LL−1wL dy
∫ L
0 w2

L dy
− c1(φ)

∫ L
0 w3

L dy
∫ L
0 wLL−1wL dy

(
∫ L
0 w2

L dy)2

= c1(φ)− c1(φ)

∫ L
0 w3

L dy
∫ L
0 wLL−1wL dy

(
∫ L
0 w2

L dy)2
.

Now (H2c) gives c1(φ) = 0. Thus we have φ = c2(φ)wL. This implies that wL is the only
eigenfunction of L1 to eigenvalue zero.
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Next we assume that the operator L1 has a positive eigenvalue λ0 > 0 with eigenfunction
φ0. Due to the self-adjointness of L1, we have

∫ L

0
wLφ0 dy = 0 (1.70)

and so

(L − λ0)φ0 =

∫ L
0 w2

Lφ0 dy
∫ L
0 w2

L dy
wL. (1.71)

Note that
∫ L
0 w2

Lφ0 dy 6= 0. In fact, if
∫ L
0 w2

Lφ0 dy = 0, then λ0 > 0 is an eigenvalue of L. By
Lemma 1.1, λ0 = λ1 and φ0 does not change sign. This contradicts φ0 ⊥ wL and so λ0 6= λ1.
Thus L − λ0 is invertible. From (1.71), we get

φ0 =

∫ L
0 w2

Lφ0 dy
∫ L
0 w2

L dy
(L − λ0)

−1wL.

Thus ∫ L

0
w2

Lφ0 dy =

∫ L
0 w2

Lφ0 dy
∫ L
0 w2

L dy

∫ L

0
((L − λ0)

−1wL)w2
L dy.

Since
∫ L
0 w2

Lφ0 dy 6= 0, we have

∫ L

0
w2

L dy =
∫ L

0
((L − λ0)

−1wL)w2
L dy

and therefore ∫ L

0
w2

L dy =
∫ L

0
((L − λ0)

−1wL)((L − λ0)wL + λ0wL) dy.

Using λ0 > 0, we get

0 =
∫ L

0
((L − λ0)

−1wL)wL dy. (1.72)

For β(t) =
∫ L
0 ((L − t)−1wL)wL dy for t > 0, t 6= λ1 we compute

β(0) =
∫ L

0
(L−1wL)wL dy > 0

using assumption (H2c) and

β′(t) =
∫ L

0
((L − t)−2wL)wL dy > 0.

16



Thus we have β(t) > 0 for all t ∈ (0, λ1). Further, we get

β(t) → 0 as t → +∞

which implies β(t) < 0 for t > λ1.
To summerise, we have β(t) 6= 0 for t > 0, t 6= λ1. Therefore (1.72) must be false and so L1

cannot have any positive eigenvalues.
Since

Q[φ, φ] = −
∫ L

0
(L1φ)φ dy,

we get Q[φ, φ] ≥ 0 for all φ with equality if and only if φ = cwL for some constant c.
This finished the proof.
For the uniqueness and transversality of the Hopf bifurcation for some positive τ = τ0 we

refer to [?].

1.3 Extensions to Higher Dimensions

In the previous subsections, we have studied the one-dimensional case. In the proofs we have
used two key ingredients:

(H1c) The operator L is invertible.
(H2c) The integral

∫ L
0 wLL−1wL dy is positive.

We now consider the case of general domains in Rn, N ≥ 2, namely the problem





At = ∆A− A + A2

ξ
, x ∈ ΩL, t > 0,

τξt = −ξ + 1
|ΩL|

∫
ΩL

A2 dx,

A > 0, ∂A
∂ν

= 0 on ∂ΩL,

(1.73)

ΩL = 1
ε
Ω ⊂ Rn with L = 1

ε
denotes the rescaled domain and we assume it is a smooth and

bounded. Letting the dimension satisfy N ≤ 5, then the exponent 2 is subcritical. A steady
state (1.73) is given by

A = ξu, ξ−1 =
1

|ΩL|
∫

ΩL

u2 dx, (1.74)

where u solves 



∆u− u + u2 = 0, u > 0 in ΩL,

∂u
∂ν

= 0 on ∂ΩL.
(1.75)
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The energy minimising solution wL(x) of (1.75) is defined by

E[wL] = inf
u∈H1(ΩL),u6≡0

E[u], (1.76)

where

E[u] =

∫
ΩL

(|∇u|2 + u2) dy

(
∫
ΩL

u3 dy)2/3
.

Then

AL = ξLwL, ξ−1
L =

1

|ΩL|
∫

ΩL

w2
L dx (1.77)

is a steady-state to the shadow system (1.73). Letting

L[φ] = ∆φ− φ + 2wLφ,

then we have

Lemma 1.9 Consider the following eigenvalue problem:



Lφ = λφ, in ΩL,

∂φ
∂ν

= 0 on ∂ΩL.
(1.78)

Then λ1 > 0 and λ2 ≤ 0.

The proof of this lemma follows that of Lemma 1.1.
Next we make two key assumptions:

(H1c) L−1 exists.

(H2c)
∫

ΩL

wL(L−1wL) dy > 0.

Then we have the following result:

Theorem 4 Assume that (H1c) and (H2c) are valid. Then for, τ small enough, the steady
state (AL, ξL) is linearly stable. There is a unique τ = τc such that (AL, ξL) is stable for
τ < τc, unstable for τ > τc, and there is a Hopf bifurcation at τ = τc. This Hopf bifurcation is
transversal.

The proof of Theorem 4 goes along the same lines as for one dimension.
If L is large, by [?] and[?] we know that that (H1) is valid and (H2) holds for N ≤ 3. This

recovers the results of [?].
For general ε, it is hard to verify (H1c) and (H2c). We expect that (H1c) is valid for generic

domains.
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2 The Gierer-Meinhardt system with saturation

We investigate the shadow Gierer-Meinhardt system with saturation:





At = ε2∆A− A + A2

ξ(1+kA2)
, A > 0 in Ω× (0,∞),

τξt = −ξ + 1
|Ω|

∫
Ω A2(x) dx, ξ > 0 in (0,∞),

∂A
∂ν

= 0 on ∂Ω× (0,∞).

(2.1)

Concerning the existence of steady states, we can no longer rescale with respect to the
amplitude as we did for the system in case k = 0 without saturation. Thus it is impossible to
reduce the existence problem for steady states to that of a single partial differential equation
alone. Instead, we consider a system of a partial differential equation coupled to an algebraic
equation: 




ε2∆A− A + A2

ξ(1+kA2)
= 0, A > 0 in Ω,

ξ = 1
|Ω|

∫
Ω A2(x) dx, ξ > 0,

∂A
∂ν

= 0 on ∂Ω.

(2.2)

Firstly, we solve the parametrised ground state equation





∆wδ − wδ +
w2

δ

1+δw2
δ

= 0, wδ > 0 in Rn,

wδ(0) = maxy∈Rn wδ(y), wδ(y) → 0 as |y| → ∞.
(2.3)

Secondly, we consider the algebraic equation

δ
(∫

Rn
w2

δ(y) dy
)2

= k0, (2.4)

where
k0 = lim

ε→0
4kε−2n|Ω|2. (2.5)

We remark that by introducing saturation the type of nonlinearity changes from convex in
(??) to bistable in (2.3).

For the stability part, , we study NLEP





∆φ− φ +

(
2wδ

1 + δw2
δ

− 2δw3
δ

(1 + δw2
δ)

2

)
φ− 2

∫
Rn wδφ∫
Rn w2

w2
δ

1 + δw2
δ

= λφ in Rn,

φ ∈ H1(Rn), λ ∈ C.
(2.6)
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In the one-dimensional case, we will give a complete study. In higher dimensions, we will
derive sufficient conditions on k to ensure the existence and stability of solutions.

We state our result in the one-dimensional case. Setting Ω = (0, 1), we have

Theorem 5 Assume that
lim
ε→0

4kε−2|Ω|2 = k0 ∈ [0, +∞). (2.7)

Then for each k0 ≥ 0 and for ε > 0 small enough, (2.2) has a steady state (uε, ξε) such that
(a) Aε(x) = (1 + o(1))ξεwδε(

x
ε
), where δε → δ, δ is the unique solution to (2.4) and wδε is

the unique solution to (2.3),
(b) ξε = (2 + o(1))(ε

∫
R w2

δε
)−1.

If τ is small enough, the steady state (Aε, ξε) is linearly stable for (2.1).

In case of higher dimensions, the statement is more involved. Let Q ∈ ∂Ω. Denoting the
mean curvature function at Q by H(Q), we we call Q a nondegenerate critical point of H(Q),
if we have

∂iH(Q) = 0, i = 1, . . . , n− 1, det(∂i∂jH(Q)) 6= 0,

where ∂i denotes the i−th tangential derivative. Then we have

Theorem 6 Consider dimensions n = 2, 3, . . .. Assume that

lim
ε→0

4kε−2n|Ω|2 = k0 ∈ [0, +∞) (2.8)

and that Q0 ∈ ∂Ω is a nondegenerate critical point of H(Q).
Then for each k0 ≥ 0 and for ε small enough, (2.2) admits a steady-state solution (Aε, ξε)

such that
(a) Aε(x) = (1 + o(1))ξεwδε(

x−Qε

ε
), where δε → δ, δ is a solution to (2.4) and wδε is the

unique solution to (2.3),
(b) Qε → Q0,
(c) ξε = (2 + o(1))(εn

∫
Rn w2

δε
)−1.

If Q0 is a nondegenerate local maximum point of H(Q), then there is k̂0 > 0 such that in
case n ≤ 3 and τ small enough, for all k0 ∈ (0, k̂0) the steady state (Aε, ξε) is linearly stable for
(2.1).

20



2.1 The parametrised ground state

In this subsection, we consider (2.3) and (2.4).
First we note that for δ = 0 (2.3) becomes (??). For δ, we use the scaling

wδ(y) =
1√
δ
v

(
y

δ
1
4

)
(2.9)

and change (2.3) equivalent problem





∆v + g(v) = 0, v > 0 in Rn,

v(0) = maxy∈Rn v(y), v(y) → 0 as |y| → ∞.
(2.10)

where

g(v) = −
√

δv +
v2

1 + v2
. (2.11)

Now for each δ ∈ (0, 1
4
), the equation g(v) = 0 has exactly two roots for v > 0 given by

t1(δ) =
1−√1− 4δ

2
√

δ
, t2(δ) =

1 +
√

1− 4δ

2
√

δ
. (2.12)

Next we study

c(δ) =
∫ t2(δ)

0
g(s) ds. (2.13)

We calculate

c(δ) = −
√

δ
(t2(δ))

2

2
+ t2(δ)− arctan(t2(δ)).

To study c(δ), we consider the function

ρ(t) =
t− arctan (t)

t2

which is well-defined for t ∈ [0, +∞). Further, ρ(t) has a unique critical point t∗ which solves

arctan t =
2t + t3

2(1 + t2)
, t > 0. (2.14)

Numerically we get t∗ = 1.514 . . . < π
2
. Setting

δ∗ = (2ρ(t∗))2, (2.15)
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it is easy to see that

c(δ)





> 0 for δ < δ∗,

= 0 for δ = δ∗,

< 0 for δ > δ∗.

(2.16)

Next we state a few properties of the function g(v).

Lemma 2.1 For each δ ∈ (0, δ∗), the function g(v) has the following properties:
(g1) g ∈ C3(R,R), g(0) = 0, g′(0) < 0.
(g2) There exist b, c > 0 such that b < c, g(b) = g(c) = 0, g(v) > 0 in (−∞, 0) ∪ (b, c), and
g(v) < 0 in (0, b) ∪ (c, +∞).
(g3)

∫ c
0 g(v)dv > 0.

(g4) Let θ number such θ > b and G(θ) = 0, where

G(θ) =
∫ θ

0
g(s)ds.

Further, let ρ be the smallest number such that g(u)
u−ρ

is nonincreasing for u ∈ (ρ, c). Then either

(i) θ ≥ ρ, or
(ii) θ < ρ and Kg(u) is nonincreasing in (θ, ρ), where

Kg(u) =
ug′(u)

g(u)
.

Further, we have Kg(u) ≥ Kg(θ) for u ∈ (b, θ) and Kg(u) ≤ Kg(ρ) for u ∈ (0, b) ∪ (ρ, c).

Proof.
For the proof of Lemma 2.1 we refer to [?]. The proof is elementary and we note that

Kg(u) → ±∞ as u → ±b if g′(b) > 0.
Next we state some important properties of wδ.

Lemma 2.2 For each δ ∈ [0, δ∗), (2.3) possesses a unique solution, denoted by wδ, such that
(i) wδ ∈ C∞(Rn).
(ii) wδ > 0 is radially symmetric and w′

δ(r) < 0 for r 6= 0.
(iii) wδ and its first- and second-order derivatives decay exponentially at infinity, i.e., for

every δ̃ > 0 there is c1 > 0 such that

|wδ(y)| ≤ c1e
−(1−δ̃)|y|,
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∣∣∣∣∣
∂wδ

∂yi

(y)

∣∣∣∣∣ ≤ c1e
−(1−δ̃)|y|, i = 1, . . . , n,

∣∣∣∣∣
∂2wδ

∂yiyj

(y)

∣∣∣∣∣ ≤ c1e
−(1−δ̃)|y|, i, j, = 1, . . . , n.

(iv) The largest eigenvalue of the operator

Lδ = ∆− 1 +
2wδ

1 + δw2
δ

− 2δw3
δ

(1 + δw2
δ)

2
: H2(Rn) → L2(Rn), (2.17)

denoted by λ1 = λ1(Lδ), is positive and simple. Its eigenfunction φ is radially symmetric and
it can be chosen to be positive.

(v) The second largest eigenvalue of Lδ is 0. Its kernel consists of the translation modes and
has dimension n. Namely, λ2(Lδ) = 0 and

Kernel

(
∆− 1 +

2wδ

1 + δw2
δ

− 2δw3
δ

(1 + δw2
δ)

2

)
= span

{
∂wδ

∂y1

, . . . ,
∂wδ

∂yn

}
. (2.18)

Proof: By Lemma 2.1, g(v) = −√δv + v2

1+v2 satisfies conditions (g1)-(g4). By Proposition 1.3
of [?], Lemma 2.2 holds. To prove this lemma, we first show the statements of Lemma 2.2 for
(2.10). Then they follow for the transformed function (2.3). We refer to [?, ?, ?] for related
results.

Now we provide some information about the dependence of wδ on δ state some relevant
identities.

Lemma 2.3 (1) wδ(y) is C1 in δ for all δ ∈ (0, δ∗) and y ∈ Rn,
(2) wδ(y) → t2(δ∗)/

√
δ∗ in C2

loc(Rn) as δ → δ∗.
(3) We have

Lδwδ =
w2

δ

1 + δw2
δ

− 2δw4
δ

(1 + δw2
δ)

2
, (2.19)

Lδ
dwδ

dδ
=

w4
δ

(1 + δw2
δ)

2
, (2.20)

Lδ(y · ∇wδ) = 2

(
wδ − w2

δ

1 + δw2
δ

)
, (2.21)

Lδ

(
wδ + 2δ

dwδ

dδ
+

1

2
y · ∇wδ

)
= wδ, (2.22)
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Lδ

(
wδ + 2δ

dwδ

dδ

)
=

w2
δ

1 + δw2
δ

. (2.23)

Proof: (1) Lemma 2.2 gives the uniqueness of wδ and the result follows. (2) Noting that
wδ ≤ t2(δ)/

√
δ and taking the limit δ → δ∗, we have that wδ converges in C2

loc(Rn) to a solution
of

∆u− u +
u2

1 + δ∗u2
= 0, y ∈ Rn, u = u(|y|)

which admits only constant solutions. Further, this constant is t2(δ∗)/
√

δ∗ since wδ(0) →
t2(δ∗)/

√
δ∗. (2) follows.

(3) The identities (2.19) and (2.20) are computed directly. (2.21) are derived using Po-
hozaev’s identity. Finally, (2.22) and (2.23) follow from (2.19) – (2.21).

Next we consider an algebraic equation.

Lemma 2.4 For each fixed k0 > 0, there exists δ ∈ (0, δ∗) such that

k0 = δ
(∫

Rn
w2

δ(y) dy
)2

. (2.24)

holds.

Proof: Let β(δ) = δ (
∫
Rn w2

δ(y) dy)
2
. Then function β(δ) is continuous and β(0) = 0. Next

we consider the asymptotic behaviour of wδ as δ → δ∗. By Lemma 2.3 (2), we have wδ(|y|) →
t2(δ∗)/

√
δ∗ in C2

loc(Rn) as δ → δ∗. Hence we get

β(0) = 0, β(δ) →∞ as δ → δ∗. (2.25)

Finally, using the mean-value theorem, for each k0 ∈ (0, +∞), there exists δ ∈ (0, δ∗) such that
β(δ) = k0.

Remark 2.1 To show the uniqueness of the solution δ ∈ (0, δ∗) to (2.24), we compute

dβ

dδ
=

[∫

Rn
w2

δ(y) dy + 4δ
∫

Rn
wδ

dwδ

dδ
dy

] ∫

Rn
w2

δ(y) dy. (2.26)

Then we claim that

Lemma 2.5 ∫

Rn
wδ

dwδ

dδ
dy

∣∣∣∣∣
δ=0

> 0. (2.27)
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Proof: From (2.20) and (2.22), we get

∫

Rn
wδ

dwδ

dδ
dy

∣∣∣∣∣
δ=0

=
∫

Rn
w0L

−1
0 (w4

0) dy

=
∫

Rn
w4

0(L
−1
0 w0) dy =

(
1− n

10

) ∫

Rn
w5

0 dy > 0.

Thus the solution to (2.24) is unique if k is small enough. We expect that Lemma 2.5 holds
for any δ ∈ (0, δ∗) and show that this is true for the one-dimensional case:

Lemma 2.6 In case n = 1, for any δ ∈ (0, δ∗) we have

d

dδ

(∫

R
w2

δ dy
)

> 0. (2.28)

Proof. The proof of Lemma 2.6 is technical and we refer to [?].

2.2 Stability of spikes for the shadow Gierer-Meinhardt system with
saturation

Let (Aε, ξε) be the steady state given in Theorems 5 and 6. Linearising around the steady state
(Aε, ξε), we have

ε2∆φ− φ +
2Aεφ

ξε(1 + kA2
ε)
− 2kA3

εφ

ξε(1 + kA2
ε)

2
− A2

ε

ξ2
ε (1 + kA2

ε)
η = λφ, (2.29)

−η +
2

|Ω|
∫

Ω
Aεφ dx = τλη, (2.30)

where (φ, η) ∈ H2
N(Ω)×R.

In case τ = 0, we have

η =
2

|Ω|
∫

Ω
Aεφ dx. (2.31)

Inserting (2.31) into (2.29), rescaling and taking the limit as ε → 0, we obtain NLEP [?]

∆φ− φ +
2wδφ

1 + δw2
δ

− 2δw3
δφ

(1 + δw2
δ)

2
− 2

∫
Rn wδφ dy∫
R2 w2

δ dy

w2
δ

1 + δw2
δ

= λφ. (2.32)

To study (2.32), we will derive the following key result:
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Theorem 7 Consider the case n ≤ 3. Assume that δ ∈ [0, δ∗∗), where δ∗∗ > 0 is defined by

δ∗∗ = sup

{
δ ∈ (0, δ∗) :

∫

Rn
ws

dws

ds
> 0, for all s ∈ (0, δ)

}
. (2.33)

Then for all nonzero eigenvalues λ of (2.32), we have Re(λ) ≤ −c0 for some c0 > 0.

Remark 2.2 By Lemma 2.5, we have δ∗∗ > 0. By Lemma 2.6, for n = 1 we get δ∗∗ = δ∗.
Hence we have the following result.

Corollary 2.1 Let n = 1. Then for all nonzero eigenvalues λ of (2.32) and all δ ∈ [0, δ∗), it
holds that Re(λ) ≤ −c0 for some c0 > 0.

To prove Theorem 7, we use a continuation argument. In case δ = 0, Theorem 7 has been
proved in Chapter 3 and follows from the following key inequality:

Lemma 2.7 (Lemma 5.1 of [?]). Assume that n ≤ 3. Then we have

∫

Rn
(|∇φ|2 + |φ|2 − 2w2

0|φ|2) dy +
2

∫
Rn w0φ0 dy

∫
Rn w2

0φ dy∫
Rn w2

0 dy

−(
∫
Rn w0φ dy)2

(
∫
Rn w2

0 dy)
2

∫

Rn
w3

0 dy ≥ c1dL2(φ,X1), (2.34)

where

X1 =

{
w0,

∂w0

∂yj

, j = 1, . . . , n

}

and dL2 is the L2-distance.

Proof of Theorem 7:
We use the continuation method and begin by restricting φ to the Sobolev space of radially

symmetric functions given by

φ ∈ H2
r (Rn) = {φ ∈ H2(Rn) : φ = φ(|y|)}.

This is possible due to the argument in [?] and [?]. Then multiplication of (2.32) by the
conjugate function φ of φ and integration gives

Qδ[φR, φR] + Qδ[φI , φI ] = −λ
∫

Rn
|φ|2 dy, (2.35)
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where

Qδ[u, u] =
∫

Rn

(
|∇u|2 + u2 − 2w2

δu
2

1 + δw2
δ

+
2δw3

δu
2

(1 + δw2
δ)

2

)
dy (2.36)

+2

∫
Rn wδu dy∫
Rn w2

δ dy

∫

Rn

w2
δu

1 + δw2
δ

dy

and φR = Re(φ), φI = Im(φ) are the real and the imaginary parts of φ, respectively.
To prove Theorem 7, it remains to show that Qδ is positive definite for δ ∈ [0, δ∗∗). We

rewrite Qδ as follows:
Qδ[u, u] = −(Lδu, u),

where

Lδu = ∆u− u +
2wδ

1 + δw2
δ

u− 2δw3
δ

(1 + δw2
δ)

2
u−

∫
Rn wδu dy∫
Rn w2

δ dy

w2
δ

1 + δw2
δ

− wδ∫
Rn w2

δ dy

∫

Rn

w2
δu

1 + δw2
δ

dy. (2.37)

Then we have that

Qδ is positive definite ⇐⇒ Lδ has negative spectrum only. (2.38)

By inequality (2.34), the principal eigenvalue of Lδ is negative for δ = 0. Considering varying
δ, we assume that for some δ ∈ (0, δ∗), the principal eigenvalue of Lδ vanishes. Equivalently,
for some function φ ∈ H2

r (Rn) we have

Lδφ = 0. (2.39)

Next we rewrite (2.39) as

Lδφ =

∫
Rn wδφ dy∫
Rn w2

δ dy

w2
δ

1 + δw2
δ

+
∫

Rn

w2
δφ

1 + δw2
δ

dy
wδ∫

Rn w2
δ dy

.

Now by Lemma 2.2 the inverse operator L−1
δ exists and we have

φ =

∫
Rn wδφ dy∫
Rn w2

δ dy

(
L−1

δ

w2
δ

1 + δw2
δ

)
+

∫

Rn

w2
δφ

1 + δw2
δ

dy
L−1

δ wδ∫
Rn w2

δ dy
. (2.40)
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To solve (2.40), we set A =
∫
Rn wδφ dy and B =

∫
Rn

w2
δφ

1+δw2
δ
dy. Then we get





A =

∫
Rn wδL

−1
δ

w2
δ

1+δw2
δ
dy

∫
Rn w2

δ dy
A +

∫
Rn wδL

−1
δ wδ dy∫

Rn w2
δ dy

B

B =

∫
Rn

w2
δ

1+δw2
δ
L−1

δ
w2

δ

1+δw2
δ
dy

∫
Rn w2

δ dy
A +

∫
Rn

w2
δ

1+δw2
δ
L−1

δ wδ dy
∫
Rn w2

δ dy
B.

(2.41)

Using Lemma 2.2 and noting that φ ∈ H2
r (Rn), we cannot have Lδφ = 0 and φ 6= 0. This

implies A2 + B2 6= 0.
Then (2.41) has nontrivial solutions if and only if

∣∣∣∣∣∣∣∣∣∣∣∣∣

1−
∫
Rn wδL

−1
δ

w2
δ

1+δw2
δ
dy

∫
Rn w2

δ dy
−

∫
Rn wδL

−1
δ wδ dy∫

Rn w2
δ dy

−
∫
Rn

w2
δ

1+δw2
δ
L−1

δ
w2

δ

1+δw2
δ
dy

∫
Rn w2

δ dy
1−

∫
Rn

w2
δ

1+δw2
δ
L−1

δ wδ dy
∫
Rn w2

δ dy

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (2.42)

which is equivalent to 
1−

∫
Rn

w2
δ

1+δw2
δ
L−1

δ wδ dy
∫
Rn w2

δ dy




2

− 1

(
∫
Rn w2

δ dy)
2

(∫

Rn
wδL

−1
δ wδ dy

) (∫

Rn

w2
δ

1 + δw2
δ

L−1
δ

w2
δ

1 + δw2
δ

dy

)
= 0. (2.43)

Using the identities (2.19)–(2.23), we compute

∫

Rn

w2
δ

1 + δw2
δ

L−1
δ wδdy =

∫

Rn
wδL

−1
δ

w2
δ

1 + δw2
δ

dy =
∫

Rn
wδ

(
wδ + 2δ

dwδ

dδ

)
dy

=
∫

Rn
w2

δ dy + 2δ
∫

Rn
wδ

dwδ

dδ
dy, (2.44)

∫

Rn
wδL

−1
δ wδ dy =

∫

Rn
wδ

(
wδ + 2δ

dwδ

dδ
+

1

2
y · ∇wδ

)
dy

=
(
1− n

4

) ∫

Rn
w2

δ dy + 2δ
∫

Rn
wδ

dwδ

dδ
dy, (2.45)
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∫

Rn

w2
δ

1 + δw2
δ

L−1
δ

w2
δ

1 + δw2
δ

dy =
∫

Rn

w2
δ

1 + δw2
δ

(
wδ + 2δ

dwδ

dδ

)
dy

=
∫

Rn

w3
δ

1 + δw2
δ

dy + 2δ
∫

Rn

w2
δ

1 + δw2
δ

dwδ

dδ
dy. (2.46)

Multiplication of (2.21) by 1
2

dwδ

dδ
, use of (2.20) and integration gives

∫

Rn

w2
δ

1 + δw2
δ

dwδ

dδ
dy −

∫

Rn
wδ

dwδ

dδ
dy =

∫

Rn

w4
δ

(1 + δw2
δ)

2

(
−1

2
y · ∇wδ

)
dy

and so ∫

Rn

w2
δ

1 + δw2
δ

dwδ

dδ
dy =

∫

Rn
wδ

dwδ

dδ
dy +

n

2

∫

Rn
γδ(wδ) dy, (2.47)

where

γδ(wδ) =
∫ wδ

0

s4

(1 + δs2)2
ds.

Finally, using

h(δ) :=

(
2δ

∫

Rn
wδ

dwδ

dδ
dy

)2

−
((

1− n

4

) ∫

Rn
w2

δ dy + 2δ
∫

Rn
wδ

dwδ

dδ
dy

)

×
(∫

Rn

w3
δ

1 + δw2
δ

dy + nδ
∫

Rn
γδ(wδ) dy + 2δ

∫

Rn
wδ

dwδ

dδ
dy

)

= −2δ
∫

Rn
wδ

dwδ

dδ
dy

((
1− n

4

) ∫

Rn
w2

δ dy +
∫

Rn

w3
δ

1 + δw2
δ

dy + nδ
∫

Rn
γδ(wδ) dy

)

−
(
1− n

4

) ∫

Rn
w2

δ dy

(∫

Rn

w3
δ

1 + δw2
δ

dy + nδ
∫

Rn
γδ(wδ) dy

)
, (2.48)

Hence (2.43) can be written as
h(δ) = 0. (2.49)

We remark that
1− n

4
> 0 since we consider the case n ≤ 3.

Now, for 0 ≤ δ ≤ δ∗∗, we have h(δ) < 0 and so we must have δ > δ∗∗. Since we have assumed
that δ ∈ [0, δ∗∗) we arrive at a contradiction.

Theorem 7 follows.
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Remark 2.3 1) By the proof of Theorem 7, the number δ∗∗ can be replaced by

δ∗∗∗ = sup{δ ∈ (0, δ0) : h(s) < 0, s ∈ (0, δ)}. (2.50)

2) Another sufficient condition for stability can be stated as follows. Note that

∫

Rn

w3
δ

1 + δw2
δ

dy =
∫

Rn
w2

δ dy +
∫

Rn
|∇wδ|2 dy >

∫

Rn
w2

δ dy. (2.51)

Thus we have (
1− n

4

) ∫
Rn w2

δ dy
(∫

Rn
w3

δ

1+δw2
δ
dy +

∫
Rn nδγδ(wδ) dy

)

(
1− n

4

) ∫
Rn w2

δ dy +
∫
Rn

w3
δ

1+δw2
δ
dy +

∫
Rn nδγδ(wδ) dy

>

(
1− n

4

) ∫
Rn w2

δ dy
(
2− n

4

) =
4− n

8− n

∫

Rn
w2

δ dy.

Now h(δ) < 0 is guaranteed if

4− n

8− n

∫

Rn
w2

δ dy + 2δ
∫

Rn
wδ

dwδ

dδ
dy > 0. (2.52)

Therefore, setting

δ∗∗∗∗ = sup

{
δ ∈ (0, δ∗) :

4− n

8− n

∫

Rn
w2

s dy + 2s
∫

Rn
ws

dws

ds
dy > 0, for all s ∈ (0, δ)

}
,

(2.53)
Theorem 7 is valid for δ ∈ (0, δ∗∗∗∗).

Proof of Theorem 5 and Theorem 6: Now we finish the proofs of our main theorems.
Concerning the existence of solutions to (2.2), we use the scaling

A = ξu, ξ−1 =
1

|Ω|
∫

Ω
u2 dx. (2.54)

Then (2.2) is equivalent to

{
ε2∆u− u + u2

1+δu2 = 0, u > 0, in Ω,
∂u
∂ν

= 0 on ∂Ω
(2.55)
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coupled with the algebraic equation

δ
(
2ε−n

∫

Ω
u2 dx

)2

= kε := 4kε−2n|Ω|2. (2.56)

By assumption (2.7), limε→0 kε = k0 ∈ [0, +∞). Lemma 2.4 implies that there exists
δ1 ∈ (0, δ∗) such that

δ1

(∫

Rn
w2

δ1
dy

)2

= k0. (2.57)

Next we observe that wδ is uniformly bounded in H1(Rn) for δ ∈ (0, δ1), where the bound may
depend on δ1.

By Lemma 2.2, for each fixed δ ∈ (0, δ1) we have that wδ is nondegenerate. Then Theorem
1.1 of [?] and Theorem 1.1 of [?] (see also Theorem 4.5 of [?]) imply that for ε small enough
problem (2.55) has a single boundary spike steady state uε,δ which is unique, nondegenerate
and possesses a unique local maximum point Qε,δ which converges to Q0 as ε → 0. Note that
in the one-dimensional case, this follows from the implicit function theorem, whereas in higher
dimensions we use Liapunov-Schmidt reduction.

Finally, we solve the algebraic equation

βε(δ) := δ
(
2ε−n

∫

Ω
u2

ε,δ dx
)2

= kε. (2.58)

Using βε(0) = 0 and

lim
ε→0

βε(δ) → β(δ) = δ
(∫

Rn
w2

δ dy
)2

,

where the convergence is uniform in δ ∈ (0, δ1), we derive that limε→0 βε(δ1) → δ1(
∫
Rn w2

δ1
)2 =

k0. Since uε,δ is unique and nondegenerate, βε is a continuous function of δ. Using the mean-
value theorem and considering ε small enough, for kε ∈ (0, k0) there is δε ∈ (0, δ1) such that
βε(δε) = kε. Note that δε may not be unique. Since k0 ∈ [0,∞) may be chosen arbitrarily, we
get a solution for any kε ∈ [0,∞).

Then Aε = ξεuε,δε , ξε =
(

1
|Ω|

∫
Ω u2

ε,δε
dx

)−1
is a solution required in Theorems 5 and 6,

respectively.
The existence part of the proof follows.
To investigate the stability of the solution (Aε, ξε), we consider the eigenvalue problem




ε2∆φε − φε +

(
2Aε

ξε(1 + kA2
ε)
− 2kA3

ε

ξε(1 + kA2
ε)

2

)
φε − A2

ε

ξ2
ε (1 + kA2

ε)
ηε = λεφε in Ω,

−ηε +
2

|Ω|
∫

Ω
Aεφε dx = τλεηε.

(2.59)
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Following the method in [?], we consider two cases separately. In Case 1, let λε → λ0 ∈ C
with λ0 6= 0, the so-called large eigenvalues. Then, similarly to Chapter 4, we show that λ0

satisfies

∆φ0 − φ0 +

(
2wδ

1 + δw2
δ

− 2δw3
δ

(1 + δw2
δ)

2

)
φ0 − 2

1 + τλ0

w2
δ

1 + δw2
δ

∫
Rn wδφ0 dy∫
Rn w2

δ dy
= λ0φ0. (2.60)

By Theorem 7, for n ≤ 3 and δ ∈ (0, δ∗∗), (2.60) is stable for τ small enough, i.e., for all
eigenvalues of (2.60) with λ0 6= 0 we have Re(λ0) ≤ −c0 for some c0 > 0. For n = 1, by
Corollary 2.1, we may take δ∗∗ = δ∗. This shows that the large eigenvalues are all stable.

Finally, we consider Case 2, for which λε → 0, the small eigenvalues. In that in the one-
dimensional case, λε is bounded away from zero. Thus we only have to consider the higher-
dimensional case. Then the proof follows closely Theorem 1.3 of [?].

The stability part of the proof is completed.
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