
AARMS Summer School Lecture II: The theory of Nonlocal Eignevalue Problem
(NLEP)

[1] Chapter 3 of Wei-Winter’s book on ”Mathematical Aspects of Pattern Formation in Bi-
ological Systems”, Applied Mathematical Sciences Series, Vol. 189, Springer 2014 , ISBN:
978-4471-5525-6.

In this lecture, we give a full rigorous treatment of the nonlocal eigenvalue problem (NLEP).

1 A basic theorem for τ = 0

We start with the special case which arises when the time relaxation parameter τ of the inhibitor
vanishes.

Next we consider our basic NLEP for τ = 0.

Theorem 1 Assume that

r = 2, 1 < p ≤ 1 +
4

N
or r = p + 1, 1 < p <

(
N + 2

N − 2

)

+
, (1.1)

where
(

N+2
N−2

)
+

= N+2
N−2

for N = 3, 4, . . . and
(

N+2
N−2

)
+

= ∞ for N = 1, 2. Consider the following

nonlocal eigenvalue problem

∆φ− φ + pwp−1φ− γ0(p− 1)

∫
RN wr−1φ∫
RN wr

wp = αφ, φ ∈ H1(RN). (1.2)

(1) If γ0 < 1, then there is a positive eigenvalue to (1.2).
(2) If γ0 > 1 and (1.1) holds then for any nonzero eigenvalue α of (1.2), we have

Re(α) ≤ −c0 < 0.

(3) If γ0 6= 1 and α = 0, then φ ∈ span
{

∂w
∂yj

: j = 1, . . . , N
}
.

Proof:
We first introduce a few notations and make some preparations. Set

Lφ := L0φ− γ0(p− 1)

∫
RN wr−1φ∫
RN wr

wp, φ ∈ H1(RN),
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where γ0 = qr
(s+1)(p−1)

> 1 and L0 := ∆− 1 + pwp−1. Note that L is not selfadjoint if r 6= p + 1.
Let

X0 := ker(L0) = span

{
∂w

∂yj

: j = 1, . . . , N

}
.

Then

L0w = (p− 1)wp, L0

(
1

p− 1
w +

1

2
x · ∇w

)
= w (1.3)

and

∫

RN
(L−1

0 w)w dy =
∫

RN
w

(
1

p− 1
w +

1

2
x · ∇w

)
dy =

(
1

p− 1
− N

4

) ∫

RN
w2 dy, (1.4)

∫

RN
(L−1

0 w)wp dy =
∫

RN
(L−1

0 w)
1

p− 1
L0w dy =

1

p− 1

∫

RN
w2 dy. (1.5)

We divide the rest of the proof into three cases.

Case 1: r = 2, 1 < p < 1 + 4
N

.
We introduce the following self-adjoint operator:

L1φ := L0φ− (p− 1)

∫
RN wφ∫
RN w2

wp − (p− 1)

∫
RN wpφ∫
RN w2

w + (p− 1)

∫
RN wp+1

∫
RN wφ

(
∫
RN w2)2

w. (1.6)

Then we have the following result:

Lemma 1.1 (1) L1 is selfadjoint. The kernel X1 of L1 satisfies

X1 = span

{
w,

∂w

∂yj

: j = 1, . . . , N

}
.

(2) There exists a positive constant a1 such that

L1(φ, φ) :=
∫

RN

(
|∇φ|2 + φ2 − pwp−1φ2

)
+

2(p− 1)
∫
RN wφ

∫
RN wpφ∫

RN w2

−(p− 1)

∫
RN wp+1

(
∫
RN w2)2

(∫

RN
wφ

)2

≥ a1d
2
L2(RN )(φ,X1) for all φ ∈ H1(RN),

where dL2(RN ) denotes the distance in the norm of L2(Rn).
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Proof: Firstly, we compute the kernel of L1. It is easy to see that w ∈ ker(L1) and
∂w
∂yj

∈ ker(L1), j = 1, . . . , N,. On the other hand, if φ ∈ ker(L1), then by (1.3) we get

L0φ = c1(φ)w + c2(φ)wp = c1(φ)L0

(
1

p− 1
w +

1

2
x · ∇w

)
+ c2(φ)L0

(
1

p− 1
w

)
,

where

c1(φ) = (p− 1)

∫
RN wpφ∫
RN w2

− (p− 1)

∫
RN wp+1

∫
RN wφ

(
∫
RN w2)2

, c2(φ) = (p− 1)

∫
RN wφ∫
RN w2

.

Hence

φ− c1(φ)

(
1

p− 1
w +

1

2
x · ∇w

)
− c2(φ)

1

p− 1
w ∈ ker(L0). (1.7)

Thus

c1(φ) = (p− 1)c1(φ)

∫
RN wp( 1

p−1
w + 1

2
x · ∇w)

∫
RN w2

− (p− 1)c1(φ)

∫
RN wp+1

∫
RN w( 1

p−1
w + 1

2
x · ∇w)

(
∫
RN w2)2

= c1(φ)− c1(φ)

(
1

p− 1
− N

4

) ∫
RN wp+1

∫
RN w2

by (1.4) and (1.5). This implies that c1(φ) = 0. By (1.7) and Lemma ??, this proves (1).
Secondly, we show (2). Suppose (2) is false. Then by (1) there exists (α, φ) such that (i) α

is real and positive, (ii) φ ⊥ w, φ ⊥ ∂w
∂yj

, j = 1, . . . , N , and (iii) L1φ = αφ.

Now we show that this is impossible. From (ii) and (iii), we have

(L0 − α)φ = (p− 1)

∫
RN wpφ∫
RN w2

w. (1.8)

We first claim that
∫
RN wpφ 6= 0. In fact, if

∫
RN wpφ = 0, then α > 0 is an eigenvalue of L0. By

Lemma ??, we get that α = µ1 and φ has constant sign. This contradicts the fact that φ ⊥ w.
Therefore α 6= µ1, 0, and hence L0 − α is invertible in X⊥

0 . Thus (1.8) implies

φ = (p− 1)

∫
RN wpφ∫
RN w2

(L0 − α)−1w.

Therefore we have ∫

RN
wpφ = (p− 1)

∫
RN wpφ∫
RN w2

∫

RN
((L0 − α)−1w)wp
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from which we get ∫

RN
w2 = (p− 1)

∫

RN
((L0 − α)−1w)wp,

∫

RN
w2 =

∫

RN
((L0 − α)−1w)((L0 − α)w + αw),

and finally

0 =
∫

RN
((L0 − α)−1w)w. (1.9)

Let h1(α) =
∫
RN ((L0 − α)−1w)w. Then we compute

h1(0) =
∫

RN
(L−1

0 w)w =
∫

RN

(
1

p− 1
w +

1

2
x · ∇w

)
w =

(
1

p− 1
− N

4

) ∫

RN
w2 > 0

since 1 < p < 1 + 4
N

. Moreover, we have

h′1(α) =
∫

RN
((L0 − α)−2w)w =

∫

RN
((L0 − α)−1w)2 > 0.

This implies h1(α) > 0 for all α ∈ (0, µ1). Since limα→+∞ h1(α) = 0, we get h1(α) < 0 for
α ∈ (µ1,∞). This contradicts (1.9) and (2) is proven.

Next we finish the proof of Theorem 1 in Case 1. Let α0 = αR + iαI and φ = φR + iφI . Since
α0 6= 0, we can choose φ ⊥ ker(L0). Then we have the following linear system for (φR, φI):

L0φR − (p− 1)γ0

∫
RN wφR∫
RN w2

wp = αRφR − αIφI , (1.10)

L0φI − (p− 1)γ0

∫
RN wφI∫
RN w2

wp = αRφI + αIφR. (1.11)

Multiplying (1.10) by φR, (1.11) by φI , integrating and adding the two resulting equations,
we get

−αR

∫

RN
(φ2

R + φ2
I) = L1(φR, φR) + L1(φI , φI)

+(p− 1)(γ0 − 2)

∫
RN wφR

∫
RN wpφR +

∫
RN wφI

∫
RN wpφI∫

RN w2

+(p− 1)

∫
RN wp+1

(
∫
RN w2)2

[(∫

RN
wφR

)2

+
(∫

RN
wφI

)2
]
.
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On the other hand, multiplying (1.10) by w and integrating, we have

(p− 1)
∫

RN
wpφR − γ0(p− 1)

∫
RN wφR∫
RN w2

∫

RN
wp+1 = αR

∫

RN
wφR − αI

∫

RN
wφI . (1.12)

Multiplying (1.11) by w and integrating, we obtain

(p− 1)
∫

RN
wpφI − γ0(p− 1)

∫
RN wφI∫
RN w2

∫

RN
wp+1 = αR

∫

RN
wφI + αI

∫

RN
wφR. (1.13)

Multiplying (1.12) by
∫
RN wφR and (1.13) by

∫
RN wφI and adding, we have

(p− 1)
∫

RN
wφR

∫

RN
wpφR + (p− 1)

∫

RN
wφI

∫

RN
wpφI

=

(
αR + γ0(p− 1)

∫
RN wp+1

∫
RN w2

) ((∫

RN
wφR

)2

+
(∫

RN
wφI

)2
)

.

Therefore we get

−αR

∫

RN
(φ2

R + φ2
I) = L1(φR, φR) + L1(φI , φI)

+(p− 1)(γ0 − 2)

(
1

p− 1
αR + γ0

∫
RN wp+1

∫
RN w2

)
(
∫
RN wφR)2 + (

∫
RN wφI)

2

∫
RN w2

+(p− 1)

∫
RN wp+1

(
∫
RN w2)2

[(∫

RN
wφR)2 + (

∫

RN
wφI

)2
]
.

Decomposing

φR = cRw + φ⊥R, φ⊥R ⊥ X1, φI = cIw + φ⊥I , φ⊥I ⊥ X1,

we get ∫

RN
wφR = cR

∫

RN
w2,

∫

RN
wφI = cI

∫

RN
w2,

d2
L2(RN )(φR, X1) = ‖φ⊥R‖2

L2 , d2
L2(RN )(φI , X1) = ‖φ⊥I ‖2

L2 .

Using a few some elementary computations, we derive

L1(φR, φR) + L1(φI , φI)

+(γ0− 1)αR(c2
R + c2

I)
∫

RN
w2 + (p− 1)(γ0− 1)2(c2

R + c2
I)

∫

RN
wp+1 + αR

(
‖φ⊥R‖2

L2 + ‖φ⊥I ‖2
L2

)
= 0.
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By Lemma 1.1 (2), we get

(γ0 − 1)αR(c2
R + c2

I)
∫

RN
w2

+(p− 1)(γ0 − 1)2(c2
R + c2

I)
∫

RN
wp+1 + (αR + a1)(‖φ⊥R‖2

L2 + ‖φ⊥I ‖2
L2) ≤ 0.

Since γ0 > 1, we finally have αR < 0. This concludes the proof of Theorem 1 in Case 1.

Case 2: r = 2, p = 1 + 4
N

.
We compute ∫

RN
(L−1

0 w)w =
∫

RN
w

(
1

p− 1
w +

1

2
x · ∇w

)
= 0. (1.14)

We set

w0 =
1

p− 1
w +

1

2
x · ∇w. (1.15)

and follow the proof of Case 1. The following lemma is similar to Lemma 1.1 and its proof is
omitted.

Lemma 1.2 (1) The kernel of L1 is given by

X1 = span

{
w,w0,

∂w

∂yj

, j = 1, . . . , N

}
.

(2) There exists a positive constant a2 such that

L1(φ, φ) =
∫

RN
(|∇φ|2 + φ2 − pwp−1φ2) +

2(p− 1)
∫
RN wφ

∫
RN wpφ∫

RN w2

−(p− 1)

∫
RN wp+1

(
∫
RN w2)2

(
∫

RN
wφ)2 ≥ a2d

2
L2(RN )(φ,X1) for all φ ∈ H1(RN).

Next we finish the proof of Theorem 1 in Case 2. Suppose that α0 6= 0 is an eigenvalue of
L. Let α0 = αR + iαI and φ = φR + iφI . Since α0 6= 0, we can choose φ ⊥ ker(L0). Then,
similar to Case 1, we derive the two equations (1.10) and (1.11). We decompose

φR = cRw + bRw0 + φ⊥R, φ⊥R ⊥ X1, φI = cIw + bIw0 + φ⊥I , φ⊥I ⊥ X1

and obtain
L1(φR, φR) + L1(φI , φI)
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+(γ0 − 1)αR(c2
R + c2

I)
∫

RN
w2 + (p− 1)(γ0 − 1)2(c2

R + c2
I)

∫

RN
wp+1

+αR

[
b2
R

(∫

RN
w2

0

)2

+ b2
I

(∫

RN
w2

0

)2

+ ‖φ⊥R‖2
L2 + ‖φ⊥I ‖2

L2

]
≤ 0

By Lemma 1.2 (2), we have

(γ0 − 1)αR(c2
R + c2

I)
∫

RN
w2 + (p− 1)(γ0 − 1)2(c2

R + c2
I)

∫

RN
wp+1

+αR(b2
R(

∫

RN
w2

0)
2 + b2

I(
∫

RN
w2

0)
2) + (αR + a2)(‖φ⊥R‖2

L2 + ‖φ⊥I ‖2
L2) ≤ 0.

If αR ≥ 0, then it follows that

cR = cI = 0, φ⊥R = 0, φ⊥I = 0.

Hence we get φR = bRw0, φI = bIw0 and finally

bRL0w0 = (bR − bI)w0, bIL0w0 = (bR + bI)w0.

This is impossible unless bR = bI = 0. This gives the desired contradiction.

Case 3: r = p + 1, 1 < p < (N+2
N−2

)+.
Let r = p + 1. Then L can be written as

Lφ = L0φ− qr

s + 1

∫
RN wpφ∫
RN wp+1

wp.

To follow the proof of Case 1, we introduce the operator

L3φ := L0φ− (p− 1)

∫
RN wpφ∫
RN wp+1

wp. (1.16)

Then we have the following result:

Lemma 1.3 (1) The operator L3 is selfadjoint and its kernel is given by

X1 = span

{
w,

∂w

∂yj

, j = 1, . . . , N

}
.

(2) There exists a positive constant a3 such that

L3(φ, φ) :=
∫

RN
(|∇φ|2 + φ2 − pwp−1φ2) +

(p− 1)(
∫
RN wpφ)2

∫
RN wp+1

≥ a3d
2
L2(RN )(φ,X3) for all φ ∈ H1(RN).
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Proof: Proving (1) is similar to showing Lemma 1.1. We omit the details. It remains to
show (2). Suppose (2) is not true, then by (1) there exists (α, φ) such that (i) α is real and
positive, (ii) φ ⊥ w, φ ⊥ ∂w

∂yj
, j = 1, . . . , N , and (iii) L3φ = αφ.

Next we prove that this is impossible. From (ii) and (iii), we get

(L0 − α)φ =
(p− 1)

∫
RN wpφ∫

RN wp+1
wp. (1.17)

Similar to the proof of Lemma 1.1, we have that
∫
RN wpφ 6= 0 for α 6= µ1, 0, and hence L0 − α

is invertible in X⊥
0 . Thus from (1.17) we get

φ =
(p− 1)

∫
RN wpφ∫

RN wp+1
(L0 − α)−1wp.

Finally, we have ∫

RN
wpφ = (p− 1)

∫
RN wpφ∫
RN wp+1

∫

RN
((L0 − α)−1wp)wp

and ∫

RN
wp+1 = (p− 1)

∫

RN
((L0 − α)−1wp)wp. (1.18)

Letting

h3(α) = (p− 1)
∫

RN
((L0 − α)−1wp)wp −

∫

RN
wp+1.

we compute

h3(0) = (p− 1)
∫

RN
(L−1

0 wp)wp −
∫

RN
wp+1 = 0.

Moreover, we have

h′3(α) = (p− 1)
∫

RN
((L0 − α)−2wp)wp = (p− 1)

∫

RN
((L0 − α)−1wp)2 > 0.

Thus we get h3(α) > 0 for all α ∈ (0, µ1). On the other hand, we have h3(α) < 0 for α ∈ (µ1,∞)
which contradicts (1.18).

We finish the proof of Theorem 1 in Case 3. Let α0 = αR + iαI and φ = φR + iφI . Since
α0 6= 0, we can choose φ ⊥ ker(L0) and obtain the linear system

L0φR − (p− 1)γ0

∫
RN wpφR∫
RN wp+1

wp = αRφR − αIφI , (1.19)

L0φI − (p− 1)γ0

∫
RN wpφI∫
RN wp+1

wp = αRφI + αIφR. (1.20)
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Multiplying (1.19) by φR, (1.20) by φI , integrating and adding the equations, we get

−αR

∫

RN
(φ2

R + φ2
I) = L3(φR, φR) + L3(φI , φI)

+(p− 1)(γ0 − 1)
(
∫
RN wpφR)2 + (

∫
RN wpφI)

2

∫
RN wp+1

.

By Lemma 1.3 (2), we have

αR

∫

RN
(φ2

R + φ2
I) + a2d

2
L2(φ,X1) + (p− 1)(γ0 − 1)

(
∫
RN wpφR)2 + (

∫
RN wpφI)

2

∫
RN wp+1

≤ 0.

Thus we have derived αR < 0 since γ0 > 1 and Theorem 1 part (2) in Case 3 is shown.
The proof of Part (1) is similar to the proof of Lemma 3.1 below. Part (3) is shown as in

the argument immediately following the proof of Lemma 3.1 which implies that eigenvalues will
not cross through zero.

2 The method of continuation

In our applications to the case when τ > 0, we have to deal with the situation when the
coefficient γ is a function of τα. Now we will extend the results from the basic case τ = 0 of
the previous section to the case of τ > 0 small enough by using a perturbation argument. The
main point in ensuring that the perturbation argument works is showing that the eigenvalues
remain uniformly bounded for τ small enough. Let γ = γ(τα) be a complex function of τα.
Let us suppose that

γ(0) ∈ R and |γ(τα)| ≤ C for αR ≥ 0, τ ≥ 0, (2.21)

where C is a generic constant independent of τ and α. Simple examples of γ(τα) satisfying
(2.21) are

γ(τα) =
2√

1 + τα + 1
or γ(τα) =

µ

1 + τα
(µ > 0),

where
√

1 + τα is the principal branch of the square root. Now we have

Theorem 2 Assume that (1.1) holds and consider the nonlocal eigenvalue problem

∆φ− φ + pwp−1φ− γ(τα)(p− 1)

∫
R wr−1φ∫
R wr

wp = αφ, (2.22)
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where γ(τα) satisfies (2.21). Then there is a small number τ0 > 0 such that for τ < τ0,
(1) if γ(0) < 1, then there is a positive eigenvalue to (1.2);
(2) if γ(0) > 1 and (1.1) holds, then for any nonzero eigenvalue α of (2.22), we have

Re(α) ≤ −c0 < 0.

Proof: Theorem 2 follows from Theorem 1 by a perturbation argument. To guarantee that the
perturbation argument works, we have to show that if αR ≥ 0 and 0 < τ < 1, then |α| ≤ C,
where C is a generic constant (independent of τ). Multiplying (2.22) by the conjugate φ̄ of φ
and integrating by parts, we get that

∫

R
(|∇φ|2 + |φ|2 − pwp−1|φ|2) = −α

∫

R
|φ|2 − γ(τα)(p− 1)

∫
R wr−1φ∫
R wr

∫

R
wpφ̄. (2.23)

From the imaginary part of (2.23), we obtain that

|αI | ≤ C1|γ(τα)|,

where α = αR+
√−1αI and C1 is a positive constant (independent of τ). By assumption (2.21),

we have |γ(τα)| ≤ C and so |αI | ≤ C. Taking the real part of (2.23) and noting that

l.h.s. of (2.23) ≥ C
∫

R
|φ|2 for some C ∈ R,

we obtain that αR ≤ C2, where C2 is a positive constant (independent of τ > 0). Therefore,
|α| is uniformly bounded and hence the perturbation argument implies the conclusion of the
theorem.

3 Hopf bifurcation

Now we continue to consider the case τ > 0. We relax the condition on the smallness of τ
and allow τ to be any positive number. On the other hand, the function γ(τα) now has to be
specified and the results will depend on the choice of function γ(τα) more explicitly than in
the previous section.

In particular, we consider the following two nonlocal eigenvalue problems in the two-
dimensional case:

Lφ := ∆φ− φ + 2wφ− γ

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H1(R2), (3.24)

10



where either (a) γ =
µ

1 + τλ0

with µ > 0, τ ≥ 0, or (b) γ =
2(K + η0(1 + τλ0))

(K + η0)(1 + τλ0)
with η0 >

0, τ ≥ 0.
Case (a) will be studied in Theorem 3 and Case (b) will be considered in Theorem 4.
First we consider Case (a):

Theorem 3 Let γ = µ
1+τλ0

, where µ > 0, τ ≥ 0 and let the operator L be defined by (3.24).
(1) Suppose that µ > 1. Then there exists a unique τ = τ1 > 0 such that for τ < τ1, (3.24)

admits a positive eigenvalue, and for τ > τ1, all nonzero eigenvalues of problem (3.24) satisfy
Re(λ) ≤ −c < 0. At τ = τ1, L has a Hopf bifurcation.

(2) Suppose that µ < 1. Then L admits a positive eigenvalue λ0.

Proof of Theorem 3:
Theorem 3 will be proved by the following two lemmas.

Lemma 3.1 If µ < 1, then L has a positive eigenvalue λ0.

Proof: We conclude that φ is a radially symmetric function: φ ∈ H2
r (R2) = {u ∈ H1(R2)|u =

u(|y|)}. Let L0 be defined as in (??). Then, by Lemma ??, it follows that L0 is invertible in
H2

r (R2). We denote its inverse by L−1
0 . By Lemma ??, the operator L0 has a unique positive

eigenvalue µ1. Using
∫
R2 wΦ0 > 0, we conclude that λ0 6= µ1. Now λ0 > 0 is an eigenvalue of

(3.24) if and only if it a solution of the algebraic equation
∫

R2
w2 =

µ

1 + τλ0

∫

R2
[((L0 − λ0)

−1w2)w]. (3.25)

The algebraic equation (3.25) can be simplified to

ρ(λ0) := ((µ− 1)− τλ0)
∫

R2
w2 + µλ0

∫

R2
[((L0 − λ0)

−1w)w] = 0, (3.26)

where ρ(0) = (µ− 1)
∫
R2 w2 < 0. Further, using λ0 → µ1, λ0 < µ1, we get

∫

R2
((L0 − λ0)

−1w)w → +∞

and thus ρ(λ0) → +∞. By continuity, there is a λ0 ∈ (0, µ1) such that ρ(λ0) = 0, and λ0 is an
eigenvalue of L.

Next we study the case µ > 1. It suffices to restrict our attention to radially symmetric
functions. By Theorem 1.4 of [?], for τ = 0 (and by perturbation, for τ small), all eigenvalues are
located on the left half of the complex plane. By [?], for τ large, there are unstable eigenvalues.
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It is easy to see that the eigenvalues will not cross through zero: If λ0 = 0, then we get

L0φ− µ

∫
R2 wφ∫
R2 w2

w2 = 0

which implies that

L0

(
φ− µ

∫
R2 wφ∫
R2 w2

w

)
= 0

and by Lemma ?? we get

φ− µ

∫
R2 wφ∫
R2 w2

w ∈ X0.

This is impossible since φ is a radially symmetric function and φ 6= cw for all c ∈ R.
Hence there is a point τ1 at which L has a Hopf bifurcation, i.e., L has a purely imaginary

eigenvalue α =
√−1αI . To conclude the proof of Theorem 3 (1), it suffices to show that τ1 is

unique.

Lemma 3.2 Let µ > 1. Then there exists a unique τ1 > 0 such that L has a Hopf bifurcation.

Proof:
Let λ0 =

√−1αI be an eigenvalue of L. Without loss of generality, we may assume that
αI > 0. (Note that then −√−1αI is also an eigenvalue of L.) Letting φ0 = (L0−

√−1αI)
−1w2,

(3.24) becomes ∫
R2 wφ0∫
R2 w2

=
1 + τ

√−1αI

µ
(3.27)

Decomposing φ0 = φR
0 +

√−1φI
0, from (3.27) we derive the linear system

∫
R2 wφR

0∫
R2 w2

=
1

µ
, (3.28)

∫
R2 wφI

0∫
R2 w2

=
ταI

µ
. (3.29)

Note that only (3.29) depends τ , whereas (3.28) is independent of τ .
Next we compute

∫
R2 wφR

0 . Using the fact that (φR
0 , φI

0) satisfies

L0φ
R
0 = w2 − αIφ

I
0, L0φ

I
0 = αIφ

R
0 ,

we get φR
0 = α−1

I L0φ
I
0 and

φI
0 = αI(L

2
0 + α2

I)
−1w2, φR

0 = L0(L
2
0 + α2

I)
−1w2. (3.30)
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Substituting (3.30) into (3.28) and (3.29), we have

∫
R2 [wL0(L

2
0 + α2

I)
−1w2]∫

R2 w2
=

1

µ
, (3.31)

∫
R2 [w(L2

0 + α2
I)
−1w2]∫

R2 w2
=

τ

µ
. (3.32)

Setting

h(αI) =

∫
R2 wL0(L

2
0 + α2

I)
−1w2

∫
R2 w2

= h(αI) =

∫
R2 w2(L2

0 + α2
I)
−1w2

∫
R2 w2

,

we compute h′(αI) = −2αI

∫
R2 w2(L2

0+α2
I)−2w2∫

R2 w2 < 0. Since

h(0) =

∫
R2 w(L−1

0 w2)∫
R2 w2

= 1,

h(αI) → 0 as αI → ∞ and µ > 1, there exists a unique αI > 0 such that (3.31) holds.
Substituting αI into (3.32), we get a unique τ = τ1 > 0 and the proof of Lemma 3.2 is finished.

Theorem 3 follows from Lemmas 3.1 and 3.2.
Finally we study Case (b) by considering the NLEP

∆φ− φ + 2wφ− 2(K + η0(1 + τλ0))

(K + η0)(1 + τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H1(R2), (3.33)

where 0 < η0 < +∞ and 0 ≤ τ < +∞ .
We have the following result:

Theorem 4 (1) If η0 < K, then for τ small enough problem (3.33) is stable and for τ large
enough it is unstable.

(2) If η0 > K, then there exist 0 < τ2 ≤ τ3 such that problem (3.33) is stable for τ < τ2 or
τ > τ3.

Proof: Setting

f(τλ) =
2(K + η0(1 + τλ))

(K + η0)(1 + τλ)
, (3.34)

we note that

lim
τλ→+∞

f(τλ) =
2η0

K + η0

=: f∞.
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If η0 < K, then by Theorem 3 (2), the problem (3.33) with µ = f∞ possesses a positive
eigenvalue α1. Using a regular perturbation argument, this implies that for τ large enough
problem (3.33) has an eigenvalue near α1 > 0. We conclude that for τ large enough problem
(3.33) is unstable.

Next we show that problem (3.33) does not possess any nonzero eigenvalues with nonnegative
real part, provided that either τ is small or η0 > K and τ is large. (It is immediately seen that
f(τλ) → 2 as τλ → 0 and f(τλ) → 2η0

η0+K
> 1 as τλ → +∞ if η0 > K and thus Theorem 3

should apply. However, we do not have control on τλ. Here we provide a rigorous proof.)
We apply the following inequality (see Lemma 1.1): For any (real-valued function) φ ∈

H1
r (R2), we have

∫

R2
(|∇φ|2 + φ2 − 2wφ2) + 2

∫
R2 wφ

∫
R2 w2φ∫

R2 w2
−

∫
R2 w3

(
∫
R2 w2)2

(
∫

R2
wφ)2 ≥ 0, (3.35)

where equality holds if and only if φ is a multiple of w.
Let λ0 = λR +

√−1λI , φ = φR +
√−1φI satisfy (3.33). Then we get

L0φ− f(τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ. (3.36)

Multiplying (3.36) by the complex conjugate φ̄ of the function φ and integrating over R2, we
have ∫

R2
(|∇φ|2 + |φ|2 − 2w|φ|2) = −λ0

∫

R2
|φ|2 − f(τλ0)

∫
R2 wφ∫
R2 w2

∫

R2
w2φ̄. (3.37)

Multiplying (3.36) by w and integrating over R2, we obtain

∫

R2
w2φ = (λ0 + f(τλ0)

∫
R2 w3

∫
R2 w2

)
∫

R2
wφ. (3.38)

Taking the complex conjugate of (3.38) gives

∫

R2
w2φ̄ = (λ̄0 + f(τ λ̄0)

∫
R2 w3

∫
R2 w2

)
∫

R2
wφ̄. (3.39)

Substituting (3.39) into (3.37), it follows that

∫

R2
(|∇φ|2 + |φ|2 − 2w|φ|2)
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= −λ0

∫

R2
|φ|2 − f(τλ0)(λ̄0 + f(τ λ̄0)

∫
R2 w3

∫
R2 w2

)
| ∫R2 wφ|2∫

R2 w2
. (3.40)

Next we consider the real part of (3.40). Applying the inequality (3.35) and using (3.39), we
get

−λR ≥ Re

(
f(τλ0)(λ̄0 + f(τ λ̄0)

∫
R2 w3

∫
R2 w2

)

)
− 2Re

(
λ̄0 + f(τ λ̄0)

∫
R2 w3

∫
R2 w2

)
+

∫
R2 w3

∫
R2 w2

,

where λ0 = λR +
√−1λI with λR, λI ∈ R.

Assuming that λR ≥ 0, we get
∫
R2 w3

∫
R2 w2

|f(τλ0)− 1|2 + Re(λ̄0(f(τλ0)− 1)) ≤ 0. (3.41)

By the Pohozaev identity for (??) (multiplying (??) by y ·∇w(y) and integrating by parts),
we have ∫

R2
w3 =

3

2

∫

R2
w2. (3.42)

Substituting (3.42) and the expression (3.34) for f(τλ) into (3.41), we get

3

2
|η0 + K + (η0 −K)τλ|2 + Re[(η0 + K)(1 + τ λ̄0)((η0 + K)λ̄0 + (η0 −K)τ |λ0|2)] ≤ 0.

This is equivalent to

3

2
(1 + µ0τλR)2 + λR + (µ0τ + τ + µ0τ

2|λ0|2)λR

+(
3

2
µ2

0τ
2 + µ0τ − τ)λ2

I ≤ 0, (3.43)

where µ0 := η0−K
η0+K

.

If η0 > K (i.e., µ0 > 0) and τ is large, then

3

2
µ2

0τ
2 + µ0τ − τ ≥ 0. (3.44)

Thus (3.43) does not hold for λR ≥ 0.
To consider the case when τ is small, we next derive an upper bound for λI .
By (3.37), we get

λI

∫

R2
|φ|2 = Im

(
−f(τλ0)

∫
R2 wφ∫
R2 w2

∫

R2
w2φ̄

)
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Thus we have

|λI | ≤ |f(τλ0)|
√√√√

∫
R2 w4

∫
R2 w2

≤ C (3.45)

where C is independent of λ0.
Substituting (3.45) into (3.43), we conclude that (3.43) does not hold for λR ≥ 0, if τ is

small.

Remark 3.1 The proof of Theorem 4 allows us to obtain explicit values for τ2 and τ3. (In fact,
first from (3.44) we obtain a value for τ3. Then from (3.43) and (3.45) we get a value for τ2.)
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