AARMS Summer School Lecture II: The theory of Nonlocal Eignevalue Problem
(NLEP)

[1] Chapter 3 of Wei-Winter’s book on ”Mathematical Aspects of Pattern Formation in Bi-

ological Systems”, Applied Mathematical Sciences Series, Vol. 189, Springer 2014 , ISBN:
978-4471-5525-6.

In this lecture, we give a full rigorous treatment of the nonlocal eigenvalue problem (NLEP).

1 A basic theorem for 7 =0

We start with the special case which arises when the time relaxation parameter 7 of the inhibitor
vanishes.
Next we consider our basic NLEP for 7 = 0.

Theorem 1 Assume that

=2,1< <1+4 =p+1,1< <(N+2) (1.1)
r= 24 b= NOT’T—p ) p N—2 +7 .

N-2
nonlocal eigenvalue problem

where (w>+ = % for N =3,4,... and <%>+ =00 for N =1,2. Consider the following

Jrn w1

fRN w"

Ap—d+puw'™ o —0(p — 1) w’=ap, ¢ e H'(RY). (1.2)

(1) If vo < 1, then there is a positive eigenvalue to (1.2).
(2) If vo > 1 and (1.1) holds then for any nonzero eigenvalue o of (1.2), we have

Re(a) < —¢p < 0.
_ ow . 5 _
(3) If vo # 1 and a = 0, then ¢ € span{a—yj : ]fl,...,N}.

Proof:
We first introduce a few notations and make some preparations. Set

fRN wr—1¢ .

L¢ = Log —yo(p— 1) [ ¢ € H'(RY),
RN



where vy = Mlgﬁ > 1 and Lo :== A — 1+ pwP~!. Note that L is not selfadjoint if r # p + 1.
Let 5
Xo := ker(Ly) —span{w D j= 1,...,N}.
9y;
Then
1 1
Low = (p— DwP, Lo <p_1w + 5% Vw) =w (1.3)
and
_ 1 1 1 N
/RN(L0 Lw)w dy = /’RN w <p—1w + 5T Vw) dy = <p—1 — 4> o w? dy, (1.4)
_ _ 1
/RN(LO Lw)w? dy = /RN<LO 1w)p — 1L0w dy = 5T S w? dy. (1.5)
We divide the rest of the proof into three cases.
Case 1: 7“:2,1<p<1+%.
We introduce the following self-adjoint operator:
Jry WO Jry wPo Jrw wP Jry wo
Lip:=Lop— (p—1)"——uw? — (p—1 —1 1.6
1¢ 0¢ (p ) fRN w2 w (p ) f’RN w2 w + (p ) (IRN w2)2 ( )

Then we have the following result:
Lemma 1.1 (1) Ly is selfadjoint. The kernel Xy of Ly satisfies

ow

X1 = span {w,
dy;

: jzl,...,N}.
(2) There exists a positive constant a; such that

2(p — 1) Jpy W Jpv WP
Jrw w?

Li(6.0) = [ (IV6f + 6% —put™'67) +

Jrx wPt!
(Jrx w?)?

where drzgny denotes the distance in the norm of L*(R™).

2
—(p—1) (/RN w¢> > 418 (6, X1)  for all ¢ € HY(RY),



Proof: Firstly, we compute the kernel of L;. It is easy to see that w € ker(L;) and
g—;”, € ker(Ly), j =1,...,N,. On the other hand, if ¢ € ker(L;), then by (1.3) we get

Lod = c1(d)w + co(d)w? = ¢1(9) Ly (pilw + ;:1: . Vw) + co(¢) Lo <pi1w> ,
where
J"pr¢ wap+1wa¢ . fNU)QZﬁ
a0) = (o= DD (IR e ) (- it
Hence . ) .
¢ — Cl(¢) (p_lw + 5.1’ : VU}) - 62<¢)Ew € ker(Lo). (17)
Thus
ywP(Lw+ iz Vw Ny wPT [y w(—=w+ tx - Vw
01(9) = = s ()BT LTI g g e e MG T

(Jrw w?)?

N pr+1
= c1(¢) — c1(9) <pi1 - 4> L}Rng

by (1.4) and (1.5). This implies that ¢;(¢) = 0. By (1.7) and Lemma ??, this proves (1).
Secondly, we show (2). Suppose (2) is false. Then by (1) there exists («, ¢) such that (i) «
is real and positive, (i) ¢ Lw, ¢ L 2% j=1,...,N, and (iii) L1¢ = ag.

Byj ’
Now we show that this is impossible. From (ii) and (iii), we have
wP
(Lo — a)p = (p— 1)1R22,, (1.8)

Jrx w?

We first claim that [~ wP¢ # 0. In fact, if [y wP¢ = 0, then a > 0 is an eigenvalue of Ly. By
Lemma 77?7, we get that & = p; and ¢ has constant sign. This contradicts the fact that ¢ L w.
Therefore o # jui1,0, and hence Ly — « is invertible in Xz-. Thus (1.8) implies

Jry w9
o 0

—a) tw.

¢p=(p—1)

Therefore we have

[0 = (=)L [ (= a)
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from which we get
o w? = (p—1) /RN((LO — o) tw)u?,

[w?= (Lo = o) w) (Lo — a)w + aw),

and finally
0= /RN((LO — o) w)w. (1.9)

Let hy(a) = [rn((Lo — @) *w)w. Then we compute

1 1 1 N
— -1 — Zp. — _ 2
h1(0)—/RN(LO w)w—/RN<p_1w+2x Vw)w-(p_l 4) o >0

since 1 <p <1+ %. Moreover, we have

K (a) = /RN((LO — o) 2w)w = /RN((LO — &) 'w)? > 0.
This implies hy(«) > 0 for all a € (0, pq). Since lim, 4o hy(a) = 0, we get hi(a) < 0 for
a € (p1,00). This contradicts (1.9) and (2) is proven.
Next we finish the proof of Theorem 1 in Case 1. Let g = ag+ia; and ¢ = ¢pr+i¢;. Since
ap # 0, we can choose ¢ L ker(Lg). Then we have the following linear system for (¢g, ¢1):

Jry woR

Lodr — (p— 1) w02 w’ = agrpr — ar¢r, (1.10)
RN

Lo¢r — (p — 1)70@@] qu;wp = apor + arPg. (1.11)
RN

Multiplying (1.10) by ¢g, (1.11) by ¢, integrating and adding the two resulting equations,
we get

—an [ (h+6D) = Li(6r 6r) + L1(01,61)

Jrn WOR [on WPOR + [pn wdp [y wWPPr
f'RN w2

+(p— 1)% [(/RN w¢R>2 + (/RN w¢1>2] :

+(p—=1)( —2)



On the other hand, multiplying (1.10) by w and integrating, we have

(P—l)AprﬁﬁR—%(P—l)M% wp“:ozR/RngzSR—aI/RngbI.

fRN w2 RN

Multiplying (1.11) by w and integrating, we obtain

(p—1)/72pr¢1—70(10—1)fRNw¢I/Rpr+1ZOZR/RN?U@—FOU/RNUKM-

fRN w2

Multiplying (1.12) by [z~ wér and (1.13) by [z~ w¢r and adding, we have

(=1 [ won [ won+p=1) [ wor[ wor

- (et 0B (o) ([ 0)')

Therefore we get

—an [ (6% +6) = Li(én,6n) + La(61, 1)
R
Jrw wp+1> (Jrw w¢R)2 + (Jrw w¢1>2

ffRN w2 fRN w2

ar+ 7%

T

Decomposing

Or = crw + ¢F, 0% L X1, @1 =crw+ o7, o7 L X,

_ 2 _ 2
/RNU@R—CR/RNUJ, /RN?U¢1—CI/RNIU,
A7 vy (0r, X1) = |0%l172,  diageny (61, X1) = (07172

Using a few some elementary computations, we derive

Li(¢r, or) + L1(¢1, ¢1)

we get

(1.12)

(1.13)

+oo=Dan(ch+e) [ wl+p-D00— 12+ [ o +an (651 + lo7]5:) = 0.
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By Lemma 1.1 (2), we get
2 | 2 2
(70 — Dar(ck + ¢7) /RN w

o= D00 =Dk +cD) [ w0+ (an+a)(I6h]5 + 9]F) <.

Since vy > 1, we finally have ar < 0. This concludes the proof of Theorem 1 in Case 1.

Case 2: r:2,p:1+%.
We compute

_ 1 1
/RN(LOIw)w:/RNw <p_1w+2a7~Vw> = 0. (1.14)
We set { 1

and follow the proof of Case 1. The following lemma is similar to Lemma 1.1 and its proof is
omitted.

Lemma 1.2 (1) The kernel of Ly is given by

0
X1 = span {w,wo,a;,jzl,...,N}.
J

(2) There ezists a positive constant as such that

Li(¢,¢) = /RN(|V¢|2 + ¢? — puwP1¢?) + 2(p—1) &7;11\;@5)? Jrn WP
+1
_(p - 1)%(/72]\] wgb)Q > QQd%Q(RN)(QS, Xl) fO’f’ all Qb c HI(RN)

Next we finish the proof of Theorem 1 in Case 2. Suppose that ag # 0 is an eigenvalue of
L. Let oy = ar +ia; and ¢ = ¢r + i¢;. Since o # 0, we can choose ¢ L ker(Ly). Then,
similar to Case 1, we derive the two equations (1.10) and (1.11). We decompose

¢r = crw + brwy + ¢5, ¢ L X1, ér = crw +brwe + b7, o7 L X3

and obtain

Li(¢r, ¢r) + L1(¢1, o1)
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0= Van(ch +) [ w+ (=100 DHch+e) [ wt
RN RN

2 2
tar [bé ([ ut) +6 ([, ut) + okl + chﬁ%\l%z] <0

By Lemma 1.2 (2), we have

(o= Var(ch+c) [ w+ (=100 = 2ch+cf) [ v

an(( [ wd)? + 5[ ud)?) + (an+a)(ll0kl1F: + lloF3) < 0.

If ag > 0, then it follows that
Cr = Cr :0,¢ﬁ :0,q§% =0.
Hence we get ¢r = brwy, ¢; = bywy and finally
brLowy = (bg — br)wo, by Lowg = (br + by)wy.
This is impossible unless by = by = 0. This gives the desired contradiction.

Case 3: r=p+1,1<p< (52)4.

Let r =p+ 1. Then L can be written as

qr Jgx wP¢ D
s+ 1 [on wrtl
To follow the proof of Case 1, we introduce the operator

Jry WP D

Jr wPt

Lo = Logp —

L3¢ := Lo¢p — (p— 1)

Then we have the following result:
Lemma 1.3 (1) The operator L is selfadjoint and its kernel is given by
ow
aiyj’

(2) There exists a positive constant az such that

X1 = span {w, jzl,...,N}.

(p — 1) (Jry wPe)?

Ly(6.0) = [ (Vo> + 6% —pur~'e?) +

f’RN wpPt1

> asdjamy (9, Xs)  for all ¢ € H'(RY).

(1.16)



Proof: Proving (1) is similar to showing Lemma 1.1. We omit the details. It remains to
show (2). Suppose (2) is not true, then by (1) there exists («, ¢) such that (i) « is real and
p%mW4m¢Lw¢¢gij:L”wNﬁMﬁmLw:a¢

Next we prove that this is impossible. From (ii) and (iii), we get

(p—1) gy uwPe
T

(Lo — a)p = (1.17)
Similar to the proof of Lemma 1.1, we have that [z~ wP¢ # 0 for o # pi4,0, and hence Ly — o
is invertible in Xg-. Thus from (1.17) we get

(p—1) Jgn wPe

Jrn wPtl (Lo — a) " u?.

o=

Finally, we have

N Y4
/RN wPe = (p — l)m RN((LO — )" 'wP)w?
and
/RN Wt = (p—1) /RN((LO — )Y, (1.18)
Letting

ha() = (p=1) [ ((Lo—a) uyu? = [ wrt,

RN
we compute

hs(0) = (p— 1) /R St = [t <o,

Moreover, we have

Mie) = (p=1) [ (Lo—a) 2w’ = (p=1) [ ((Lo—a)'u")?>0.

Thus we get hz(a) > 0 for all @« € (0, u11). On the other hand, we have hs(«) < 0 for a € (g, 0)
which contradicts (1.18).

We finish the proof of Theorem 1 in Case 3. Let ag = ag + iay and ¢ = ¢ + i¢;. Since
ap # 0, we can choose ¢ L ker(Lg) and obtain the linear system

Jry wPoR

Lo¢r — (p— 1) o w1 w? = arpr — o, (1.19)
R
wP
Logr — (p — 1)%wa = QpPr + arPr. (1.20)
RN
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Multiplying (1.19) by ¢g, (1.20) by ¢;, integrating and adding the equations, we get
TOR /RN(Q% +¢7) = Ls(¢r, dr) + L3(¢1, ¢1)

(Jry wPPR)* + (Jov wPer)?
Jrw wp .

+re -1 -1
By Lemma 1.3 (2), we have

(Jrnw wPOR)? + (Jrn wPer)?

<0.
Jra wPt

an [ (6 +0]) + adia(6,X) + (P~ D —1)

Thus we have derived ar < 0 since 79 > 1 and Theorem 1 part (2) in Case 3 is shown.

The proof of Part (1) is similar to the proof of Lemma 3.1 below. Part (3) is shown as in
the argument immediately following the proof of Lemma 3.1 which implies that eigenvalues will
not cross through zero.

2 The method of continuation

In our applications to the case when 7 > 0, we have to deal with the situation when the
coefficient ~ is a function of Ta. Now we will extend the results from the basic case 7 = 0 of
the previous section to the case of 7 > 0 small enough by using a perturbation argument. The
main point in ensuring that the perturbation argument works is showing that the eigenvalues
remain uniformly bounded for 7 small enough. Let v = v(7a) be a complex function of 7a.
Let us suppose that

7(0) e R and |y(ra)| < C for ag >0, 7 >0, (2.21)

where C' is a generic constant independent of 7 and «. Simple examples of v(7«) satisfying
(2.21) are
(ra) = —— (ra) =+ (> 0)
TQ) = —=——=—— oOr TQ) = ,
K Vi+ra+1 v 1—1—7'on

where v/1 + Ta is the principal branch of the square root. Now we have

Theorem 2 Assume that (1.1) holds and consider the nonlocal eigenvalue problem

Jrw™'o

o w? = ag, (2.22)

A¢ — ¢+ pw o — y(ra)(p — 1)



where y(Tar) satisfies (2.21). Then there is a small number 1o > 0 such that for T < 7o,
(1) if v(0) < 1, then there is a positive eigenvalue to (1.2);
(2) if v(0) > 1 and (1.1) holds, then for any nonzero eigenvalue o of (2.22), we have

Re(a)) < —¢p < 0.

Proof: Theorem 2 follows from Theorem 1 by a perturbation argument. To guarantee that the
perturbation argument works, we have to show that if ag > 0 and 0 < 7 < 1, then |a| < C,
where C is a generic constant (independent of 7). Multiplying (2.22) by the conjugate ¢ of ¢
and integrating by parts, we get that

LU0 + 16 = pur1oP) = —a [ 16F ~1(ra)(p~ )22 [pg (229)

Jrw™ Jr
From the imaginary part of (2.23), we obtain that
lai] < Cily(ra)l,

where & = ag++/—1ay and (Y is a positive constant (independent of 7). By assumption (2.21),
we have |y(7a)| < C and so |ay| < C. Taking the real part of (2.23) and noting that

Lh.s. of (2.23) > C’/ |¢|>  for some C' € R,
R

we obtain that ag < Cy, where Cj is a positive constant (independent of 7 > 0). Therefore,
|| is uniformly bounded and hence the perturbation argument implies the conclusion of the
theorem.

3 Hopf bifurcation

Now we continue to consider the case 7 > 0. We relax the condition on the smallness of 7
and allow 7 to be any positive number. On the other hand, the function v(7a) now has to be
specified and the results will depend on the choice of function «(7a) more explicitly than in
the previous section.

In particular, we consider the following two nonlocal eigenvalue problems in the two-
dimensional case:

fR2 wo

f'RZ w2

Lo = Ao — ¢+ 2wp — w® = N9, ¢ € H'(R?), (3.24)
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2(K +mo(1+71Xo))
(K +n0)(1+ 7o)

7

where either (a) v = T
TA0

0, 7>0.
Case (a) will be studied in Theorem 3 and Case (b) will be considered in Theorem 4.
First we consider Case (a):

with 4 > 0,7 > 0, or (b) v =

with ny >

Theorem 3 Let v = Jﬁ’ where > 0, 7 > 0 and let the operator L be defined by (3.24).
(1) Suppose that > 1. Then there exists a unique T = 11 > 0 such that for T < 11, (5.24)
admits a positive eigenvalue, and for T > 71, all nonzero eigenvalues of problem (3.24) satisfy
Re(\) < —c < 0. At 7 =1, L has a Hopf bifurcation.
(2) Suppose that u < 1. Then L admits a positive eigenvalue \g.

Proof of Theorem 3:
Theorem 3 will be proved by the following two lemmas.

Lemma 3.1 If u < 1, then L has a positive eigenvalue \g.

Proof: We conclude that ¢ is a radially symmetric function: ¢ € H?(R?) = {u € H'(R?)|u =
u(|y|)}. Let Ly be defined as in (??). Then, by Lemma ?7?, it follows that Lg is invertible in
HZ?(R?). We denote its inverse by Ly'. By Lemma ??, the operator Ly has a unique positive
eigenvalue ;. Using [r2 w®y > 0, we conclude that A\g # 1. Now g > 0 is an eigenvalue of
(3.24) if and only if it a solution of the algebraic equation

Jeo* = T Jo =20yl 329

The algebraic equation (3.25) can be simplified to

pO) = (1= 1) = 7h0) [ w?+ o [ [((Zo = 2o) " w)u] =0, (3.26)

where p(0) = (1 — 1) fr2 w? < 0. Further, using A\g — g1, Ao < pt1, we get
/ (Lo — Xo) 'w)w — +o0
RQ

and thus p(\g) — +oo. By continuity, there is a Ag € (0, 1) such that p(A\g) = 0, and Ag is an
eigenvalue of L.

Next we study the case p > 1. It suffices to restrict our attention to radially symmetric
functions. By Theorem 1.4 of [?], for 7 = 0 (and by perturbation, for 7 small), all eigenvalues are
located on the left half of the complex plane. By [?], for 7 large, there are unstable eigenvalues.

11



It is easy to see that the eigenvalues will not cross through zero: If A\g = 0, then we get

Lod — quR2 w¢w2 —0
fRZ UJ2
which implies that
Lo (6 - p200) =0
Jre w?
and by Lemma 77 we get
O — ufR2 w(bw € Xop.
fRQ w2

This is impossible since ¢ is a radially symmetric function and ¢ # cw for all ¢ € R.

Hence there is a point 7y at which L has a Hopf bifurcation, i.e., L has a purely imaginary
eigenvalue o = v/—1ay. To conclude the proof of Theorem 3 (1), it suffices to show that 7 is
unique.

Lemma 3.2 Let i > 1. Then there exists a unique 7, > 0 such that L has a Hopf bifurcation.

Proof:

Let Ao = v/—1a; be an eigenvalue of L. Without loss of generality, we may assume that

ar > 0. (Note that then —/—1a; is also an eigenvalue of L.) Letting ¢g = (Lo — v/ —1ag) tw?,
(3.24) becomes

Jrewdy 1+ 7v/=1ay

= 3.27
Jr2 w? H ( )
Decomposing ¢y = ¢ + /—1¢}, from (3.27) we derive the linear system
R
1
Jr2 w5 =, (3.28)
Jr2 w? K
Jre oty _ 7o (3.29)
Jr2 w? H
Note that only (3.29) depends 7, whereas (3.28) is independent of 7.
Next we compute [r: wof. Using the fact that (¢F, @) satisfies
Lody = w® — ardy,  Lodyy = ey
we get ¢Ff = a; ' Logl and
ob = ar(L3 + o) 'w?,  off = Lo(LE + o3)'w?’. (3.30)

12



Substituting (3.30) into (3.28) and (3.29), we have

Jre[wLo(LE + o) 1w? 1

= —, 3.31
Jr2 w? H ( )
ealw(Z3 + )] _ 7 ,
[ =—. (3.32)
RQ
Setting
hay) = Jr2 wLo(LE + oF)~1w? ~ h{ay) = Jrz w? (L3 + 04?)_111)2’
Jr2 w? Jr2 w?
w2 2 062 72w2
we compute h'(ay) = —2a1fR2 }LOJF 21) < 0. Since
r2 W
) L—l 2

fRQ 'I.U2

h(ar) — 0 as ay — oo and p > 1, there exists a unique ay > 0 such that (3.31) holds.
Substituting a; into (3.32), we get a unique 7 = 7, > 0 and the proof of Lemma 3.2 is finished.
Theorem 3 follows from Lemmas 3.1 and 3.2.
Finally we study Case (b) by considering the NLEP

K A 2
A — 6+ 2w — 2(([( j%%jj A?)) ffz WO = o, o€ H'RY), (339

where 0 < 7y < +o0 and 0 < 7 < 400 .
We have the following result:

Theorem 4 (1) If ng < K, then for 7 small enough problem (3.33) is stable and for T large
enough it s unstable.

(2) If no > K, then there exist 0 < 7o < 73 such that problem (3.33) is stable for T < 1 or
T > T3.

Proof: Setting

~2(K A mo(1+7A))
FrA) = (K +no)(147A)° (3.34)

we note that

. 210
l A) = =: )
i PN = g =
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If no < K, then by Theorem 3 (2), the problem (3.33) with © = f, possesses a positive
eigenvalue «;. Using a regular perturbation argument, this implies that for 7 large enough
problem (3.33) has an eigenvalue near «; > 0. We conclude that for 7 large enough problem
(3.33) is unstable.

Next we show that problem (3.33) does not possess any nonzero eigenvalues with nonnegative
real part, provided that either 7 is small or 79 > K and 7 is large. (It is immediately seen that
f(tA) = 2as 7A — 0 and f(TA) — 775% > 1as 7A — 400 if 99 > K and thus Theorem 3
should apply. However, we do not have control on 7. Here we provide a rigorous proof.)

We apply the following inequality (see Lemma 1.1): For any (real-valued function) ¢ €

H!(R?), we have

Jrewo [ 2w2¢ I w3 )
: [z 52 B (f; wz)g(/m’wo?) >0, (3.35)

where equality holds if and only if ¢ is a multiple of w.
Let \g = Ar + vV—1X;, & = ¢r + /—1¢; satisfy (3.33). Then we get

Jr2 wo
Jro w?

Multiplying (3.36) by the complex conjugate ¢ of the function ¢ and integrating over R?, we

(V61 + 6% = 2u) +2

Lod — (7o) w® = Xoo. (3.36)

have
2 2 2y 2 Jr2 wo 27
[ (V6P 410 —2ul6?) = <%0 [ 16 = foa0) T [ vt (330)
Multiplying (3.36) by w and integrating over R?, we obtain
3
26 = (Mo + flrhg) 122 Y [ we. .
/Rguub Oo+ 10 25 [, w0 (3.38)
Taking the complex conjugate of (3.38) gives
3
26 = (A Ro) 1R [ wé. 3.39
R2w¢ (Ao + f(7 0)]‘R2w2) R2w¢ ( )

Substituting (3.39) into (3.37), it follows that

L1968 + l6 = 2ul0?)
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U)3 2 W 2
=\ /R | —f(T/\O)(/_\0+f(75\0)fR2 )”R i (3.40)

Jrz w?" [2 w?
Next we consider the real part of (3.40). Applying the inequality (3.35) and using (3.39), we
get

A >R %o £ BN D ore (B 4 flrag Rl | dre
r > Re f(T)\O)()‘O +f(T>\O)fR2 wQ) 2Re )\0+f(T)\0)fR2 02 + fR2 w2’

where \g = Ag + v/ —1\; with Ag, A\; € R.
Assuming that \g > 0, we get

Jr2
Jr2

By the Pohozaev identity for (??) (multiplying (??7) by y- Vw(y) and integrating by parts),

we have 5
3_ 09 2
/722w =3 foa ¥ (3.42)

Substituting (3.42) and the expression (3.34) for f(7)\) into (3.41), we get

Zi [£(T20) = 1] + Re(Ao(f (TA0) — 1)) < 0. (3.41)

2|770 + K + (no — K)TA? + Re[(no + K)(1 4+ 7)) (0 + K)o + (no — K)7|Xo|*)] < 0.

This is equivalent to

3
5(1 + 10T AR)? + Mg + (o7 + 7 + 07| Mol *) Mg

3
HGHT + pom = )N <0, (3.43)
where pg := Zgjrg
If o > K (i.e., 1o > 0) and 7 is large, then
3
5@372 + por — 7 > 0. (3.44)

Thus (3.43) does not hold for Ag > 0.
To consider the case when 7 is small, we next derive an upper bound for ;.

By (3.37), we get
[t =t (< S [ o)

fRQ w? Jr2
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Thus we have

Jr2 w*
[Arl < (7o) 2sC (3.45)
where C' is independent of Ag.
Substituting (3.45) into (3.43), we conclude that (3.43) does not hold for Agp > 0, if 7 is

small.

Remark 3.1 The proof of Theorem j allows us to obtain explicit values for 7o and 3. (In fact,
first from (8.44) we obtain a value for 5. Then from (3.43) and (3.45) we get a value for 13.)
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