
AARMS Summer School Lecture I: The study of the profile function

[1] Appendix of Wei-Winter’s book on ”Mathematical Aspects of Pattern Formation in Bi-
ological Systems”, Applied Mathematical Sciences Series, Vol. 189, Springer 2014 , ISBN:
978-4471-5525-6.

In this lecture, we give a self-contained proof of the existence, nondegeneracy and spectrum
of the spike profile function w. These are basic properties which we shall use throughout this
course.

First, we have the following existence result.

Lemma 0.1 Let 1 < p < n+2
n−2

. Consider the following minimisation problem

cp := inf
u∈H1(Rn)\{0}

∫
Rn(|∇u|2 + u2) dx

(
∫
Rn up+1 dx)2/(p+1)

. (0.1)

Then cp can be attained by a radially symmetric function w = w(r) which satisfies

∆w − w + wp = 0, w > 0, w ∈ H1(Rn). (0.2)

Further, we have that w > 0 and w′(r) < 0 for r > 0.

Proof: By Sobolev’s embedding theorem, 0 < cp < ∞. Let {uk} be a minimising sequence. By
scaling invariance, we may assume that

∫
Rn up+1

k dx = 1 and hence
∫
Rn (|∇uk|2 + u2

k) dx → cp.
By the rearrangement inequality we have

∫

Rn
(u∗k)

p+1 dx =
∫

Rn
(uk)

p+1 dx = 1

and ∫

Rn

(
|∇u∗k|2 + (u∗k)

2
)

dx ≤
∫

Rn

(
|∇uk|2 + u2

k

)
dx,

where u∗k is the Schwarz rearrangement of uk. Moreover, it holds that

∫

Rn

(
|∇|uk||2 + |uk|2

)
dx =

∫

Rn

(
|∇uk|2 + u2

k

)
dx .

Because of these two facts, we may assume that the minimising sequence {uk} is radially
symmetric and strictly decreasing. By Strauss’s lemma, for u = u(r), u′(r) < 0, there holds

|u(r)| ≤ cr−(n−1)/2‖u‖H1(Rn). (0.3)
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From (0.3), we deduce that the space of radially symmetric function in H1(Rn), denoted by
H1

r (Rn), is continuously embedded into Lp+1(Rn). Thus {uk(r)} contains a convergent sub-
sequence {uk(r)} in Lp+1(Rn). Assume that its limit is w, then

∫
Rn wp+1 dx = 1. By Fatou’s

Lemma, we have

∫

Rn
(|∇w|2 + w2) dx ≤ lim inf

k→∞

∫

Rn
(|uk|2 + u2

k) dx = cp.

On the other hand, w ∈ H1(Rn) and hence

∫

Rn
(|∇w|2 + w2) dx ≥ cp

(∫

Rn
wp+1 dx

)1/(p+1)

= cp.

This shows that w is in fact a minimiser of the problem (0.1).
Denote

E[u] =

∫
Rn(|∇u|2 + u2) dx

(
∫
Rn up+1 dx)2/(p+1)

.

Then
E[w + tφ] ≥ 0 for all t ∈ R and for all φ ∈ C∞

0 (Rn).

The Euler-Lagrange equation of w implies that w is a weak solution of (0.2). Since wp−1 ∈
L

n/2+ε0
loc (Rn) for some ε0 > 0, the elliptic regularity theorem in Gilbarg-Trudinger, Theorem

8.17 yields that w is bounded. By Lp and Schauder estimates, we get w ∈ C2,α
loc (Rn) for some

α > 0. Thus w is a classical solution of (0.2). By the strong Maximum Principle, we finally
have w > 0 in Rn.

Next, we prove the nondegeneracy of w.

Lemma 0.2 Let φ be a bounded solution of

∆φ− φ + pwp−1φ = 0, |φ| ≤ 1. (0.4)

Then

φ =
n∑

j=1

cj
∂w

∂xj

for some real constants cj, j = 1, . . . , n.

Proof: We divide the proof into four steps.
Step 1. φ decays exponentially to 0 at infinity, more precisely

|φ(x)| ≤ Ce(1−δ)|x| for some C, δ > 0. (0.5)
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In fact, let ψ be the unique solution of

∆ψ − ψ + pwp−1ψ = 0.

Since wp−1ψ decays exponentially, so does ψ, both in the sense of (0.5). Then the difference
u = φ− ψ satisfies

∆u− u = 0, u is bounded. (0.6)

Thus u ≡ 0 and so φ ≡ ψ.
Step 2. Assume that φ = φ(r). Then φ ≡ 0.
This is the key step.
First, we show that λ2 ≥ 0, where λ2 denotes the second eigenvalue of the operator

∆φ− φ + pwp−1φ + λφ = 0, |φ| ≤ 1.

In fact, expanding the minimality condition

d2

dt2

∣∣∣∣∣
t=0

(E(w + tφ)− E(w)) ≥ 0,

we obtain that

∫

Rn

(
|∇φ|2 + φ2 − pwp−1φ2

)
dx + (p− 1)

(
∫
Rn wpφ dx)2

∫
Rn wp+1 dx

≥ 0. (0.7)

By the Courant-Fischer theorem, we deduce that λ2 ≥ 0. In particular, λ2,r ≥ 0, where λ2,r is
the second eigenvalue in the radial class.

Since
∆w − w + pwp−1w = (p− 1)wp,

we see that
∫
Rn wpφ dx = 0. Thus φ can change sign only once. Without loss of generality, we

may assume that for some r0 > 0 we have φ ≤ 0 for r ≤ r0 and φ ≥ 0 for r ≥ r0.
Now we consider the function

η(r) = rw′ − βw.

Then η satisfies
∆η − η + pwp−1η = 2w − (2 + β(p− 1))wp. (0.8)

We may choose β such that 1 =
(
1 + β(p−1)

2

)
wp−1(r0) so that

2w − (2 + β(p− 1))wp ≤ 0 for r ≤ r0 and 2w − (2 + β(p− 1))wp ≥ 0 for r ≥ r0.
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Multiplying (0.8) by φ and (0.4) by η, we arrive at
∫

Rn
φ(2w − (2 + β(p− 1))wp) dx = 0

which is impossible by the properties of φ unless φ ≡ 0. This proves Step 2.
Step 3. Finally, we decompose φ into Fourier modes

φ(x) =
∞∑

j=1

φj(r)ψj(θ),

where ψ0 = 1 and ψj(θ) are the normalised eigenfunctions on Sn−1 with eigenvalues λj. Thus
λ1 = 1, λ2 = . . . = λn+1 = n− 1, λn+2 > n− 1, . . . Then φj satisfies

∆φj − φj + pwp−1φj =
λj

r2
φj. (0.9)

We claim that
φj ≡ 0 for j ≥ n + 2. (0.10)

Proof of (0.10): For j ≥ n + 2, we have φj(0) = 0. Let r0 be the first positive zero of φj

(which may be +∞) and we may assume, without loss of generality, that φj > 0 for r ∈ (0, r0).
Multiplying (0.9) by w′ and integrating by parts, we obtain

∫

Br0

λj − (n− 1)

r2
φjw

′ dx =
∫

∂Br0

(
w′∂φj

∂r
− φjw

′′
)

ds =
∫

∂Br0

w′∂φj

∂r
ds.

Now note that the l.h.s is strictly negative while the r.h.s. is strictly positive unless φj ≡ 0.
Step 3 follows.

Finally, we prove
Step 4. For j = 2, . . . , n + 1, φj = cjw

′ for some cj 6= 0.
Note that φj satisfies

∆φj − φj + pwp−1φj =
n− 1

r2
φj, φj(0) = 0. (0.11)

Then by the uniqueness of the solutions of ordinary differential equations, we have

φj =
φ′j(0)

w′′(0)
w′

and Step 4 is completed.
Combining Steps 1–4, we have proved the lemma.
A corollary of Lemma 0.2 is the following result on the spectrum of w.
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Lemma 0.3 Let w be the least energy solution given in Lemma 0.2. Then we have
(1) There holds

∫

Rn

(
|∇φ|2 + φ2 − pwp−1φ2

)
dx + (p− 1)

(
∫
Rn wpφ dx)2

∫
Rn wp+1 dx

≥ 0

for all φ ∈ H1(Rn).
(2) The eigenvalue problem

∆φ− φ + pwp−1φ + λφ = 0, φ ∈ H1(Rn)

satisfies
λ1 < 0, λ2 = . . . = λn+1 = 0, λn+2 > 0,

where the eigenfunction corresponding to λ1 is simple, radially symmetric and it can be made
positive.

Proof: We just need to prove the statement on λ1 and its eigenfunction. In fact, we consider

λ1 = inf
φ∈H1(Rn)\{0}

∫
Rn(|∇φ|2 + φ2 − pwp−1φ2) dx∫

Rn φ2 dx
.

Then we have

λ1 <

∫
Rn(|∇w|2 + w2 − pwp+1) dx∫

Rn w2 dx
< 0

and the corresponding eigenfunction is simple, radially symmetric and it can be made positive.
The rest follows from Lemma 0.2 and its proof, using that by (0.7) we have λ2 ≥ 0.
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