
SECOND ORDER ESTIMATE ON TRANSITION LAYERS∗

KELEI WANG† AND JUNCHENG WEI§

Abstract. In this paper we establish a uniform C2,θ estimate for level sets of stable
solutions to the singularly perturbed Allen-Cahn equation in dimensions n ≤ 10 (which is
optimal). The proof combines two ingredients: one is a reverse application of the infinite
dimensional Lyapunov-Schmidt reduction method which enables us to reduce the C2,θ

estimate for these level sets to a corresponding one on solutions of Toda system; the
other one uses a small regularity theorem on stable solutions of Toda system to establish
various decay estimates, which gives a lower bound on distances between different sheets
of solutions to Toda system or level sets of solutions to Allen-Cahn equation.
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1. Introduction

1.1. Main result. In this paper, continuing the study in [39], we establish a second order
estimate on level sets of stable solutions to the singularly perturbed Allen-Cahn equation

(1.1) ε∆uε =
1

ε
W ′(uε), |uε| < 1 in B1(0) ⊂ Rn.

Here W (u) is a general double well potential, that is, W ∈ C4([−1, 1]) satisfying

• W > 0 in (−1, 1) and W (±1) = 0;
• W ′(±1) = 0 and W ′′(−1) = W ′′(1) = 1; (Note a slight notation difference here

with other literatures.)
• there exists only one critical point of W in (−1, 1), which we assume to be 0.

A typical model is given by W (u) = (1− u2)2/8.
Under these assumptions on W , it is known that there exists a unique solution to the

following one dimensional problem

(1.2) g′′(t) = W ′(g(t)), g(0) = 0 and lim
t→±∞

g(t) = ±1.

A solution of (1.1) is stable if for any η ∈ C∞0 (B1(0)),

(1.3)

∫
B1(0)

[
ε2|∇η|2 +W ′′(uε)η

2
]
≥ 0.

By Sternberg-Zumbrun [34], the stability condition is equivalent to

(1.4)

∫
B1(0)

|∇η|2ε|∇uε|2 ≥
∫
B1(0)

η2|B(uε)|2ε|∇uε|2, ∀η ∈ C∞0 (B1(0)).

Here

|B(uε)|2 =

{
|∇2uε|2−|∇|∇uε||2

|∇uε|2 , if |∇uε| 6= 0

0, otherwise.

It is known that if |∇uε(x)| 6= 0,

(1.5) |B(uε)(x)|2 = |Aε(x)|2 + |∇T log |∇uε(x)||2,
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where Aε(x) is the second fundamental form of the level set {uε = uε(x)} and ∇T denotes
the tangential derivative along the level set {uε = uε(x)}.

The main result of this paper is

Theorem 1.1. For any θ ∈ (0, 1), 0 < b1 ≤ b2 < 1 and Λ > 0, there exist two constants
C = C(θ, b1, b2,Λ) and ε∗ = ε(θ, b1, b2,Λ) so that the following holds. Suppose uε is a
stable solution of (1.1) in B1(0) ⊂ Rn satisfying

(1.6) |∇uε| 6= 0 and |B(uε)| ≤ Λ, in {|uε| ≤ 1− b2} ∩B1(0).

If n ≤ 10 and ε ≤ ε∗, then for any t ∈ [−1 + b1, 1 − b1], {uε = t} ∩ B1/2(0) are smooth

hypersurfaces and the Cθ norm of their second fundamental forms are bounded by C.
Moreover,

(1.7) |H(uε)| ≤ Cε in B1/2(0),

where H(uε) denotes the mean curvature of {uε = t}.

Two corollaries follow from this theorem.

Corollary 1.2. For any θ ∈ (0, 1), b ∈ (0, 1), Q > 0 and E > 0, there exist two constants
ε1 and C1 so that the following holds. Suppose that uε is a sequence of stable solutions of
(1.1) in C1 := Bn−1

1 (0)× (−1, 1) ⊂ Rn with ε→ 0, satisfying

(H1) the energy of uε is uniformly bounded, that is,∫
C1

[
ε

2
|∇uε|2 +

1

ε
W (uε)

]
≤ E;

(H2) there exists a sequence of tε ∈ (−1+b, 1−b) such that {uε = tε} consists of exactly
Q connected components

Γα,ε =
{
xn = fα,ε(x

′), x′ := (x1, · · · , xn−1) ∈ Bn−1
1

}
, α = 1, · · · , Q,

where −1/2 < f1,ε < f2,ε < · · · < fQ,ε < 1/2;

(H3) for each α, fα,ε converges to a limit fα in C1(Bn−1
1 (0)) as ε→ 0.

If n ≤ 10, then the same conclusion of Theorem 1.1 holds for all uε if ε ≤ ε1, with C
replaced by C1.

In the above and hereafter, when saying ε→ 0 we always mean limi→+∞ εi = 0 .

Corollary 1.3. For any θ ∈ (0, 1) and b ∈ (0, 1), there exist three constants ε2, δ2 and
C2 so that the following holds. Suppose that uε is a sequence of stable solutions of (1.1)
in B1(0) ⊂ Rn, satisfying for any x ∈ {uε = 0} ∩B1−ε(0),

(1.8) sup
y∈Bε(x)

∣∣uε(y)− g
(
y · e− t

ε

) ∣∣ ≤ δ2,

where e ∈ Rn is a unit vector and t ∈ R is a constant, both depending on x. If Stable
Bernstein Conjecture is true in dimension n, then the same conclusion of Corollary 1.2
holds with ε1, C1 replaced by ε2, C2.

Note that it is expected that for n ≤ 7, the Stable Bernstein Conjecture should be true,
that is, stable minimal hypersurfaces in Rn are hyperplanes. This however was only known
for n = 3, see do Carmo and Peng [20], Fischer-Colbrie and Schoen [25] and Pogorelov
[33].

Some remarks are in order.
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Remark 1.4. • The n = 2 case is essentially contained in our paper [39]. Chodosh
and Mantoulidis [9] established the n = 3 case, which was used in their analysis of
Allen-Cahn approximation to minimal surfaces in three dimensional manifold.
• Results in this paper were recently used by Gui and authors of this paper [29] to

study axially symmetric solutions of Allen-Cahn equation in higher dimensions.
Among other results, we show there does not exist axially symmetric solutions in
Rn with finite Morse index, provided 4 ≤ n ≤ 10. As in this paper, the proof relies
on the connection between Allen-Cahn equation and Toda system.
• Condition (H1) is a natural energy bound for stable solutions. See Chodosh-

Mantoulidis [9], Hutchinson-Tonegawa [30] and Tonegawa-Wickramasekera [36].
• The assumption (1.8) says uε is close to the one dimensional solution g at O(ε)

scales. This is guaranteed by assumptions (H1)-(H3), see [39] as well as Section
11.
• The dimension bound n ≤ 10 is sharp. If n ≥ 11, there exists a smooth, radially

symmetric, stable solution to the Liouville equation (i.e. two component Toda
system)

∆f = e−f , in Rn−1.

Agudelo-Del Pino-Wei [1] constructed a family of solutions uε of (1.1) in Rn, with
its nodal set {uε = 0} given by the graph {xn = ±fε(x′)}, x′ ∈ Rn−1, where

fε(x) ≈ εf
(
ε−

1
2x
)

+ ε| log ε|.

Clearly we have

|∇2fε(0)| ≈ |∇2f(0)|
while for any x 6= 0,

|∇2fε(x)| ≈ |∇f
(
ε−1x

)
| → 0, as ε→ 0.

Hence ∇2fε is not uniformly continuous.
• The stability condition is also necessary for this second order regularity. Without

the stability condition it is not true even in dimension 2. Counterexamples are
provided by the multiple end solutions of (1.1) in R2, constructed by Del Pino-
Kowalczyk-Pacard-Wei [15]. By utilizing solutions of Toda system

f ′′α = e−(fα−fα−1) − e−(fα+1−fα), on R, α = 1, · · · , Q,

they constructed a family of solutions uε of (1.1) in R2, with its nodal set {uε = 0}
given by the graph of

fα,ε(x) ≈ εfα
(
ε−

1
2x
)

+ αε| log ε|.

As in the previous case, ∇2fε is not uniformly continuous.
• Although this second order regularity does not hold any more for n ≥ 11, a partial

regularity result may still hold. For example, under assumptions of Corollary 1.2,
there should exist a closed subset in the limit hypersurfaces ∪α{xn = fα(x′)}, which
has Hausdorff dimension at most n− 10, such that in any compact set outside this
singular set, uniform second order regularity still holds.
• It seems that the second order regularity problem is quite different in nature from

the first order regularity problem, i.e. uniform C1,θ estimates on level sets. See
Caffarelli-Cordoba [7] and Tonegawa-Wickramasekera [36]. For example, it can



SECOND ORDER ESTIMATE 5

be checked that the above counterexamples (constructed in [1] and [15]) to second
order regularity still enjoy a uniform C1,θ estimate.
• We do not touch any aspect on higher order regularity (e.g. Ck,θ regularity for
k ≥ 3) of level sets. It will be interesting to obtain such a result even for the
multiplicity one case.

1.2. Outline of proof. The proof of Theorem 1.1 consists of the following three steps.

Step 1. Reverse infinite dimensional Lyapunov-Schmidt reduction. To prove
the second order regularity of level sets, as in [39] we use a reverse version of the infinite
dimensional Lyapunov-Schmidt reduction method to show that these level sets satisfy a
Toda system and then utilize information on Toda system to finish the proof.

This reduction method has been used by Del Pino, Kowalczyk, Wei and many others to
build solutions of Allen-Cahn equations from minimal hypersurfaces or Toda system. In
particular, Del Pino, Kowalczyk and Wei [17] constructed counterexamples to De Giorgi
conjecture in R9 by this method, and in [16] they found the connection between Toda
system and clustering interfaces in Allen-Cahn equation.

As in [39], our use of this reduction method will be in a reverse order, that is, instead of
going from minimal hypersurfaces or Toda system to Allen-Cahn equation, a Toda system
will be derived from Allen-Cahn equation by using this reduction method. Such a reverse
version has been used by Del Pino, Kowalczyk and Pacard in [14], Gui, Liu and Wei in [28]
to analyse refined asymptotic behavior of entire solutions to Allen-Cahn equation. But
our main concern here (and in [39]) is on the clustering interface case and the treatment
is different in many places.

The reduction method proceeds as follows. First by the assumptions in Theorem 1.1
(or Corollary 1.2 or 1.3), uε is close to the one dimensional profile in O(ε) neighborhood
of each connected component of {uε = 0}, see Section 2. Therefore the solution has the
form

(1.9) uε =
∑
α

gα,ε + φε,

where gα,ε is the one dimensional solution in composition with the distance function to
Γα,ε, a connected component of {uε = 0}, and φε is a small error between our solution uε
and the approximate solution

∑
α gα,ε.

Writing uε in this way, the single equation for uε, (1.1), is almost decoupled into two
equations: one is the equation for the level set {uε = 0} and the other one is an equation
for φε. Such a decoupling is possible by choosing an optimal approximation in (1.9),
which then implies that φε lies in the subspace orthogonal to the kernel space at

∑
α gα,ε,

see Proposition 4.1 for a precise statement. To this end, it is necessary to take a small
perturbation in normal directions of each Γα,ε so that gα,ε is the optimal approximation
to uε along each normal line. Here it is convenient to introduce Fermi coordinates with
these Γα,ε and rewrite everything in these coordinates, see Section 3-4.

Since Γα,ε are far from each other and they are almost parallel, the interaction pattern
between different gα,ε, which represents the interaction between different components of
{uε = 0}, can be determined by using asymptotic expansions of the one dimensional profile
at infinity. This gives the equation for Γα,ε,

(1.10) Hα,ε =
2A2

(−1)α−1

σ0ε
e−
|dα−1,ε|

ε −
2A2

(−1)α

σ0ε
e−
|dα+1,ε|

ε + higher order terms,
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where A±1 and σ0 are constants (see Appendix A for the definition), Hα,ε is the mean
curvature of Γα,ε, |dα−1,ε| and |dα+1,ε| are distances to Γα−1,ε and Γα+1,ε respectively, see
Section 5 for a precise statement.

Higher order terms in (1.10) involve some terms containing φε. In order to get a good
reduction problem, a precise estimate on φε is needed. This is established in Section 6 and
Section 7. Since φε is known to be a small perturbation, it satisfies an almost linearized
equation. (This is the reduction procedure, i.e. we partially linearize (1.1) in the φε
component.) To estimate φε, we need to consider two separate cases: the inner problem
near {uε = 0}, and the outer one which is concerned with the part far away from {uε = 0}.
It is important here that these two parts are still almost decoupled, which is guaranteed
by the fast decay of the one dimensional profile at infinity.

Sections 2-7 will be devoted to this reduction procedure. It is almost the same with the
one in [39], but various simplifications and improvements will be given in this paper.

The main difference is that in [39], it is either assumed that there are only finitely many
connected components of transition layers (as in Corollary 1.2) or the distance between
different connected components of transition layers has a lower bound in the form cε| log ε|
(see [39, Section 17]), but now both assumptions are removed and we only need the as-
sumption that the distance between different connected components of transition layers
to be � ε (see Lemma 2.1 below) as a starting point. Moreover, now we can show that
all estimates in this step hold uniformly with respect to the number of connected com-
ponents of transition layers. Hence no assumption is needed on the number of connected
components of transition layers in Theorem 1.1 and Corollary 1.3.

Step 2. Reduction of the stability condition. Now the C2,θ estimate is reduced
to the one on solutions to (1.10). It turns out that this depends in an essential way on
lower bounds on |dα−1,ε| and |dα+1,ε|, as observed in [39]. To get these lower bounds, as
explained before, we need the stability condition (1.4).

In Section 8, we show that if uε is a stable solution, then solutions to the reduction
problem (1.10) satisfies an almost stability condition. This is achieved by choosing test
functions in (1.4) to be ∑

α

ηαg
′
α,ε,

where ηα ∈ C∞0 (Γα,ε). In other words, we consider variations along directions tangential
to {uε = 0}.

This choice of test functions in the stability condition was first used in Del Pino, Kowal-
czyk and Wei [18], where they showed that solutions to Allen-Cahn equation constructed
from finite Morse index minimal surfaces in R3 has the same Morse index. See also [1]
and [9, Appendix D] for similar construction.

By this choice of test functions in the stability condition for Allen-Cahn equation, a
careful analysis of contributions from tangential parts, normal parts, cross terms and the
interaction between different components, leads to a stability condition on solutions to
(1.10), see Proposition 8.1.

Step 3. Decay estimates. Finally, a small regularity theorem on stable solutions of
(1.10) will be employed to give decay estimates on e−|dα−1,ε|/ε in the interior, which then
leads to a C2,θ estimate on (1.10).

This small regularity result has been established by the first author in [37, 38] for stable
solutions of the Liouville equation. The method developed therein can be generalized
directly to Toda system (1.10). Here the dimension restriction n ≤ 10 appears, due to the
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fact that this small regularity theorem requires an L1 smallness assumption on e−|dα−1,ε|/ε

as a starting point. This L1 smallness condition holds unconditionally only in n ≤ 10,
which can be proved by an Lp estimate of Farina [21].

However, the Lp estimate works only if we have an elliptic equation (or at least, an
elliptic inequality) for a single function. Therefore it is necessary to rewrite (1.10) as a
standard Toda system.

In this paper, two approaches will employed. The first one is extrinsic and uses the
graph representation (with respect to a fixed hyperplane) of Γα,ε. This works well when
two such hypersurfaces are very close. Once they are close, they will be almost parallel to
each other if we note that they are disjoint embedded hypersurfaces with curvature bounds.
This then allows us to represent distances between them by differences of functions, and
replace the minimal surface operator in (1.10) by the standard Laplacian operator.

This approach is sufficient for the proof of C2,θ regularity. However, we can get further
refinements. For example, in Chodosh and Mantoulidis [9] it was shown that interac-
tion between different Γα,ε is dominated by mean curvatures instead of the exponential
nonlinearities in Toda system. For this purpose we need a more precise lower bound on
intermediate distance between different Γα,ε, and another approach is needed. This one is
intrinsic and uses the Jacobi field construction introduced in [9]. Here we fix an Γα,ε and
view other components as graphs of functions defined on this component. Using this we
can also construct positive Jacobi fields for the limiting minimal hypersurfaces as in [9].

For λ > 0, let uλε (x) := uε(λx). Then uλε satisfies the equation (1.1) with parameter
λ−1ε. In particular, u(x) := uε(εx) satisfies the unscaled Allen-Cahn equation

(1.11) ∆u = W ′(u).

Notations: The following notations will be adopted in this paper.

• Sometimes a point x ∈ Rn is denoted by (x′, xn) with x′ ∈ Rn−1 and xn ∈ R.
• A constant is called universal if it depends only on the dimension n, the double

well potential W and the constants b1, b2,Λ in Theorem 1.1. We use C to denote
a large universal constant, while c a small universal constant.
• If A ≤ CB for a universal constant C, then we denote it by A . B or A = O(B).

If the constant C depends on a parameter K, it is written as A = OK(B).
• We will fix the symbol R := ε−1.

2. Preliminary analysis

In the following we will only be concerned with one level set of uε, {uε = 0}. It will
be clear that our proof goes through without any change when 0 is replaced by any other
t ∈ [−1 + b1, 1− b1], and all of the following estimates are uniform in t ∈ [−1 + b1, 1− b1].

By standard elliptic regularity theory and our assumption on the double well potential
W , uε ∈ C3

loc(B1(0)). Concerning the regularity of {uε = 0}, we first prove that different
components of it are at least O(ε) apart. In the following a connected component of
{uε = 0} is denoted by Γα,ε, where α is the index. The following lemma also shows that
the cardinality of the index set is always finite for fixed ε, although it could go to infinity
as ε→ 0.

Lemma 2.1. For any α and xε ∈ Γα,ε∩B9/10(0), as ε→ 0, ũε(x) := uε(xε+εx) converges

to a one dimensional solution in C2
loc(Rn). In particular,

(2.1) ε−1dist (xε, {uε = 0} \ Γα,ε)→ +∞ uniformly.
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Proof. In Bε−1/10(0), ũε(x) satisfies the Allen-Cahn equation (1.11). By standard elliptic

regularity theory, ũε(x) is uniformly bounded in C3
loc(Rn). By Arzela-Ascoli theorem, as

ε→ 0, it converges to a limit function ũ∞ in C2
loc(Rn). Clearly ũ∞ is a stable solution of

(1.11) in Rn.
Since ũε(0) = 0, ũ∞(0) = 0. By our assumption on the double well potential W , the

constant solution 0 is not stable. Hence ũ∞ is a non-constant solution. As a consequence,
by unique continuation principle, the critical set {∇ũ∞ = 0} has zero Lebesgue measure.

By (1.6), ∣∣B (ũε)
∣∣ ≤ Λε, in {|ũε| ≤ 1− b} ∩Bε−1/9(0).

By the convergence of ũε, we can pass this inequality to the limit in any compact set
outside {∇ũ∞ = 0}, which leads to

∣∣B (ũ∞)
∣∣ ≡ 0 in {|ũ∞| ≤ 1 − b}. Hence by (1.5) and

Sard theorem, almost all level sets {ũ∞ = t} (for t ∈ [−1 + b, 1 − b]) are hyperplanes.
Then it is directly verified that these hyperplanes are parallel to each other and ũ∞ is
one dimensional (along the normal direction to these hyperplanes). Because ũ is stable, it
must be the monotone one, g.

Let Γ̃α,ε := ε−1 (Γα,ε − xε). By the convergence of ũα,ε, in any compact set of Rn, Γ̃α,ε
converge to {ũ∞ = 0} in the Hausdorff distance. Since {ũ∞ = 0} is a single hyperplane,
we get

dist
(

0, {ũε = 0} \ Γ̃α,ε

)
→ +∞,

where the convergence rate depends only on ε. This gives (2.1). �

The above proof implies that the Implicit Function Theorem can be applied to uε at
O(ε) scales, which gives the C3 regularity of {uε = 0}. Of course it is not known whether
there exists a uniform bound independent of ε.

The following lemma can be proved by combining the curvature bound (1.6) with the
fact that different connected components of {uε = uε(0)} are disjoint. (This fact has been
used a lot in minimal surface theory, see for instance [10].)

Lemma 2.2. There exist two universal constants rg ∈ (0, 1/20) and C(rg,Λ) so that
the following holds. For any x∗ ∈ {|uε| ≤ 1 − b} ∩ B9/10(0), in a suitable coordinate
system, {uε = uε(x∗)} ∩ Brg(x∗) is a family of graphs ∪α{xn = fα,ε(x

′)}, where fα,ε ∈
C3(Bn−1

2rg
(x′∗)) satisfy ‖fα,ε‖C1,1(Bn−1

2rg
(x′∗))

≤ C(rg,Λ).

3. Fermi coordinates

3.1. Definition. For simplicity of presentation, we now work in the stretched version and
do not write the dependence on ε explicitly.

Recall that R = ε−1, and u(x) = uε(εx) satisfies the Allen-Cahn equation (1.11) in
BR(0). Its nodal set {u = 0} consists of finitely many connected components, Γα.

By our assumption, for each α, the second fundamental form Aα of Γα satisfies

(3.1) |Aα(y)| ≤ Λε, ∀y ∈ Γα ∩BR(0).

We will assume Λ is sufficiently small, perhaps after restricting uε to a small ball and then
rescaling the radius of this ball to 1.

Let y be a local coordinate of Γα. The Fermi coordinate is defined as (y, z) 7→ x, where
x = y+ zNα(y). Here Nα(y) is a unit normal vector to Γα, z is the signed distance to Γα.
By (3.1), Fermi coordinates are well defined and smooth in BR(0).
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By Lemma 2.2 (recall that we have assumed Λ� 1), after a rotation,

(3.2) Γα ∩BR(0) = {xn = fα(x′)}, ∀α.

Therefore a canonical way to choose local coordinates of Γα is by letting y = x′ for each
α. Then the induced metric on Γα is

gα,ij(y) = δij +
∂fα
∂yi

(y)
∂fα
∂yj

(y).

By Lemma 2.2 and (3.1), we get a universal constant C such that

(3.3) |∇fα| ≤ C and |∇2fα| ≤ Cε, in Bn−1
R (0).

Sometimes the signed distance to Γα is also denoted by dα. Since Γα ∩ Γβ = ∅ for any
α 6= β, we can choose the sign so that {dα > 0} ∩ {dβ > 0} 6= ∅ for any α 6= β.

For any z ∈ (−R,R), let Γα,z := {dα(x) = z}. In particular, Γα,0 is just Γα. Define the
vector field

Xi :=
∂

∂yi
+ z

∂Nα

∂yi
=

n−1∑
j=1

(δij − zAα,ij)
∂

∂yj
, 1 ≤ i ≤ n− 1.

The tangent space of Γα,z is spanned by Xi. The Euclidean metric restricted to Γα,z is
denoted by gα,ij(y, z)dy

i ⊗ dyj , where

gα,ij(y, z) = Xi(y, z) ·Xj(y, z)

= gα,ij(y, 0)− 2z
n−1∑
k=1

Aα,ik(y, 0)gjk(y, 0)(3.4)

+z2
n∑

k,l=1

gα,kl(y, 0)Aα,ik(y, 0)Aα,jl(y, 0).

The second fundamental form of Γα,z has the form

(3.5) Aα(y, z) = [I − zAα(y, 0)]−1Aα(y, 0).

3.2. Some notations. In the remaining part of this paper the following notations will
be employed.

• Given a point X, Πα(X) denotes the nearest point on Γα to X, which by our
assumption is uniquely determined by X.
• Given a point on Γα with local coordinates (y, 0) in Fermi coordinates, denote

Dα(y) := min
β 6=α
|dβ(y, 0)|.

• For any x ∈ BR(0) and r ∈ (0, R− |x|), denote

A(r;x) := max
α

max
y∈Γα∩Br(x)

e−Dα(y).

• The covariant derivative on Γα,z with respect to the induced metric is denoted by
∇α,z.
• The area form on Γα,z with respect to the induced metric is denoted by dAα,z =

λα(y, z)dy, where λα(y, z) =
√

det [gα,ij(y, z)].
• We use Bα

r (y) to denote the open ball on Γα with center y and radius r, which is
measured with respect to intrinsic distance.
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• For λ ∈ R, let

Mλ
α := {|dα| < |dα−1|+ λ and |dα| < |dα+1|+ λ} .

• In the Fermi coordinates with respect to Γα, there exist two continuous functions
ρ±α (y) such that

M0
α =

{
(y, z) : ρ−α (y) < z < ρ+

α (y)
}
.

3.3. Deviation in z. In this subsection we collect several estimates on the deviation of
various terms in z, when z 6= 0. Recall that ε is the upper bound on curvatures of level
sets of u, see (3.1).

By (3.1), |Aα(y, 0)| . ε. Thus by (3.5), for |z| < R, |Aα(y, z)| . ε. Concerning bounds
on derivatives of Aα, we have (see [39, Lemma 8.1])

Lemma 3.1. For any y ∈ Γα ∩BR−1(0),

(3.6) |∇α,0Aα(y, 0)| . ε.

Such an ε-bound on third order derivatives will be crucial for the following proof of this
paper, because we will need some very precise C2,θ bounds on various functions constructed
from u.

By (3.5), we get

(3.7) |Aα(y, z)−Aα(y, 0)| . |z||Aα(y, 0)|2 . ε2|z|.
Similarly, by (3.4), the deviation of metric tensors is

(3.8)

{
|gα,ij(y, z)− gα,ij(y, 0)| . ε|z|,
|gijα (y, z)− gijα (y, 0)| . ε|z|.

As a consequence, the deviation of mean curvature is

(3.9) |Hα(y, z)−Hα(y, 0)| . ε2|z|.
By (3.3) and (3.6), for any |z| < R,

(3.10)

n−1∑
i,j=1

(
|∇α,zgα,ij(y, z)|+ |∇α,zgijα (y, z)|+ |∇2

α,zgα,ij(y, z)|+ |∇2
α,zg

ij
α (y, z)|

)
. ε.

The Laplacian operator in Fermi coordinates has the form

∆Rn = ∆α,z −Hα(y, z)∂z + ∂zz,

where ∆α,z is the Beltrami-Laplace operator on Γα,z, that is,

∆α,z =
n−1∑
i,j=1

1√
det(gα,ij(y, z))

∂

∂yj

(√
det(gα,ij(y, z))g

ij
α (y, z)

∂

∂yi

)

=
n−1∑
i,j=1

gijα (y, z)
∂2

∂yi∂yj
+

n−1∑
i=1

biα(y, z)
∂

∂yi
(3.11)

with

biα(y, z) =
1

2

n−1∑
j=1

gijα (y, z)
∂

∂yj
log det(gα,ij(y, z)).

By (3.8) and (3.11), we get
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Lemma 3.2. For any function ϕ ∈ C2 (Γα),

(3.12) |∆α,zϕ−∆α,0ϕ| . ε|z|
(
|∇2

α,0ϕ|+ |∇α,0ϕ|
)
.

Finally we recall a commutator estimate, which is [39, Lemma 13.2].

Lemma 3.3. For any ϕ ∈ C3 (Γα) and i = 1, · · · , n− 1,∣∣∣ ∂
∂yi

∆α,zϕ−∆α,z
∂ϕ

∂yi

∣∣∣ . ε (|∇2
α,0ϕ|+ |∇α,0ϕ|

)
.

The additional ε comes from (3.10), which in turn relies on (3.6).

3.4. Comparison of distance functions. The following result is [39, Lemma 8.3]. It
describes the error between distances to different Γα, when their distances is of the order
O (| log ε|).

Lemma 3.4. For any K > 0, there exists a constant C(K) so that the following holds.
For any X ∈ B8R/9(0) and α 6= β, if |dα(X)| ≤ K| log ε| and |dβ(X)| ≤ K| log ε| at the
same time, then we have

distΓβ (Πβ ◦Πα(X),Πβ(X)) ≤ C(K)ε1/2| log ε|3/2,

|dβ (Πα(X)) + dα (Πβ(X)) | ≤ C(K)ε1/2| log ε|3/2,
|dα(X)− dβ(X) + dβ (Πα(X)) | ≤ C(K)ε1/2| log ε|3/2,
|dα(X)− dβ(X)− dα (Πβ(X)) | ≤ C(K)ε1/2| log ε|3/2,

1−∇dα(X) · ∇dβ(X) ≤ C(K)ε1/2| log ε|3/2,

The following lemma is an easy consequence of Lemma 2.2.

Lemma 3.5. For any α 6= β, both ΠβbΓα and its inverse are Lipschitz continuous with
their Lipschitz constants bounded by a universal constant C.

Finally, the following fact will be used a lot in this paper.

Lemma 3.6. For any y ∈ Γα, ∑
β 6=α

e−|dβ(y,0)| . e−Dα(y).

Proof. By Lemma 2.1 and Lemma 3.4, there exists a constant C � 1 such that

|dβ(y, 0)| ≥ Dα(y) + C (|β − α| − 1) .

Summing e−|dβ(y,0)| in β we conclude the proof. �

4. An approximate solution

4.1. Orthogonal decomposition. Fix a function ζ ∈ C∞0 (−2, 2) with ζ ≡ 1 in (−1, 1),
|ζ ′|+ |ζ ′′| ≤ 16. Let

ḡ(t) = ζ (4| log ε|t) g(t) + [1− ζ(4| log ε|t)] sgn(t), t ∈ (−∞,+∞).

In particular, ḡ ≡ 1 in (8| log ε|,+∞) and ḡ ≡ −1 in (−∞,−8| log ε|).
This function ḡ is an approximate solution to the one dimensional Allen-Cahn equation,

that is,

(4.1) ḡ′′ = W ′ (ḡ) + ξ̄,

where spt(ξ̄) ∈ {4| log ε| < |t| < 8| log ε|}, and |ξ̄|+ |ξ̄′|+ |ξ̄′′| . ε3.
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We also have (see Appendix A for the definition of σ0)

(4.2)

∫ +∞

−∞
ḡ′(t)2dt = σ0 +O

(
ε3
)
.

Without loss of generality, we will always assume u has the same sign as (−1)αdα near
Γα. Given a function hα ∈ C2(Γα), let

gα(y, z;hα) := ḡ ((−1)α (z − hα(y))) ,

where (y, z) are Fermi coordinates with respect to Γα.
Given a sequence of functions (hα) =: h, define the function g(y, z;h) in the following

way: for each α, in M0
α it is defined as

(4.3) g(y, z;h) := gα +
∑
β<α

[
gβ − (−1)β

]
+
∑
β>α

[
gβ + (−1)β

]
.

By the definition of ḡ and Lemma 2.1, there are only finitely many terms in the above
sum.

For simplicity of notation, denote

g′α(y, z;hα) = ḡ′ ((−1)α(z − hα(y))) , g′′α(y, z;hα) = ḡ′′ ((−1)α(z − hα(y))) , · · · .

Proposition 4.1. There exists hα ∈ C0(Γα ∩B9R/10(0) with ‖hα‖C0(Γα∩B9R/10(0) � 1 for

each α, such that for any α and y ∈ Γα ∩B7R/8(0),

(4.4)

∫ +∞

−∞
[u(y, z)− g(y, z;h)] g′α(y, z;hα)dz = 0,

where (y, z) are Fermi coordinates with respect to Γα.

Proof. We prove this proposition by applying a nonlinear open mapping theorem (see [8,
Theorem 1.2.4]) to a C1 map between two Banach spaces.

The Banach spaces are X :=
⊕

αC
0(Γα ∩ B9R/10(0)), the direct sum of the spaces of

continuous functions on Γα∩B9R/10(0) (for those α with this intersection being nonempty),

and Y :=
⊕

αC
0(Γα∩B7R/8(0)). In the following we also denote Xα := C0(Γα∩B9R/10(0))

and Yα := C0(Γα ∩B7R/8(0)).
Given (hα) ∈ X , define g(·;h) as in (4.3). By (3.1) (recall that we have assumed Λ� 1),

for each α, Πα(B8R/9(0)) ⊂ Γα ∩ B9R/10(0). Hence gα for each α, and then g(·;h) is well
defined in B8R/9(0).

Define the map F as follows: the Yα component of F (h) is

Fα(h)(y) :=

∫ +∞

−∞
[u(y, z)− g(y, z;h)] g′α (y, z;hα) dz, ∀y ∈ Γα ∩B7R/8(0),

where (y, z) denote Fermi coordinates with respect to Γα. (Note that z represents different
object for different α.) By the definition of gα, the above integral involves only those
z ∈ (−10 logR, 10 logR) provided ‖h‖X ≤ 1, where both g′α and g(·;h) are well defined
for y ∈ Γα ∩B7R/8(0).

It is readily verified that F is a C1 map from the unit ball in X to Y. Furthermore, for
each α, DFα(h)ξ equals

(−1)αξα(y)

∫ +∞

−∞

[
g′α (y, z;hα)2 − (u(y, z)− g(y, z;h)) g′′α (y, z;hα)

]
dz
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+
∑
β 6=α

(−1)β
∫ +∞

−∞
ξβ(Πβ(y, z))g′α (y, z;hα) g′β (y, z;hβ) dz.

From this formula, we see there exist a family of linear operators DβFα from Xβ to Yα
such that

DFα(h)ξ =
∑
β

DβFα(h)ξβ.

By Lemma 2.1,

(4.5)

∫ +∞

−∞

[
g′α (y, z; 0)2 − (u(y, z)− g(y, z; 0)) g′′α (y, z; 0)

]
dz ≥ σ0

2
,

(4.6)
∣∣∣ ∫ +∞

−∞
g′α (y, z; 0) g′β (y, z; 0) dz

∣∣∣ . e−|dβ(y,0)|.

A direct consequence of (4.6) is the operator bound

(4.7) ‖DβFα(0)‖Xβ 7→Yα . max
y∈Γα∩B7R/8(0)

e−|dβ(y,0)|, ∀β 6= α.

By applying (4.5) and constructing a suitable extension operator from Yα to Xα, we

obtain a right inverse of DαFα(0), denoted by (DαFα(0))−1, which is a bounded linear
operator from Yα to Xα with bound depending only on σ0.

Next we use this to construct a right inverse of DF (0). To this end, for any (ηα) ∈ Y,
we want to find a solution (ξα) ∈ X to the following linear equation

DαFα(0)ξα +
∑
β 6=α

DβFα(0)ξβ = ηα, ∀α.

This can be transformed to finding a fixed point of the map defined on X :

(ξα) 7→

(DαFα(0))−1 ηα −
∑
β 6=α

(DαFα(0))−1DβFα(0)ξβ

 .

By the bound on (DαFα(0))−1, (4.7), Lemma 3.6 and Lemma 2.1, this map is a contraction.
The existence and uniqueness of the fixed point then follows from the contraction mapping
principle. Moreover, (ξα) depends linearly and continuously on (ηα). We define this

continuous linear map as the right inverse of DF (0), denoted as (DF (0))−1. Note that

there is a uniform bound on ‖ (DF (0))−1 ‖Y7→X , which depends only on σ0.
Following the proof of [8, Theorem 1.2.4], define

R(h) := F (h)−DF (0)h.

To find h so that F (h) = 0, it is equivalent to find a solution to the equation

(4.8) DF (0)h = −R(h).

We use the iteration scheme in the proof of [8, Theorem 1.2.4] to find such an h. First
let h0 = 0. For any k ≥ 0, suppose hk ∈ BXρ (0) (ρ to be determined below) has been
constructed, let

(4.9) hk+1 := − (DF (0))−1R(hk).

From the representation formula for DFα, there exist δ > 0 and ρ > 0 small enough
(but independent of ε) such that

‖DF (h)−DF (0)‖X 7→Y ≤ δ, ∀h ∈ BXρ (0).
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Combining this with the uniform bound on ‖ (DF (0))−1 ‖Y7→X , we get, if both hk−1 and
hk lie in BXρ (0), then

(4.10) ‖hk+1 − hk‖X ≤
1

2
‖hk − hk−1‖X .

By the same calculation in the proof of [8, Theorem 1.2.4], we see hk stays in BXρ (0) for
all k, provided that ‖F (0)‖X � 1, which is true for all ε small enough by Lemma 2.1.
Then by (4.10), hk converges to a limit h as k → +∞. Taking limit in (4.9) we obtain

h = − (DF (0))−1R(h).

Since (DF (0))−1 is the right inverse of DF (0), h is also the solution of (4.8). �

Denote gα(y, z) := gα(y, z;hα) and g∗(y, z) := g(y, z;h), where h is given in the previous
proposition. As before we denote

g′α(y, z) = g′α(y, z;hα), g′′α(y, z) = g′′α(y, z;hα), · · · .
Let φ := u− g∗ be the error between the solution u and the approximate solution g∗.

Remark 4.2. The proof of Proposition 4.1 shows that for each α, ‖hα‖C0(Γα∩B7R/8(0)) =

o(1). By differentiating (4.4), we can show that ‖hα‖C3(Γα∩B7R/8(0)) = o(1) for each α.

Combining this fact with Lemma 2.1, we obtain ‖φ‖C3(B7R/8(0)) = o(1).

In the Fermi coordinates with respect to Γα, φ satisfies the following equation

∆α,zφ−Hα(y, z)∂zφ+ ∂zzφ

= W ′(g∗ + φ)−
∑
β

W ′(gβ) + (−1)αg′α [Hα(y, z) + ∆α,zhα(y)]− g′′α|∇α,zhα|2(4.11)

+
∑
β 6=α

[
(−1)βg′βRβ,1 − g′′βRβ,2

]
−
∑
β

ξβ,

where for each β, in the Fermi coordinates with respect to Γβ,

ξβ(y, z) = ξ̄
(

(−1)β(z − hβ(y))
)
,

Rβ,1(y, z) := Hβ(y, z) + ∆β,zhβ(y),

Rβ,2(y, z) := |∇β,zhβ(y)|2.

4.2. Interaction terms. In this subsection we collect several estimates on the interaction
term I := W ′(g∗)−

∑
βW

′(gβ) between different components. The following three lemmas

correspond to [39, Lemma 9.3-Lemma 9.5]. Because in this paper we assume W ′′(±1) = 1,
the statement is different in some constants, but the proof is exactly the same.

Lemma 4.3. In M4
α ∩B7R/8−1(0),

I =
[
W ′′(gα)− 1

] [
gα−1 − (−1)α−1

]
+
[
W ′′(gα)− 1

] [
gα+1 + (−1)α+1

]
(4.12)

+ O
(
e−2dα−1 + e2dα+1

)
+O

(
e−dα−2−|dα| + edα+2−|dα|

)
.

The following upper bound on the interaction term will be used a lot in below.

Lemma 4.4. For any (y, z) ∈M4
α ∩B7R/8−1(0),∣∣I(y, z)

∣∣ . e−Dα(y) + ε2.

The Lipschitz norm of interaction terms can also be estimated in a similar way.
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Lemma 4.5. For any (y, z) ∈M3
α ∩B7R/8−1(0),∥∥I∥∥

Lip(B1(y,z))
. max

Bα1 (y)
e−Dα + ε2.

4.3. Controls on h using φ. The choice of optimal approximation in Subsection 4.1
has the advantage that h is controlled by φ. This will allow us to iterate various elliptic
estimates in Section 6 below.

Lemma 4.6. For each α and y ∈ Γα ∩B7R/8−2(0), we have

(4.13) ‖hα‖C2,θ(Bα1 (y)) . ‖φ‖C2,θ(B1(y,0)) + max
Bα1 (y)

e−Dα

and

‖∇α,0hα‖C1,θ(Bα1 (y)) . ‖∇α,0φ‖C1,θ(B1(y,0)) + ε1/6 max
Bα1 (y)

e−Dα

+

(
max

β:|dβ(y,0)|≤8| log ε|
‖∇β,0hβ‖C1,θ(Bβ2 (Πβ(y,0)))

)(
max
Bα1 (y)

e−Dα
)
.(4.14)

Proof. Fix an α. In the Fermi coordinates with respect to Γα, because u(y, 0) = 0,

φ(y, 0) = −ḡ
(
(−1)α+1hα(y)

)
−

∑
β<α

[
ḡ
(

(−1)β (dβ(y, 0)− hβ(Πβ(y, 0)))
)
− (−1)β

]
−

∑
β>α

[
ḡ
(

(−1)β (dβ(y, 0)− hβ(Πβ(y, 0)))
)

+ (−1)β
]
.(4.15)

Note that for β 6= α, |hβ(Πβ(y, 0))| � 1. Then using Lemma 3.6, we get

(4.16) |hα(y)| . |φ(y, 0)|+
∑
β 6=α

e−|dβ(y,0)| . |φ(y, 0)|+ e−Dα(y).

Differentiating (4.15), we get

∇α,0φ(y, 0) = (−1)αḡ′
(
(−1)α+1hα(y)

)
∇α,0hα(y)

−
∑
β 6=α

(−1)βg′β(y, 0)∇α,0 (dβ − hβ ◦Πβ) (y, 0),

and

∇2
α,0φ(y, 0) = (−1)αḡ′

(
(−1)α+1hα(y)

)
∇2
α,0hα(y)

− ḡ′′ ((−1)αhα(y))∇α,0hα(y)⊗∇α,0hα(y)

−
∑
β 6=α

(−1)βg′β(y, 0)∇2
α,0 (dβ − hβ ◦Πβ) (y, 0)

−
∑
β 6=α

g′′β(y, 0) [∇α,0 (dβ − hβ ◦Πβ)⊗∇α,0 (dβ − hβ ◦Πβ)] (y, 0).

By Lemma 3.4, if g′β(y, 0) 6= 0,

|∇α,0dβ| =
√

1−∇dβ · ∇dα . ε1/6.

Then by noting that |∇α,0Πβ| is uniformly bounded (see Lemma 3.5), we get

|∇α,0hα(y)| . |∇α,0φ(y, 0)|+
∑

β 6=α:|dβ(y,0)|≤8| log ε|

(
ε1/6 + |∇β,0hβ(Πβ(y, 0))|

)
e−|dβ(y,0)|.
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Summing this in β and applying Lemma 3.6 we obtain

|∇α,0hα(y)| . |∇α,0φ(y, 0)|+
(
ε1/6 + max

β 6=α:|dβ(y,0)|≤8| log ε|
|∇β,0hβ(Πβ(y, 0))|

)
e−Dα(y).

A similar calculation leads to an upper bound on |∇2
α,0hα(y)|.

Finally, the Hölder estimate in (4.14) follows by combining the above representation
formula, Lemma 4.5 and the bound

|∇2
α,0dβ| . |∇2dβ|+ |Aα| . ε.

Here it is useful to note (i) ∇2dβ is the second fundamental form of Γβ,z, and (ii)

Πβ(Bα
1 (y)) ⊂ Bβ

2 (Πβ(y, 0)) if |dβ(y, 0)| ≤ 8| log ε| (by Lemma 3.4). �

5. A Toda system

In the Fermi coordinates with respect to Γα, multiplying (4.11) by g′α and integrating
in z leads to∫ +∞

−∞

[
g′α∆α,zφ−Hα(y, z)g′α∂zφ+ g′α∂zzφ

]
(5.1)

=

∫ +∞

−∞

W ′(g∗ + φ)−
∑
β

W ′(gβ)

 g′α + (−1)α
∫ +∞

−∞
[Hα(y, z) + ∆α,zhα(y)] g′α(z)2

−
∫ +∞

−∞
g′′αg
′
α|∇α,zhα|2 +

∑
β 6=α

∫ +∞

−∞

[
(−1)βg′αg

′
βRβ,1 − g′αg′′βRβ,2

]
−
∑
β

∫ +∞

−∞
ξβg
′
α.

From this equation we deduce that

(5.2) Hα(y, 0) + ∆α,0hα(y) =
2A2

(−1)α−1

σ0
e−dα−1(y,0) −

2A2
(−1)α

σ0
edα+1(y,0) + E0

α(y),

where E0
α is a higher order term. (See Appendix A for the definition of A1 and A−1.)

More precisely, we have

Lemma 5.1. For any x ∈ B6R/7(0) and r ∈ (0, R/60),

max
α

∥∥E0
α

∥∥
Cθ(Γα∩Br(x))

. ε2 + ε
1
3A (r + 10| log ε|;x) +A (r + 10| log ε|;x)

3
2

+ max
α

∥∥Hα + ∆α,0hα
∥∥2

Cθ(Γα∩Br+10| log ε|(x))
+ ‖φ‖2C2,θ(Br+10| log ε|(x)).(5.3)

The proof is given in Appendix B.
Since all terms in the right hand side of (5.3) are of higher order, a direct consequence

of this lemma is

Corollary 5.2. There exists a universal constant C > 0 such that for any x ∈ B6R/7(0)
and r ∈ (0, R/60),

max
α

∥∥Hα + ∆α,0hα
∥∥
Cθ(Γα∩Br(x))

≤ 1

4

(
max
α

∥∥Hα + ∆α,0hα
∥∥
Cθ(Γα∩Br+10| log ε|(x))

+ ‖φ‖C2,θ(Br+10| log ε|(x))

)
(5.4)

+ Cε2 + CA (r + 10| log ε|;x) .
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6. Estimates on φ

In this section we prove the following C2,θ estimate on φ.

Proposition 6.1. For any x ∈ B6R/7(0) and r ∈ (0, R/60),

(6.1) max
α

∥∥Hα + ∆α,0hα
∥∥
Cθ(Γα∩Br(x))

+ ‖φ‖C2,θ(Br(x)) . ε
2 +A

(
r + 50| log ε|2;x

)
.

The term ε2 is optimal and cannot be improved any further in this general setting.
The first order Hölder estimates of φ will be established in Subsection 6.1 and Subsection

6.2. The second order Hölder estimate will be proved in Subsection 6.3.
To prove the first order Hölder estimate on φ, fix a large constant L > 0 (to be deter-

mined at the end of Subsection 6.3), for each α define

Ω1
α := {−L < dα < L} ∩M0

α, Ω2
α := {|dα| > L/2} ∩M0

α,

and
Ω3
α := {−L/2 ≤ dα ≤ L/2} ∩M0

α.

We will estimate the C1,θ norm of φ in Ω1
α ∩ Br(x) and Ω2

α ∩ Br(x) separately, which
correspond to the inner and outer problem respectively. Roughly speaking, in Ω1

α, φ
satisfies

−∆φ+W ′′(gα)φ = interaction terms + parallel component + errors.

Together with the orthogonal condition (4.4) we get a control on φ, which is possible by the
coercivity of the operator −∆ +W ′′(g) in the class of functions satisfying the orthogonal
condition (4.4), see for example [19, Proposition 4.1]. In Ω2

α, φ satisfies

−∆φ+ φ = interaction terms + errors.

Hence a control on φ is possible by using the decay estimate of the coercive operator
−∆ + 1.

6.1. C1,θ estimate in Ω2
α. We start with the easy case. In Ω2

α, the equation for φ can be
written in the following way.

Lemma 6.2. For any α, in Ω2
α,

∆φ = [1 + o(1)]φ+ E2
α,

where

‖E2
α‖L∞(Ω2

α∩Br(x)) ≤ Cε2 + CA (r + 10| log ε|;x) + C‖φ‖2C2,θ(Br+10| log ε|(x))

+ Ce−cL max
α

∥∥Hα + ∆α,0hα
∥∥
L∞(Γα∩Br+10| log ε|(x))

.

Proof. The L∞ estimate on E2
α is a consequence of the following estimates on those terms

in (4.11).

• First we have W ′(g∗ + φ)−W ′(g∗) = [W ′′(g∗) +O (φ)]φ = [1 + o(1)]φ.
• By Lemma 4.4, W ′(g∗)−

∑
βW

′(gβ) = O
(
e−Dα

)
+O

(
ε2
)
.

• By (3.7)-(3.12), we get

g′α [Hα(y, z) + ∆α,zhα]

= g′α [Hα(y, 0) + ∆α,0hα(y)] + g′α [Hα(y, z)−Hα(y, 0)] + g′α [∆α,zhα −∆α,0hα]

= O
(
e−cL

∣∣Hα(y, 0) + ∆α,0hα(y)
∣∣)+O

(
ε2
)

+O
(
|∇2

α,0hα|2 + |∇α,0hα|2
)
.

Concerning estimates on the last two terms involving hα, we use Lemma 4.6.
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• Similarly, estimates on g′′α|∇α,zhα|2 follow from Lemma 4.6.
• Those two terms involving g′βRβ,1 and g′′βRβ,2 can be estimated as in the above two

cases, but now in Fermi coordinates with respect to Γβ. Note that we need only
to consider those β satisfying Γβ ∩Br+8| log ε|(x) 6= ∅, because otherwise g′β = 0 in

Br(x). To put all estimates of β 6= α together, we use Lemma 3.6.
• Finally, by definition of ξβ,

∑
β ξβ = O

(
ε3| log ε|

)
= O

(
ε2
)
. �

By standard elliptic estimates for the coercive operator −∆ + 1, we deduce that, for
any α,

‖φ‖C1,θ(Ω2
α∩Br(x)) ≤ Ce−cL

(
‖φ‖C1,θ(Ω2

α∩Br+10| log ε|(x)) + ‖φ‖C1,θ(Ω3
α∩Br+10| log ε|(x))

)
+ Ce−cL max

β

∥∥Hβ + ∆β,0hβ
∥∥
L∞(Γβ∩Br+10| log ε|(x))

(6.2)

+ Cε2 + CA (r + 10| log ε|;x) .

6.2. C1,θ estimate in Ω1
α. In Ω1

α, the equation for φ can be written in the following way.

Lemma 6.3. In Ω1
α,

∆α,0φ+ ∂zzφ = W ′′(gα)φ+ (−1)αg′α [Hα(y, 0) + ∆α,0hα] + E1
α,

where for some constant C(L),

‖E1
α‖L∞(Ω1

α∩Br(x)) ≤ C(L)ε2 + C(L)A (r + 10| log ε|;x) + C(L)‖φ‖2C2,θ(Br+10| log ε|(x)).

Proof. The proof is similar to the one for Lemma 6.2, in particular,

• we use Cauchy inequality and (3.12) to bound ∆α,zφ−∆α,0φ (here it is useful to
note that |z| < 2L in Ω1

α);
• we use Cauchy inequality and the fact that |Hα(y, z)| . ε to bound Hα(y, z)∂zφ;
• we use Lemma 4.4 to bound interaction terms;
• we use Lemma 4.6 to bound those terms involving hα;
• by the exponential decay of ḡ′ at infinity and Lemma 3.6,

∑
β 6=α g

′
βRβ,1 and∑

β 6=α g
′
βRβ,2 are bounded by e−Dα(y) in Ω1

α. (Although there are constants eCL

appearing when we bound g′β by O
(
e−Dα(y)

)
, they can be incorporated because

|Rβ,1|+ |Rβ,2| � 1 while L, although large, is a fixed constant.) �

Take a function ξ ∈ C∞0 (−2L, 2L) satisfying ξ ≡ 1 in (−L,L), |ξ′| . L−1 and |ξ′′| . L−2.
Let φα(y, z) := φ(y, z)ξ(z)− cα(y)g′α(y, z), where

(6.3) cα(y) =

∫ +∞
−∞ φ(y, z) (ξ(z)− 1) g′α(y, z)dz∫ +∞

−∞ g′α(y, z)2dz
.

Hence by (4.4) we still have the orthogonal condition

(6.4)

∫ +∞

−∞
φα(y, z)g′α(y, z)dz = 0, ∀ y ∈ Γα.

We have the following estimates on cα.

Lemma 6.4. For any y ∈ Γα,

|cα(y)| . e−L max
L<|z|<8| log ε|

|φ(y, z)|,

|∇α,0cα(y)| . e−L max
L<|z|<8| log ε|

(|φ(y, z)|+ |∇α,zφ(y, z)|) ,
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|∇2
α,0cα(y)| . e−L max

L<|z|<8| log ε|

(
|φ(y, z)|+ |∇α,zφ(y, z)|+ |∇2

α,zφ(y, z)|
)
.

Proof. By (6.3) and the definition of ḡ and ξ,

|cα(y)| .
(

max
L<|z|<8| log ε|

|φ(y, z)|
)∫ +∞

L
e−zdz

. e−L max
L<|z|<8| log ε|

|φ(y, z)|.

Differentiating (6.3) gives

∇α,0cα(y)

(∫ +∞

−∞
g′α(y, z)2dz

)
+ cα(y)

(
∇α,0

∫ +∞

−∞
g′α(y, z)2dz

)
=

∫ +∞

−∞
∇α,0φ(y, z) (ξ(z)− 1) g′α(y, z)dz

− (−1)α∇α,0hα(y)

∫ +∞

−∞
φ(y, z) (ξ(z)− 1) g′′α(y, z)dz.

The second estimate follows as above. The third one can be proved in the same way. �

The factor e−L reveals the fact that behavior of φ in Ω2
α has little effect on the behavior

of φ in Ω1
α, that is, the inner and the outer parts are almost decoupled.

In Fermi coordinates with respect to Γα, the equation satisfied by φα reads as

(6.5) ∆α,0φα + ∂zzφα = W ′′(gα)φα + pα(y)g′α + Fα,

where
pα(y) = (−1)α [Hα(y, 0) + ∆α,0hα(y)]−∆α,0cα(y)

and

Fα(y, z) = 2(−1)α∇α,0cα(y) · ∇α,0hα(y)g′′α(y, z)

+ cα(y)
[
(−1)α+1∆α,0hα(y)g′′α(y, z) + g′′′α (y, z)|∇α,0hα(y)|2

]
+ 2∂zφ(y, z)ξ′(z) + φ(y, z)ξ′′(z) + E1

α(y, z)ξ(z)

+ (−1)α [Hα(y, 0) + ∆α,0hα(y)] g′α(y, z) [ξ(z)− 1]− cα(y)ξ′α(y, z).

Combining this expression with Lemma 6.3, Lemma 6.4 and the definition of ξ, we
obtain

Lemma 6.5. For any x ∈ B5R/6(0) and r ∈ (0, R/60),

‖Fα‖L∞(Ω1
α∩Br(x))

≤ C(L)ε2 + C(L)A (r + 10| log ε|;x) + C(L)‖φ‖2C2,θ(Br+10| log ε|(x))

+ Ce−cL
[
max
β

∥∥Hβ + ∆β,0hβ
∥∥
L∞(Γβ∩Br+10| log ε|(x))

+ ‖φ‖C2,θ(Br+10| log ε|(x))

]
.

By (6.5) and the orthogonal condition (6.4), applying standard estimates on the lin-
earized operator −∆ +W ′′(g) (see for example [19, Proposition 4.1]) leads to

‖φα‖C1,θ(Br(x)) ≤ Ce−cL‖φα‖C1,θ(Br+10| log ε|(x)) + Ce−cL‖φ‖C2,θ(Br+10| log ε|(x))

+ Ce−cL max
β

∥∥Hβ + ∆β,0hβ
∥∥
L∞(Γβ∩Br+12| log ε|(x))

+ C(L)ε2 + C(L)A (r + 10| log ε|;x) + C(L)‖φ‖2C2,θ(Br+10| log ε|(x)).
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Coming back to φ, by the fact that ‖φ‖C2,θ(Br+10| log ε|(x)) � 1 and the estimates on cα in

Lemma 6.4, we get

‖φ‖C1,θ(Ω1
α∩Br(x)) ≤ Cε2 + CA (r + 10| log ε|;x)(6.6)

+ Ce−cL‖φ‖C2,θ(Br+10| log ε|(x))

+ Ce−cL max
α

∥∥Hα + ∆α,0hα
∥∥
L∞(Γα∩Br+10| log ε|(x))

.

Combining (6.2) and (6.6), we obtain

‖φ‖C1,θ(Br(x)) ≤ C(L)ε2 + C(L)A (r + 10| log ε|;x)

+ Ce−cL
(

max
α

∥∥Hα + ∆α,0hα
∥∥
L∞(Γα∩Br+10| log ε|(x))

+ ‖φ‖C2,θ(Br+10| log ε|(x))

)
.(6.7)

6.3. Second order Hölder estimates on φ. In this subsection we proceed to second
order Hölder estimates. To this end, we need the following Hölder bounds on the right
hand side of (4.11).

Lemma 6.6. For any x ∈ B5R/6(0) and r ∈ (0, R/60),

‖∆φ−W ′′(g∗)φ‖Cθ(Br(x))

. ε2 +A (r + 10| log ε|;x) + ‖φ‖2C2,θ(Br+10| log ε|(x))

+ A (r + 10| log ε|;x)
1
2

(
max
α
‖Hα + ∆α,0hα‖Cθ(Γα∩Br+10| log ε|(x))

)
.

The proof is given in Appendix C. Here we just emphasize that, because there are
second order derivatives of u in the right hand of (4.11), such an Hölder estimate relies
on Lemma 3.1, i.e. an ε-bound on some third order derivatives of u.

Since L is fixed, by Lemma 2.1 and Remark 4.2, for all ε small enough,

‖φ‖C2,θ(Br+10| log ε|(x)) +A (r + 10| log ε|;x)
1
2 ≤ Ce−cL.

Then by (6.7) and Schauder estimates, we get for all ε small enough,

‖φ‖C2,θ(Br(x)) ≤ Ce−cL
(

max
α

∥∥Hα + ∆α,0hα
∥∥
Cθ(Γα∩Br+10| log ε|(x))

+ ‖φ‖C2,θ(Br+10| log ε|(x))

)
+ C(L)ε2 + C(L)A (r + 10| log ε|;x) .(6.8)

Combining this estimate with Corollary 5.2, we get

max
α

∥∥Hα + ∆α,0hα
∥∥
Cθ(Γα∩Br(x))

+ ‖φ‖C2,θ(Br(x))

≤ 1

2

(
max
α

∥∥Hα + ∆α,0hα
∥∥
Cθ(Γα∩Br+10| log ε|(x))

+ ‖φ‖C2,θ(Br+10| log ε|(x))

)
+ C(L)ε2 + C(L)A (r + 10| log ε|;x) .

An iteration of this inequality from r + 50| log ε|2 to r leads to (6.1). The proof of
Proposition 6.1 is thus complete.

7. Improved estimates on horizontal derivatives

In this section we establish an improvement on the C1,θ estimates of horizontal deriva-
tives of φ, φi := ∂φ/∂yi. 1 ≤ i ≤ n− 1.

Proposition 7.1. For any x ∈ B5R/6(0) and r ∈ (0, R/70),

‖φi‖C1,θ(Br(x)) . ε
2 +A

(
r + 60| log ε|2;x

)3/2
+ ε1/6A

(
r + 60| log ε|2;x

)
.
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To prove Proposition 7.1, as in Section 6 we still estimate φi in Ω1
α and Ω2

α separately.
To this end, first rewrite (4.11) as

(7.1) ∆α,zφ+ ∂zzφ = W ′′(g∗)φ+ (−1)αg′α [Hα(y, 0) + ∆α,0hα(y)] + I + Eα,

where

Eα = Hα(y, z)∂zφ+
[
W ′(g∗ + φ)−W ′(g∗)−W ′′(g∗)φ

]
+ (−1)αg′α [Hα(y, z)−Hα(y, 0) + ∆α,zhα(y)−∆α,0hα(y)]

− g′′α|∇α,zhα|2 +
∑
β 6=α

[
(−1)βg′βRβ,1 − g′′βRβ,2

]
−
∑
β

ξβ.

The following Cθ bound on Eα is similar to Lemma 6.6. However, since we have removed
two main order terms g′α [Hα,0 + ∆α,0hα] and I form Eα, there is no A (r + 10| log ε|;x)
term in the right hand side. Therefore, with the help of Proposition 6.1 we get

Lemma 7.2. For any x ∈ B5R/6(0) and r ∈ (0, R/70),

‖Eα‖Cθ(M0
α∩Br(x)) . ε

2 +A
(
r + 50| log ε|2;x

)3/2
.

Differentiating (7.1) in yi, we obtain an equation for φi, which in Fermi coordinates
with respect to Γα reads as

(7.2) ∆α,zφi+∂zzφi = W ′′(gα)φi−(−1)αg′α [Hα,i(y, 0) + ∆α,0hα,i(y)]+∂yiI+∂yiEα+Ei,

where Hα,i(y, 0) := ∂yiHα(y, 0), hα,i(y) := ∂yihα and the remainder term

Ei = (∆α,zφi − ∂yi∆α,zφ)︸ ︷︷ ︸
I

+
[
W ′′(g∗)−W ′′(gα)

]
φi︸ ︷︷ ︸

II

+ W ′′′(g∗)φ

∑
β 6=α

(−1)βg′β

∂dβ
∂yi
−
n−1∑
j=1

(hβ,j ◦Πβ)
∂Πj

β

∂yi


︸ ︷︷ ︸

III

+ (−1)αg′α [∂yi∆α,0hα(y)−∆α,0hα,i(y)]︸ ︷︷ ︸
IV

− g′′αhα,i [Hα(y, 0) + ∆α,0hα(y)]︸ ︷︷ ︸
V

.

We have the following L∞ bound on Ei.

Lemma 7.3. For any x ∈ B5R/6(0) and r ∈ (0, R/70),

‖Ei‖L∞(M0
α∩Br(x)) . ε

2 +A
(
r + 60| log ε|2;x

)3/2
+ ε1/6A

(
r + 60| log ε|2;x

)
.

Proof. We estimate the five terms one by one.

(1) By Lemma 3.3, for (y, z) ∈M0
α ∩Br(x),

|I| . ε
(
|∇2

α,0φ(y, z)|+ |∇α,0ϕ(y, z)|
)
. ε2 + ‖φ‖2C2,θ(Br(x)).

(2) For (y, z) ∈M0
α ∩Br(x), by Taylor expansion and Lemma 3.6 we get∣∣∣W ′′(g∗ + φ)−W ′′(gα)

∣∣∣ . |φ|+
∑
β 6=α

g′β
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. ‖φ‖L∞(Br(x)) + max
Γα∩Br(x)

e−
Dα
2 + ε2.

Hence

‖II‖L∞(M0
α∩Br(x)) . ‖φ‖C2,θ(Br(x))

(
‖φ‖C2,θ(Br(x)) + max

Γα∩Br(x)
e−

Dα
2 + ε2

)
. ‖φ‖2C2,θ(Br(x)) +A(r;x)

1
2 ‖φ‖C2,θ(Br(x)) + ε2.

(3) For β 6= α, if g′β 6= 0, by Lemma 3.4,

(7.3)
∣∣∣∂dβ
∂yi

∣∣∣ . ε1/6.

By the Cauchy inequality, Lemma 3.6 and Lemma 4.6, we obtain

‖III‖L∞(M0
α∩Br(x)) . ‖φ‖2C1,θ(Br+8| log ε|(x)) +A (r + 8| log ε|;x)2

+ ε1/6‖φ‖C1,θ(Br+8| log ε|(x)).

(4) By Lemma 3.3, Lemma 4.6 and Proposition 6.1,

‖IV ‖L∞(M0
α∩Br(x)) . ε

2 + ‖φ‖2C2,θ(Br(x)) +A (r;x)2 .

(5) By the Cauchy inequality and Lemma 4.6,

‖V ‖L∞(M0
α∩Br(x)) . ‖φ‖2C2,θ(Br(x)) + max

Γα∩Br(x)
e−2Dα + ‖Hα + ∆α,0hα‖2L∞(Γα∩Br(x)).

Putting these estimates together and applying (6.1) we conclude the proof. �

Finally, the order of ∂yiI is increased by one due to the appearance of one more term
involving horizontal derivatives of φ or dα.

Lemma 7.4. For any x ∈ B5R/6(0) and r ∈ (0, R/70),

‖∂yiI‖L∞(Br(x)) . ε
2 +A

(
r + 60| log ε|2;x

)2
+ ε1/6A

(
r + 60| log ε|2;x

)
.

Proof. We have

∂yiI =
∑
β

(−1)β
[
W ′′(g∗)−W ′′(gβ)

]
g′β

∂dβ
∂yi
−
n−1∑
j=1

hβ,j (Πβ(y, z))
∂Πj

β

∂yi
(y, z)

 .

Let us first give an estimate on [W ′′(g∗)−W ′′(gβ)] g′β in M0
α. There are two cases.

• If β = α, we have∣∣∣W ′′(g∗)−W ′′(gα)
∣∣∣g′α . g′α∑

β 6=α

(
1− g2

β

)
. e−Dα ,

where the last inequality is similar to Lemma 4.4.
• If β 6= α, still as in Lemma 4.4,

[
W ′′(g∗)−W ′′(gβ)

]
g′β =

W ′′(gα)−W ′′(1) +O

∑
β 6=α

(
1− g2

β

) g′β(7.4)

= O
(
ε2e−c|β−α|

)
+O

(
e−|dβ(y,0)|

)
.
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Hence by Lemma 3.6, we have

(7.5)
∑
β

(−1)β+1
[
W ′′(g∗)−W ′′(gβ)

]
g′β = O

(
ε2
)

+O
(
e−Dα

)
.

Using Lemma 4.6 to bound hβ,j , and Lemma 3.5 to bound
∂Πjβ
∂yi

, we see if g′β 6= 0, (7.3)

holds and

(7.6)
∣∣∣ n−1∑
j=1

hβ,j (Πβ(y, z))
∂Πj

β

∂yi
(y, z)

∣∣∣ . A (r;x) + ‖φ‖C1,θ(Br(x)).

Combining (7.5), (7.3) and (7.6), using the Cauchy inequality and applying (6.1) we
conclude the proof. �

Differentiating (4.4) we obtain for any α and y ∈ Γα ∩Br(x),

(7.7)

∫ +∞

−∞
φig
′
αdz = hα,i(y)

∫ +∞

−∞
φg′′αdz = O

(
‖φ‖2C1(Br+8| log ε|(x)) + max

Γα∩Br(x)
e−2Dα

)
.

In view of Lemma 7.2, Lemma 7.3 and Lemma 7.4, combining (7.2) and the almost
orthogonal condition (7.7), proceeding as in Section 6 we get Proposition 7.1. Here we
first take the decomposition φi = φi,1 +φi,2 +φi,3, where φi,1, φi,2 and φi,3 satisfy the same
equation as (7.2), but with inhomogeneous terms ∂yiI, ∂yiEα and Ei respectively. First
use coercive estimates for the linear elliptic operator −∆ + 1 (in Ω2

α) and −∆ + W ′′(gα)
(in Ω1

α) to get improved L2 estimates on these three functions. The C1,θ estimates for φi,1
and φi,3 follow by applying standard W 2,p estimate (with p so large that W 2,p embeds

into C1,θ), and we apply Hölder estimates for first derivatives (see [26, Section 4.5]) to
obtain the estimate on φi,2. The proof of Proposition 7.1 is complete by putting these
three estimates together.

Two corollaries follow from Proposition 7.1. Combining Proposition 7.1 with Lemma
4.6, we obtain

Corollary 7.5. For any x ∈ B5R/6(0) and r ∈ (0, R/70),

max
α
‖∇hα‖C1,θ(Γα∩Br(x)) . ε

2 +A
(
r + 60| log ε|2;x

)3/2
+ ε1/6A

(
r + 60| log ε|2;x

)
.

Substituting estimates in this corollary and Proposition 6.1 into (5.2) we get

Corollary 7.6. For any x ∈ B5R/6(0) and r ∈ (0, R/70), in Br(x) it holds that

Hα(y, 0) =
2A2

(−1)α−1

σ0
e−dα−1(y,0) −

2A2
(−1)α

σ0
edα+1(y,0) +O

(
ε2
)

+ O
(
A
(
r + 60| log ε|2;x

)3/2)
+O

(
ε1/6A

(
r + 60| log ε|2;x

))
.

8. Reduction of the stability condition

In this section we show that if u is a stable solution of the Allen-Cahn equation, then
solutions to the Toda system (5.2) constructed in Section 5 satisfy an almost stable con-
dition.

Given a point x ∈ B5R/6(0) and r ∈ (0, R/70), and finitely many functions ηα ∈
C∞0 (Γα ∩Br(x)) (provided this intersection is nonempty), using Fermi coordinates with
respect to Γα we define

ϕα(y, z) := ηα(y)g′α(y, z).
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In the following we will view ηα as a function defined in Br+8| log ε|(x) by identifying it with
ηα ◦Πα. Since g′α 6= 0 only in an 8| log ε|-neighborhood of Γα, ϕα is compactly supported
in Br+8| log ε|(x).

Let ϕ :=
∑

α ϕα. By definition ϕ ∈ C∞0 (Br+8| log ε|(x)). The stability condition for u
says that ∫

Br+8| log ε|(x)

[
|∇ϕ|2 +W ′′(u)ϕ2

]
≥ 0.

The purpose of this section is to rewrite this inequality as a stability condition for the
Toda system (5.2).

Proposition 8.1. If ηα are given as above, then we have∑
α

∫
Γα

|∇α,0ηα|2dAα,0 +Q(η)

≥
∑
α

2A2
(−1)α−1

σ0

∫
Γα

e−dα−1(y) [ηα(y) + ηα−1 (Πα−1(y, 0))]2 dAα,0,

where by denoting N to be the number of non-zero ηα, we have

|Q(η)| .N
[
ε

1
4 +A

(
r + 60| log ε|2;x

) 1
2

](∑
α

∫
Γα

|∇α,0ηα|2dAα,0

)

+
[
ε2 +A

(
r + 60| log ε|2;x

) 7
6 + ε

1
7A
(
r + 60| log ε|2;x

)](∑
α

∫
Γα

η2
αdAα,0

)
.

Since∫
Br+8| log ε|(x)

[
|∇ϕ|2 +W ′′(u)ϕ2

]
=

∑
α

∫
Br+8| log ε|(x)

[
|∇ϕα|2 +W ′′(u)ϕ2

α

]
+

∑
α 6=β

∫
Br+8| log ε|(x)

[
∇ϕα · ∇ϕβ +W ′′(u)ϕαϕβ

]
,

we first consider the first integrals and estimate the tangential part ∇α,zϕα(y, z) in Subsec-
tion 8.1, then the normal part ∂zϕα in Subsection 8.2, where an interaction term appears
and it is studied in Subsection 8.3, and finally in Subsection 8.4 estimates on cross terms
are given. Proposition 8.1 follows by putting these estimates together.

8.1. The tangential part. In this subsection we prove

Lemma 8.2. The horizontal part has the expansion∫
Br+8| log ε|(x)

∣∣∇α,zϕα(y, z)
∣∣2 = [σ0 +O (ε+A(r;x))]

∫
Γα

|∇α,0ηα|2dAα,0 +Qα(ηα),

where

|Qα(ηα)| .
[
ε2 +A

(
r + 60| log ε|2;x

) 3
2 + ε

1
6A
(
r + 60| log ε|2;x

)] ∫
Γα

η2
αdAα,0.

Proof. A direct differentiation shows that in Fermi coordinates with respect to Γα,

∇α,zϕα(y, z) = g′α(y, z)∇α,zηα(y) + (−1)α+1ηα(y)g′′α(y, z)∇α,zhα(y).
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Hence ∫
Br+8| log ε|(x)

∣∣∇α,zϕα(y, z)
∣∣2

=

∫ +∞

−∞

∫
Γα

|∇α,zηα|2
∣∣g′α∣∣2λαdydz︸ ︷︷ ︸

I

+

∫ +∞

−∞

∫
Γα

η2
α|∇α,zhα|2

∣∣g′′α∣∣2λαdydz︸ ︷︷ ︸
II

+ 2(−1)α+1

∫ +∞

−∞

∫
Γα,z∩Br(x)

ηα (∇α,zηα · ∇α,zhα) g′αg
′′
αλαdydz︸ ︷︷ ︸

III

.

These three integrals are estimated in the following way.

(1) By (3.8), we have

|∇α,zηα|2 = [1 +O (ε|z|)] |∇α,0ηα|2

and

(8.1) λα(y, z) = λα(y, 0) +O (ε|z|) .
Hence by the exponential decay of g′α at infinity, we get

I =

∫
Γα

|∇α,0ηα|2
(∫ +∞

−∞

∣∣g′α∣∣2dz) dAα,0
+ O

(
ε

∫ +∞

−∞

∫
Γα

|∇α,0ηα|2|z|
∣∣g′α∣∣2λαdydz)

= [σ0 +O(ε)]

∫
Γα

|∇α,0ηα(y)|2dAα,0.

(2) By (6.1) and Lemma 4.6,

II .
[
ε2 +A(r + 60| log ε|2;x)2

] ∫
Γα

η2
αdAα,0.

(3) Integrating by parts on Γα,z leads to

III = (−1)α
∫ +∞

−∞

∫
Γα,z

η2
α∆α,zhαg

′
αg
′′
αλαdydz

+

∫ +∞

−∞

∫
Γα,z

η2
α|∇α,zhα|2

(∣∣g′′α∣∣2 + g′αg
′′′
α

)
λαdydz.

By Corollary 7.5 we get

|III| .
[
ε2 +A

(
r + 60| log ε|2;x

) 3
2 + ε

1
6A
(
r + 60| log ε|2;x

)] ∫
Γα

η2
αdAα,0.

Putting all of these together we finish the proof. �

8.2. The normal part. As before we have

∂zϕα(y, z) = (−1)αηα(y)g′′α(y, z).

Integrating by parts in z we get∫
Br+8| log ε|(x)

|∂zϕα|2
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=

∫
Γα

∫ +∞

−∞
ηα(y)2

∣∣g′′α(y, z)
∣∣2λα(y, z)dzdy

= −
∫

Γα

ηα(y)2

[∫ +∞

−∞
W ′′(gα(y, z))

∣∣g′α(y, z)
∣∣2λα(y, z)dz

]
dy︸ ︷︷ ︸

I

+

∫
Γα

ηα(y)2

[
1

2

∫ +∞

−∞

∣∣g′α(y, z)
∣∣2∂zzλα(y, z)dz −

∫ +∞

−∞
g′α(y, z)ξ′α(y, z)λα(y, z)dz

]
dy︸ ︷︷ ︸

II

.

By (3.4) and the definition of λα we have

|∂zzλα(y, z)| . |Aα(y)|2 . ε2.

Using this together with estimates on ξα we get

|II| . ε2

∫
Γα

η2
αdAα,0.

It remains to determine the integral∫
Γα

ηα(y)2

∫ +∞

−∞

[
W ′′ (u(y, z))−W ′′ (gα(y, z))

] ∣∣g′α(y, z)
∣∣2λα(y, z)dzdy,

which will be the goal of next subsection.

8.3. The interaction part. Multiplying (4.11) by η2
αg
′′
αλα and then integrating in y and

z gives
I − II + III = IV + V − V I + V II − V III,

where

I :=

∫
Γα

η2
α

[∫ +∞

−∞
∆α,zφg

′′
αλαdz

]
dy,

II :=

∫
Γα

η2
α

[∫ +∞

−∞
Hα(y, z)φzg

′′
αλαdz

]
dy,

III :=

∫
Γα

η2
α

[∫ +∞

−∞
φzzg

′′
αλαdz

]
dy,

IV :=

∫
Γα

η2
α

∫ +∞

−∞

W ′(u)−
∑
β

W ′(gβ)

 g′′αλαdz

 dy,
V := (−1)α

∫
Γα

η2
α

[∫ +∞

−∞
(Hα(y, z) + ∆α,zhα(y)) g′αg

′′
αλαdz

]
dy,

V I :=

∫
Γα

η2
α

[∫ +∞

−∞

∣∣g′′α∣∣|∇α,zhα|2λαdz] dy,
V II :=

∑
β 6=α

∫
Γα

η2
α

[∫ +∞

−∞

[
(−1)βg′βRβ,1 − g′′βRβ,2

]
g′′αλαdz

]
dy,

V III :=
∑
β 6=α

∫
Γα

η2
α

∫ +∞

−∞

∑
β

ξβg
′′
αλαdz

 dy,
We need to estimate each of them.
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(1) By Proposition 7.1,

|I| .
[
ε2 +A

(
r + 60| log ε|2;x

) 3
2 + ε

1
6A
(
r + 60| log ε|2;x

)] ∫
Γα

η2
αdAα,0.

(2) Because Hα = O(ε), by (6.1),

|II| . ε‖φ‖C2,θ(Br+8| log ε|(x))

∫
Γα

η2
αdAα,0

.
[
ε2 +A

(
r + 60| log ε|2;x

)2] ∫
Γα

η2
αdAα,0.

(3) Integrating by parts in z gives

III = −
∫

Γα

η2
α

[∫ +∞

−∞
φzg
′′′
α λαdz

]
dy −

∫
Γα

η2
α

[∫ +∞

−∞
φzg
′′
α∂zλαdz

]
dy

= −
∫

Γα

η2
α

[∫ +∞

−∞
W ′′(gα)g′αφzλαdz

]
dy

−
∫

Γα

η2
α

[∫ +∞

−∞
φzξ
′
αλαdz

]
dy −

∫
Γα

η2
α

[∫ +∞

−∞
φzg
′′
α∂zλαdz

]
dy.

Because ξα = O
(
ε3
)
, the length |{z : ξ′α(·, z)| 6= 0}| . | log ε| and ∂zλα = O(ε)

(see (3.4) and the definition of λα), using (6.1) and reasoning as in the previous
case we obtain

III = −
∫

Γα

η2
α

[∫ +∞

−∞
W ′′(gα)g′αφzλαdz

]
dy(8.2)

+ O
(
ε2 +A

(
r + 60| log ε|2;x

)2)∫
Γα

η2
αdAα,0.

(4) Integrating by parts in z leads to

IV = −
∫

Γα

η2
α

∫ +∞

−∞
W ′′(u)g′αφzλαdzdy

− (−1)α
∫

Γα

η2
α

∫ +∞

−∞

[
W ′′(u)−W ′′(gα)

] ∣∣g′α∣∣2λαdzdy
−

∑
β 6=α

(−1)β
∫

Γα

η2
α

∫ +∞

−∞

[
W ′′(u)−W ′′(gβ)

]
g′αg
′
β

(
∂dβ
∂z
− ∂

∂z
(hβ ◦Πβ)

)
λαdzdy︸ ︷︷ ︸

IXβ

−
∫

Γα

η2
α

∫ +∞

−∞

W ′(u)−
∑
β

W ′(gβ)

 g′α∂zλαdzdy︸ ︷︷ ︸
X

.

The first integral cancel with III (see (8.2)) up to a higher order term. The second
integral is the one we want to rewrite in Subsection 8.2.

Estimate on X. First let us estimate the term X. By Taylor expansion we
have

(8.3) W ′(u)−
∑
β

W ′(gβ) = I +O (φ)
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Then by (6.1), Lemma 4.4 and the fact that ∂zλα = O(ε), we get

(8.4) |X| . ε2 +A
(
r + 60| log ε|2;x

)2
.

Estimate on IXβ. It remains to rewrite the integral IXβ. First replace W ′′(u)
by W ′′(g∗). This introduces an error bounded by

O
(
‖φ‖C2,θ(Br+8| log ε|(x))

)∫ +∞

−∞
g′αg
′
βλαdz(8.5)

. ε2 +A
(
r + 60| log ε|2;x

)3/2
.

Next, if g′α 6= 0 and g′β 6= 0 at the same time, by Lemma 3.4,

∂dβ
∂z

= 1 +O
(
ε1/6

)
,

(8.6) dβ(y, z) = dβ(y, 0)± z +O
(
ε1/3

)
.

Replace
∂dβ
∂z by 1 and throw away the term involving hβ. This introduces another

error controlled by[
ε

1
6 +A(r + 60| log ε|2;x)

] ∫ +∞

−∞

∣∣∣W ′′(g∗)−W ′′(gβ)
∣∣∣g′αg′βλαdz

.
[
ε

1
6 +A(r + 60| log ε|2;x)

] ∫ +∞

−∞
g′αg
′
β

∑
γ

g′γdz(8.7)

.
[
ε

1
6A(r + 60| log ε|2;x) +A(r + 60| log ε|2;x)2

]
.

After these replacements, IXβ is changed into

XIβ :=

∫ +∞

−∞

[
W ′′(g∗)−W ′′(gβ)

]
g′αg
′
βλαdz.

Lemma 8.3. We have

XIα+1 = −2A2
(−1)αe

−|dα+1(y,0)| +O
(
ε2
)

+ O
(
ε

1
4A(r + 60| log ε|2;x)

)
+O

(
A(r + 60| log ε|2;x)

7
6

)
,(8.8)

XIα−1 = −2A2
(−1)α−1e

−|dα−1(y,0)| +O
(
ε2
)

+ O
(
ε

1
4A(r + 60| log ε|2;x)

)
+O

(
A(r + 60| log ε|2;x)

7
6

)
.(8.9)

and for any |β − α| ≥ 2,

(8.10) |XIβ| . e−C|β−α|A(r + 60| log ε|2;x)
3
2 .

Proof. First note that XIβ 6= 0 only if |dβ(y, 0)| ≤ 20| log ε|. In the following we
will assume this is always the case.

Case 1. The case |β − α| ≥ 2. If |β − α| ≥ 2, by Lemma 3.4 we have

(8.11) |dβ(y, 0)| ≥ 2 min
γ

min
Γγ∩Br+16| log ε|(x)

Dγ + C|β − α| − C.
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Since we always have

(8.12)

∫ +∞

−∞
g′α(y, z)g′β(y, z)dz . |dβ(y, 0)|e−|dβ(y,0)|,

we obtain (8.10) by substituting (8.11) into (8.12).
Case 2. The case β = α± 1. We only consider the case β = α+ 1. By (8.6)

we can replace gα+1(y, z) by ḡ
(
(−1)α+1 (dα+1(y, 0)± z)

)
. We can also replace

λα(y, z) by λα(y, 0). These two procedures lead to an error controlled by

O
(
ε

1
3

)∫ +∞

−∞
g′α(y, z)g′α+1(y, z)dz . ε

1
3 | log ε|e−|dα+1(y,0)|(8.13)

. ε
1
4A(r + 60| log ε|2;x).

Here to estimate the above integral, different from (8.12), we use the facts that the
length of the interval {g′α(y, ·) 6= 0} is at most 8| log ε|, and g′α(y, z)g′α+1(y, z) .
e−|dα+1(y,0)|.

We also note that for any γ 6= α, α+ 1,

(8.14)

∫ +∞

−∞
g′α(y, z)g′α+1(y, z)g′γ(y, z)dz . A(r + 60| log ε|2;x)2.

With the help of Taylor expansion

W ′′(g∗) = W ′′(gα + gα+1 − 1) +
∑

γ 6=α,α+1

O
(
g′γ
)
,

(8.14) allows us to replace W ′′(g∗) by W ′′(gα + gα+1 − 1). (Recall that we have
assumed (−1)α = 1.)

Finally, replacing ḡ by g produces an O(ε2) error. The remaining one is the
main order term in XIα+1, which is∫ +∞

−∞

[
W ′′ (g(z) + g (dα+1(y, 0)− z)− 1)−W ′′ (g (dα+1(y, 0)− z))

]
×g′(z)g′ (dα+1(y, 0)− z) dz

= −2A2
1e
−|dα+1(y,0)| +O

(
e−

7
6
|dα+1(y,0)|

)
.

where the last step follows from Lemma A.2. Combining this identity with the
above estimates of various errors gives (8.8). �

Summing estimates in this lemma we obtain∑
β 6=α

IXβ = −2
[
A2

(−1)α−1e
−dα−1(y,0) +A2

(−1)αe
dα+1(y,0)

]
+ O

(
ε2 + ε

1
4A
(
r + 60| log ε|2;x

)
+A

(
r + 60| log ε|2;x

) 7
6

)
.(8.15)

Combining (8.4) and (8.15) we get

IV = −
∫

Γα

η2
α

∫ +∞

−∞
W ′′(u)g′αφzλαdzdy

−
∫

Γα

η2
α

∫ +∞

−∞

[
W ′′(u)−W ′′(gα)

] ∣∣g′α∣∣2λαdzdy
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− 2

∫
Γα

η2
α

[
A2

(−1)α−1e
−dα−1 +A2

(−1)αe
dα+1

]
dAα,0

+ O
(
ε2 + ε

1
7A
(
r + 60| log ε|2;x

)
+A

(
r + 60| log ε|2;x

) 7
6

)∫
Γα

η2
αdAα,0.

(5) Integrating by parts in z leads to

V =
(−1)α+1

2

∫
Γα

η2
α

[∫ +∞

−∞

∂

∂z
(Hα(y, z) + ∆α,zhα(y))

∣∣g′α∣∣2λαdz] dy
+

(−1)α+1

2

∫
Γα

η2
α

[∫ +∞

−∞
(Hα(y, z) + ∆α,zhα(y))

∣∣g′α∣∣2∂zλαdz] dy.
By (3.5),

∂

∂z
Hα(y, z) = O

(
ε2
)
.

By (3.4), (3.11), (6.1) and Lemma 4.6,∣∣∣ ∂
∂z

∆α,zhα(y)
∣∣∣ . ε

(∣∣∇2
α,0hα(y)

∣∣+
∣∣∇α,0hα(y)

∣∣)
. ε2 +A

(
r + 60| log ε|2;x

)2
.

Finally, because ∂zλα = O(ε), we have∫ +∞

−∞
(Hα(y, z) + ∆α,zhα(y))

∣∣g′α∣∣2∂zλαdz
=

∫ +∞

−∞

(
Hα(y, 0) + ∆α,0hα(y) +O

(
ε2|z|

)
+O (ε|z|)

) ∣∣g′α∣∣2∂zλαdz
= O

(
ε2 +A

(
r + 60| log ε|2;x

)2)
. (By (5.1))

Combining these three estimates we see

|V | .
[
ε2 +A

(
r + 60| log ε|2;x

)2] ∫
Γα

η2
αdAα,0.

(6) By Lemma 4.6 and (6.1), we get

|V I| .
[
ε2 +A

(
r + 60| log ε|2;x

) 3
2

] ∫
Γα

η2
αdAα,0.

(7) Following the proof of (B.8), we get a similar estimate on∫ +∞

−∞

[
(−1)βg′βRβ,1 − g′′βRβ,2

]
g′′αλαdz,

which with Proposition 6.1 then gives

|V II| .
[
ε2 +A

(
r + 60| log ε|2;x

) 3
2

] ∫
Γα

η2
αdAα,0.

(8) Finally, by the definition of ξβ and Lemma 3.6, and because {g′α(y, ·) 6= 0} has
length at most 16| log ε|, we obtain

|V III| . ε3| log ε|
∫

Γα

η2
αdAα,0 . ε

2

∫
Γα

η2
αdAα,0.
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Combining all of these estimates together, we obtain∫
Γα

η2
α

∫ +∞

−∞

[
W ′′ (u)−W ′′ (gα)

] ∣∣g′α∣∣2λαdzdy
= −

∫
Γα

η2
α

∫ +∞

−∞

[
W ′′(u)−W ′′(gα)

]
g′αφzλαdzdy

− 2

∫
Γα

η2
α

[
A2

(−1)α−1e
−dα−1 +A2

(−1)αe
dα+1

]
dAα,0

+ O
(
ε2 + ε

1
4A
(
r + 60| log ε|2;x

)
+A

(
r + 60| log ε|2;x

) 7
6

)∫
Γα

η2
αdAα,0.

The first integral in the right hand side of this equation is estimated in the following
way. As in (8.3) and Lemma 4.4,

(8.16)
∣∣W ′′(u)−W ′′(gα)

∣∣ . |φ|+ ∑
β 6=α

(
1− g2

β

)
.

Then using (6.1) to estimate φ and arguing as in the proof of Case (12) in Appendix B,
we see this integral is also bounded by

O
(
ε2 +A

(
r + 60| log ε|2;x

) 4
3

)∫
Γα

η2
αdAα,0.

Therefore we arrive at the following form∫
Γα

η2
α

∫ +∞

−∞

[
W ′′ (u)−W ′′ (gα)

] ∣∣g′α∣∣2λαdzdy
= −2

∫
Γα

ηα(y)2
[
A2

(−1)α−1e
−dα−1 +A2

(−1)αe
dα+1

]
dAα,0(8.17)

+ O
(
ε2 + ε

1
7A
(
r + 60| log ε|2;x

)
+A

(
r + 60| log ε|2;x

) 7
6

)∫
Γα

η2
αdAα,0.

This completes the reduction of the normal part.

8.4. Cross terms. In this subsection we fix an α and estimate the integral of cross terms,∑
β 6=α

∫
Br+8| log ε|(x)

[
∇ϕα · ∇ϕβ +W ′′(u)ϕαϕβ

]
.

Throughout this subsection, Fermi coordinates (y, z) with respect to Γα will be used, and
we assume (−1)α = 1.

First is the tangential part.

Lemma 8.4. For any β 6= α,∣∣∣ ∫
Br+8| log ε|(x)

∇α,zϕα · ∇α,zϕβ
∣∣∣

. A(r;x)
1
2

[∫
Γα

|∇α,0ηα|2dAα,0 +

∫
Γβ

|∇β,0ηβ|2dAβ,0

]

+
(
ε2 + ε

1
7A(r;x) +A(r;x)

3
2

)[∫
Γα

η2
αdAα,0 +

∫
Γβ

η2
βdAβ,0

]
.
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Proof. In Fermi coordinates with respect to Γα, write

∇α,zϕα · ∇α,zϕβ =
[
g′α∇α,zηα − (−1)αηαg

′′
α∇α,zhα

]
×
[
g′β∇α,zηβ + (−1)βηβg

′′
β (∇α,zdβ −∇β,0hβ ◦Dα,zΠβ)

]
In the following we assume β < α. Γα and Γβ divide Br+8| log ε|(x) into three domains,

Ω0
αβ the one between them, Ω+

αβ the one above Γα and Ω−αβ the one below Γβ.

Case 1. In Ω0
αβ,

g′α(y, z)g′β(y, z) + g′α(y, z)
∣∣g′′β(y, z)

∣∣+ g′β(y, z)
∣∣g′′α(y, z)

∣∣+
∣∣g′′α(y, z)g′′β(y, z)

∣∣ . e−dβ(y,0).

Using Lemma 4.6 and (6.1) to estimate terms involving h, using Lemma 3.4 to estimate
∇α,zdβ (note that if g′α(y, z)g′β(y, z) 6= 0, then dβ(y, 0) ≤ 16| log ε|), we get∣∣∇α,zϕα(y, z) · ∇α,zϕβ(y, z)

∣∣
. e−dβ(y,0)|∇α,zηα||∇α,zηβ|

+
[
ε

1
6A
(
r + 60| log ε|2;x

)
+A

(
r + 60| log ε|2;x

)2]
e−dβ(y,0)ηαηβ(8.18)

+
[
ε

1
6 +A

(
r + 60| log ε|2;x

)]
e−dβ(y,0)ηα|∇α,zηβ|

+
[
ε

1
6 +A

(
r + 60| log ε|2;x

)]
e−dβ(y,0)ηβ|∇α,zηα|.

Subcase 1.1. Here we show how to estimate the integral of the first term in the right
hand side of (8.18). First by Lemma 3.5 we can replace ∇α,zηα by ∇α,0ηα. Then by
Lemma 3.4 and Cauchy inequality we obtain∫

Ω0
αβ

e−dβ(y,0)|∇α,0ηα||∇α,zηβ| .
∫

Ω0
αβ

e−dβ(y,0)|∇α,0ηα|2 +

∫
Ω0
αβ

e−dβ(y,0)|∇α,zηβ|2.

Since Ω0
αβ ⊂ {(y, z) : |z| < 2dβ(y, 0)}, the first integral is controlled by∫

Γα

(∫ 0

−2dβ(y,0)
e−dβ(y,0)dz

)
|∇α,0ηα|2dAα,0 .

(
max

Γα∩Br(x)
dβe
−dβ
)∫

Γα

|∇α,0ηα|2dAα,0.

The second one can be estimated in the same way by writing it in Fermi coordinates with
respect to Γβ.

Subcase 1.2. To estimate the integral of ε1/6e−dβ(y,0)ηαηβ, the above method needs
a revision. Here we note that the domain of integration can be restricted to {|z| <
8| log ε|} ∩ {|dβ| < 8| log ε|}, because otherwise g′α or g′β = 0. Hence we have

ε
1
6

∫
Ω0
αβ∩{|z|<8| log ε|}∩{|dβ(y,z)|<8| log ε|}

e−dβ(y,0)ηαηβ(8.19)

. ε
1
6

∫
Ω0
αβ∩{|z|<8| log ε|}

e−dβ(y,0)η2
α + ε

1
6

∫
Ω0
αβ∩{dβ(y,z)<8| log ε|}

e−dβ(y,0)η2
β.

The first integral is rewritten as

ε
1
6

∫
Γα

(∫ 8| log ε|

−8| log ε|
e−dβ(y,0)dz

)
η2
αdAα,0 . ε

1
6 | log ε|

(
max

y∈Γα∩Br(x)
e−dβ

)∫
Γα

η2
αdAα,0

. ε
1
7A(r;x)

∫
Γα

η2
αdAα,0.
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The second integral in (8.19) and integrals involving ηα|∇α,zηβ| as well as ηβ|∇α,zηα| can
be estimated in a similar way.

Case 2. In Ω+
αβ, we have

g′α(y, z)g′β(y, z) + g′α(y, z)
∣∣g′′β(y, z)

∣∣+ g′β(y, z)
∣∣g′′α(y, z)

∣∣+
∣∣g′′α(y, z)g′′β(y, z)

∣∣ . e−dβ(y,0)−z.

Similar to the above case, we have a bound on
∣∣∇α,zϕα(y, z) · ∇α,zϕβ(y, z)

∣∣. By noting
that they are nonzero only in the 8| log ε| neighborhood of Γα ∪ Γβ, we obtain∫

Ω+
αβ∩{z<8| log ε|}

e−dβ(y,0)−z|∇α,zηα||∇β,zηβ|

.

(∫
Ω+
αβ∩{z<8| log ε|}

e−2dβ(y,0)−z|∇α,0ηα|2
) 1

2
(∫

Ω+
αβ∩{z<8| log ε|}

e−z|∇β,zηβ|2
) 1

2

.

(∫
Γα

∫ 8| log ε|

0
e−2dβ(y,0)−z|∇α,0ηα(y)|2dzdAα,0

) 1
2

×

(∫ 8| log ε|

0

∫
Γα

e−z|∇β,zηβ|2dAα,zdz

) 1
2

.

(
max

y∈Γα∩Br(x)
e−dβ(y,0)

)(∫
Γα

|∇α,0ηα(y)|2dAα,0
) 1

2

(∫
Γβ

|∇β,0ηβ|2dAβ,0

) 1
2

.

Other terms and integrals in Ω−αβ can be estimated in the same way. �

Next we estimate the normal part.

Lemma 8.5. For any β 6= α,∫
Br+8| log ε|(x)

∂zϕα∂zϕβ = −
∫

Γα

∫ +∞

−∞
ηαηβW

′′(gβ)g′αg
′
βλαdzdy +Qα,β(η),

where

|Qα,β(η)| .
[
ε2 + ε

1
7A(r;x) +A(r;x)

3
2

] [∫
Γα

η2
αdAα,0 +

∫
Γβ,0

η2
βdAβ,0

]

+ ε
1
7A(r;x)

∫
Γβ,0

|∇β,0ηβ|2dAβ,0.

Proof. Using Fermi coordinates with respect to Γα, we have
(8.20)

∂zϕα∂zϕβ = (−1)βηαηβg
′′
αg
′′
β

[
∂dβ
∂z
−∇hβ ·

∂Πβ

∂z

]
+ (−1)αηαg

′′
αg
′
β

(
∇β,0ηβ ·

∂Πβ

∂z

)
.

By Lemma 3.4, if g′′αg
′
β 6= 0 or g′′αg

′′
β 6= 0, then

(8.21)
∣∣∣∂dβ
∂z
− 1
∣∣∣+
∣∣∣∂Πβ

∂z

∣∣∣ . ε1/6,

We can proceed as in the proof of Lemma 8.4 to estimate the integral of

ηαg
′′
αηβg

′′
β

(
∂dβ
∂z
− 1−∇hβ ·

∂Πβ

∂z

)
+ ηαg

′′
αg
′
β

(
∇β,0ηβ ·

∂Πβ

∂z

)
.
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It remains to determine the integral∫
Br+8| log ε|(x)

ηαηβg
′′
αg
′′
β.

Write this in Fermi coordinates with respect to Γα. Integrating by parts in z leads to∫
Γα

∫ +∞

−∞
ηαηβg

′′
αg
′′
βλαdzdy

= (−1)β+1

∫
Γα

∫ +∞

−∞
ηαηβW

′′ (gβ) g′αg
′
βλα −

∫
Γα

∫ +∞

−∞
ηα

(
∇β,0ηβ ·

∂Πβ

∂z

)
g′αg
′′
βλα︸ ︷︷ ︸

I

− (−1)β
∫

Γα

∫ +∞

−∞
ηαηβg

′
αξ
′
βλα︸ ︷︷ ︸

II

−
∫

Γα

∫ +∞

−∞
ηαηβg

′
αg
′′
β∂zλαdz︸ ︷︷ ︸

III

.

When g′αg
′′
β 6= 0, by Lemma 3.4,∣∣ ∂

∂z
ηβ
∣∣ ≤ ε 1

6 |∇β,0ηβ|.

Hence as in the proof of Lemma 8.4 (here it is useful to observe that g′αg
′′
β = 0 outside the

8| log ε| neighborhood of Γα ∪ Γβ), we get

(8.22) |I| . ε
1
7A(r;x)

[∫
Γα

η2
αdAα,0 +

∫
Γβ

∣∣∇β,0ηβ∣∣2dAβ,0
]
.

By the definition of ξβ, we also have

(8.23) |II| . ε2

[∫
Γα

η2
αdAα,0 +

∫
Γβ

η2
βdAβ,0

]
.

Because ∂zλα = O(ε), we get

(8.24) |III| . ε| log ε|A(r;x)

[∫
Γα

η2
αdAα,0 +

∫
Γβ

η2
βdAβ,0

]
.

The conclusion follows by combining (8.22)-(8.24). �

Now we determine the integral in the previous lemma.

Lemma 8.6. We have∑
β 6=α

∫
Br+8| log ε|(x)

ηαηβ
[
W ′′(u)−W ′′(gβ)

]
g′αg
′
β

= −2A2
(−1)α

∫
Γα

ηα(y)ηα+1 (Πα+1(y, 0)) e−|dα+1(y,0)|dAα,0

− 2A2
(−1)α−1

∫
Γα

ηα(y)ηα−1 (Πα−1(y, 0)) e−|dα−1(y,0)|dAα,0

+ O
(
ε

1
7A(r;x)

)∑
β 6=α

∫
Γβ

|∇β,0ηβ|2dAβ,0
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+ O
(
ε2 + ε

1
7A(r;x) +A

(
r + 60| log ε|2;x

) 7
6

)∑
β

∫
Γβ

η2
βdAβ,0.

Proof. The proof is divided into three steps.
Step 1. First by Taylor expansion and (6.1), proceeding as in the proof of Lemma 8.4

we get ∣∣∣ ∫
Br+8| log ε|(x)

[
W ′′(u)−W ′′(g∗)

]
ϕαϕβ

∣∣∣
. ‖φ‖L∞(Br+8| log ε|(x))

∫
Br+8| log ε|(x)

ηαηβg
′
αg
′
β

.
[
ε2 +A

(
r + 60| log ε|2;x

) 3
2

] [∫
Γα

η2
αdAα,0 +

∫
Γβ

η2
βdAβ,0

]
.

Step 2. Next by Lemma 3.6 we have∫
Γα

ηα(y)

(∫ +∞

−∞

∣∣ηβ (Πβ(y, 0))− ηβ (Πβ(y, z))
∣∣ [W ′′(g∗)−W ′′(gβ)

]
g′βg
′
αλαdz

)
dy

.
∫ 1

0

∫
Γα

ηα(y)

(∫ +∞

−∞

∣∣∣ d
dt
ηβ ((1− t)Πβ(y, 0) + tΠβ(y, z))

∣∣g′βg′αλαdz) dy
. ε

1
6

∫ 1

0

∫
Γα

ηα(y)

(∫ +∞

−∞

∣∣∣∇β,0ηβ ((1− t)Πβ(y, 0) + tΠβ(y, z))
∣∣g′βg′αλαdz) dy

. ε
1
6 | log ε|A(r;x)

[∫
Γα

η2
αdAα,0 +

∫
Γβ

∣∣∇β,0ηβ∣∣2dAβ,0
]
.

Here we have used the fact that the length of {g′α(y, ·) 6= 0} and {g′β(y, ·) 6= 0} are not

larger than 16| log ε|.
Step 3. By the previous two steps, we are left with the integral∑
β 6=α

∫
Γα

ηα(y)ηβ (Πβ(y, 0))

∫ +∞

−∞

[
W ′′(g∗(y, z))−W ′′(gβ(y, z))

]
g′β(y, z)g′α(y, z)dzdAα,0.

The integrals ∫ +∞

−∞

[
W ′′(g∗(y, z))−W ′′(gβ(y, z))

]
g′β(y, z)g′α(y, z)dz.

can be determined by Lemma 8.3.
Combining estimates in these three steps we finish the proof. �

9. A decay estimate

Recall the definition of A(r;x) in Section 3. In this section we establish the following
decay estimate for A(r;x).

Proposition 9.1. There exist two universal constants M � K � 1 such that for any
r ∈ [2R/3, 5R/6], if

(9.1) κ := A(r; 0) ≥Mε2| log ε|,
then

A (r −KR∗; 0) ≤ 1

2
A(r; 0),
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where

R∗ := max
{
κ−

1
2 , 200| log ε|2

}
.

The constantsM andK will be determined in Lemma 9.7 (according to the requirements
in Lemma 9.6).

9.1. Reduction to a decay estimate for Toda system. In this subsection we reduce
the proof of Proposition 9.1 to a decay estimate for Toda system.

By (5.2) and Corollary 7.5, for any β and y ∈ Γβ ∩Br−R∗(0),

(9.2) Hβ(y, 0) =
2A2

(−1)β−1

σ0
e−dβ−1(y,0) −

2A2
(−1)β

σ0
edβ+1(y,0) +O

(
κ7/6

)
+O

(
ε2
)
.

Take an arbitrary index α and x ∈ Γα∩Br−KR∗(0). To prove Proposition 9.1, it suffices
to show that

(9.3) e−Dα(x) ≤ κ

2
.

After a rotation and a translation, assume x = 0. In the finite cylinder CR/30(0) :=

Bn−1
R/30(0) × (−R/30, R/30), Γα is represented by the graph {xn = fα(y)}, where y ∈

Bn−1
R/30(0). Without loss of generality assume

(9.4) fα(0) = 0, ∇fα(0) = 0.

In the following, we also assume

(9.5) |dα−1(0)| ≥ dα+1(0), and dα+1(0) ≤ 2| log ε|.

Then by Lemma 2.2, we get a function fα+1 such that

Γα+1 ∩ CR/30(0) =
{
xn = fα+1(x′)

}
.

Moreover, we have the Lipschitz bound

(9.6) ‖∇fα‖L∞(Bn−1
R/30

(0)) + ‖∇fα+1‖L∞(Bn−1
R/30

(0)) ≤ C.

Curvature bounds on Γα and Γα+1 are transformed into

(9.7) ‖∇2fα‖L∞(Bn−1
R/30

(0)) + ‖∇2fα+1‖L∞(Bn−1
R/30

(0)) . ε.

By (9.4) and (9.7), for any y ∈ Bn−1
Kκ−1/2(0),

(9.8) |∇fα(y)| . ε|y| . Kεκ−1/2 . KM−1/2| log ε|−1/2.

Concerning fα+1 we have the following estimates. Hereafter a positive constant δ < 1/48
will be fixed.

Lemma 9.2. For y ∈ Bn−1
Kκ−1/2(0), we have

(9.9) |∇fα+1(y)
∣∣ = OK

(
M−δ| log ε|−δ

)
.

Proof. By (9.5) and (9.6) we have

max
Bn−1

Kκ−1/2
(0)

(fα+1 − fα) ≤ 2| log ε|+ CKκ−1/2 . KM−1/2| log ε|−1/2ε−1.
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As in Lemma 3.4, combining this bound with (9.7) and noting that fα+1 − fα > 0, an
interpolation argument gives

max
Bn−1

Kκ−1/2
(0)
|∇fα+1 −∇fα

∣∣ . C(K)M−δ| log ε|−δ.

Substituting (9.8) into this estimate we get (9.9). �

The following lemma shows that dα+1 is well approximated by vertical distances. The
proof uses the fact that under assumptions (9.4) and (9.5), Γα and Γα+1 are almost parallel
and horizontal.

Lemma 9.3. For y ∈ Bn−1
Kκ−1/2(0), if e−|dα+1(y)| ≥ ε2, then

(9.10) e−|dα+1(y)| = e−(fα+1(y)−fα(y)) +OK
(
M−1κ

)
.

Proof. Assume the nearest point on Γα+1 to (y, fα(y)) is (y∗, fα+1(y∗)). Because

dα(y∗, fα+1(y∗)) ≤ |dα+1(y, fα(y))| ≤ 2| log ε|,

using Lemma 3.4 we deduce that

|∇fα+1(y∗)−∇fα(y)| . ε1/3.

Combining this estimate with (9.8) and noting the fact that M−1/2| log ε|−1/2 � ε1/3, we
get

(9.11) |∇fα+1(y∗)| . KM−1/2| log ε|−1/2.

By the Lipschitz bound on Γα and Γα+1 (see (9.6)), the vertical distance to Γα+1 is
comparable to the distance to Γα+1, that is,

|fα+1(y)− fα(y)| . |dα+1(y, fα(y))| . | log ε|.

Then by the triangle inequality we have

|y − y∗| ≤ |dα+1(y, fα(y))|+ |fα+1(y)− fα(y)| . | log ε|.

By (9.7), we get

(9.12) dist
(
(y, fα+1(y)), T(y∗,fα+1(y∗))Γα+1

)
. ε| log ε|2,

where T(y∗,fα+1(y∗))Γα+1 denotes the tangent hyperplane of Γα+1 at (y∗, fα+1(y∗)).
Let ϑ be the angle between Nα+1(y∗) (the upward unit normal vector of Γα+1 at

(y∗, fα+1(y∗)) and the direction en+1 = (0, · · · , 0, 1). By (9.11), we get

(9.13) |ϑ| . KM−1/2| log ε|−1/2.

From this we deduce that

fα+1(y)− fα(y) ≤ |dα+1(y)|
[
1 + C (sinϑ)2

]
+ Cε| log ε|2

≤ |dα+1(y)|+ C(K)M−1.

Then by Taylor expansion and the fact that edα+1(y) ≤ κ, we obtain (9.10). �

Remark 9.4. Other parts of our proof require only κ ≥ Mε2 with M large enough. The
stronger assumption in (9.1) is needed only in the derivation of (9.13) (through estimates
in (9.8) and (9.11)), which shows how close the tangent hyperplane at y∗ to the hyperplane
chosen at the beginning with respect to which Γα and Γα+1 are viewed as graphs over it.
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By this lemma, after throwing away interaction terms except the one between Γα and
Γα+1, the Toda system (9.2) is rewritten as, for any y ∈ Bn−1

Kκ−1/2(0),

(9.14)


div

(
∇fα(y)√

1+|∇fα(y)|2

)
≥ −2A2

1
σ0
e−[fα+1(y)−fα(y)] +OK

(
M−1κ

)
,

div

(
∇fα+1(y)√

1+|∇fα+1(y)|2

)
≤ 2A2

1
σ0
e−[fα+1(y)−fα(y)] +OK

(
M−1κ

)
,

Here as before we have assumed (−1)α = 1 and we have also used the fact that if Lemma

9.3 is not applicable at a point y, then both e−[fα+1(y)−fα(y)] and e−|dα+1(y)| are of the order
O
(
ε2
)
, which can be incorporated into the OK

(
M−1κ

)
term.

Taking difference in (9.14), we obtain the equation for fα+1 − fα,

(9.15) div [Aα∇ (fα+1 − fα)] ≤ 4A2
1

σ0
e−[fα+1(y)−fα(y)] +OK

(
M−1κ

)
.

Here Aα is an (n− 1)× (n− 1) symmetric matrix with entries defined by

(9.16)

∫ 1

0

[
δij√

1 + |∇f tα|2
− ∂if

t
α∂jf

t
α

(1 + |∇f tα|2)3/2

]
dt, 1 ≤ i, j ≤ n− 1,

where f tα := (1− t)fα + tfα+1 and δij is the Kronecker delta symbol.
In view of (9.8) and (9.9), we have

(9.17) |Aα(y)− Id| .M−δ, ∀y ∈ Bn−1
Kκ−1/2(0).

Note that here we do not need the full strength of (9.8) and (9.9), but only the smallness
of |∇fα| and |∇fα+1|.

By (9.7), we also have

(9.18) |∇Aα(y)| . ε, ∀y ∈ Bn−1
Kκ−1/2(0).

Define the function

vα(y) := fα+1

(
κ−1/2y

)
− fα

(
κ−1/2y

)
− | log κ|, y ∈ Bn−1

K (0).

It satisfies

(9.19) div
(
Ãα∇vα

)
≤ 4A2

1

σ0
e−vα +OK

(
M−1

)
in Bn−1

K (0).

Here Ãα(y) := Aα(κ−1/2y) still satisfies (9.17) in Bn−1
K (0). Since κ ≥ ε2, (9.18) implies

that

(9.20) |∇Ãα(y)| ≤ C, ∀y ∈ Bn−1
K (0).

9.2. Completion of the proof of Proposition 9.1. First we show that vα is almost
stable.

Lemma 9.5. For any η̃α and η̃α+1 ∈ C∞0 (Bn−1
K (0)),[

1 +O
(
M−δ

)] ∑
β=α,α+1

∫
Bn−1
K (0)

|∇η̃β|2dy(9.21)

≥ 2A2
1

σ0

∫
Bn−1
K (0)

e−vα [η̃α+1 + η̃α]2 dy −O
(
M−δ

) ∑
β=α,α+1

∫
Bn−1
K (0)

η̃2
βdy.
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Proof. For y ∈ Bn−1
Kκ−1/2(0), let ηα(y) := η̃α

(
κ1/2y

)
and ηα+1 be defined similarly. We will

view them as functions on Γα (respectively Γα+1), by identifying y with (y, fα(y)) etc.
Substituting (· · · , 0, ηα, ηα+1, 0, · · · ) into Proposition 8.1 gives∑

β=α,α+1

∫
Bn−1

Kκ−1/2
(0)
|∇ηβ|2

[
1 +O

(
|∇fβ|2

)]
dy +Q(ηα, ηα+1)(9.22)

≥
∑

β=α,α+1

2A2
1

σ0

∫
Bn−1

Kκ−1/2
(0)
edα+1(y,0) [ηα(y) + ηα+1 (Πα+1(y, 0))]2

[
1 +O

(
|∇fβ|2

)]
dy,

where

|Q(η)| .
[
ε

1
4 + κ

1
2

] ∑
β=α,α+1

∫
Bn−1

Kκ−1/2
(0)
|∇ηβ(y)|2

[
1 +O

(
|∇fβ(y)|2

)]
dy


+

[
ε2 + κ

7
6 + ε

1
7κ
] ∑

β=α,α+1

∫
Bn−1

Kκ−1/2
(0)
ηβ(y)2

[
1 +O

(
|∇fβ(y)|2

)]
dy


. κ1/8

 ∑
β=α,α+1

∫
Bn−1

Kκ−1/2
(0)
|∇ηβ(y)|2dy

+
κ

M

 ∑
β=α,α+1

∫
Bn−1

Kκ−1/2
(0)
ηβ(y)2dy

 ,

if ε is small enough, which also implies that κ is small enough.
If Lemma 9.3 is not applicable, the first term in the right hand side of (9.22) can be in-

corporated intoQ(η). Otherwise we use Lemma 9.3 to replace edα+1(y,0) by e−(fα+1(y)−fα(y))

in this term. This introduces an error, but it can be estimated as Q(η). Finally, the area
weight 1 +O

(
|∇fβ|2

)
can be estimated by using (9.8) and (9.9). Putting these estimates

together (9.22) is rewritten as[
1 +O

(
M−δ

)
+O

(
κ1/8

)] ∑
β=α,α+1

∫
Bn−1

Kκ−1/2
(0)
|∇ηβ|2dy

≥ 2A2
1

σ0

∑
β=α,α+1

∫
Bn−1

Kκ−1/2
(0)
e−(fα+1(y)−fα(y)) [ηα(y) + ηα+1 (Πα+1(y, 0))]2 dy

− O
(
M−1κ

) ∑
β=α,α+1

∫
Bn−1

Kκ−1/2
(0)
ηβ(y)2dy.

By a rescaling and noting that if ε is small enough, then κ�M−δ, we obtain (9.21). �

From now on we assume the space dimension n ≤ 10. In these low dimensions we show
this almost stability condition implies an L1 smallness estimate.

Lemma 9.6. For any σ > 0, if we have chosen M � K � 1 (depending only on n and
σ), then

(9.23)

∫
Bn−1

2 (0)
e−vα ≤ σ.

Proof. Let Vα := e−vα . Direct calculation using (9.19) gives

(9.24) − div
(
Ãα∇Vα

)
≤ 4A2

1

σ0
V 2
α −

[
1 +O

(
M−δ

)]
V −1
α |∇Vα|2 + CM−δVα.
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Following Farina [21], for any η ∈ C∞0 (Bn−1
K (0)) and q > 0, multiplying (9.24) by V 2q−1

α η2

and integrating by parts, we get[
2q − C(K)M−δ

] ∫
Bn−1
K (0)

V 2q−2
α |∇Vα|2η2 − 1

2q

∫
Bn−1
K (0)

V 2q
α ∆η2(9.25)

≤ 4A2
1

σ0

∫
Bn−1
K (0)

V 2q+1
α η2 + C(K)M−δ

∫
Bn−1
K (0)

V 2q
α η2.

On the other hand, substituting η̃α = η̃α+1 = η into Lemma 9.5 gives

(9.26)
[
1 + CM−δ

] ∫
Bn−1
K (0)

|∇η|2dy + C(K)M−δ
∫
Bn−1
K (0)

η2dy ≥ 4A2
1

σ0

∫
Bn−1
K (0)

Vαη
2dy.

Replacing the test function η by V q
αη in (9.26) leads to

4A2
1

σ0

∫
V 2q+1
α η2 ≤

[
1 + CM−δ

]
q2

∫
V 2q−2
α |∇Vα|2η2(9.27)

+C

∫
V 2q
α

(∣∣∆η2
∣∣+ |∇η|2

)
+ C(K)M−δ

∫
V 2q
α η2.

Combining (9.25) and (9.27) we get, if

2q + C(K)M−δ > q2
(

1 + C(K)M−δ
)
,

which is true provided q < 2 and M is large enough, then

(9.28)

∫
V 2q−2
α |∇Vα|2η2 +

∫
V 2q+1
α η2 ≤ C(q)

∫
V 2q
α

(∣∣∆η2
∣∣+ |∇η|2 + C(K)M−δη2

)
.

Still as in Farina [21], take a standard cut-off function η and replace η by ηm for some
m � 1 (depending only on q) in (9.28). Then applying the Hölder inequality gives, for
any q < 15/8,

(9.29)

∫
Bn−1

2 (0)

[
V 2q−2
α |∇Vα|2 + V 2q+1

α

]
≤ C(q)Kn−1−2(2q+1) + C(q,K)M−δKn−1.

If n ≤ 10 and q > 7/4, we have

n− 1− 2(2q + 1) < 0.

First choose a K so large that C(q)Kn−1−2(2q+1) < σ2q+1/2C, then take an M so large
that C(q,K)M−δKn−1 < σ2q+1/2C, where C is a universal large constant. By this choice
we get ∫

Bn−1
2 (0)

[
V 2q−2
α |∇Vα|2 + V 2q+1

α

]
≤ σ2q+1

C
.

An application of Hölder inequality gives (9.23). �

Now we improve this L1 estimate to an L∞ estimate. To this end, we need the following
decay estimate.

Lemma 9.7. There exist two universal constants σ∗ and τ∗ ∈ (0, 1/8) so that the following
holds. For any y ∈ Bn−1

1 (0) and r ∈ (0, 1), suppose

(9.30) r3−n
∫
Bn−1
r (y)

Vα ≤ σ∗,
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then

(9.31) (τ∗r)
3−n

∫
Bn−1
τ∗r (y)

Vα ≤
1

2
r3−n

∫
Bn−1
r (y)

Vα.

Proof. The proof follows the method introduced by the first author in [37, 38] with minor
modifications. Here we give a sketch of the proof. For simplicity of presentation, we will
assume n ≥ 4. If n = 2, 3, it can either be proved directly (for example, by the method in
Brezis-Merle [6] if n = 3) or by trivially extending vα to higher dimensions.

Denote

σ := r3−n
∫
Bn−1
r (y)

Vα.

Fix the constant K and M according to the previous lemma with the constant σ∗.
Taking q = 1/2 in (9.28) gives, for any η ∈ C∞0 (Bn−1

2 (0)),

(9.32)

∫
Bn−1

2 (0)
V 2
α η

2 .
∫
Bn−1

2 (0)
Vα

(
|η||∆η|+ |∇η|2 +M−δη2

)
.

Let η be a standard cut-off function with η ≡ 1 in Bn−1
r/2 (y), η ≡ 0 outside Bn−1

r (y),

|∇2η|+ |∇η|2 . r−2. With this η in (9.32) we get∫
Bn−1
r/2

(y)
V 2
α .

[
r−2 + C(K)M−δ

] ∫
Br(y)

Vα(9.33)

. rn−5σ.

Define the rescaling

v̄α(z) := vα(y + rz)− 2 log r, z ∈ Bn−1
2 (0).

It satisfies

(9.34) div
(
Āα∇v̄α

)
≤ 4A2

1

σ0
e−v̄α + C(K)M−1r2,

where

Āα(z) = Ãα(y + rz), z ∈ Bn−1
2 (0).

The above estimates on Vα is transformed into

(9.35)


∫
Bn−1

1 (0)
e−v̄α = σ,∫

Bn−1
1/2

e−2v̄α . σ.

Choose an r∗ ∈ (1/4, 1/2) so that

(9.36)

∫
∂Bn−1

r∗ (0)
e−v̄α ≤ 4

∫
Bn−1

1 (0)
e−v̄α ≤ 4σ.

Take three functions satisfying the following conditions:

(1) hα is the solution of{
div
(
Āα∇hα

)
= 0, in Bn−1

r∗ (0),

hα = v̄α, on ∂Bn−1
r∗ (0).
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(2) w1
α is the solution of

(9.37)

div
(
Āα∇w1

α

)
=

4A2
1

σ0
e−v̄α , in Bn−1

r∗ (0),

w1
α = 0, on ∂Bn−1

r∗ (0).

(3) w2
α is the solution of{

div
(
Āα∇w2

α

)
= C(K)M−1r2, in Bn−1

r∗ (0),

w2
α = 0, on ∂Bn−1

r∗ (0).

By comparison principle, w1
α < 0, w2

α < 0 and v̄α ≥ hα + w1
α + w2

α in Bn−1
r∗ (0).

The following estimates hold for these three functions.

(1) Because div
(
Āα∇e−hα

)
≥ 0, we get

sup
Bn−1
r∗/2

(0)

e−hα .
∫
∂Bn−1

r∗ (0)
e−v̄α(9.38)

. σ. (by (9.36))

Here the first inequality follows by Green’s representation

e−hα(x) = −
∫
Bn−1
r∗ (0)

e−hα(y)div
(
Āα∇yG(x, y)

)
dy

= −
∫
Bn−1
r∗ (0)

G(x, y)div
(
Āα∇ye−hα(y)

)
dy −

∫
∂Bn−1

r∗ (0)
e−hα(y)Āα∇yG(x, y) · y

r∗
dA(y)

.
∫
∂Bn−1

r∗ (0)
e−hα(y)|∇yG(x, y)|dA(y)

.
∫
∂Bn−1

r∗ (0)
e−hα(y)dA(y), ∀x ∈ Bn−1

r∗/2
(0).

In the above, dA(y) denotes the area measure on ∂Bn−1
r∗ (0), G(x, y) denotes the

Green function for div
(
Āα∇·

)
in Bn−1

r∗ (0) with homogeneous Dirichlet boundary
condition, while the last inequality follows by applying the boundary gradient
estimate (see [26, Section 14.1]) (which in turn also relies on upper bounds of
G(x, y) as in [31]). These estimates do hold if we note that Āα satisfies both the
conditions (9.17) and (9.20), that is,

(9.39) ‖Āα − Id‖L∞(Bn−1
2 (0)) ≤ 1/2,

and

(9.40) ‖∇Āα‖L∞(Bn−1
2 (0)) ≤ C.

(2) Since div
(
Āα∇

)
is a uniformly elliptic operator (see (9.39)), by [31] we get a

|x− y|3−n bound on its Green function. Using this, similar to [37, Lemma 3.4] we
get

(9.41)

∫
Bn−1
r∗ (0)

|w1
α| . σ.
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Next, by (9.40), we can apply global W 2,2 estimates and (9.35) to get

(9.42)

∫
Bn−1
r∗ (0)

|∇2w1
α|2 . σ.

As in [38], by Sobolev embedding and interpolation between (9.41) and (9.42), we
get a universal constant ν > 0 such that∫

Bn−1
r∗ (0)

|∇w1
α|2 . σ1+ν .

Multiplying (9.37) by w1
α and integrating by parts we obtain

(9.43) −
∫
Bn−1
r∗ (0)

w1
αe
−vα =

∫
Bn−1
r∗ (0)

Āα∇w1
α · ∇w1

α . σ
1+ν .

(3) For w2
α, by constructing a comparison function we get

(9.44) w2
α ≥ −C(K)M−1r2, in Bn−1

r∗ (0).

With these three estimates in hand, we proceed to estimate r3−n ∫
Bn−1
r (0) e

−v̄α , for any

r < r∗/2. Decompose this estimate into two parts: {w1
α ≥ −σν/2} and {w1

α < −σν/2}.
For the first part we have

r3−n
∫
Bn−1
r (0)∩{w1

α≥−σν/2}
e−v̄α ≤ r3−n

∫
Bn−1
r (0)∩{w1

α≥−σν/2}
e−hαeσ

ν/2+C(K)M−1r2

.K,M r3−n
∫
Bn−1
r (0)

e−hα

.K,M r2σ. (by (9.38))

The second part can be estimated using (9.43):

r3−n
∫
Bn−1
r (0)∩{w1

α≤−σν/2}
e−v̄α ≤ σ−ν/2r3−n

∫
Br(0)

(
−w1

α

)
e−v̄α

. r3−nσ1+ν/2.

Putting these together we get

r3−n
∫
Bn−1
r (0)

e−v̄α ≤ C(K,M)r2σ + C(K,M)r3−nσ1+ν/2.

First choose r = τ∗ so small that C(K,M)τ2
∗ ≤ 1/4, and then choose σ∗ so small that

C(K,M)τ3−n
∗ σ

ν/2
∗ ≤ 1

4
.

By this choice we get

τ3−n
∗

∫
Bn−1
τ∗ (0)

e−v̄α ≤ σ

2
.

Rescaling back to vα this is (9.31). �

Using this lemma we get
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Lemma 9.8. If

(9.45)

∫
Bn−1

2 (0)
Vα ≤ σ∗,

then

(9.46) max
Bn−1

1/4
(0)
Vα ≤

1

2
.

Proof. For any y ∈ Bn−1
1 (0), ∫

Bn−1
1 (y)

Vα ≤
∫
Bn−1

2 (0)
Vα ≤ σ∗.

Then by the previous lemma, we get

(9.47) τ
(3−n)(k+1)
∗

∫
B
τk+1
∗

(y)
Vα ≤

1

2
τ

(3−n)k
∗

∫
B
τk∗

(y)
Vα, ∀k ≥ 1.

An iteration of this estimate gives, for any y ∈ Bn−1
1 (0) and r ∈ (0, 1),

(9.48)

∫
Bn−1
r (y)

Vα . σ∗r
n−3+ log 2

| log τ∗| .

This implies that Vα belongs to the Morrey space Mp∗(Bn−1
1 (0)) (following the notation

in [26, Section 7.9]), where p∗ is defined by (n− 1)/p∗ = 2− log 2/| log τ∗|.
As in the proof of the previous lemma, take an r∗ ∈ (3/4, 1) such that∫

∂Bn−1
r∗ (0)

e−vα ≤ 4σ∗,

and then define the same functions hα, w1
α and w2

α in Bn−1
r∗ (0).

The estimate (9.38) for hα and the estimate (9.44) for w2
α (with r = 1) still hold. For

w1
α, since 1/p∗ < 2/(n− 1), by [26, Lemma 7.18] now we get

|w1
α| . σ∗, in Bn−1

r∗ (0).

Note that although it is not the standard Laplacian in the equation of w1
α but only a

uniformly elliptic operator, the proof of [26, Lemma 7.18] still goes through because it
requires only a |x − y|3−n bound on the Green function for div

(
Āα∇

)
, which is true by

[31].
Combining these estimates we get

e−vα ≤ e−hα−w1
α−w2

α ≤ Ceσ∗σ∗ < 1/2 in Bn−1
r∗/2

(0)

provided σ∗ is sufficiently small. This is (9.46). �

Remark 9.9. Since we have assumed n ≤ 10, we can also combine Lp estimates in
Lemma 9.6 with standard W 2,p estimates to deduce this L∞ estimate. However, the above
two lemmas work in any dimension. They could be useful for the establishment of a partial
regularity theory in high dimensions, as mentioned in Remark 1.4.

In view of Lemma 9.6, Lemma 9.8 is applicable to Vα for all κ small. Rescaling (9.46)
back we get (9.3). The proof of Proposition 9.1 is thus complete.
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10. Distance bound

In this section we give a lower bound on Dα. Recall that we have set R := ε−1, see the
beginning of Section 3.

Proposition 10.1. There exists a universal constant C such that

A(2R/3; 0) ≤ Cε2.

10.1. Non-optimal lower bounds. Let us first provide three non-optimal lower bounds.

Lemma 10.2. For any θ ∈ (0, 1) and ε sufficiently small,

A(19R/24; 0) ≤ ε1+θ.

Proof. Assume by the contrary A(19R/24; 0) > ε1+θ. Then by the monotone dependence
of A(r; 0) on r, we have

(10.1) A(r; 0) ≥ A(19R/24; 0) > ε1+θ, ∀r ∈ [19R/24, 5R/6].

This allows us to apply Proposition 9.1, which says

A
(
r −KR

1+θ
2 ; 0

)
≤ 1

2
A(r; 0).

Here we have used the estimate on the constant R∗ in Proposition 9.1, that is, by (10.1)

we have R∗ ≤ R
1+θ
2 .

An iteration of this decay estimate from r = 5R/6 to 19R/24 leads to a contradiction,
i.e.

A (19R/24; 0) ≤ 2−cK
−1R

1−θ
2 A (5R/6; 0) ≤ ε2.

In the last inequality we have used A(5R/6; 0) ≤ 1, which is a consequence of Lemma
2.1. �

By choosing θ > 6/7 and substituting the above estimate into Corollary 7.6 we get

Corollary 10.3. For any α and y ∈ Γα ∩B19R/24(0),

(10.2) Hβ(y, 0) =
2A2

(−1)β−1

σ0
e−dβ−1(y,0) −

2A2
(−1)β

σ0
edβ+1(y,0) +O

(
ε2
)
.

Lemma 10.4. For all ε sufficiently small,

A(3R/4; 0) ≤ ε2| log ε|2.

Proof. By Lemma 10.2, we have

(10.3) A(19R/24; 0) ≤ ε1+θ,

where θ is very close to 1 (to be determined below).
Now assume by the contrary A(3R/4; 0) > ε2| log ε|2. Then by the monotone depen-

dence of A(r; 0) on r, we have

(10.4) A(r; 0) ≥ A(3R/4; 0) > ε2| log ε|2, ∀r ∈ [3R/4, 19R/24].

Now Proposition 9.1 is applicable, which says

A

(
r −K R

logR
; 0

)
≤ 1

2
A(r; 0).

Here we have used the estimate on the constant R∗ in Proposition 9.1, that is, by (10.4)
we have R∗ ≤ R/ logR.
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In view of (10.3), an iteration of this decay estimate from r = 19R/24 to 3R/4 leads to
a contradiction, i.e.

A (3R/4; 0) ≤ 2−cK
−1 logRA (19R/24; 0) ≤ Cε1+θ+ c log 2

K ≤ ε2,

provided 1 + θ + c log 2
K > 2, i.e. θ has been chosen to be very close to 1. �

Lemma 10.5. There exists a universal constant C such that for all ε sufficiently small,

A(17R/24; 0) ≤ Cε2| log ε|.

Proof. By Lemma 10.4, we have

(10.5) A(3R/4; 0) ≤ ε2| log ε|2.
Now assume by the contrary A(17R/24; 0) ≥ Mε2| log ε|, where M is the constant in

Proposition 9.1. Then by the monotone dependence of A(r; 0) on r, we have

(10.6) A(r; 0) ≥ A(17R/24; 0) ≥Mε2| log ε|, ∀r ∈ [17R/24, 3R/4].

Now Proposition 9.1 is applicable, which says

A

(
r −K R√

M logR
; 0

)
≤ 1

2
A(r; 0).

Here we have used the estimate on the constant R∗ in Proposition 9.1, that is, by (10.6)
we have R∗ ≤ R/

√
M logR.

In view of (10.5), an iteration of this decay estimate from r = 3R/4 to 17R/24 leads to
a contradiction, i.e.

A (17R/24; 0) ≤ 2−cK
−1
√
M logRA (3R/4; 0) ≤ C2−cK

−1
√
M logRε2| log ε|2 ≤ ε2| log ε|.

The last inequality follows from the estimate

2−cK
−1
√
M | log ε|| log ε| = 2

−cK−1
√
M | log ε|+ log | log ε|

log 2 ≤ 1,

which is true if ε is small enough. �

10.2. Proof of Proposition 10.1. By Lemma 10.5, now we have

(10.7) A(17R/24; 0) . ε2| log ε|.
Hence by Corollary 10.3, for any α,

(10.8) ‖Hα‖L∞(B17R/24(0)) . ε
2| log ε|.

Denote ρ := |dα+1|. Assume u > 0 between Γα and Γα+1. By [9, Eqn. (2.41), Lemma
2.9 and Appendix A] and (9.2), ρ satisfies

(10.9) Lρ(y)|+ |Aα(y)|2ρ(y) +N (ρ) ≤ 4A2
1

σ0
e−ρ(y) +O

(
ε2
)
.

Here L is a linear uniformly elliptic operator defined by

Lϕ := a(y)−1divα,0 [a(y)Nα(y) ·Nα+1(y, ρ(y))∇α+1,0ϕ] ,

where

a(y) :=
λα(y, 0)

λα+1(y, ρ(y))
.

The nonlinear error term N (ρ) satisfies

(10.10) |N (ρ)(y)| . ε3|ρ(y)|2 + ε|∇α,0ρ(y)|2

In order to estimate N (ρ), we need
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Lemma 10.6. For any y ∈ Γα ∩B11R/16(0), if ρ(y) ≤ 4| log ε|, then

|∇α,0ρ(y)|
ρ(y)

. ε.

Proof. Fix an α and a point y∗ ∈ Γα ∩ B11R/16(0) with ρ(y∗) ≤ 4| log ε|. Note that by
(10.7) we always have

(10.11) ρ(y) ≥ 2| log ε| − log | log ε| − C, ∀y ∈ BR/100(y∗).

Choose a coordinate system such that Γα ∩BR/100(y∗) and Γα+1 ∩BR/100(y∗) are rep-
resented by graphs of functions fα and fα+1, ρ(y∗) is attained at (y∗, fα+1(y∗)), and
∇fα+1(y∗) = 0. Therefore we have

ρ(y∗) = fα+1(y∗)− fα(y∗) and ρ(y) ≤ fα+1(y)− fα(y), ∀y 6= y∗.

Consequently,

(10.12) ∇ρ(y∗) = ∇fα+1(y∗)−∇fα(y∗).

Define

ρ̃(ỹ) := ρ(y∗)
−1
[
fα+1(y∗ + ε−1ỹ)− fα(y∗ + ε−1ỹ)

]
, ỹ ∈ Bn−1

1/100(0).

Representing Γα+1 by the graph of the function ρ over Γα, combining (10.8) (for Hα+1)
and (10.11) we obtain

(10.13)
∥∥∥div

(
Āα∇ρ̃

) ∥∥∥
L∞(Bn−1

1/100
(0))
≤ C.

Here Āα(ỹ) = Aα(y∗ + ε−1ỹ) with Aα defined as in (9.16).
Note that Āα is a uniformly elliptic operator, thanks to the Lipschitz bound on fα and

fα+1. Moreover, there exists a universal constant C such that

‖∇Āα‖L∞(Bn−1
1/100

(0)) ≤ ε
−1‖∇Aα‖L∞(Bn−1

R/100
(y∗))

≤ C,

where in the last inequality we have used the form of Aα (see (9.16)) and bounds on second
order derivatives of fα and fα+1 as in (9.7).

By our assumption, ρ̃(0) = 1. Since ρ̃ > 0, by Moser’s Harnack inequality for inhomo-
geneous equations (see [26, Theorem 8.17 and 8.18]), there exists a σ > 0 such that

(10.14) 1/2 ≤ ρ̃ ≤ 2, in Bn−1
σ (0).

Now we apply W 2,p estimates to (10.13) and then Sobolev embedding to get a universal
constant C such that ‖ρ̃‖C1,1/2(Bn−1

σ (0)) ≤ C. In particular, |∇ρ̃(0)| ≤ C. Rescaling back

and using (10.12) we conclude the proof. �

The same proof, in particular, (10.14) implies that

Corollary 10.7. There exists a constant σ > 0 such that if ρ(y) ≤ 2| log ε|, then

(10.15) sup
BσR(y)∩Γα

ρ ≤ 4| log ε|.

Substituting (10.15) and Lemma 10.6 into (10.10) we obtain

Corollary 10.8. If ρ(y) ≤ 2| log ε|, then

(10.16) sup
BσR(y)∩Γα

|N (ρ)| . ε3| log ε|2,

where σ is the same constant in the previous corollary.
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With these estimates at hand, now we come to

Proof of Proposition 10.1. Assume by the contrary, there exists a constant L > 0 such
that for some α and x ∈ Γα ∩B2R/3(0), we have

(10.17) λ2 := e−ρ(x∗) ≥ L2ε2.

We now show this leads to a contradiction if L is large enough.
Let

(10.18) Γ̃ := λ (Γα − x∗) , ρ̃ (ỹ) := ρ
(
x∗ + λ−1ỹ

)
+ 2 log λ, ∀ỹ ∈ Γ̃ ∩BL(0).

Because |Aα| . ε, by (10.17), we get

(10.19)
∣∣A

Γ̃

∣∣ ≤ Cε

λ
≤ C

L
.

Hence Γ̃ is very close to a hyperplane in B√L(0).
By Corollary 10.7,

(10.20) ρ ≤ 4| log ε| in Γα ∩BσR(x∗).

Hence Corollary 10.8 is applicable, which implies that (10.9) has the form

(10.21) Lρ ≤ 4A2
1

σ0
e−ρ +O

(
ε2
)

in Γα ∩BσR(x∗).

A rescaling of this equation leads to the one for ρ̃:

(10.22) L̃ρ̃ ≤ 4A2
1

σ0
e−ρ̃ +O

(
L−2

)
in Γ̃ ∩BσL(0).

Here L̃ is the rescaling of L, but we rewrite it as

L = a(y)−1div
Γ̃

(
Âα(y)∇

Γ̃

)
,

where |a(y)− 1| � 1 and the matrix Âα satisfies

‖Âα − Id‖L∞(Γα∩BσR/2(x∗)) � 1,

by a derivation similar to the one of (9.17). (Note that with (10.20) at hand, we can apply
Lemma 3.4 to estimate Nα ·Nα+1, DΠα+1 etc.)

As in (9.26), for any η ∈ C∞0 (Γ̃ ∩B√L(0)), we still have

(10.23)
(

1 + Cε1/8
)∫

Γ̃∩B√L(0)
|∇η|2 + CL−2

∫
Γ̃∩B√L(0)

η2 ≥ 4A2
1

σ0

∫
Γ̃∩B√L(0)

e−ρ̃η2dy.

Then proceeding as in Subsection 9.2 we conclude that, if L is large enough, we have

sup
Γ̃∩B1(0)

e−ρ̃ ≤ 1

2
.

On the other hand, by definition ρ̃(0) = 0. This is a contradiction. Therefore (10.17)
cannot hold and the proof is complete. �

Remark 10.9. In (10.21), we have thrown away |Aα(y)|2ρ(y) in (10.9), because it has a
favorable sign. This is clearly a special point for the Euclidean metric and does not hold
if we work with a general Riemannian metric (because of an additional Ricci curvature
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term). We do not know if Proposition 10.1 can be generalized to that setting. However,
as in [9], a weaker estimate can still be proven:

(10.24) A(2R/3; 0) = o
(
ε2| log ε|

)
,

which is sufficient for the construction of positive Jacobi fields.
This estimate can be proved by the same blow up method as above. The main point is

to make sure that it is the Jacobi field part, Lρ(y)| + |Aα(y)|2ρ(y), not the exponential
nonlinearity e−ρ, dominating. Indeed, if (10.24) does not hold, because |Aα|2 ∼ ε2 and
ρ ∼ | log ε|, the Jacobi field part is of the order ε2| log ε|. Hence there is a balancing
between these two parts. After a rescaling as in (10.18), we get a Jacobi-Toda system. By
further showing that the stability condition is preserved in this rescaling procedure, we get
a contradiction as above.

Remark 10.10. In the extrinsic construction in Section 9, we have to approximate e−ρ

by e−(fα+1−fα), see Lemma 9.3. Taking such an approximation is not so precise. The
main problem comes from the estimate in (9.13), which forces us to use an assumption
involving ε2| log ε| instead of ε2 in (9.1), see Remark 9.4. The intrinsic construction in
this section avoids this issue. Furthermore, it is more direct to construct positive Jacobi
fields by using this approach, which will be needed in the proof of Corollary 1.3.

On the other hand, this intrinsic construction works only if we already have a good
distance lower bound such as (10.7). This is because we need Lemma 10.6 to estimate
N (ρ) in (10.9), the proof of which in turn relies on (10.7).

11. Proof of main results

In this section we prove Theorem 1.1 and its two corollaries, Corollary 1.2 and 1.3.

Proof of Theorem 1.1. Substituting Proposition 10.1 into (6.1), we get

(11.1) ‖φ‖C2,θ(B2R/3(0)) + max
α
‖Hα + ∆α,0hα‖Cθ(Γα∩B2R/3(0)) . ε

2.

By Lemma 4.6, for any α,

‖Hα‖Cθ(Γα∩B2R/3(0)) . ‖φ‖C2,θ(B2R/3(0)) + ‖Hα + ∆α,0hα‖Cθ(Γα∩B2R/3(0)) +A(2R/3; 0)

. ε2.

After rescaling back to uε, this says for any connected component of {uε = 0}, say Γα,ε,
its mean curvature satisfies

(11.2) ‖Hα,ε‖L∞(Γα,ε∩B2/3(0)) . ε, and ‖Hα,ε‖Cθ(Γα,ε∩B2/3(0)) . ε
1−θ.

Because Γα,ε∩BR(0) is a Lipschitz graph in some direction (see Lemma 2.2), by standard
estimates on the minimal surface equations (see for example [26, Chapter 16] or [27,
Appendix C]) we obtain a uniform bound on the Cθ norm of its second fundamental form
Aα,ε in B1/2(0).

As mentioned at the beginning of Section 2, all of these estimates hold uniformly for
t ∈ [−1 + b1, 1− b1]. This completes the proof of Theorem 1.1. �

Next we show how Corollary 1.2 and 1.3 follow from Theorem 1.1.

Proof of Corollary 1.2. Step 1. First we prove that (H1)-(H3) imply (1.8). For any
r < 1, α and xε = (x′ε, fα,ε(x

′
ε)) ∈ {uε = tε} with |x′ε| ≤ r, consider ũε(x) := uε(xε + εx)
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and assume they converge to ũ in C2
loc(Rn). By (H1), {ũε = tε} = ∪Qβ=1{xn = f̃β,ε(x

′)},
where

f̃β,ε(x
′) =

1

ε

[
fβ,ε(x

′
ε + εx′)− fα,ε(x′ε)

]
.

By (H2), as ε→ 0, f̃β,ε either converges to an affine function or goes to infinity uniformly.
Assume tε → t0 as ε → 0. There exists a 1 ≤ Q′ ≤ Q such that {ũ = t0} consists of Q′

parallel hyperplanes, say {xn = sβ}, s1 < · · · < sQ′ .
Without loss of generality assume ũ > t0 in the half space {xn > sQ′}. By Dancer

[12, 13] and the stability of ũ, ũ is strictly increasing along the xn direction. Therefore
the following limit exists:

(11.3) ū(x′) := lim
xn→+∞

ũ(x′, xn), ∀x′ ∈ Rn−1.

Moreover, t0 ≤ ū ≤ 1 and it is a stable solution of (1.11) in Rn−1.
By (H1) and monotonicity formula for Allen-Cahn equation (see Modica [32] and

Hutchinson-Tonegawa [30]), there exists a constant C depending only on E and r such
that for any R > 0 and x with dist(x, C1) > r, if Rε < (1− r)/2, then∫

BR(x)

[
ε

2
|∇uε|2 +

1

ε
W (uε)

]
≤ CRn−1.

Letting ε → 0, by the aforementioned convergence of ũε to ũ, we obtain with the same
constant C, ∫

BR(x)

[
1

2
|∇ũ|2 +W (ũ)

]
≤ CRn−1, ∀BR(x) ⊂ Rn.

Take the translation x 7→ x−sen and let s→ +∞, by (11.3) we deduce that ū satisfies the
same energy growth bound. However, since ū does not depend on xn, this is equivalent to∫

Bn−1
R (x′)

[
1

2
|∇ū|2 +W (ū)

]
≤ CRn−2, ∀Bn−1

R (x′) ⊂ Rn−1.

By considering ūε(x
′) := ū(ε−1x′) and letting ε → 0, applying the convergence theory in

Hutchinson-Tonegawa [30], we see if1

(11.4) lim
R→+∞

R2−n
∫
Bn−1
R (0)

[
1

2
|∇ū|2 +W (ū)

]
> 0,

then for any ε small enough, there exists a point x′ε ∈ Rn−1 2 and a large constant L > 0
such that ūε is close to the scaled one dimensional profile in Bn−1

Lε (x′ε), see [30, Proposition
5.6] and its proof therein. As a consequence, ūε can take values as close to −1 as possible.
This is a contradiction with the fact t0 ≤ ū ≤ 1. This contradiction implies that the limit
in (11.4) must be 0, which by the monotonicity formula implies that W (ū) ≡ 0. Hence
ū ≡ 1 in Rn−1.

For any y′ ∈ Rn−1, repeating the above argument for ũ(x′− y′, xn), we deduce that the
convergence in (11.3) is uniform. Then by [3, Theorem 5] (see also [5, Theorem 1.4]), we
deduce that ũ = g(xn − s) for some constant s. By unique continuation, ũ(x) ≡ g(xn − s)
in the entire space. In particular, there is only one connected component of {ũ = t0}, that

1The existence of this limit is guaranteed by the monotonicity formula.
2As in the proof of [30, Theorem 1], (i) we first take a point x′∞ ∈ spt‖V ‖, where V denotes the

nontrivial (thanks to (11.4)) stationary varifold constructed from ūε and ‖V ‖ is its mass measure, such
that V has a unique weak tangent space at x∞, (ii) then we take a sequence of points x′ε ∈ {|uε| ≤ 1− b}
converging to x∞ such that the tilt-excess in Bn−1

Lε (x′ε) is small in the sense of [30, Eq. (5.2)].
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is, Q′ = 1. Because g′ has a positive lower bound in {|g| ≤ 1− b}, we deduce that Lemma
2.1 still holds.

Step 2. Thus for all ε small, ∇uε 6= 0 in {|uε| < 1 − b} and hence |B(uε)| is well
defined. In order to apply Theorem 1.1, it suffices to establish a uniform bound on |B(uε)|
as in (1.6).

To this end, assume by the contrary that

(11.5) lim
ε→0

max
x∈{|uε|<1−b}∩C2/3

|B(uε)(x)| = +∞.

Let xε ∈ C1 ∩ {|uε| ≤ 1− b} attain the maxima

(11.6) max
C1∩{|uε|≤1−b}

(
1− |x′|

)
|B(uε)(x)|.

By (H1), xε ∈ {|xn| ≤ 1/2}.
Denote

(11.7) Lε := |B(uε)(xε)|, rε :=
(
1− |x′ε|

)
/2.

Then by definition and (11.5),

(11.8) Lεrε ≥
1

6
sup

C2/3∩{|uε|≤1−b}
|B(uε)(x)| → +∞.

In particular, Lε → +∞. On the other hand, by (1.8), we get

(11.9) Lε = o

(
1

ε

)
.

By the choice of rε at (11.7), we have (here Crε(x′ε) := Bn−1
rε (x′ε)× (−1, 1))

(11.10) max
x∈Crε (x′ε)∩{|uε|≤1−b}

|B(uε)(x)| ≤ 2Lε.

Let κ := Lεε and define uκ(x) := uε(xε+L−1
ε x). Then uκ satisfies (1.1) with parameter

κ in BLεrε(0). By (11.9), κ→ 0 as ε→ 0. For any t ∈ [−1+b, 1−b], the level set {uκ = t}
consists of Q Lipschitz graphs

(11.11)
{
xn = f tβ,κ(x′) := Lε

[
f tβ,ε(x

′
ε + L−1

ε x′)− f tα,ε(x′ε)
]}
, β = 1, · · · , Q,

where α is chosen so that xε lies in the connected component of {|uε| ≤ 1− b} containing
Γα,ε.

By (11.10), we also have

|B(uκ)| ≤ 2, for x ∈ CLεrε ∩ {|uκ| ≤ 1− b}.

Now Theorem 1.1 is applicable to uκ. Hence fα,κ are uniformly bounded in C2,θ
loc (Rn−1).

After passing to a subsequence, it converges to a limit f∞, which by (1.7) is an entire
solution of the minimal surface equation. Since the rescaling (11.11) preserves the Lips-
chitz constants, f∞ is global Lipschitz. By Moser’s Liouville theorem on minimal surface
equations (see [27, Theorem 17.5]), f∞ is an affine function. In particular,

(11.12) ∇2f∞ ≡ 0.

On the other hand, by the construction we have |B(uκ)(0)| = 1. If n = 2, as in the
proof of [39, Theorem 3.6], we get

|B(uκ)(0)|2 . κθ,



52 K. WANG AND J. WEI

a contradiction with (11.12). If n ≥ 3, we have

1 = |B(uκ)(0)|2 = |∇2fα,κ(0)|2 +O
(
κθ
)
.

(The only difference here with the n = 2 case is that now the Hessian of the distance
function to Γα,κ does not converge to 0, but its leading order term is exactly ∇2fα,κ(0),
see (3.7).) This gives

lim
κ→0
|∇2fα,κ(0)|2 = 1,

a contradiction with (11.12). This contradiction implies that the assumption (11.5) cannot
hold and the proof is thus complete. �

Remark 11.1. In the above proof, what we need in Step 1 is the one dimensional symmetry
of solutions to an half space problem. Some cases met here can be covered by existing results
in literatures such as the ones in [2, 3, 4, 5, 11, 12, 13, 22, 23, 24].

Proof of Corollary 1.3. If δ2 is sufficiently small in (1.8), by unique continuation principle
∇uε 6= 0 in {|uε| ≤ 1− b} and hence |B(uε)| is well defined. As in the proof of Corollary
1.2, the proof is reduced to a uniform bound on |B(uε)|.

Assume by the contrary, we perform a similar blow up analysis as in the proof of Corol-
lary 1.2. This gives another sequence of solutions uκ defined in an expanding domain.
Moreover, uκ satisfies all of the assumptions in Theorem 1.1. Hence the connected com-
ponent of {uκ = 0} passing through 0 converges to a minimal hypersurface in Rn in a C1

way (because we have the uniform curvature bound). Denote this minimal hypersurface
by Σ. Its second fundamental form satisfies |AΣ| ≤ 3 and |AΣ(0)| = 1 (as in the proof of
Corollary 1.3).

We claim that Σ is stable. This then leads to a contradiction if Stable Bernstein conjec-
ture is true, which states that Σ must be a hyperplane and hence AΣ ≡ 0. The stability
of Σ follows from the general analysis in [9]: first if there are at least two interfaces of uκ
both converging to Σ, we can construct a positive Jacobi field on Σ as in [9, Theorem 4.1]
(recall that we have Proposition 10.1), which implies the stability of Σ; secondly, if there
is only one such an interface, then there exist σ > 0 and C > 0 such that∫

Bσ(0)

[
κ

2
|∇uκ|2 +

1

κ
W (uκ)

]
≤ C.

Because uκ is stable, the stability of Σ then follows by applying the main result in [35]. �

Appendix A. Some facts about the one dimensional solution

In this appendix we recall some facts about one dimensional solution of (1.11), see [39,
Appendix A] for more details.

It is known that the following identity holds for g,

(A.1) g′(t) =
√

2W (g(t)) > 0, ∀t ∈ R.

Moreover, as t → ±∞, g(t) converges exponentially to ±1 and the following quantity is
well defined:

σ0 :=

∫ +∞

−∞

[
1

2
g′(t)2 +W (g(t))

]
dt ∈ (0,+∞).
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In fact, as t→ ±∞, we have the following expansions: There exists a positive constant
A1 such that for all t > 0 large,

g(t) = 1−A1e
−t +O(e−2t),

g′(t) = A1e
−t +O(e−2t),

g′′(t) = −A1e
−t +O(e−2t),

and a similar expansion holds as t→ −∞ with A1 replaced by another positive constant
A−1.

The following two lemmas describe the interaction between two one dimensional profiles.
The first one is [39, Lemma A.1].

Lemma A.1. For all T > 0 large, we have the following expansion:∫ +∞

−∞

[
W ′′(g(t))− 1

]
[g(−t− T ) + 1] g′(t)dt = −2A2

−1e
−T +O

(
e−

4
3
T
)
.∫ +∞

−∞

[
W ′′(g(t))− 1

]
[g(T − t)− 1] g′(t)dt = 2A2

1e
−T +O

(
e−

4T
3

)
.

The second one is

Lemma A.2. For all T > 0 large, we have the following expansion:∫ +∞

−∞

[
W ′′ (g(t) + g(−t− T )− 1)−W ′′ (g(−t− T ))

]
g′(−t− T )g′(t)dt

= −2A2
−1e
−T +O

(
e−

7
6
T
)

and ∫ +∞

−∞

[
W ′′ (g(t) + g(T − t)− 1)−W ′′ (g(T − t))

]
g′(T − t)g′(t)dt

= −2A2
1e
−T +O

(
e−

7
6
T
)
.

Proof. We only prove the second expansion. The integral will be decomposed into two
parts: the first one is (7T/12,+∞) and the second one is (−∞, 7T/12).

Step 1. In (7T/12,+∞), g(t) is very close to 1. By Taylor expansion we have∣∣W ′′ (g(t) + g(T − t)− 1)−W ′′ (g(T − t))
∣∣ . 1− g(t) . g′(t).

Then by the decay of g′, the first part is controlled by

(A.2)

∫ +∞

7T/12
g′(t)2g′(T − t) . e−

7
6
T

∫ +∞

7T/12
g′(T − t) . e−

7
6
T .

Step 2. In (−∞, 7T/12), g(T − t) is very close to 1. By Taylor expansion we have

W ′′ (g(t) + g(T − t)− 1)−W ′′ (g(T − t))

= W ′′ (g(t))−W ′′ (1) +
[
W ′′′ (g(t))−W ′′′ (1)

]
(g(T − t)− 1) +O

(∣∣g(T − t)− 1
∣∣2)

= W ′′ (g(t))−W ′′ (1) +O
(
g′(t)g′(T − t)

)
+O

(
g′(T − t)2

)
.

Here we have used the facts that by C4 regularity of W , |W ′′′ (g(t))−W ′′′ (1) | . 1−g(t) .
g′(t) and |g(T − t)− 1| . g′(T − t).
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By the exponential decay of g′, we get

(A.3)

∫ +∞

−∞
g′(t)2g′(T − t)2dt . e−

3
2
T

and

(A.4)

∫ 7T/12

−∞
g′(t)g′(T − t)3dt . e−

5
4
T

∫ 7T/12

−∞
g′(t) . e−

5
4
T .

We also have∣∣∣ ∫ +∞

7T/12

[
W ′′ (g(t))−W ′′ (1)

]
g′(t)g′(T − t)

∣∣∣ . ∫ +∞

7T/12
g′(t)2g′(T − t)

. e−
7
6
T .(A.5)

Combining (A.2)-(A.5) we see the original integral is equal to∫ +∞

−∞

[
W ′′(g(t))− 1

]
g′(t)g′(T − t)dt+O

(
e−

7
6
T
)

= −2A2
1e
−T +O

(
e−

7
6
T
)
,

where the last step follows from Lemma A.1, if we notice the sign difference in the expan-
sions of g′(T − t) and g(T − t)− 1. �

Next we discuss the spectrum of the linearized operator at g,

L = − d2

dt2
+W ′′(g(t)).

By a direct differentiation we see g′(t) is an eigenfunction of L corresponding to eigenvalue
0. By (A.1), 0 is the lowest eigenvalue. In other words, g is stable.

Concerning the second eigenvalue, we have

Theorem A.3. There exists a constant µ > 0 such that for any ϕ ∈ H1(R) satisfying

(A.6)

∫ +∞

−∞
ϕ(t)g′(t)dt = 0,

we have ∫ +∞

−∞

[
ϕ′(t)2 +W ′′(g(t))ϕ(t)2

]
dt ≥ µ

∫ +∞

−∞
ϕ(t)2dt.

This can be proved via a contradiction argument.

Appendix B. Proof of Lemma 5.1

The proof of Lemma 5.1 is similar to the one given in [39, Appendix B]. However,
since the setting is a little different (as explained in Step 1 of Subsection 1.2), for reader’s
convenience, we will include a complete proof.

Before proving Lemma 5.1, we first derive the exponential nonlinearity in Toda system
(5.2).

Lemma B.1. For any y ∈ Γα ∩B6R/7(0),∫ +∞

−∞
I(y, z)g′α(y, z)dz = (−1)α−1

[
2A2

(−1)α−1e
−dα−1(y,0) − 2A2

(−1)αe
dα+1(y,0)

]
+ Eα(y),
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where

‖Eα‖Cθ(Bα1 (y)) . ε2 + ε1/3 max
Bα1 (y)

e−Dα + max
Bα1 (y)

e−
3
2
Dα

+ max
β:|dβ(y,0)|≤8| log ε|

max
Bβ1 (Πβ(y,0))

e−2Dβ + max
|z|<8| log ε|

‖φ‖2C2,θ(B1(y,z)).

Proof. To determine the integral
∫ +∞
−∞ Ig

′
α, consider for each β, the integral on (−∞,+∞)∩

M0
β, which we assume to be an interval (ρ−β (y), ρ+

β (y)).

Step 1. If β 6= α, by Lemma 4.4, in (ρ−β (y), ρ+
β (y)),∣∣I∣∣ . e−(|dβ |+|dβ−1|) + e−(|dβ |+|dβ+1|) + ε2.

We only consider the case β > α and estimate∫ ρ+β (y)

ρ−β (y)
e−(|dβ |+|dβ−1|)g′α.

If |z|, |dβ| and |dβ−1| are all smaller than 8| log ε| at the same time, by Lemma 3.4,

(B.1) dβ(y, z) = z + dβ(y, 0) +O
(
ε1/3

)
,

(B.2) dβ−1(y, z) = z + dβ−1(y, 0) +O
(
ε1/3

)
.

Note that since β > α, by our convention on the sign of dβ, we have z > 0 and dβ(y, 0) <
dβ−1(y, 0) ≤ 0.

By (B.1) and (B.2) we get∫ ρ+β (y)

ρ−β (y)
e−(|dβ |+|dβ−1|)g′α .

∫ ρ+β (y)

ρ−β (y)
e−(|z|+|z+dβ−1(y,0)|+|z+dβ(y,0)|)

.
∫ −dβ(y,0)

ρ−β (y)
e−(z+dβ−1(y,0)−dβ(y,0)) +

∫ ρ+β (y)

−dβ(y,0)
e−(3z+dβ−1(y,0)+dβ(y,0))

. e−(dβ−1(y,0)−dβ(y,0))−ρ−β (y) + e−(dβ−1(y,0)−2dβ(y,0)).

By definition,

−dβ(y, ρ−β (y)) = dβ−1(y, ρ−β (y)).

Thus by (B.1) and (B.2),

ρ−β (y) = −
dβ−1(y, 0) + dβ(y, 0)

2
+O

(
ε1/3

)
.

Substituting this into the above estimate gives∫ ρ+β (y)

ρ−β (y)
e−(|dβ |+|dβ−1|)g′α . e

− 1
2(dβ−1(y,0)−3dβ(y,0)) + e−(dβ−1(y,0)−2dβ(y,0)).

If β = α+ 1, because dβ−1(y, 0) = 0, the right hand side is bounded by O
(
e

3
2
dα+1(y,0)

)
.

If β ≥ α+ 2, the right hand side is bounded by O
(
edα+2(y,0)

)
.
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Step 2. It remains to consider the integration in (ρ−α (y), ρ+
α (y)). In this case we use

Lemma 4.3, which gives∫ ρ+α (y)

ρ−α (y)
Ig′α =

∫ ρ+α (y)

ρ−α (y)

[
W ′′(gα)− 1

] [
gα−1 − (−1)α−1

]
g′α

+

∫ ρ+α (y)

ρ−α (y)

[
W ′′(gα)− 1

] [
gα+1 + (−1)α−1

]
g′α(B.3)

+

∫ ρ+α (y)

ρ−α (y)

[
O
(
e−2dα−1 + e2dα+1

)
+O

(
e−dα−2−|z| + edα+2−|z|

)]
g′α.

Because g′α . e
−|z| and

e−2dα−1 . e−2dα−1(y,0)−2z + ε2,

we get ∫ ρ+α (y)

ρ−α (y)
e−2dα−1g′α . ε2 + e−2dα−1(y,0)

[∫ 0

ρ−α (y)
e−zdz +

∫ ρ+α (y)

0
e−3zdz

]
. ε2 + e−2dα−1(y,0)−ρ−α (y)

. ε2 + e−
3
2
dα−1(y,0).

Similarly, we have ∫ ρ+α (y)

ρ−α (y)
e2dα+1g′α . ε

2 + e
3
2
dα+1(y,0),

∫ ρ+α (y)

ρ−α (y)
O
(
e−dα−2−|z| + edα+2−|z|

)
g′α . e

−dα−2 + edα+2 .

To determine the first integral in the right hand side of (B.3), arguing as in Step 1, if
both g′α and gα−1 − (−1)α−1 are nonzero, then

gα−1(y, z) = ḡ
(

(−1)α−1
(
z + dα−1(y, 0) + hα−1(Πα−1(y, z)) +O

(
ε1/3

)))
.

Therefore∫ ρ+α (y)

ρ−α (y)

[
W ′′(gα)− 1

] (
gα−1 − (−1)α−1

)
g′α

=

∫ ρ+α (y)

ρ−α (y)

[
W ′′ (ḡ ((−1)α(z − hα(y))))− 1

]
ḡ′ ((−1)α(z − hα(y)))

×
[
ḡ
(

(−1)α−1
(
z + dα−1(y, 0) + hα−1(Πα−1(y, z)) +O

(
ε1/3

)))
− (−1)α−1

]
dz

=

∫ +∞

−∞

[
W ′′ (ḡ ((−1)α(z − hα(y))))− 1

]
ḡ′ ((−1)α(z − hα(y)))

×
[
ḡ
(

(−1)α−1
(
z + dα−1(y, 0) + hα−1(Πα−1(y, z)) +O

(
ε1/3

)))
− (−1)α−1

]
dz

+ O
(
e−

3
2
dα−1(y,0)

)
= (−1)α−12A2

(−1)α−1e
−dα−1(y,0) +O

(
e−

3
2
dα−1(y,0)

)
(by Lemma A.1)
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+ O

(
|hα(y)|+ max

|z|<8| log ε|
|hα−1(Πα−1(y, z))|+ ε1/3

)
e−dα−1(y,0).

Step 3. What we have proven says∣∣∣Eα(y)
∣∣∣ . ε2 +

(
|hα(y)|+ max

|z|<8| log ε|
|hα−1(Πα−1(y, z))|+ ε1/3

)
e−dα−1(y,0)

+

(
|hα(y)|+ max

|z|<8| log ε|
|hα+1(Πα+1(y, z))|+ ε1/3

)
edα+1(y,0)

+ e−
3
2
dα−1(y,0) + e

3
2
dα+1(y,0) + e−dα−2(y,0) + edα+2(y,0).

Note that for |z| < 8| log ε|, if e−dα−1(y,0) ≥ ε2, then by Lemma 3.4 we have Πα−1(y, z) ∈
Bα−1

1 (Πα−1(y, 0)). The same remark applies to α+ 1.

By taking derivatives of
∫ +∞
−∞ Ig

′
α in y, and then using Lemma 4.4 and Lemma 4.6, we

see the Cθ(Bα
1 (y)) norm (in fact, the Lipschitz norm) of Eα is bounded by(

ε2 + max
Bα1 (y)

e−Dα
) ∑

β:|dβ(y,0)|<8| log ε|

‖hβ‖C2,θ(Bβ1 (Πβ(y,0)))


. ε2 + max

β:|dβ(y,0)|≤8| log ε|
max

Bβ1 (Πβ(y,0))
e−2Dβ + max

|z|<8| log ε|
‖φ‖2C2,θ(B1(y,z)).

Similarly, by Lemma 3.4, the Cθ(Bα
1 (y)) norm of 2A2

(−1)αe
−dα−1(y,0) − 2A2

(−1)α−1e
dα+1(y,0)

is controlled by ε1/3 maxBα1 (y) e
−Dα . This completes the estimate on Eα. �

Now let us prove Lemma 5.1. Differentiating (7.7) twice leads to

(B.4)

∫ +∞

−∞

[
∂φ

∂yi
g′α + (−1)α−1φg′′α

∂hα
∂yi

]
= 0

and ∫ +∞

−∞

[
∂2φ

∂yi∂yj
g′α + (−1)α−1 ∂φ

∂yi
g′′α
∂hα
∂yj

+ (−1)α−1 ∂φ

∂yj
g′′α
∂hα
∂yi

]
(B.5)

+

∫ +∞

−∞

[
(−1)α−1φg′′α

∂2hα
∂yi∂yj

+ φg′′′α
∂hα
∂yi

∂hα
∂yj

]
= 0.

Therefore∫ +∞

−∞
∆α,0φ(y, z)g′α = (−1)α∆α,0hα

∫ +∞

−∞
φg′′α − |∇α,0hα|2

∫ +∞

−∞
φg′′′α(B.6)

+ 2(−1)α−1

∫ +∞

−∞
gijα (y, 0)

∂φ

∂yi
∂hα
∂yj

g′′α.

Substituting (B.6) into (5.1), we obtain∫ +∞

−∞
(∆α,zφ−∆α,0φ) g′α + (−1)α

(∫ +∞

−∞
φg′′α

)
∆α,0hα −

(∫ +∞

−∞
φg′′′α

)
|∇α,0hα(y)|2

+ 2(−1)α−1

∫ +∞

−∞
g′′αg

ij
α (y, 0)

∂φ

∂yi

∂hα
∂yj
−
∫ +∞

−∞
Hα(y, z)g′αφz +

∫ +∞

−∞
ξ′αφ

=

∫ +∞

−∞

[
W ′′(g∗)−W ′′(gα)

]
g′αφ+

∫ +∞

−∞
R(φ)g′α
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+

∫ +∞

−∞
Ig′α + (−1)α

(∫ +∞

−∞
|g′α|2

)
[Hα(y, 0) + ∆α,0hα(y)]

+ (−1)α
∫ +∞

−∞
|g′α|2 [Hα(y, z)−Hα(y, 0)] + (−1)α

∫ +∞

−∞
|g′α|2 [∆α,zhα(y)−∆α,0hα(y)]

+
1

2

(∫ +∞

−∞
|g′α|2

∂

∂z
gijα (y, z)

)
∂hα
∂yi

∂hα
∂yj

+
∑
β 6=α

(−1)β
∫ +∞

−∞
g′αg
′
βRβ,1 −

∑
β 6=α

∫ +∞

−∞
g′αg
′′
βRβ,2 −

∑
β

∫ +∞

−∞
g′αξβ.

We estimate the Hölder norm of these terms one by one.
(1) By (3.12), we have∥∥∥∫ +∞

−∞
(∆α,zφ−∆α,0φ) g′α

∥∥∥
Cθ(Bα1 (y))

. ε max
|z|<8| log ε|

‖φ‖C2,θ(B1(y,z))

. ε2 + max
|z|<8| log ε|

‖φ‖2C2,θ(B1(y,z)).

(2) By the exponential decay of ḡ′ and Lemma 4.6, we have∥∥∥(∫ +∞

−∞
φg′′α

)
∆α,0hα

∥∥∥
Cθ(Bα1 (y))

. ‖hα‖C2,θ(Bα1 (y)) max
|z|<8| log ε|

‖φ‖Cθ(B1(y,z))

. ‖hα‖2C2,θ(Bα1 (y)) + max
|z|<8| log ε|

‖φ‖2Cθ(B1(y,z))

. max
Bα1 (y)

e−2Dα + max
|z|<8| log ε|

‖φ‖2C2,θ(B1(y,z)).

(3) By the exponential decay of ḡ′ and Lemma 4.6, we have∥∥∥∫ +∞

−∞
g′′αg

ij
α (y, 0)

∂φ

∂yi

∂hα
∂yj

∥∥∥
Cθ(Bα1 (y))

. ‖hα‖C1,θ(Bα1 (y)) max
|z|<8| log ε|

‖φ‖C1,θ(B1(y,z))

. ‖hα‖2C1,θ(Bα1 (y)) + max
|z|<8| log ε|

‖φ‖2C1,θ(B1(y,z))

. max
Bα1 (y)

e−2Dα + max
|z|<8| log ε|

‖φ‖2C2,θ(B1(y,z)).

(4) By the exponential decay of ḡ′ and Lemma 4.6, we have∥∥∥(∫ +∞

−∞
φg′′′α

)
|∇α,0hα(y)|2

∥∥∥
Cθ(Bα1 (y))

. ‖hα‖2C1,θ(Bα1 (y)) max
|z|<8| log ε|

‖φ‖Cθ(B1(y,z))

. ‖hα‖2C1,θ(Bα1 (y))

. max
Bα1 (y)

e−2Dα + ‖φ‖2C2,θ(B1(y,0)).

(5) By (3.1) and the exponential decay of ḡ′, we have∥∥∥∫ +∞

−∞
Hα(y, z)g′αφz

∥∥∥
Cθ(Bα1 (y))

. ε max
|z|<8| log ε|

‖φ‖C2,θ(B1(y,z))

. ε2 + max
|z|<8| log ε|

‖φ‖2C2,θ(B1(y,z)).
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(6) The Cθ(Bα
1 (y)) norm of

∫ +∞
−∞ [W ′′(g∗)−W ′′(gα)] g′αφ is bounded by[

max
|z|<8| log ε|

‖φ‖Cθ(B1(y,z))

] [
max
Bα1 (y)

(∫ +∞

−∞

(
|g2
α−1 − 1|+ |g2

α+1 − 1|
)
g′α

)]
.

(
max

|z|<8| log ε|
‖φ‖Cθ(B1(y,z))

)(
max
B1(y)

Dαe
−Dα

)
. max

|z|<8| log ε|
‖φ‖2C2,θ(B1(y,z)) + max

Bα1 (y)
e−

3
2
Dα .

(7) The Cθ(Bα
1 (y)) norm of

∫ +∞
−∞ R(φ)g′α is bounded by max|z|<8| log ε| ‖φ‖2Cθ(B1(y,z))

.

(8) By the definition of ḡ (see Subsection 4.1), the Cθ(Bα
1 (y)) norm of

∫ +∞
−∞ |g

′
α|2 − σ0

is bounded by O
(
ε2
)
.

(9) By (3.9), the Cθ(Bα
1 (y)) norm of

∫ +∞
−∞ |g

′
α|2 [Hα(y, z)−Hα(y, 0)] is bounded by

O
(
ε2
)
.

(10) By (3.12) and Lemma 4.6, the Cθ(Bα
1 (y)) norm of

∫ +∞
−∞ |g

′
α|2 [∆α,0hα(y)−∆α,zhα(y)]

is bounded by

ε‖hα‖C2,θ(Bα1 (y)) . ε
2 + ‖hα‖2C2,θ(Bα1 (y)) . ε

2 + max
Bα1 (y)

e−2Dα + ‖φ‖2C2,θ(B1(y,0)).

(11) By (3.4), the Cθ(Bα
1 (y)) norm of

(∫ +∞
−∞ |g

′
α|2 ∂

∂zg
ij
α (y, z)

)
∂hα
∂yi

∂hα
∂yj

is bounded by

ε‖hα‖2C1,θ(Bα1 (y)) . max
Bα1 (y)

e−2Dα + ‖φ‖2C2,θ(B1(y,0)).

(12) For β 6= α, if |dβ(y, 0)| > 8| log ε|, the Cθ(Bα
1 (y)) norm of

∫ +∞
−∞ g′αg

′
βRβ,1 is bounded

by O
(
ε2
)
.

If |dβ(y, 0)| ≤ 8| log ε|, first note that in Fermi coordinates with respect to Γβ, we have
the decomposition

g′αg
′
βRβ,1 = g′αg

′
β [Hβ(y, 0) + ∆β,0hβ(y)]︸ ︷︷ ︸

I

+ g′αg
′
β [Hβ(y, z)−Hβ(y, 0)]︸ ︷︷ ︸

II

+ g′αg
′
β [∆β,zhβ(y)−∆β,0hβ(y)]︸ ︷︷ ︸

III

.

These three terms are estimated in the following way. First we have

‖I‖Cθ(B1(y,z)) . e
−|dα(y,z)|−|z|‖Hβ + ∆β,0hβ‖Cθ(Bβ1 (y))

.

By (3.9), we get

‖II‖Cθ(B1(y,z)) . ε
2|z|e−|dα(y,z)|−|z|,

and by (3.12), we get

‖III‖
Cθ(Bβ1 (y))

. ε|z|e−|dα(y,z)|−|z|‖hβ‖C2,θ(Bβ1 (Πβ(y,0)))
.

Putting these estimates together and coming back to Fermi coordinates with respect to
Γα, applying Lemma 3.4 to change distances to be measured with respect to Γα, we see
the Cθ(Bα

1 (y)) norm of
∫ +∞
−∞ g′αg

′
βRβ,1 is controlled by

e−c|β−α|ε2 + |dβ(y, 0)|e−|dβ(y,0)|‖Hβ + ∆β,0hβ‖Cθ(Bβ1 (Πβ(y,0)))
+ ε|dβ(y, 0)|2e−|dβ(y,0)|(B.7)

. e−c|β−α|ε2 + e−
3
2
|dβ(y,0)| + e−

3
4
|dβ(y,0)|‖Hβ + ∆β,0hβ‖Cθ(Bβ1 (Πβ(y,0)))

.
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Summing in β 6= α and applying Lemma 3.6 we obtain∥∥∥∑
β 6=α

∫ +∞

−∞
g′αg
′
βRβ,1

∥∥∥
Cθ(Bα1 (y))

(B.8)

. ε2 + max
Bα1 (y)

e−
3
2
Dα + max

β 6=α:|dβ(y,0)|≤8| log ε|
‖Hβ + ∆β,0hβ‖2Cθ(Bβ1 (Πβ(y,0)))

.

(13) By the same reasoning as in the previous case, for β 6= α, the Cθ(Bα
1 (y)) norm of∑

β 6=α
∫ +∞
−∞ g′αg

′′
βRβ,2 is controlled by

ε2 + max
|z|<8| log ε|

‖φ‖2C2,θ(B1(y,z)) +
∑

β 6=α:|dβ(y,0)|≤8| log ε|

|dβ(y, 0)|e−(|dβ(y,0)|+2Dβ(Πβ(y,0)))

. ε2 + max
β:|dβ(y,0)|≤8| log ε|

max
Bβ1 (Πβ(y,0))

e−
3
2
Dβ + max

|z|<8| log ε|
‖φ‖2C2,θ(B1(y,z)).

(14) By the definition of ξ, the Cθ(Bα
1 (y)) norm of

∑
β(−1)β−1

∫ +∞
−∞ g′αξβ is bounded

by O
(
ε2
)
.

Putting estimates (1)-(14) together gives (5.3).

Appendix C. Proof of Lemma 6.6

We estimate the Hölder norm of the right hand side of (4.11) term by term. Since they
exhibit similar patterns on each M0

α, it is sufficient to consider one of such domains.

(1) Because

R(φ) = W ′(g∗ + φ)−W ′(g∗)−W ′′(g∗)φ,
we get

‖R(φ)‖Cθ(Br(x)) . ‖φ‖2Cθ(Br(x)).

(2) By Lemma 4.5, we have∥∥∥W ′(g∗)−∑
β

W ′(gβ)
∥∥∥
Cθ(M0

α∩Br(x))
. ε2 +A (r;x) .

(3) Take the decomposition

g′α [Hα(y, z) + ∆zhα(y)] = g′α [Hα(y, 0) + ∆0hα(y)]

+ g′α [Hα(y, z)−Hα(y, 0)] + g′α [∆α,zhα(y)−∆α,0hα(y)] .

First we have

‖g′α(y, z) [Hα(y, z)−Hα(y, 0)] ‖Cθ(M0
α∩Br(x))

. ‖g′α(y, z) [Hα(y, z)−Hα(y, 0)] ‖Lip(M0
α∩Br(x))

. max
(y,z)∈M0

α∩Br(x)
e−|z|

∣∣Hα(y, z)−Hα(y, 0)
∣∣

+ max
(y,z)∈M0

α∩Br(x)
|z||e−|z||

∣∣Aα(y, 0)||∇α,0Aα(y, 0)
∣∣

. ε2,

where in the last step we have used Lemma 3.1.
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Next because

∆α,zhα(y)−∆α,0hα(y) =

n−1∑
i,j=1

[
gijα (y, z)− gijα (y, 0)

] ∂2hα
∂yi∂yj

+
n−1∑
i=1

[
biα(y, z)− biα(y, 0)

] ∂hα
∂yi

,

we get∥∥g′α [∆α,0hα(y)−∆α,zhα(y)]
∥∥
Cθ(M0

α∩Br(x))

. max
(y,z)∈M0

α∩Br(x)
e−|z|

[
|gijα (y, z)− gijα (y, 0)||∇2

α,0hα(y)|+ |bi(y, z)− bi(y, 0)||∇α,0hα(y)|
]

+ max
(y,z)∈M0

α∩Br(x)
e−|z|

(
|∇2

α,0hα(y)|+ |∇α,0hα(y)|
)

×
(∥∥gijα (ỹ, z̃)− gijα (ỹ, 0)

∥∥
Cθ(B1(y,z))

+
∥∥biα(ỹ, z̃)− biα(ỹ, 0)

∥∥
Cθ(B1(y,z))

)
+ ‖hα‖C2,θ(Γα∩Br(x))

(
max

(y,z)∈M0
α∩Br(x)

e−|z|
(
|gijα (y, z)− gijα (y, 0)|+ |biα(y, z)− biα(y, 0)|

))
. ε‖hα‖C2,θ(Γα∩Br(x))

. ε2 + ‖hα‖2C2,θ(Γα∩Br(x)) (by Cauchy inequality)

. ε2 + ‖φ‖2C2,θ(Br+8| log ε|(x)) + max
Γα∩Br+8| log ε|(x)

e−2Dα . (by Lemma 4.6)

In the above, in order to estimate the Hölder norm of the metric tensors gijα and
biα terms in the Beltrami-Laplace operator ∆α,z, we have also used the bound on
second fundamental forms in (3.1) and its derivatives in Lemma 3.1.

(4) By Lemma 4.6, we have

‖g′′α|∇α,zhα|2‖Cθ(M0
α∩Br(x))

. ‖∇α,0hα‖2L∞(Γα∩Br(x)) + ‖∇α,0hα‖L∞(Γα∩Br(x))‖∇2
α,0hα‖L∞(Γα∩Br(x))

. ‖φ‖2C2,θ(Br+8| log ε|(x)) + max
Γα∩Br+8| log ε|(x)

e−2Dα .

(5) As in the previous case, we first estimate the Hölder norm of Rβ,1 in Fermi co-
ordinates with respect to Γβ for each β 6= α. Coming back to Fermi coordinates
with respect to Γα and noting that if g′β 6= 0, then |dβ(y, z)| < 8| log ε|, we obtain

‖g′βRβ,1‖Cθ(M0
α∩Br(x))

.

(
max

(y,z)∈M0
α∩Br(x)

e−|dβ(y,z)|
)

×

(
ε2 + ‖φ‖2C2,θ(Br+9| log ε|(x)) + max

Γα∩Br+9| log ε|(x)
e−2Dα

)
+ max

(y,z)∈M0
α∩Br(x),|dβ(y,z)|≤8| log ε|

e−|dβ(y,z)|‖Hβ + ∆β,0hβ‖Cθ(Bβ2 (Πβ(y,0)))
.

Then summing in β and using Lemma 3.6, we get∥∥∑
β 6=α

g′βRβ,1
∥∥
Cθ(M0

α∩Br(x))
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. ε2 + ‖φ‖2C2,θ(Br+9| log ε|(x)) + max
Γα∩Br+9| log ε|(x)

e−2Dα

+

(
max

Γα∩Br+9| log ε|(x)
e−

Dα
2

)(
‖Hα + ∆α,0hα‖Cθ(Br+9| log ε|(x))

)
.

(6) Similar to the previous case, we have∑
β 6=α
‖g′βRβ,2‖Cθ(M0

α∩Br(x))

.
∑
β 6=α

max
(y,z)∈M0

α∩Br(x)
e−|dβ(y,z)|

×
(
‖∇β,0hβ‖2L∞(Γβ∩Br+8| log ε|(x)) + ‖∇2

β,0hα‖2L∞(Γβ∩Br+8| log ε|(x))

)
.

∑
β 6=α

max
(y,z)∈M0

α∩Br(x)
e−|dβ(y,z)|

(
ε2 + ‖φ‖2C2,θ(Br+9| log ε|(x)) + max

Γα∩Br+9| log ε|(x)
e−2Dα

)
. ε2 + ‖φ‖2C2,θ(Br+9| log ε|(x)) + max

Γα∩Br+9| log ε|(x)
e−2Dα .

(7) For any β, ξβ(y, z) 6= 0 only if |dβ(y, z)| ≤ 8| log ε|. Hence by Lemma 2.1,∥∥∥∑
β

ξβ

∥∥∥
Cθ(M0

α∩Br(x))
. ε3| log ε| . ε2.

Putting these estimates together we finish the proof of Lemma 6.6.
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