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1. INTRODUCTION

The aim of this paper is to construct a family of single-peaked solutions
to the singularly elliptic problem

EAu—u+u’=0 in Q,
(11)

u>0in Q and u=0 on 00,

where 4=3"_,(0%/0x?}) is the Laplace operator, 2 is a bounded smooth
domain in R”, £>0 is a constant, and the exponent p satisfies 1 <p <
(n+2)/(n—2)forn=3 and 1 < p< oo for n=2.

Problem (1.1) arises in various applications, such as chemotaxis, popula-
tion genetics, and chemical reactor theory, and it has been studied by a
number of authors. During the past few years, the question whether the
geometry or the topology of 2 was responsible for the solvabity and/or the
multiplicity of solutions of problems like (1.1) has been extensively studied;
see [6-10]. Especially, in [6] and [ 7], Benci and Cerami have studied the
multiplicity of solutions of (1.1) when ¢ is sufficiently small, using Category
and Morse theory. However, they do not give explicit construction of solu-
tions, nor do they study the properties of the solutions. The first result on
spiky solutions of (1.1) is due to Ni and Wei. In [ 18], we have studied the
shape and peak location of “least-energy” solutions. More precisely, we
first define the energy as

1 1
=5 @ Vil ) = J, wn (12)
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where u_, =max{u, 0}, for ue Hy(2). The well known Mountain-Pass
Lemma implies that

¢,= inf max J,(h(z)) (1.3)

hel’ 0<t<1

is a positive critical value of J,, i.e., ¢,=J,(u,) and u, is a solution of (1.1),
where I is the set of all continuous paths joining the origin and a fixed
nonzero element e in H)(2) with e>0 and J,(e) =0. It is showed in [18]
that J, is independent of the choice of ¢ and u, is called a “least-energy”
solution. We then proved the following:

THEOREM A. Let u, be a least-energy solution to (1.1). Then, for &
sufficiently small, we have

(1) u, has at most one local maximum and it is achieved at exactly one
point P, in Q. Moreover, u,(-+P,)—>0 in CL(2—P\{0}) where
Q—P,:={x—P,| xeQ} and u,(P,) > w(0), where w is the unique solution

of

Aw—w+w? =0 in R”,
w>0, w(0) =max, g w(2), (1.4)

w(z)—>0 as |z| - oo.

(i) d(P,, Q) - max,_q d(P, Q) as ¢ — 0.

In this paper, we show that a kind of converse of Theorem A is true. We
shall construct a family of single-peaked solutions to problem (1.1) for ¢
sufficiently small at any strictly local maximum point of d(P, 0Q). The
precise statement is:

THEOREM 1.1. Let PyeQ be a strictly local maximum point of the dis-
tance function d(P, 0R2), i.e., there exists a neighborhood Bs(P,) = Q such
that d(X, 0Q) < d(P,, 0R2) for all Xe€ Bs(P,), X # P,. Then there is an ¢,> 0
such that for e <e,, problem (1.1) has a solution u, with the property that u,
has exactly omne local maximum point P, in Q, u. (P, —w(0) and
u,(-+P,) >0 in C.(Q—P\{0}), where w is the unique solution of (1.4).

Moreover, P,— P, as ¢ — 0.

A particular example is a domain with k-handles (see Fig. 1). In this
case, Theorem 1.1 asserts that there are at least k solutions to problem
(1.1) and each handle contributes a single-peaked solution. Note that in
this case, the domain has trivial topology. In [11], Dancer studied
problem (1.1) in the case of domains with two handles (dumbbell-shaped)
and constructed two solutions. However, in [11], it is assumed that the
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Fic. 1. Domains with handles.

domain is symmetric and the “neck” is sufficiently small. In our theorem,
we do not assume any symmetry and the length of the “neck” can be
arbitrary. It seems extremely interesting to see how the geometry of the
domain plays a role in the existence of “spiky solutions.” Partial progress
has been done in [27].

Our method in proving Theorem 1.1 is a combination of the “vanishing
viscosity method” and the “energy method” developed in [16, 17]. It
should be remarked that, in [2,4], they proved a similar result for the
single-peaked boundary spike solutions to a singularly perturbed semi-
linear Neumann problem. In their case, the mean curvature on the bound-
ary plays an important role. However, in our case, the major difficulty
comes from the exponentially smallness in the corrector term of the energy
expansion. Traditional techniques such as matched asymptotics do not
work here. We believe that this is the first result in constructing “spiky”
solutions to problem (1.1).

Remark. (1) By Theorem 1.1, if the function d(P, 0€2) has k strictly
local maximum point, then for ¢ sufficiently small, problem (1.1) has at
least k solutions. This, in some cases, is an improvement of the multiplicity
results obtained in [6-8] and also answers some questions raised in
[6-11].

(2) We note that in [16, 17], Ni and Takagi studied a related
problem,

2
szzlu—u—i—u":0,1<p<i in Q,
n—2
w0 in Q. (15)
0
—uz() on 0Q,
ov

and obtained results similar to Theorem A. When p=(n+2)/(n—2),
similar concentration results have been obtained in [1-3, 15]. More
general results have been obtained by [ 19-23]. Multiplicity of solutions to
(1.5) have been studied in [26, 28].
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Other kinds of concentrations for other problems are studied in [4, 5,
13, 24-26].

This paper is organized as follows. In Section 2, we state some notation
and preliminaries. Section 3 provides a proof of Theorem 1.1. The proofs of
some technical lemmas are postponed to Section 4.

Throughout this paper, unless otherwise stated, the letter C will always
denote various generic constants which are independent of &, for ¢ suf-
ficiently small.

2. NOTATION AND PRELIMINARIES

We shall follow the notation in [12]. Let Pe Q. We now define 2, ,=
{yley+PeQ}. Let U be a bounded smooth domain in R". We then set
P,w to be the unique solution of

Au—u+w? =0, in U,
(2.1)

u=0 on 0U,
where w is the unique solution of (1.4).

By the Maximum Principle, 0 < P, w <w.
Let

x=ey+P, ¢, P(y)=w(y)=Pg, ,W(y)
Vorl) = 2108 0, (). f=+
Ver(y) =€, p(y), Y.(P) =y, p(P).
It is easy to see that y, p(x) is the unique solution of
&?Au—|Vu|*+1=0, in Q,

u(x)= —elogw < (22)

x—P

> , on 09Q.

The following properties are proved in [ 18].

PrOPOSITION 2.1. (i) There exists a constant C, such that

I !ﬁ, (X)) o) S C,.
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(i1) W, p(x) > Y p(x) uniformly on Q as ¢ —0, where p(x) in the
unique viscosity solution of the Hamilton—Jacobi equation

|[Vul>=1 in Q,
(23)

u(x)=|x—P| on 09Q.

Indeed,  p(x) =1nf. _;0(|z — P| + L(x, z)), where L(x, z) is the infimum of
T such that there exists &(s)e COY[0, T, Q) with &0)=x, ET)=z and
|dé/ds| <1 aee., in [0, T]. Furthermore  p(P)=2d(P, Q).

(ii1) For every sequence e, — 0, there is a subsequence &,,— 0, such
that Vi = Ve uniformly on every compact set of R", where V p is a positive
solution of

Au—u=0 in R",
(24)

u(0)=1,u>0 in R".
Furthermore, for any , >0,

sup e 1INV, ()= Vap) >0 as g0 (25)

yey P

(iv) Let V be an arbitrary solution of (2.4). Then we have

2 :=j wev, =f WPV 0, (2.6)

R” RVI

where V (r) is the unique positive radial solution of (2.4).
Remark. 1t is easy to see that

W p(x) = o(x)| < Ce [log e[ + C [P — 0], (2.7)

where P, Q€ Q. Hence if P,— P, then

Y. (P,)—V.(P)[ -0 as &—0.

Therefore ,(P,) — 2d(P, 0Q2) as ¢ — 0.

We also note that in the proof of (2.5) in [ 18], we actually proved the
following fact: for any ¢, > 0, there exists C >0, such that

V, p(y) < Cell tovll] for all PeByP,) and y in Q, ,. (2.8)

We now introduce some other notations.
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For u#0, ue Wy*Q), we define

e o IVul* + o u? xup ! & {0 |IVul* + o u?
K,..<u>=(sigupmy({fiw /f(u)JfM,,w u)= jgjgu,mjg ,
vy ey =| Vu-Vo+ [ e, (2.9)
Q Q

Lu= Au—u+pw”'u.

Let P, be a fixed strictly local maximum point of the distance function
d(P, 0Q). Let § >0 be such that B,;(P,) = Q. We set

B={ue Wy(Q): f(u) e B5(Py)} (2.10)

(we can choose 6 >0 small such that d(P, 022) <d(P,, 0Q) for all P+# P,
PeB,;(P,)) and

A, =inf{K,(u)|ue B)}. (2.11)

Let w be the unique solution of (1.4). We set

. |[Vw]|? W (p+D/(p—1)
I(W)_yR D e :<J W”“> . (2.12)
R

- (sR” Wp+l)2/(p+1)

LeEmMMA 2.2. Suppose that the domain of L is W2 (R")(r>1), then
ker(L) =span{ow/dy,; j=1, .., n}.

See [ Lemma 4.2, [17]].

LemmaA 2.3.  For ¢ sufficiently small, we have
A, < e —D/p+ 1)n{[(w) +a, e PbdPo) 1 O(e—ﬁwm)}’ (2.13)

where o, =2({ guw? 1) 2P+ and y is defined at (2.6).

Proof.  Let u(x)=Pg, , w((x— Py)/e) € W3(Q); then

&2 Lz |Vu|2+jg u?=¢g" {j

Q:.py

|VPQ,;,p0w|2 +J |P.Q,;,p0w|2]

Q:.py

|

P
w PQc.PO w
Qe.PO
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=" WP[W—efﬁ‘/’”(PO)VS,PO]
-Qz;,l’()

:8,1“

WP+ _ g —Bl(PO) j
2, py

2:.p

WPVC,pO} .

For every sequence ¢, — 0, there exists a subsequence ¢,,— 0 such that
(2.5) holds. By Lebesgue’s Dominated Convergence Theorem

J

Qe.PO

L J W2V p, = 2y.
R
Since y is independent of the choices of ¢,, we have

j WPV, p,— 2y as ¢—0.

Qc,[’o

It follows that
& j |Vu|? + J u?=¢g" {j wP T 2ye =AUl 4 p(e=Al:(Po)y|  (2.14)
Q Q R"
On the other hand,

L) up+1 =¢" f (P.Q;;,pow)erl dy

£;,py

= [ = (p 1) whe MY, )
2;,p

where w>w, > P, , w. Similarly, Lebesgue’s Dominated Convergence
Theorem ensures that

fuﬂ“:s"U WHL_2(p 4 1) ye= MR L g(e—MP) |(2.15)
Q R"

Combining (2.14) and (2.15), we obtain
Ae < Ke(u) — gn(pf D/(p+ 1)[](“,) +a, e*/j‘//s(PO) + O(efﬁwpo))]

since u € B for ¢ sufficiently small.
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LemMMmA 24. Let l,=dist(B,s5(P,), 02)>0. Then there exists a positive
constant C>0 such that

C _
<—e W forall xeQ, Pe B,s(P,). (2.16)
&

e*(%P(X))/s

0

P,

Proof. We oberve that ¢, p,=e V=" satisfies the following
equation

femo ma
and 0/0P; ¢, p(y) satisfies

Au—u=0 in Q, p,

u= —%’ |);| on 02, . 219

Since |w'| < Ce ) on 9Q, p, our assertion follows easily by the Maxi-
mum Principle.

Remark. 1f u is a critical point of K,, u satisfies on 2 the equation
&Au—u+ lu)u?=0.

By a scaling and elliptic regularity theorem, (/(u))"? =" u is a solution
of problem (1.1).

3. PROOF OF THEOREM 1.1

The goal of this section is to obtain a lower bound for 4, and therefore
to prove Theorem 1.1.

We begin with a series of lemmas.

LEMMA 32. A, == D/@rhnpiy)

Proof. 1Tt is well known that w is the unique solution of (1.4) and

2
I(w) = inf {'”' EVD

HuHZLPH(Rn)

ue WU(R"), u# 0}.
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Since p < (n+2)/(n—2), A, is obtained by a function u, e W}*(Q) and

& VulP+ [’
e (j'g up+l)2/(p+l)

A

2 2
—eP=DAp+Dn sQeJ’o V.| +§98=Po Ve > g =D/p+ Dy,

(.‘lg Up+1)2(p+1) = ( )’
¢, Py €

where v,(y) =u,(x)e Wy, p) = W"(R") and y=(x—Py/e) €Q, p,.

Since 4, and B, are scale invariant and A4, is obtained by a function u,,
we may assume that u, is a function in W *(Q) such that

.eB, (3.1)
2 21| Vu,|* + 2= pH1 32
@ & vl ] =] u (32)
Then we have

LeMMA 3.2.  For any sequence g, — 0, there exists a subsequence &,,— 0

and P, € By(P,) such that Huﬁk/(ekf + P,,.k/) —w|| WhA @y p, ) 0 as g, — 0.
°ky
Proof. We define v,(y)=u,(x)=u,(ey + P,) for yeQ, p,and v,(y)=0

for ye Qg . Then [0t =f, vt =g " [qul*l.
But by (3.1) and (3.2),

(p=D/p+1) (p+1D/(p—1)
Aa;:<j Hf+l> :8n(pl)/(p+])<j Uf+]> .
Q 2:.p

By Lemma 3.1 and 2.3, we have
J W“l<f 0P [I(w) +aye PP 1 oo P PY [+ D= 1)
R" Q,

Hence, lim, o [gn 077" = g0 w? .

Similarly, lim, o { g V0, >+ 0] = | guw?* 1.

By standard concentration compactness argument (see [14] or
Appendix in [12]), there exists ¢,,— 0, z,,, € R”, such that

HU;,-A.,—W('—ch,)HHI(R">_’0 as ¢;,—0. (3.3)
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Note that

yg xuf“

p+1

Laa!

p+1
[ zn 02

ﬁ(ug) =
+P,

We have [ o eyo? '€ By o+ (Py).
On the other hand,

f eyw! Ny —z,, )dy= ey’w”“(y’)dy’—l—azg,wj wr !
p R

R"

=éz,,, f L

But ”Ua:k,_ w(-— z,,.kl)HL,,H(Q% e 0 as ¢,—0. We then have
_ “kp .
P, =ez, +Py—> P eBs(P) by taking a further subsequence and

&k
Husk[(£/c1 -+ Ps/c,) - WH W(l)’z(Q,;kl, P”k[) - 0 as 81(1 - 0

COROLLARY 3.3. For any sequence ¢, — 0, there exists a subsequence
er,— 0 such that there exists P, € By(P,) and

e, (ex, + Pry,) — Pgw Pé’IWH Wy 62, ) 0 as g,— 0.
Proof. We use Lemma 3.2 and the properties of P w stated in

. el Pey
Section 2.
We now define

v, PQ, PW>WU (2, p)
Ep={0e WEA2, ) < o5 o) SNEPY
Wi (2, p)

=0,1<i<n

The following lemma will be proved in Section 4.

LemmA 3.4. For every sequence ¢,— 0, there exists a subsequence
¢, 0, Cp,>0, P e, wkIEEgkl,pk, such that as k,— o, Ci,—1,
Pkl_> PGB(s(Po) and

ua,q( X)= Ck,Pszg ,W((x_Pk,)/gk/)/Sk,) + @y, (3.5)
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Moreover, we have

A 2821;*1/P+1)"{1(M})+e*ﬁk1'ﬁk1(1)k,)a2+0(e*ﬂk/!//k,(Pk[))}’ (3.6)

£ky
where a, >0 is a positive constant.

Combining Lemmas 2.3 and 3.4, we can now prove Theorem 1.1 as
follows.

Proof of Theorem 1.1. To prove Theorem 1.1, we just need to show
that there exists ¢, >0 such that for all ¢<e¢,, B(u,)€ Bs(P,). Then we
deduce that for ¢ € W (), there exists 1, = Ay(¢) >0 such that

Blu, + 2p) € Bs(Py)

for all |A] < 4,. This implies that

d
EKL'(ML‘ +i¢)|/l:0 =0.

Hence u, is a critical point of K, and by (3.2), u, is a solution of problem
(1.1) in W 2(Q) therefore u, is a classical solution of problem (1.1).

By the proofs in [ 18], u, has exactly one local maximum point P,.By the
fact that [, xu?*'/{,u?*'e By(P,), we have P,— Pe B,(P,). The same
proof in [ 18] shows that P = P,. Theorem 1.1 follows then. It remains to
prove the claim.

Suppose that the claim is not true. That is, there exists ¢, — 0 such that

Blu,,) € OBs(Py).
From Corollary 3.3, there exists g, — 0, P, —P € 0By P,) and
et (ex,- +Poy) — PQ%[’ P%lWH W @) 0 (3.7)
From Corollary 3.3, there exists ¢,,— 0, o, P €0Bs(P,) and
Hux:/c[(gk/ -+ Pé;k/) - P.Q,;kp P"'kZM}H Wé Z(Q,;k’_ P, ) - O (37)
By Lemma 3.4, there exists a further subsequence &,,— 0, such that
u,;kl,(x) =CyPo,, p W(x—Pp)lex)+wy. (3.8)
1 1

and

A, =elp PO I(w) 4 e PV P o, 4 o(e Ve (PR ], (3.9)
1 1
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From (2.13) and (3.9), we have

Vo (P) =V, (Po) + o).

By (3.7) and (3.8), we must have |P£k,[—Pk;| =o(1). Letting k}— oo, we
have d(P,,0Q)>d(P,, 0R2). That is a contradiction.

4. PROOF OF TECHNICAL LEMMAS
Recall that

(v, P, pw) Wy 2@, p)

0
Ez:,P: ve W(lfz(‘Q::ﬂP) :<UaaPPQhPM}> s . (41)
i Wy S (e, p)

1

=0,1<i<n

We first study the following eigenvalue problem.

LEMMA 4.1. The eigenvalue problem

Av—v+puw? " 'v=0
oA (4.2)
ve WH3(R")
admits a discrete set of eigenvalues v <v,<v3;< --- such that vi=1, v,=p,

2<isn+1, and v, ,>p. The eigenspaces V, and V, corresponding to 1
and p are given by

V', =span {w} (4.3)

and

V =span al
»=SP ox;

1<i<n}. (4.4)

Proof. Consider the map i: W"?(R")— L*(w”~ "), where L*(w” ") is
the Hilbert space with

<u,v>=f w2y v
Rn

Since w is exponentially decaying at oo, i is compact. Hence there are a
discrete number of values v, <v,< --- and functions v,, v,, .., wich are
solutions of (4.2).
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Let 4 be an eigenvalue with u <p and v be a solution of (4.2). As in
[11], ve C*(R"). Let u,,e,(w) with weS"! be the eigenvalues and
eigenfunctions of the Laplace-Beltrami operator on S$” ~'. Then

,uO=0<M1= =1un=n_1<'u”+l< o

and e)’s are normalized so that they form a complete orthonormal basis of
L*(S" 1.
Put

Oi(r) := LH v(r, w) e (w) dw.

Then # — 0 exponentially as r — co and it satisfies

ﬁ}é(r)—i—nﬁ}(—ﬁ—i-(uw”l—u;') b,=0, r>0 (4.5)
r r

for k=0,1,2, ... We claim that 7, =0 if k >n.

Suppose for a contradiction that there is a p, € (0, co ] such that #,(r) >0
for 0<r<p, and #,(p;) =0. As in [17], multiplying (4.5) with w'(r) r" "
and integrate the resulting equation over 0 <r < p,. We obtain

pi w4 ([ w8 ) )

Pk

+(n—1—p) L W, "3 dr =0.

Since u<p and w'(r)<0 for r#0, 7,(p;)<0, we conclude that
we>n—1, ie., k>n. Here d(r, w)=0(r) + X7 _, 0(r) ex(w).

It follows then the dimension of the kernel L, =4 — 1 4+ uw” ™" is at most
n+ 1. But note that =1, w is a solution of (4.2), u=p, Ow/0x; is a solu-
tion of (4.2), and

0 0 0
f wp_lw—wzo, J w Ly v .
RN ox; R OX; ox;
We conclude that u, =1, uor=p=p3=--- =u,,,, and V,=span{w},

V,=span{ow/0x,}.
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LeEmMMA 4.2, There exist &,>0, p>0 such that for any &<e, and
Pe B,s(P,), we have

f |Vv|2+v2>(p+p)j (Po. W)\ 0% forall veE, . (4.6)
Q. p Q. p

Proof. Suppose on the contrary, there exist &, — 0, p, — 0, P, € B,5(P,),
and v, e E,, p, so that

J Vo, > +v;<(p +pk)f (Po, ,w)7~ ' og.

-Qz;/‘..l’k Q""k’ Pk

Assume that fQ% . |Vui|* + v; =1 and extend v, equal to 0 outside Q,, 5,.
Observe that

| Ve o=
| Vel toi<p o0 | (P w e}

jRn Vo, -VPq, ,WwHv-Pg W= 0

0 0
J‘R” VUk Y <a})l PQ%TP/CW'> + Uy ail)l PQ%’P,(W =0.

Since vyl 1 (gmy =1, there exist voe H'(R"), v,—v, in H'(R"), and
Uk = Vo in H o (R").

Hence we have by taking limits (noting that w is exponentially decaying
and using Lemma 2.4)

1<pj w?~vd
Rﬂ

I Vuy-Vw+0v,-w=0
RIX

ow ow
. —_— —_—= 0
fRn Vo, -V o, + v, ox,

Ln [Voo|* +v5< 1.

That is a contradiction to Lemma 4.1.
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Let us consider the minimization problem
Minimize [[u,(¢- + P) —aPqo W2, »> (4.7)

where a e (3, 2] and Pe Byy(P,).
Since P, ,w is continuous about P, (4.7) is achieved and we can write

ule- +P)=a,Po, , w+o, (4.8)

where w,€ E, p and P e B,s(P,).
By Corollary 3.3, [, | w2, p) 0 as ¢ > 0. Moreover,

e + Pl wt o, py = 1Pay p Wt 2o oy + 10, w2 -

Therefore o,—1 as &—0, since Hv,,.HWé‘z(Q&PS)—»HWHHI(RH) and

HPQS, PLWH W@ r) Wl 771 g -
We are now ready to finish the proof of Lemma 3.4.

Proof of Lemma 3.4. To prove (3.5), we note that by (4.8), we just need
to prove that P, — Pe B4(P,) for some P and a sequence ¢ =¢, — 0.
By Corollary 3.3 and (4.8), we have

P, P,
ra(=)-pur(-2)
’ & ’ &

as ¢ » 0, where P, — P, e By(P,).
Assume that |P,— P,| >v >0 when ¢ is sufficiently small, then

P! P,
PQ&.Pél/V<' —— _PQ&PSM; P— _)2 HM}HHI(R”)#Oa
& &/ lwhe, ry)

which is a contradiction.

Hence P,— P e B;(P,) by passing to a subsequence. We now choose
C.,=a, , P,=P, , and P=P,; then the first part of Lemma 3.4 is

1 !

proved. o

From now on, we assume that ¢=g¢,, and PSA,I—>PGB§(PO). To prove
(3.6), we need some preparations.

We first calculate

-0

’ Wi 2@, py)

J (P.Qe P W)p w;::J Mjpﬂ){:+J‘ [(PQS, PSMZ)PiM]P] @,
Q,, P, e Q. p, Qe P,
= 11 + 12,

where I, and I, are defined at the least equality.
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Let us first estimate (using (2.8))

[(Pg, , W) —w”|
<C|Pg, oW wl|w|? < Ce WPy, we
< Ce*((1/2)+¢5l)ﬁl//c(Pz:)e*((1/2)*51)/3'%:(1’4:)1/”) P,;Wp
< Co (V21 H00 BUAPI(g=BUAPOY, | YAR)=01 (1205010
< Ce (121 H00 UPoyyp+ (12) =01 [ (12) 401
< Co— (2 +30 FUdP) g —(p+(1/2) =511 ¥lp(1 +a1(1/2)+ 6] v]
< Ce— (121400 B APy —521]

if 6, >0, 3, >0, d,>0 are chosen small enough.
Hence

Izzj ((Pg, pw)’—=wP)w, < W[l 20, )¢ Ce (V2 o0y
QE-P:: o

= Py = — =
e P &, &
I L) wlw, J (Pgo w APg PE) w,=0

e Py 2, P,

since w, € E, p..
In conclusion, we have

[ Pa ) o, < Cen RN oo | (49)
. .

0
& Py

Second, we calculate by Taylor’s expansion,

j vg)ﬂzcgﬂ|PQ£PW|Zi}+C§(p+1)<J
Q e Q

& Py

P
Py, ,w| o,

& Py

+(p(p+1)2¢C0 ! f (Po, W)~ @} +O(|o, )

Qs,[’ﬂ

p+1

for some r>2, where, for the moment, we denote |u|%7] zjgw ub*!
3

and

lluell = [uell Wi Qe p,)
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Hence by (4.9),

(Po, p W)™ o

P
Po, pw)

—1

COZ

&

2 p+1
2C; 1Po, , WG

00,2 = C 2 Py, v, 2,
+1
x{1+ 2p(p )p+1
2C1: |PQ£. psu}|p+l Q,, P,
—2/p+1
+Ole BT o 4 o, )}
_ _ pst,P (
=C? |PQC,P£w|pflx{1 _
+O(e = (WD HIDME gy || 4 |60£|r)}-
Thus,
K, (u,)=C,"> |Pg, , Wl i1 (C2| Py, ’ wll? + e, [I?)
{ Plo , w) ' w?
x<1— =
2C2 |PQ£"PSW|§1}
IPg, , wl*
w4 C,? |Pg, |, ] |® |2}
2, p, 1
{|PQ,)7M}|[}+1 e ‘

2

1 p er_, P, PQs, P,‘.W)pil w;
1 :
2C7 |Pg, , Wbt

p+1

Ol I o+ o, )

1Po, , WH2
o 2 1Po,, w2 o
| QEP [I+]

5 HPQ,,w pSWHZ P yg,:,pc (PQ& Psw)p71
- e 2 : 1

‘ |PQS, plp+1 |PQ£_ p£W|§¢1

FO(e DTV oo, + o, |
IPa, ,»I"

S Po, W, E
|PQ,P &P

p+1
p+1

1Pa, , 2
x{|w8|2 ol |

|PQ£1J p+1 Qs,Pe

+O0(e VDTN o | + |, ||")

(Pg, PrW)IFI wi}

2
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+O(e R o5, | + |w£|’)}
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1Pg, Wl

= 2
|P-Q,; rxw|p+1

+C 2 Py, Wl 2 Py |,

+ O(e*((l/2)+51)/ﬁ’!//s(Pg) ng H + st Hr) (for some p, >0)
> I(w) +oye PP oo MeP)
+p2 llw, |+ O W2+ g || 4+ oo, %)

(for some p, > 0). (4.10)
By Lemma 2.3 again, we have
pa [, |2 O(e ™R IN BT | 4 o, ) oty AP0 o M)
Since |, | — 0 as ¢ - 0, we obtain
|, HZ < CePVe(Ps) 4 Co—BV:(Po),
Substituting into (4.10), we obtain

A ZI(W)_}_alefﬁl//e(l’s)_I_O(efﬁl//e(l’g)) (4'11)

&

(since for ¢ sufficiently small, ((1 —46,) Y (P,) <y (Py)).
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