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Abstract. We investigate the existence of blowing-up solutions to the following singular Liouville
problem

−∆u = λVλ(|x|)eu − 4πNδ0 in B1, u = 0 on ∂B1,

where B1 is the unit ball in R2 centered at the origin, Vλ(|x|) is a positive smooth potential, N is
a positive integer (N ≥ 1). Here δ0 defines the Dirac measure with pole at 0, and λ > 0 is a small
parameter. If the potential Vλ(|x|) satisfies some suitable assumptions in terms of the first 2(N+1)
derivatives at 0, then we find a solution which exhibits a non-simple blow-up profile as λ → 0+.
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1. Introduction

Given Ω a smooth and bounded domain in R2 containing the origin, consider the following
Liouville equation with Dirac mass measure{−∆u = λVλ(x)e

u − 4πNδ0 in Ω,

u = 0 on ∂Ω.
(1.1)

Here λ is a positive small parameter, Vλ is a positive and uniformly (with respect to λ) bounded
potential, δ0 denotes Dirac mass supported at 0 and N is a positive integer.

It is well known that solutions to singular Liouville equations of the type (1.1) exhibit blow-up
behaviour. Consequently, problem (1.1) and its variants find many applications in mathematics
and science. In particular, singular Liouville equations arise in the study of vortices in a planar
model of Euler flows (see [12]). In vortex theory the interest in constructing blowing-up solutions
is related to relevant physical properties, in particular the presence of vortices with a strongly
localised electromagnetic field.

Due to the large amount of applications in which blow-up phenomenon occurs, there has been
an increasing need for the development of the analysis of blow-up solutions for singular Liouville
equations. The asymptotic behavior of a family of blowing up solutions uk can be referred to the
papers [6], [8], [18], [19], [21], [23] for the regular problem, i.e. when N = 0. An extension to
the singular case N > 0 is contained in [2]-[4]. If a blowup point p is either a regular point or a
“non-quantized” singular source, the asymptotic behavior of uk around p is well understood (see
[2, 4, 7, 8, 15, 17, 31, 32]). As a matter of fact, uk satisfies the spherical Harnack inequality around
0, which implies that, after scaling, the sequence uk behaves as a single bubble around the maximum
point. However, if p happens to be a quantized singular source, the so-called “non-simple” blowup
phenomenon does happen (see [16, 27, 28, 29]), which is equivalent to stating that uk violates the
spherical Harnack inequality around p. The study of non-simple blowup solutions, whether or not
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the blowup point has to be a critical point of coefficient functions, has been a major challenge for
Liouville equations and its research has intrigued people for years. Recently significant progress has
been made by Kuo-Lin, Bartolucci-Tarantello and other authors ([5, 10, 16, 27, 28, 29]. In [27] and
[28] Harnack inequalities and up to second order vanishing conditions for non-simple blow-ups are
obtained. The “non-simple blowup ” assumption in these vanishing theorems is essential, without
it Wu [30] constructed blowup solutions with non-vanishing coefficient functions. When nonsimple
blowup solutions occur, it is established in [3] and [16] that there are N +1 local maximum points
evenly distributed on S1 after scaling according to their magnitude.

The case N ∈ N is more difficult to treat, and at the same time the most relevant to physical
applications. Indeed, in vortex theory the number N represents vortex multiplicity, so that in
that context the most interesting case is precisely when it is a positive integer. The difference
between the case N ∈ N and N ̸∈ N is also analytically essential. Indeed, as usual in problems
involving concentration phenomena like (1.1), after suitable rescaling of the blowing-up around a
concentration point one sees a limiting equation which, in this case, takes the form of the planar
singular Liouville equation:

−∆U = eU − 4πNδ0,

∫
R2

eUdx <∞;

only if N ∈ N the above limiting equation admits non-radial solutions around 0 since the family of
all solutions extends to one carrying an extra parameter (see [22]). This suggests that if N ∈ N and
the blow-up point happens to be the singular source, then solutions of (1.1) may exhibit non-simple
blow-up phenomenon.

So, from analytical viewpoints the study of non-simple blowup solutions is far more challenging
than simple blowup solutions, but the impact of this study may be even more significant because
they represent certain situations in the blowup analysis of systems of Liouville equations. Indeed,
if local maxima of blowup solutions in a system tend to one point, the profile of solutions can be
described by a Liouville equation with quantized singular source. For all this reasons, it is desirable
to know exactly when non-simple blowup phenomenon happens.

However, the question on the existence of non-simple blowing-up solutions to (1.1) concentrating
at 0 is far from being completely settled. A first definite answer is provided by [11] which rules out
the non-simple phenomenon for (1.1) if the potential V is constant: more precisely it is established
that there is no non-simple blowup sequence for (1.1) with V = const., even if we are in the presence
of multiples singularities

∑
iNiδpi . Apart from this, many open problems are still usolved and only

specific cases have been addressed: in [10] the construction of solutions exhibiting a non simple
blow-up profile at 0 is carried out for equation (1.1) with V ≡ 1 provided that Ω is the unit ball
and the weight of the source is a positive number N = Nλ close an integer N from the right side.
On the other hand, in[12], for any fixed positive integer N , it is proved the existence of a solution
to (1.1) with V ≡ 1, where δ0 is replaced by δpλ for a suitable pλ ∈ Ω, with N + 1 blowing up
points at the vertices of a sufficiently tiny regular polygon centered in pλ; moreover the location of
pλ is determined by the geometry of the domain in a λ−dependent way and does not seem possible
to be prescribed arbitrarily. To our knowledge, the existence of non-simple blow-up phenomenon
for (1.1) for a fixed V and a fixed N independent of λ is still open, even in the case of the ball: the
only example is constructed in [9] for a special class of potentials of the form V (|x|N+1).

In this paper we investigate the existence of non-simple blow-up solutions when Ω is the unit
ball B1 centered at the origin and the potential Vλ is radially symmetric:{−∆u = λVλ(|x|)eu − 4πNδ0 in B1,

u = 0 on ∂B1.
(1.2)
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Now we state the hypotheses on Vλ that will be used throughout the paper. First we assume
some uniform estimates with respect to λ:

(A1) infB1 Vλ(|x|) > c > 0 for a positive constant c independent of λ and, without loss of
generality, we may assume Vλ(0) = 1.

(A2) Vλ(|x|) is of class C1 in the closed unit ball B1 and is of class C2N+4 in a neighbourhood
U of 0; moreover

∥Vλ∥C1(B1)
, ∥Vλ∥C2N+4(U) ≤ C

for a positive constant C independent of λ.

Furthermore we postulate a crucial vanishing condition on the second and the higher derivatives
of Vλ at 0 up to the order 2N , and finally we require an upper bound on the 2(N + 1) derivative1:

(A3) V ′′
λ (0) > 0 for all λ > 0, λ

N
N+1 = o(V ′′

λ (0)), V
′′
λ (0) = o(λ

N
N+3 ).

(A4) the following holds:
|V 2i

λ (0)| ≤ CV ′′
λ (0) ∀i = 1, . . . , N ;

V
2(N+1)
λ (0) < 2(2N + 2)!− c

for positive constants c, C independent of λ.

In the following G(x, y) is the Green’s function of −∆ over Ω under Dirichlet boundary conditions
and H(x, y) denotes its regular part:

H(x, y) := G(x, y)− 1

2π
log

1

|x− y|
.

When Ω is the unit ball B1 we have the explicit formula for H:

H(x, y) =
1

2π
log

(
|x|

∣∣∣∣y − x

|x|2

∣∣∣∣), x, y ∈ B1. (1.3)

Theorem 1.1. Assume that hypotheses (A1)− (A2)− (A3)− (A4) hold. Then, for λ sufficiently
small the problem (1.2) has a family of solutions uλ blowing up at the origin as λ→ 0+:

λeuλ → 8π(N + 1)δ0 in the measure sense.

More precisely there exist µ = µ(λ) > 0 and b = b(λ) ∈ B1 in a neighborhood of 0 such that uλ
satisfies

uλ + 4πNG(x, 0) = −2 log
(
µ2(N+1) + |xN+1 − b|2

)
+ 8πH(xN+1, b) + o(1)

in H1-sense, where2

µ2(N+1) ∼ λ, b ∼ (V ′′
λ (0))

N+1
2N . (1.4)

In particular, by (A3), µN+1 = o(b).

The solution in Theorem 1.1 reveals a non-simple blow-up profile: indeed, denoting by β0, . . . , βN
the N + 1 complex roots of b, since the rate of convergence βi → 0 is lower than the speed of the
concentration parameter µ→ 0 (see estimate (1.4)), uλ develops a branch of N +1 local maximum
points concentrating at 0 which are arranged as satellites close to the vertices βi of a regular (N+1)-
polygon. The analysis shows that the configuration of the limiting local maxima is determined by
the interaction of two crucial aspects: the rate of convergence V ′′

λ (0) → 0+ and the boundary
effect, represented by the Robin function H(x, x). On the other hand, the existence of this kind

1We use the notation aλ = o(bλ) to denote quantities which in the limit λ → 0+ verify aλ
bλ

→ 0.
2We use the notation ∼ to denote quantities which in the limit λ → 0+ are of the same order.
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of non-simple blow-up is unknown if V ′′
λ (0) is uniformly bounded from below away from 0 or if

V ′′
λ (0) ≤ 0.

The proofs use singular perturbation methods which combine the variational approach with a
Lyapunov-Schmidt type procedure. Roughly speaking, the first step consists in the construction
of an approximate solution, which should turn out to be precise enough. In view of the expected
asymptotic behavior, the shape of such approximate solution will resemble, after the change of varia-
bles x 7→ x1/(N+1), a bubble of the form (2.6) with a suitable choice of the parameter δ = δ(λ, b).
Then we look for a solution to (1.2) in a small neighborhood of the first approximation. As quite
standard in singular perturbation theory, a crucial ingredient is the nondegeneracy of the explicit
family of solutions of the limiting Liouville problem (2.5), in the sense that all bounded elements
in the kernel of the linearization correspond to variations along the parameters of the family, as
established in [1]. This allows us to study the invertibility of the linearized operator associated
to the problem (1.2) under suitable orthogonality conditions. Next we introduce an intermediate
problem and a fixed point argument will provide a solution for an auxiliary equation, which turns
out to be solvable for any choice of b. Finally we test the auxiliary equation on the elements of the
kernel of the linearized operator and we find out that, in order to find an exact solution of (1.2),
the location of the maximum points, which is detected by the parameter b, should be a zero for a
reduced finite dimensional map. We point out that the two scales of concentration of b → 0+ and
V ′′
λ (0) → 0+ appear coupled at almost every step of the proof, so if V ′′

λ (0) ≤ 0 the method breaks
down since we are unable to catch a nontrivial zero b for the reduced problem.

Let us comment on the assumption (A3) where a suitable vanishing rate for V ′′
λ (0) is required:

the lower bound on V ′′
λ (0) assures that a non symmetric scenarios occurs for equation (2.4) since

it distinguishes the blowing-up from the radially symmetric one (see estimate (1.4)); whereas the
upper bound on V ′′

λ (0) guarantees that the non simple blow up solutions can still be accurately
approximated by global solutions by allowing an a priori estimate for the error which turns out to
be is sufficiently small.

The rest of the paper is organized as follows. Section 2 is devoted to some preliminary results,
notation, and the definition of the approximating solution. Moreover, a more general version
of Theorems 1.1 is stated there (see Theorem 2.1). In Section 3 we sketch the solvability of
the linearized problem by referring to [13] and [14] for the proof. The error up to which the
approximating solution solves problem (1.2) is estimated in Section 4. Section 5 considers the
solvability of an auxiliary problem by a contraction argument. In Section 6 we complete the proof
of Theorem 1.1. In Appendix A we collect some results, most of them well-known, which are usually
referred to throughout the paper.

NOTATION: In our estimates throughout the paper, we will frequently denote by C > 0, c > 0
fixed constants, that may change from line to line, but are always independent of the variables
under consideration.

2. Preliminaries and statement of the main results

We are going to provide an equivalent formulation of problem (1.2) and Theorem 1.1. Indeed,
let us set

α := N + 1 ≥ 2

and let us observe that, setting v the regular part of u, namely

v = u+ 4π(α− 1)G(x, 0) = u+ 2(α− 1) log
1

|x|
, (2.1)
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problem (1.2) is then equivalent to solving the following boundary value problem{
−∆v = λ|x|2(α−1)Vλ(|x|)ev in B1

v = 0 on ∂B1

. (2.2)

Here G and H are the Green’s function and its regular part as defined in the introduction.
In what follows, we identify x = (x1, x2) ∈ R2 with x1 + ix2 ∈ C and we denote by x y the

multiplication of the complex numbers x, y and, analogously, by xα the power of the complex
number x.

Since the solutions considered in the paper are 2π
α -symmetric, we can rewrite problem (2.2) as a

regular Liouville problem: more precisely, denoting by x
1
α the complex α-roots of x, the change of

variables

w(x) = v
(
x

1
α
)

(2.3)

transforms problem (2.2) into a (regular) Liouville problem of the form−∆w =
λ

α2
Vλ

(
|x|

1
α
)
ew in B1

w = 0 on ∂B1

. (2.4)

Theorem 1.1 will be a consequence of a more general result concerning Liouville-type problems.
In order to provide such a result, we now give a construction of a suitable approximate solution for
(2.4). We can associate to (2.4) a limiting problem of Liouville type which will play a crucial role
in the construction of blowing up solutions as λ→ 0+:

−∆W = eW in R2,

∫
R2

eW (x)dx < +∞. (2.5)

All solutions of this problem are given, in complex notation, by the three-parameter family of
functions

Wδ,b(x) := log
8δ2

(δ2 + |x− b|2)2
δ > 0, b ∈ C. (2.6)

The following quantization property holds:∫
R2

eWδ,b(x)dx = 8π. (2.7)

Thanks to the radial symmetry of the problem, up to a rotation of the coordinates it is not restrictive
to assume our bubble centered on the positive x1-axis, which corresponds to consider b := (b, 0)
with b > 0. Therefore, in the following we agree that

Wλ(x) =Wδ,b(x), δ, b > 0,

where the value δ = δ(λ, b) is defined by

δ2 :=
λ

8α2
Vλ(b

1
α )e8πH(b,b) =

λ

8α2
Vλ(b

1
α )(1− b2)4. (2.8)

We point out that the diagonal H(b, b) appearing in (2.8) is called the Robin function of the
domain and in the case of the ball it takes the form

H(x, x) =
1

2π
log(1− |x|2), x ∈ B1

according to (1.3). To obtain a better first approximation, we need to modify the function Wλ in
order to satisfy the zero boundary condition. Precisely, we consider the projection PWλ onto the
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space H1
0 (B1), where the projection P : H1(RN ) → H1

0 (B1) is defined as the unique solution of the
problem

∆Pv = ∆v in B1, Pv = 0 on ∂B1.

We recall that the regular part H(x, b) of the Green function, defined in (1.3), is harmonic in B1

and satisfies H(x, b) = 1
2π log |x− b| for x ∈ ∂B1; a straightforward computation gives that for any

x ∈ ∂B1

PWλ −Wλ + log
(
8δ2

)
− 8πH(x, b) = −Wλ + log

(
8δ2

)
− 4 log |x− b|

= 2 log
(
1 +

δ2

|x− b|2
)
= O(δ2)

with uniform estimate for x ∈ ∂B1 and b > 0 in a small neighborhood of 0. Since the expression
PWλ −Wλ + log

(
8δ2

)
− 8πH(x, b) is harmonic in B1, then the maximum principle applies and

implies the following asymptotic expansion

PWλ =Wλ − log
(
8δ2

)
+ 8πH(x, b) +O(δ2)

=− 2 log
(
δ2 + |x− b|2

)
+ 8πH(x, b) +O(δ2)

(2.9)

uniformly for x ∈ B1 and b > 0 in a small neighborhood of 0.
We point out that, in order to simplify the notation, in our estimates throughout the paper we

will describe the asymptotic behaviors of quantities under considerations in terms of δ = δ(λ, b)

instead of the parameter λ of the equation. Clearly according to (2.8) δ has the same rate as λ
1
2 ,

so at each step we can easily pass to the analogous asymptotic in terms of λ: for instance, in (2.9)
the error term “O(δ2)” can be equivalently replaced by “O(λ)”.

We shall look for a solution to (2.4) in a small neighborhood of the first approximation, namely
a solution of the form

wλ = PWλ + ϕλ,

where the rest term ϕλ is small in H1
0 (B1)-norm. Motivated by the symmetric setting of our

problem, we consider the subspaces H1
0,s(B1) made up of functions which are symmetric with

respect to the x2-axis:

H1
0,s(B1) = {v ∈ H1

0 (B1) |w(x̄) = w(x)}.
Here, using the complex notation, x̄ is the conjugate of x: x̄ = (x1,−x2). Clearly, PWλ ∈ H1

0,s(B1)

if b > 0 and we shall look for a rest term ϕλ in H1
0,s(B1).

In order to state the main theorem for problem (2.4), let us reformulate the four assumptions
(A1)− (A4) in an equivalent way according to the new framework in terms of α instead of N with
the vanishing estimates written in terms the new parameter δ in the place of λ:

(A1)∗ infB1 Vλ(|x|) > c > 0 for a positive constant c independent of δ and, without loss of
generality, we may assume Vλ(0) = 1.

(A2)∗ Vλ(|x|) is of class C1 in the closed unit ball B1 and is of class C2α+2 in a neighbourhood U
of 0; moreover

∥Vλ∥C1(B1)
, ∥Vλ∥C2α+2(U) ≤ C

for a positive constant C independent of δ.

(A3)∗ V ′′
λ (0) > 0, δ

2(α−1)
α = o(V ′′

λ (0)), V
′′
λ (0) = o(δ

2(α−1)
α+2 ).

(A4)∗ the following holds:

|V 2i
λ (0)| ≤ C|V ′′

λ (0)| ∀i = 1, . . . , α− 1

V 2α
λ (0) < 2(2α)!− c

for positive constants c, C independent of δ.
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A non symmetric blow-up occurs for problem (2.4), as stated in the next theorem; more precisely,
we provide a solution which develops a bubble centered at a point (b, 0) = b > 0; and since the
rate of convergence b → 0+ is lower than the speed of the concentration parameter δ → 0+ (see
estimate (2.10)), the blowing up turns out to be non symmetric in the first approximation.

Theorem 2.1. Assume that hypotheses (A1)∗ − (A4)∗ hold. Then, for λ sufficiently small the
problem (2.4) has a family of solutions wλ satisfying

wλ = −2 log
(
δ2 + |x− bλ|2

)
+ 8πH(x, bλ) + o(1)

in H1-sense, where

bλ ∼ (V ′′
λ (0))

α
2(α−1) . (2.10)

In particular, by (A3)∗, δ = o(b).

In the remaining part of this paper we will prove Theorems 2.1 and at the end of Section 6 we
shall see how Theorems 1.1 follows quite directly as a corollary.

We end this section by setting notation and basic well-known facts to be used in the rest of the
paper. Given D a bounded domain, we denote by ∥ · ∥ and ∥ · ∥p the norms in the space H1

0 (D)
and Lp(D), respectively, namely

∥u∥ := ∥u∥H1
0 (D), ∥u∥p := ∥u∥Lp(D) ∀u ∈ H1

0 (D).

Next we recall the well-known Moser-Trudinger inequality ([20, 26]):

Lemma 2.2. There exists C > 0 such that for any bounded domain D in R2∫
D
e

4πu2

∥u∥2 dy ≤ C|D| ∀u ∈ H1
0 (D),

where |D| stands for the measure of the domain D. In particular, for any q ≥ 1

∥eu∥q ≤ C
1
q |D|

1
q e

q
16π

∥u∥2 ∀u ∈ H1
0 (D).

As commented in the introduction, our proof uses the singular perturbation methods. For that,
the nondegeneracy of the functions that we use to build our approximating solution is essential.
Next proposition is devoted to the nondegeneracy of the finite mass solutions of the Liouville
equation (see [1] for the proof).

Proposition 2.3. Assume that ξ ∈ R2 and ϕ : R2 → R solves the problem

−∆ϕ =
8

(1 + |z − ξ|2)2
ϕ in R2,

∫
R2

|∇ϕ(z)|2dz < +∞. (2.11)

Then there exist c0, c1, c2 ∈ R such that

ϕ(z) = c0Z0 + c1Z1 + c2Z2,

Z0(z) :=
1− |z − ξ|2

1 + |z − ξ|2
, Z1(z) :=

Re (z − ξ)

1 + |z − ξ|2
, Z2(z) :=

Im(z − ξ)

1 + |z − ξ|2
.

3. Analysis of the linearized operator

According to Proposition 2.3, by the change of variable x = δz, we immediately get that all
solutions ψ of

−∆ψ =
8δ2

(δ2 + |x− b|2)2
ψ = eWλψ in R2,

∫
R2

|∇ψ(x)|2dx < +∞.
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are linear combinations of the functions

Z0
δ,b(x) =

δ2 − |x− b|2

δ2 + |x− b|2
, Z1

δ,b(x) =
δRe (x− b)

δ2 + |x− b|2
, Z2

δ,b(x) =
δIm(x− b)

δ2 + |x− b|2
.

We introduce the projections PZj
δ,b onto H

1
0 (B1). It is immediate that

PZ0
δ,b(x) = Z0

δ,b(x) + 1 +O
(
δ2
)
=

2δ2

δ2 + |x− b|2
+O(δ2) (3.1)

and
PZj

δ,b(x) = Zj
δ,b(x) +O(δ) for j = 1, 2 (3.2)

uniformly with respect to x ∈ B1 and b > 0 in a small neighborhood of 0. Clearly PZ0
λ, PZ

1
λ are

symmetric with respect to the x2-axis, i.e. PZ
0
λ, PZ

1
λ ∈ H1

0,s(B1).

We agree that Zj
λ := Zj

δ,b for any j = 0, 1, 2, where δ is defined in terms of λ and b according

to (2.8). Let us consider the following linear problem: given h ∈ H1
0,s(B1), find a function ϕ ∈

H1
0,s(B1), and a constant c1 ∈ R satisfying

−∆ϕ− λ

α2
Vλ

(
|x|

1
α
)
ePWλϕ = ∆h+ c1Z

1
λe

Wλ∫
B1

∇ϕ∇PZ1
λ = 0

. (3.3)

In order to solve problem (3.3), we need to establish an a priori estimate. For the proof we refer
to [13] (Proposition 3.1) or [14] (Proposition 3.1).

Proposition 3.1. There exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), any b > 0 in a small
neighborhood of 0 and any h ∈ H1

0,s(B1), if (ϕ, c1) ∈ H1
0,s(B1) × R solves (3.3), then the following

holds
∥ϕ∥ ≤ C| log δ|∥h∥.

For any p > 1, let
i∗p : L

p(B1) → H1
0 (B1) (3.4)

be the adjoint operator of the embedding ip : H1
0 (B1) ↪→ L

p
p−1 (B1), i.e. u = i∗p(v) if and only if

−∆u = v in B1, u = 0 on ∂B1. We point out that i∗p is a continuous mapping, namely

∥i∗p(v)∥ ≤ cp∥v∥p, for any v ∈ Lp(B1), (3.5)

for some constant cp which depends on p. Next let us set

K := span
{
PZ1

λ

}
and

K⊥ :=

{
ϕ ∈ H1

0,s(B1) :

∫
B1

∇ϕ∇PZ1
λdx = 0

}
and denote by

Π : H1
0,s(B1) → K, Π⊥ : H1

0,s(B1) → K⊥

the corresponding projections. Let L : K⊥ → K⊥ be the linear operator defined by

L(ϕ) :=
1

α2
Π⊥

(
i∗p
(
λVλ

(
|x|

1
α
)
ePWλϕ

))
− ϕ. (3.6)

Notice that problem (3.3) reduces to

L(ϕ) = Π⊥h, ϕ ∈ K⊥.

As a consequence of Proposition 3.1 we derive the invertibility of L.
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Proposition 3.2. For any p > 1 there exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), any
b > 0 in a small neighborhood of 0 and any h ∈ K⊥ there is a unique solution ϕ ∈ K⊥ to the
problem

L(ϕ) = h.

In particular, L is invertible; moreover,

∥L−1∥ ≤ C| log δ|.

Proof. Observe that the operator ϕ 7→ Π⊥(i∗p(λVλ(|x| 1α )ePWλϕ)
)
is a compact operator in K⊥. Let

us consider the case h = 0, and take ϕ ∈ K⊥ with L(ϕ) = 0. In other words, ϕ solves the system
(3.3) with h = 0 for some c1 ∈ R. Proposition 3.1 implies ϕ ≡ 0. Then, Fredholm’s alternative
implies the existence and uniqueness result.

Once we have existence, the norm estimate follows directly from Proposition 3.1. □

4. Estimate of the error term

The goal of this section is to provide an estimate of the error up to which the approximate
solution PWλ solves problem (2.4). First of all, we perform the following estimates.

Lemma 4.1. Let γ = 0, 1, 2 and p > 1 be fixed. The following holds:

∥|x− b|γeWλ∥p ≤ Cδγδ
−2 p−1

p , ∥|x− b|γλePWλ∥p ≤ Cδγδ
−2 p−1

p (4.1)

uniformly for b > 0 in a small neighborhood of 0.

Proof. We compute

∥|x− b|γeWλ∥pp = 8pδ2p
∫
B1

|x− b|γp

(δ2 + |x− b|2)2p
dx ≤ 8pδγp−2(p−1)

∫
R2

|z|γp

(1 + |z|2)2p
dz.

Taking into account that the last integral is finite for γ = 0, 1, 2 and p > 1 we deduce the first part
of (4.1). To prove the second part it is sufficient to observe that by (2.9) and by the choice of δ in
(2.8) we derive

λePWλ =
λ

8δ2
eWλ+O(1) = eWλ(1 +O(1)). (4.2)

□

Lemma 4.2. Assume that hypotheses (A1)∗ − (A4)∗. Then the following holds

Vλ
(
|x|

1
α

)
Vλ(b

1
α )

= 1 +
2

αVλ(b
1
α )

α∑
i=1

i

(2i)!
V 2i
λ (0)|b|

2i−α
α Re (x− b)

+

α∑
i=1

O
(
V i
λ(0)|b|2

i−α
α |x− b|2

)
+O(|x− b|2

α+1
α ) +O(b2

α+1
α )

uniformly for x ∈ B1 and b > 0 in a small neighborhood of 0.

Proof. According to assumption (A2)∗ we have

Vλ(|x|) = 1 +

α∑
i=1

1

(2i)!
V 2i
λ (0)|x|2i +O(|x|2α+2)
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uniformly for x ∈ B1. Using that for i = 1, . . . , α we have (1+2Re y+ |y|2)
i
α = 1+ 2i

αRe y+O(|y|2)
uniformly for y ∈ R2, we get

|x|
2i
α =

(
|x− b+ b|2

) i
α
=

(
|x− b|2 + |b|2 + 2bRe (x− b)

) i
α

= |b|
2i
α

(
1 + 2

Re (x− b)

b
+

|x− b|2

b2

) i
α

= |b|
2i
α

(
1 +

2i

α

Re (x− b)

b
+O

(
|x− b|2

b2

))
= |b|

2i
α +

2i

α
|b|

2i−α
α Re (x− b) +O

(
b2

i−α
α |x− b|2

)
uniformly for x ∈ B1 and b > 0 in a small neighborhood of 0. Then we obtain

Vλ(|x|
1
α ) = 1 +

α∑
i=1

1

(2i)!
V 2i
λ (0)|x|

2i
α +O(|x|2

α+1
α )

= 1 +
α∑

i=1

1

(2i)!
V 2i
λ (0)|b|

2i
α +

2

α

α∑
i=1

i

(2i)!
V 2i
λ (0)|b|

2i−α
α Re (x− b)

+
α∑

i=1

O
(
V 2i
λ (0)|b|2

i−α
α |x− b|2

)
+O(b2

α+1
α ) +O

(
|x− b|2

α+1
α

)
uniformly for x ∈ B1 and b > 0 in a small neighborhood of 0.

Finally, using that Vλ(b
1
α ) = 1 +

∑α
i=1

1
(2i)!V

2i
λ (0)|b|

2i
α +O(b2

α+1
α ) we deduce the thesis.

□

Let us fix M > 0 a sufficiently large number to be chosen later and set Iλ the interval

Iλ :=

[
1

M
(V ′′

λ (0))
α

2(α−1) ,M(V ′′
λ (0))

α
2(α−1)

]
. (4.3)

Now we are in the position to provide the error estimate for b ∈ Iλ.

Proposition 4.3. Assume that hypotheses (A1)∗ − (A4)∗ hold and define

Rλ : = −∆PWλ − λ

α2
Vλ

(
|x|

1
α
)
ePWλ = eWλ − λ

α2
Vλ

(
|x|

1
α
)
ePWλ .

Then the following holds

Rλ = eWλ

(
4b− 2

αVλ(b
1
α )

α∑
i=1

i

(2i)!
V i
λ(0)|b|

2i−α
α

)
Re (x− b)

+ eWλ

( α∑
i=1

O
(
V i
λ(0)|b|2

i−α
α |x− b|2

)
+ o(δb) +O(|x− b|2

) (4.4)

uniformly for x ∈ B1 and b ∈ Iλ. Moreover for any p > 1

∥Rλ∥p ≤ Cbδ
1−2 p−1

p

uniformly for b ∈ Iλ.
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Proof. By (2.9) and the choice of δ in (2.8) we derive

λ

α2
Vλ(|x|

1
α )ePWλ =

λ

8α2δ2
Vλ(|x|

1
α )eWλ+8πH(x,b)+O(δ2)

=
Vλ(|x|

1
α )

V (b
1
α )

eWλe8π(H(x,b)−H(b,b))+O(δ2)

=
Vλ(|x|

1
α )

V (b
1
α )

eWλe8π(H(x,b)−H(b,b))
(
1 +O(δ2)

)
.

(4.5)

Using the expression of H given in (1.3) we compute

e8π(H(x,b)−H(b,b)) = e4 log(b|x−
1
b
|)−4 log(1−b2) =

|b(x− b)− (1− b2)|4

(1− b2)4

= 1− 4b
Re (x− b)

1− b2
+O

(
|x− b|2

)
= 1− 4bRe (x− b) +O(b3) +O

(
|x− b|2

)
.

Then (4.5) becomes

λ

α2
Vλ(|x|

1
α )ePWλ =

Vλ(|x|
1
α )

V (b
1
α )

eWλ − 4b
Vλ(|x|

1
α )

V (b
1
α )

eWλRe (x− b)

+ eWλ

(
O(b3) +O(δ2) +O

(
|x− b|2

))
.

(4.6)

Using the expansion provided by Lemma 4.2 into (4.6), we have

λ

α2
Vλ(|x|

1
α )ePWλ = eWλ + eWλ

(
2

αVλ(b
1
α )

α∑
i=1

i

(2i)!
V 2i
λ (0)|b|

2i−α
α − 4b

)
Re (x− b)

+ eWλ

( α∑
i=1

O
(
V 2i
λ (0)|b|2

i−α
α |x− b|2

)
+O(|x− b|2) +O(δ2) +O(b2

α+1
α )

)

and (4.4) follows using that δ = o(b) and b2
α+1
α = o(δb) uniformly for b ∈ Iλ according to assumption

(A3)∗. So, by applying Lemma 4.1 we get for any p > 1

∥Rλ∥p ≤ C
(
δ

α∑
i=1

|V 2i
λ (0)||b|

2i−α
α + δ2

α∑
i=1

|V 2i
λ (0)||b|2

i−α
α + bδ + δ2

)
δ
−2 p−1

p .

Using again that δ = o(b) if b ∈ Iλ, we also get δ2|b|2
i−α
α ≤ δ|b|

2i−α
α for b ∈ Iλ; so the above Lp

estimate becomes

∥Rλ∥p ≤ C
(
δ

α∑
i=1

|V 2i
λ (0)||b|

2i−α
α + bδ

)
δ
−2 p−1

p .

Finally, according to (A4)∗, for every i = 1, . . . , α we get

|V 2i
λ (0)||b|

2i−α
α ≤ C|V ′′

λ (0)||b|
2i−α

α ≤ CV ′′
λ (0)|b|

2−α
α ≤ Cb ∀b ∈ Iλ

and last part of the thesis follows. □
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5. The nonlinear problem: a contraction argument

In order to solve (2.4), let us consider the following intermediate problem:
−∆(PWλ + ϕ)− λ

α2
Vλ(|x|

1
α )ePWλ+ϕ = c1Z

1
λe

Wλ ,

ϕ ∈ H1
0,s(B1),

∫
B1

∇ϕ∇PZ1
λdx = 0.

(5.1)

Then it is convenient to solve as a first step the problem for ϕ as a function of b.
Let us rewrite problem (5.1) in a more convenient way. In what follows we denote by N :

H1
0,s(B1) → K⊥ the nonlinear operator

N(ϕ) = Π⊥
(
i∗p

(
λ

α2
Vλ

(
|x|

1
α
)
ePWλ(eϕ − 1− ϕ)

))
.

Therefore problem (5.1) turns out to be equivalent to the problem

L(ϕ) +N(ϕ) = R̃, ϕ ∈ K⊥ (5.2)

where, recalling Lemma 4.1,

R̃ = Π⊥ (
i∗p
(
Rλ

))
= Π⊥

(
PWλ − i∗p

(
λ

α2
Vλ

(
|x|

1
α
)
ePWλ

))
.

We need the following auxiliary lemma.

Lemma 5.1. For any p > 1 and any ϕ1, ϕ2 ∈ H1
0 (B1) with ∥ϕ∥1, ∥ϕ2∥ < 1 the following holds

∥eϕ1 − ϕ1 − eϕ2 + ϕ2∥p ≤ C(∥ϕ1∥+ ∥ϕ2∥)∥ϕ1 − ϕ2∥, (5.3)

∥N(ϕ1)−N(ϕ2)∥ ≤ Cδ
−2 p2−1

p2 (∥ϕ1∥+ ∥ϕ2∥)∥ϕ1 − ϕ2∥ (5.4)

uniformly for b > 0 in a small neighborhood of 0.

Proof. A straightforward computation gives that the inequality |ea−a−eb+b| ≤ e|a|+|b|(|a|+|b|)|a−b|
holds for all a, b ∈ R. Then, by applying Hölder’s inequality with 1

q +
1
r +

1
t = 1, we derive

∥eϕ1 − ϕ1 − eϕ2 + ϕ2∥p ≤ C∥e|ϕ1|+|ϕ2|∥pq(∥ϕ1∥pr + ∥ϕ2∥pr)∥ϕ1 − ϕ2∥pt
and (5.3) follows by using Lemma 2.2 and the continuity of the embeddings H1

0 (B1) ⊂ Lpr(B1) and
H1

0 (B1) ⊂ Lpt(B1). Let us prove (5.4). According to (3.5) we get

∥N(ϕ1)−N(ϕ2)∥ ≤ C∥λVλ(|x|
1
α )ePWλ(eϕ1 − ϕ1 − eϕ2 + ϕ2)∥p,

and by Hölder’s inequality with 1
p + 1

q = 1, we derive

∥N(ϕ1)−N(ϕ2)∥ ≤ C∥λVλ(|x|
1
α )ePWλ∥p2∥eϕ1 − ϕ1 − eϕ2 + ϕ2|∥pq

≤ C∥λVλ(|x|
1
α )ePWλ∥p2(∥ϕ1∥+ ∥ϕ2∥)∥ϕ1 − ϕ2∥

by (5.3),
and the conclusion follows by Lemma 4.1. □

Problem (5.1) or, equivalently, problem (5.2) turns out to be solvable for any choice of point b
in the interval Iλ, provided that λ is sufficiently small. Indeed we have the following result.
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Proposition 5.2. Assume (A1)∗ − (A4)∗ hold and let ε > 0 be a fixed small number. Then there
exists λ0 > 0 such that for any λ ∈ (0, λ0) and any b ∈ Iλ there is a unique ϕλ = ϕλ,b ∈ K⊥

satisfying (5.1) for some c1 ∈ R and

∥ϕλ∥ ≤ δ1−εb. (5.5)

Moreover the map b ∈ Iλ 7→ ϕλ,b ∈ H1
0 (B1) is continuous.

Proof. Since problem (5.2) is equivalent to problem (5.1), we will show that problem (5.2) can be
solved via a contraction mapping argument. Indeed, in virtue of Proposition 3.2, let us introduce
the map

T := L−1(R̃−N(ϕ)), ϕ ∈ K⊥.

Let us fix p > 1 sufficiently close to 1. By (3.5) and Proposition 4.3, we get

∥R̃∥ ≤ Cbδ1−
ε
2 . (5.6)

Next, by (5.4),

∥N(ϕ1)−N(ϕ2)∥ ≤ Cδ−
ε
2 (∥ϕ1∥+ ∥ϕ2∥)∥ϕ1 − ϕ2∥ ∀ϕ1, ϕ2 ∈ H1

0 (B1), ∥ϕ1∥, ∥ϕ2∥ < 1. (5.7)

In particular, by taking ϕ2 = 0,

∥N(ϕ)∥ ≤ Cδ−
ε
2 ∥ϕ∥2 ∀ϕ ∈ H1

0 (B1), ∥ϕ∥ < 1. (5.8)

We claim that T is a contraction map over the ball

B :=
{
ϕ ∈ K⊥

∣∣∣ ∥ϕ∥ ≤ bδ1−ε
}

provided that λ is small enough. Indeed, combining Proposition 3.2, (5.6), (5.7), (5.8), for any
ϕ ∈ B we have

∥T (ϕ)∥ ≤ C| log δ|
(
∥R̃∥+ ∥N(ϕ)∥

)
≤ C| log δ|

(
bδ1−

ε
2 + b2δ2−2ε

)
< bδ1−ε.

Similarly, for any ϕ1, ϕ2 ∈ B

∥T (ϕ1)− T (ϕ2)∥ ≤ C| log δ|∥N(ϕ1)−N(ϕ2)∥ ≤ Cδ−
ε
2 | log δ|(∥ϕ1∥+ ∥ϕ2∥)∥ϕ1 − ϕ2∥ ≤ 1

2
∥ϕ1 − ϕ2∥.

Uniqueness of solutions implies continuous dependence of ϕλ = ϕλ,b on b. □

6. Proof of Theorems 1.1 and Theorem 2.1

During this section we assume that the crucial assumption (A1)∗ − (A4)∗ of Theorem 2.1 hold.
After problem (5.1) has been solved according to Proposition 5.2, then we find a solution to the

original problem (2.4) if b ∈ Iλ is such that

c1 = 0.

Let us find the condition satisfied by b in order to get c1 equal to zero.

Proof of Theorem 2.1. We multiply the equation in (5.1) by PZ1
λ and integrate over B1:∫

B1

∇(PWλ + ϕλ)∇PZ1
λdx− λ

α2

∫
B1

Vλ
(
|x|

1
α
)
ePWλ+ϕλPZ1

λdx

= c1

∫
B1

Z1
λe

WλPZ1
λdx.

(6.1)

The object is now to expand each integral of the above identity and analyze the leading term. In
the remaining part of the section all the estimates hold uniformly for b ∈ Iλ, without further notice.
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Let us begin by observing that the orthogonality in (5.1) gives∫
B1

∇ϕλ∇PZ1
λdx =

∫
B1

eWλϕλZ
1
λdx = 0 (6.2)

and, by (3.2),∫
B1

Z1
λe

WλPZ1
λdx =

∫
B1

eWλ(Z1
λ)

2dx+ o(1) = 8

∫
R2

z21
(1 + |z|2)4

dz + o(1) =
2

3
π + o(1). (6.3)

Using the definition of Rλ in Lemma 4.3, (6.2) and (6.3), the above identity(6.1) becomes∫
B1

RλPZ
1
λdx− λ

α2

∫
B1

Vλ(|x|
1
α )ePWλ(eϕλ − 1)PZ1

λdx =
2

3
πc1 + o(c1). (6.4)

Let us first estimate the term containing the function ϕλ: recalling (6.2)

λ

α2

∫
B1

Vλ(|x|
1
α )ePWλ(eϕλ − 1)PZ1

λdx =

∫
B1

Rλ(1− eϕλ)PZ1
λdx

+

∫
B1

eWλ(eϕλ − 1− ϕλ)PZ
1
λdx

+

∫
B1

eWλϕλ(PZ
1
λ − Z1

λ)dx.

(6.5)

Now, let us fix ε > 0 sufficiently small and p > 1 sufficiently close to 1. Next let 1 < q < ∞ be
such that 1

p + 1
q = 1. Then, (5.3) with ϕ2 = 0 and Proposition 5.2 give

∥eϕλ − 1− ϕλ∥q ≤ C∥ϕλ∥2 ≤ Cb2δ2−2ε

and, consequently,

∥eϕλ − 1∥q ≤ C∥ϕλ∥ ≤ Cbδ1−ε. (6.6)

Therefore, Lemma 4.1 implies∫
B1

eWλ(eϕλ − 1− ϕλ)PZ
1
λdx = O(∥eWλ(eϕλ − 1− ϕλ)∥1) = O(∥eWλ∥p∥eϕλ − 1− ϕλ∥q)

= O
(
b2δ

2−2 p−1
p

−2ε
) (6.7)

Now, by Lemma 4.3∫
B1

Rλ(1− eϕλ)PZ1
λdx = O

(∥∥Rλ(e
ϕλ − 1)

∥∥
1

)
= O

(∥∥Rλ∥p∥eϕλ − 1∥q
)

= O
(
b2δ

2−2 p−1
p

−ε
)
.

(6.8)

Finally by (3.2) and Lemma 4.1∫
B1

eWλϕλ(PZ
1
λ − Z1

λ)dx = O
(
δ∥eWλ∥p∥ϕλ∥) = O(bδ

2−2 p−1
p

−ε
)
. (6.9)

By inserting (6.7)-(6.8)-(6.9) into (6.5), we obtain

λ

∫
B1

Vλ
(
|x|

1
α
)
ePWλ(eϕλ − 1)PZ1

λdx = o(bδ). (6.10)
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Next, by (4.4), using Lemma A.2, we get∫
B1

RλPZ
1
λdy = 2πδ

(
4b− 2

αVλ(b
1
α )

α∑
i=1

i

(2i)!
V 2i
λ (0)|b|

2i−α
α

)

+O

(
δ2

α∑
i=1

|V 2i
λ (0)||b|2

i−α
α

)
+O(δ2) + o(δb).

Since Vλ(b
1
α ) = 1 + o(1) and δ = o(b) uniformly for b ∈ Iλ, by inserting the above identity and

(6.10) into (6.4) we deduce

2πδ

(
4b(1 + o(1))− 2

α

α∑
i=1

i

(2i)!
V 2i
λ (0)|b|

2i−α
α (1 + o(1))

)
+O

(
δ2

α∑
i=1

|V 2i
λ (0)||b|2

i−α
α

)
=

2

3
πc1 + o(c1).

(6.11)

Using again that δ = o(b) for b ∈ Iλ, we derive δ2|b|2
i−α
α = o(δ|b|

2i−α
α ) for i = 1, . . . , α. So, (6.11)

can be rewritten as

2πδ

(
4b(1 + o(1))− 2

α

α∑
i=1

i

(2i)!
V 2i
λ (0)|b|

2i−α
α (1 + o(1))

)
=

2

3
πc1 + o(c1). (6.12)

Now, let us set b+ =M(V ′′
λ (0))

α
2(α−1) . Taking into account of assumption (A4)∗ we have

V 2i
λ (0)b

2i−α
α

+ =M
2i−α

α V 2i
λ (0)|V ′′(0)|

2i−α
2(α−1) ≤ CM

2i−α
α |V ′′

λ (0)|
α

2(α−1) ∀i = 1, . . . , α− 1

with C independent of M . By evaluating the left hand side of (6.12) at b+ we get

2πδ(V ′′
λ (0))

α
2(α−1)

(
4M(1 + o(1))−

α−1∑
i=1

O(M
2i−α

α )−MV 2α
λ (0)

2(1 + o(1))

(2α)!

)
.

Since 2i−α
α < 1 for i = 1, . . . , α − 1, taking into account of assumption (A4)∗, we get that the left

hand side of (6.12) evaluated at b+ is positive provided that M is large enough.

Next let us set b− = 1
M (V ′′

λ (0))
α

2(α−1) . Then again by assumption (A4)∗

V 2i
λ (0)b

2i−α
α

− =M
α−2i

α V 2i
λ (0)|V ′′(0)|

2i−α
2(α−1) ≤ CM

α−2i
α |V ′′

λ (0)|
α

2(α−1) ∀i = 2, . . . , α

where C is independent of M . The left hand side of (6.12) evaluated at b− becomes

2πδ(V ′′(0))
α

2(α−1)

(
4

M
(1 + o(1))− 1

α
M

α−2
α (1 + o(1))−

α∑
i=2

O(M
α−2i

α )

)
which is negative for M large enough.

The continuity of the map b 7→ ϕλ = ϕλ,b implies that the right hand side of (6.12) has a zero bλ
in Iλ, so

bλ ∼ (V ′′
λ (0))

α
2(α−1) .

For such bλ we get that (6.12) has only the trivial solution c1 = 0. That concludes the proof of
Theorem 2.1.

Remark 6.1. We point put that, if V ′′
λ (0) ≥ c > 0, (6.12) takes the form

2πδ

(
4b− 2

(2i)!

V ′′
λ (0)

α
|b|

2−α
α

)
+ h.o.t. =

2

3
πc1 + o(c1).
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Consequently we only obtain a zero b ≥ c > 0 for the leading term on the left hand side, so such
zero does not correspond to a non simple blow-up solution.

6.1. Proof of Theorems 1.1. Theorem 2.1 provides a solution to the problem (2.4) of the form

wλ = PWλ + ϕλ

where ϕλ = ϕλ,bλ ∈ H1
0 (B1) satisfies (5.5) and b = bλ satisfies (1.4).

Moreover, using (6.6), by Hölder’s inequality with 1
p + 1

q = 1 we get

λ∥Vλ(|y|
1
α )(ewλ − ePWλ)∥1 = λ∥ePWλ(eϕλ − 1)∥1

≤ λ∥ePWλ∥p∥eϕλ − 1∥q

= O(δ
1−2 p−1

p
−ε

) = o(1),

if p is chosen sufficiently close to 1 and ε sufficiently close to 0. Similarly, by Proposition 4.3,∥∥∥ λ
α2
Vλ(|y|

1
α )ePWλ − eWλ

∥∥∥
1
= ∥Rλ∥1 = O(δ

1−2 p−1
p ) = o(1).

Therefore ∥∥∥ λ
α2
Vλ(|y|

1
α )ewλ − eWλ

∥∥∥
1
= o(1).

Clearly, by (2.1) and (2.3),

uλ(x) = wλ(x
α)− 4π(α− 1)G(x, 0) = wλ(x

α)− 2(α− 1) log
1

|x|
solves equation (1.1) and

∥λVλ(|x|)euλ(x) − α2|x|2(α−1)eWλ(x
α)∥1 = α2

∥∥∥ λ
α2

|x|2(α−1)Vλ(|x|)ewλ(x
α) − |x|2(α−1)eWλ(x

α)
∥∥∥
1

= α
∥∥∥ λ
α2
Vλ(|y|

1
α )ewλ(x) − eWλ(x)

∥∥∥
1
= o(1)

by Lemma A.3. Hence, recalling (2.7) and Lemma A.3,

λ

∫
B1

Vλ(|x|)euλdx = α2

∫
R2

|x|2(α−1)Vλ(|x|)eWλ(x
α)dx+ o(1)

= α

∫
R2

Vλ(|y|
1
α )eWλ(y)dy + o(1) = 8πα+ o(1).

Similarly for every neighborhood U of 0

λ

∫
U
Vλ(|x|)euλdx→ 8πα.

Theorem 1.1 is thus completely proved by setting µα = δ

Appendix A

In this appendix we derive some crucial integral estimates which arise in the asymptotic expansion
of the energy of approximate solution PWλ.

Lemma A.1. The following holds:∫
B1

eWλ |x− b|dx = O(δ),

∫
B1

eWλ |x− b|2dx = 16πδ2| log δ|+O(δ2)

uniformly for b > 0 in a small neighborhood of 0.
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Proof. We compute∫
B1

eWλ |x− b|dx ≤ 8δ

∫
R2

1

(1 + |z − δ−1b|2)2
|z − δ−1b|dz = 8δ

∫
R2

|z|
(1 + |z|2)2

dz

and the first estimate follows. It remains to show the second estimate: to this aim observe that
B(b, 1− b) ⊂ B(0, 1) ⊂ B(b, 1 + b), so we compute∫

B1

eWλ |x− b|2dx = 8

∫
B1

δ2|x− b|2

(δ2 + |x− b|2)2
dx

= 8

∫
B(b,1−b)

δ2|x− b|2

(δ2 + |x− b|2)2
dx+O

(∫
B(b,1+b)\B(b,1−b)

δ2|x− b|2

(δ2 + |x− b|2)2
dx

)
= 8

∫
B(0,1−b)

δ2|x|2

(δ2 + |x|2)3
dx+O

(∫
B(0,1+b)\B(0,1−b)

δ2|x|2

(δ2 + |x|2)2
dx

)
= 8δ2

∫
|z|≤ 1−b

δ

|z|2

(1 + |z|2)2
dz +O

(
δ2

∫
1−b
δ

≤|z|≤ 1+b
δ

1

|z|2
dz

)
= 8δ2

∫
|z|≤ 1−b

δ

1

1 + |z|2
dz +O(δ2)

= 16πδ2| log δ|+O(δ2).

□

Since the key part in the proof of Theorem 2.1 relies in testing the equation (5.1) with PZ1
λ in

order to catch the leading terms, a crucial step consists in the evaluation of some integral estimates,
as provided by the following lemma.

Lemma A.2. The following holds:∫
B1

eWλPZ1
λRe (x− b)dx = 2πδ +O(δ2),

∫
B1

eWλ |PZ1
λ||x− b|2dx = O(δ2),

uniformly for b > 0 in a small neighborhood of 0.

Proof. We compute∫
B1

eWλZ1
λRe (x− b)dx = 8δ

∫
B1
δ

1

(1 + |z − δ−1b|2)3
(Re (z − δ−1b))2dz

= 8δ

∫
R2

1

(1 + |z − δ−1b|2)3
(Re (z − δ−1b))2dz +O(δ2)

= 8δ

∫
R2

z21
(1 + |z|2)3

dz +O(δ2)

= 2πδ +O(δ2)

where we have used the identity
∫
R2

(z1)2

(1+|z|2)3 = 1
2

∫
R2

|z|2
(1+|z|2)3 = π

4 . Similarly,∫
B1

eWλ |Z1
λ||x− b|2dx ≤ 8δ2

∫
R2

δ|x− b|3

(δ2 + |x− b|2)3
dx = 8δ2

∫
R2

|z|3

(1 + |z|2)3
dz ≤ Cδ2.

Taking into account that PZ1
λ = Z1

λ + O(δ) by (3.2), using Lemma A.1 the above integral
estimates give the thesis. □

Finally we deduce some integral identities associated to the change of variable x 7→ xα which
appears frequently when dealing with α-symmetric functions.
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Lemma A.3. For any α-symmetric function f ∈ L1(B1) we have that |x|2(α−1)f(xα) ∈ L1(B1)
and ∫

B1

|x|2(α−1)f(xα)dx =
1

α

∫
B1

f(y)dy. (A.1)

Proof. It is sufficient to prove the thesis for a smooth function f . Using the polar coordinates (ρ, θ)
and then applying the change of variables (ρ′, θ′) = (ρα, αθ)∫

B1

|x|2(α−1)f(xα)dx =

∫
dρ

∫ 2π

0
ρ2α−1f(ραeiαθ)dθ

=
1

α2

∫
dρ′

∫ 2απ

0
ρ′f(ρ′eiθ

′
)dθ′

=
1

α

∫
dρ′

∫ 2π

0
ρ′|f(ρ′eiθ′)|2dθ′

=
1

α

∫
B1

f(y)dy.

□
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