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Abstract

We study semi-classical solutions to the nonlinear Dirac equation
—iha - Vw 4+ afw + M (z)w = f(z, |w|)w

for z € R3, where M (x) denotes the scaler field V (z) or V(z)83, and f
describes the self-interaction which is either subcritical: W (x)|w[P~2,
or critical: Wi (z)|w|P~2 + Wa(z)|wl|, with p € (2, 3).

We prove multiplicity results with the number of solutions obtained
depending on the ratio of min V' and liminf|, . V(z), as well as
max W and limsup, o W (x) for the subcritical case and max W
and lim sup|g|_,oc Wji(2), j = 1,2, for the critical case.

We show also certain concentration phenomenon of the families of
semi-classical ground states at saddle points of M(z) = V(x)S.

Mathematics Subject Classifications (2000): 35Q40, 49J35.
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1 Introduction and main results

In quantum theory in order to describe the translation from quantum to
classical mechanics, existence of semi-classical solutions of stationary quan-
tum systems possesses an important physical interest. There have been large
amounts of works on existence, multiplicity and concentration phenomenon of
semi-classical solutions of nonlinear Schrodinger equations arising from non-
relativistic quantum mechanics. In comparison, only a few similar results are
known for nonlinear Dirac equations arising from relativistic mechanics. In
particular, as far as the authors know, there is no result on multiplicity of
semi-classical solutions to the Dirac equation. There is also no result on con-
centration at saddle points, typically, if the potentials are of the form V' (x)g
with V : R* — R and 8 = diag(ls, —1I5), a 4 x 4 diagonal matrix (see be-
low). Mathematically, the nonlinear Dirac equation is more difficult because,
unlike the spectrum of the Laplacian which is bounded below, the spectrum
of the Dirac operator is neither bounded below nor above. Additionally, the
concentration phenomena is quite complicated depending on the potentials,
and looking for conditions that ensure multiplicity is novel.

In this paper, we are mainly interested in utilizing variational methods to
obtain multiplicity results for the Dirac equation, by introducing some new
conditions depending on the behaviors of the potentials near the infinity,
which can be directly verified. There are two new ingredients. One is to give
a representation of ground state of the associated linear autonomous problem
(the so-called limit equation) which yields the comparison conditions and etc.
The other is to construct subspaces on which the relative energy functional
is bounded above, say by b, and satisfies the Palais-Smale condition below
the level b, and thus we are able to apply an abstract critical point theorem.
We also consider the concentration phenomena for the Dirac equation with
scale potential which is incomparable at different space points. Moreover, we
will deal with the case of critical nonlinearity.

We now recall the problems and state our results. Consider the nonlinear
Dirac equation, which occurs in the attempt to model extended relativistic
particles with external fields (see e.g. |22, 33|), given by

3
—ihdp) = ich )y axdp —me* By — P(a)y + Qu(z, )
k=1



for the (wave) function 1 : R x R® — C* which represents the state of a
relativistic electron. Here z = (1, o, x3) € R3, 0y = 0/0xy, ¢ is the speed
of light, m > 0 is the mass of the electron, h denotes Planck’s constant, and
a1, (o, a3, 8 are 4 x 4 complex matrices

(T 0 (0 o B
B_(O _I)v ak—<0k 0)7 k_]-7273
01 0 — 1 0
w=(o) (5 0) w0 )

The matrix potential P(z) stands for external fields, and the nonlineari-
ty Q : R? x C* — R represents a nonlinear self-coupling. Assuming that
Q(z,e") = Q(x,1) for all @ € [0,27], the standing wave solutions are of
the form ¥(t,z) = e'" w(z), and searching for such solutions is reduced to
finding solutions of the equation

with

(1.1) —iha - Vw + afw + M(x)w = F,(x,w)

for w : R® — C*, with a > 0, M(x) a 4 x 4 matrix-valued potential function,
F(z,u) a nonlinearity, a = (a1, g, a3), and a - V = 320 _ o0y

In the literature, there are many results concerning existence of solution-
s of (1.1) under various hypotheses on the potential and the nonlinearity
(see [22] for a survey). In [5, 10, 28] the authors studied the problem with
M(z) = V(z)ly and V(z) = w € (—a,a) and the nonlinearity of the so-called
Soler model F(w) = $ H(ww) with H € C*(R,R), H(0) = 0, ww := (Sw, w);
and in [23] the authors considered the nonlinearity F(w) = 1|ww|? +blwaw]?
with waw := (fw, aw), a := ajasas, by using shooting methods. Here and
in the sequel (-,-) stands for the inner product in C*. Such nonlinearities
were later studied by using for the first time a variational method in [21],
where more general super-linear subcritical F'(w) independent of  were con-
sidered. Existence and multiplicity results for (1.1) with M (z) and F(x,w)
depending periodically on x were obtained in [6] by using a critical point
theory. For non-periodic potentials (the Coulomb-type potential is a typi-
cal example), existence and multiplicity of solutions were studied in [16] for
asymptotically quadratic nonlinearities and in [18| for super-quadratic sub-
critical nonlinearities, where M (z) and F(z,w) were assumed to have limits
as |x| — oc.

For small A, the standing waves are referred to as semi-classical states.
To describe the translation from quantum to classical mechanics, existence
of solutions wy, h small, is of great physical importance. Only very recently,
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existence and concentration phenomena of semi-classical ground states of
the Dirac equation (1.1) with M(x) = V(x)I; and nonlinearity of the form
Fy(z,w) = W(z)h(w) have been studied, in [14]| for V(z) = 0 and h(w)
super-linear and subcritical, in [15] for V : R* — R and h(w) super-linear
and subcritical and in [17] for V : R® — R and h(w) = (g(|w]) + |w])w,
g(Jw])w subcritical.

Recall that the matrix-valued potential M (zx) is called a Scalar potential
if
(1.2) M(z)=V(z)8 or M(z)=V(x)ly

where V(z) is a real-valued function and I, the identity in C*, see [35]. In
this paper we are interested in such potentials. More precisely, for p € (2, 3),
writing € = h and assuming without loss of generality that a = 1, we consider
the equation with subcritical nonlinearity

(1.3) —iea - Vw + Bw + M(z)w = W (z)|w|P~*w,
and the equation with critical nonlinearity

(1.4) —iea - Vw + Bw + M (z)w = Wy (x)|w[P~ 2w + Wy(z)|w|w.

We consider the potentials (1.2) with the following assumptions, for (1.3)

(Py) V, W € C' N L>®(R3 R), |V]w < 1, V(z) attains a global minimum,
and W (z) attains a global maximum with inf,cgs W (z) > 0;

and for (1.4)
Qo) V, W; € C' N L=(R*R), |[V]w < 1, V(x) attains a global minimum,

and W;(z) attains a global maximum with inf,cgs W;(z) > 0, j =1, 2.

Notations: In order to describe our results some notations are in order:

T:=minV; Vi={x:V(z)="1}; Too = liminf V(z);

|z|—o00

k= max W; W o= {x:W(x) =k} Koo := limsup W(z);
x, € ¥ such that k, == W(x,) = max W(z); e
x, € W such that 7, == V(z,) = irélylﬂl V(z);
and for j = 1,2,
= macWy W= (o Wi@) = gk e o= limsup Wy(a)

|z|—o00



xj, € ¥ such that K, == W(z;,) = max Wj(z).

Case (A): The subcritical case. Firstly, we consider equation (1.3)
and we make the assumption

Theorem 1.1. Let M(z) be of the form (1.2), and assume (Py) holds, T < T
and Koo < Ky. Let m be the largest integer such that

2(3—p) 2

(1.5) < (1—|—7'oo> p—2 </‘iv>Pf2.

1+7 Koo

Then there is £ > 0 such that, for e < &, (1.3) possesses at least m pairs of
solutions in (s, WH*(R?).

Theorem 1.2. Let M(x) be of the form (1.2), and assume (Py) holds, 1, <
Too GNd Koo < K. Let m be the largest integer such that

2(3=p)

(16) m o< (AEme) ()

147, Koo

Then there is £ > 0 such that, for e < &, (1.3) possesses at least m pairs of
solutions in (5, WH*(R?).

For showing the concentration of ground states we assume additionally
(P;) One of the following assumptions holds:

(1) 7 < T, and there is R, > 0 such that W (z) < &, for all |z| > R,;
(2) K > Ko, and there is R, > 0 such that V(z) > 7, for all |z| > R,.

Set

of = {re? W)=k U{z &V :W(zx)> K.}, for (P)-(1);
’ {reW V)= u{zg¥ :V(z) <1}, for (P)-(2).

Obviously, &7 is bounded. Moreover, if ¥ N # # (), then k, = Kk, 7, =
T, {e &V :Wk) >k} =0={x&W : V() < 7}, consequently
g =VnW.

Theorem 1.3. Let M(z) be of the form (1.2), and assume (Py) — (Py) hold.
Then, for sufficiently small € > 0, (1.3) possesses a least energy solution
We € (g0 Ws(R3). Moreover, w. satisfies:



(a) There exists a mazimum point x. of |w.| with lim. o dist(z., /) = 0
such that, for any sequence r. — xo(e — 0), the sequence u.(zx) :=
we(ex + x.) converges in H'(R?) to a least energy solution of

(1.7) —ia - Vu + Bu+ M(x)u = W (zo)|ulPu.

If particularly ¥V O W # (O then lim. o dist(x., ¥ N #) = 0 and u.

converges in H'(R3) to a least energy solution of
(1.8) —ic - Vu + Bu+ My u = klulP"u
where My = 70 if M(x) = V(x)5 and My, = 714 if M(x) = V(x)1y.

(b) For some ¢,C >0, |w.(z)| < Cexp(— |z —z.|) for all x.

Case (B): The critical case. Next we consider equation (1.4). In the
following let .S denote the best constant of the Sobolev inequality

Slul2 < |Vul|s  for all u € H'(R?).
Let «y, denote the least energy of the equation
(1.9) —ia - Vu + Bu = [ulP2u.
In addition to (Qy), we will use the following assumption:
(®Q1) There holds
B () < S

1
Kico

For Z = (w1, 73) and ¢ = (y1,92) in R? we use ¥ > ¢/ to denote z; > y;
and xo > yo, and & > ¢ if ¥ > ¢ with min{zy — x9,y1 — 2} > 0. In what
follows, denote, for u € (=1, 7] and ¥ = (v1,v5) € R? with 7 > 0,

1+ 7\ 5 [ 11\ ZR%
L10 A= (7)) T G (D)
(110 ) m{ e R e B

and let E/’ = (K‘b K2>7 /2300 = (51007’%200% E’U = (’%IIMK/QU)'

Theorem 1.4. Let M(x) be of the form (1.2), and assume that (Qo) — (Q1)

hold, T < To, and R, > Rs. Let m be the smallest integer satisfying m >
m(7,Ky). Then there exists £ > 0 such that, for ¢ < &, (1.4) possesses at
least m pairs of solutions in (), WH*(R?).
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For another multiplicity result we assume further the following
(Qa) # = WO # 0.
Let z,, € # be such that Tw = V(2y) = min__; V().

Theorem 1.5. Let M(x) be of the form (1.2), and assume that (Qo) — (Q2)
hold and 1, < T. Let m be the smallest integer satisfying m > m(7y, K).
Then there eizsts £ > 0 such that, for e < &, (1.4) possesses at least m pairs
of solutions in (s, WH(R?).

For stating a concentration result we assuming additionally the following:
(Q3) One of the following assumptions holds:

(1) 7 < 7T, and IR, > 0 such that W;(z) < kj, if |z| > R, for
j=1,2.

(2) K > Koo, and 3 Ry, > 0 such that V(z) > 7, if |z| > R,.
Set, if (Q3)-(1) holds
Ay ={x eV Wix)=FRjp,j =12 U{z &V : W;(x) > Kkjn,j = 1,2};
and if (Q3)-(2) holds
Ay ={zeW V(z)=r1,}U{a g ¥ : V(z) < Tu}.

In the following theorem, & stands for 7, in the case (Q3)-(1), and @, in
the case (Q3)-(2). Obviously (as before), &7 is bounded, and & = ¥ N# if
the intersection is not empty.

Theorem 1.6. Let M(x) be of the form (1.2), and assume (Qy) — (Q3) are
satisfied. Then, for sufficiently small € > 0, (1.4) possesses a least energy
solution w, € (5, WH*(R?). Moreover, w, satisfies:

(a) There exists a mazimum point x. of |we| with lim. o dist(z., /) = 0
such that, for any sequence x. — (e — 0), the sequence u.(x) :=
we(ex + x.) converges in H'(R3) to a least energy solution of

(1.11)  —ia- Vu + Bu + M(zo)u = Wi (o) |ulPu + Wo(xo) ulu.

If particularly ¥ N Va # () then lim._,q dist(x., ¥ N 7//\/) = 0 and u,
converges in H'(R3) to a least energy solution of

—ic - Vu + Bu 4 Mpin v = k1|ulP™2u + Ko|ulu.



(b) For some c,C >0, |w.(z)| < Cexp(— |z —z.|) for all x.

Remark 1.7. 1) Observe that in (1.5), m can be sufficiently large if 7 closes
sufficiently to —1, or 7, closes sufficiently to oo, etc. One may make similar
comments on (1.6).

2) In [17], one ground state of (1.1) with either M (z) =0 and f(x,w) =
W(z)(|JwP~2 + |w|)w, or M(z) = V(z) and W(z) = 1, was obtained un-
der assumptions different from those in the present paper. Observe that if
W(z) = Wi(z) = Wa(x) (hence, koo = Kiso = Kaoo), then (@) reads simply
as

2(3—p)

(1—1—7’00 N G3/2

Koo = 6y,

and (1.10) reads as (for p € (=1, 7] and v = vy = 1)

m(u, V) = (L>2

Koo

2 Variational setting

Let | - |, denote the usual L9%-mnorm, (-,-)z2 the L*inner product. Set A =
—ia - V + 3, a self-adjoint operator acting on L?. A Fourier analysis shows
that 0(A) = 0.(A) = R\ (—1,1) where o(-) and o.(-) denote the spectrum
and continuous spectrum respectively.

Consider the Hilbert space £ = H'/? equipped with the equivalent inner

product
(U, U) = §R(|14|1/2u7 |*’4|1/2U)L2

and induced norm ||u||? := (u,u) = ||A|"/?u|3. Then there are decompositions
=L LY, uwu=u +u"

and
E=E @E", E*f=EnNL*

orthogonal with respect to the products (-, )2 and (-, -), such that A|;,- < —1
and A|p+ > 1. Recall that E embeds into L? for ¢ € [2,3] continuously and
L} . compactly for ¢ € [2,3). In fact we have (see, e.g., [17]):

loc

1) |ul3 < ||ul?® for all u € E.

3(a=2)
2) For any ¢q € [2,3] and for all u € E, S5 lul? < ||lul|* where S is the
best Sobolev embedding constant.



In the following, let
Mf(x) = M(&’L‘),
W.(z) = W(ex) and Wj.(z) = Wj(ex) for j =1, 2,

W (x)|ulP~2, in Case (A),
[, |ul) = 2 .
Wi (x)|ulP™= + Wy(z)|u|, in Case (B),
F(z,u) = 0'"‘ flz,t)tdt and F.(z,u) = F(ex,u),
V. (u) = [gs Felz,u).
Define the functional

B, (u) = % /R (=i - Vu+ fu+ M.(2)u, u) — V. (u)

1, e ey 1
=5 (1P = o) + 5 [ (@) = 0o

where (and in the sequel) ||u™||? — ||u~||? refers to the splitting £ = E~® E™.
Denoting E, = E- @ Rte and E, = E~ @ Re for e € E+\ {0}, and Ey =
E~ @ H for any finite dimensional linear subspace H C E™, it is easy to
check the following

(2.1)

Lemma 2.1. One has:

1) U, is weakly sequentially lower semicontinuous and . is weakly se-
quentially continuous.

2) . possesses the linking structure:

1° There exist r > 0 and p > 0 independent of & such that ®.|z+ >0
and Oclgr > p, where B = {u € ET : |lu|| <r} and S = {u €
ET: lu) =}

2° For any finite dimensional linear subspace H C E™T, there exist
R = Ry > 0 and C = Cyg > 0 such that ®.(u) < 0 for all
u e Ey \ Br and max ®.(Ey) < C.

Let ¢. denote the minimax level of ®. deduced by the linking structure

(2.2) ¢.:= inf max ®.(u)= inf max D.(u).
e€ET\{0} ucke e€ET\{0} uck.

Let . := {u € E: ®.(u) = 0} be the critical set of ®.. Note that if
u € . then
1

D (u) = Bo(u) — 5@ (w)u = / e ulf = Fer, ul) > 0
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Using the same iterative argument of [21, Proposition 3.2| one obtains easily
the following

Lemma 2.2. If u € J with . (u) < C) and |uls < Cy, then, for any
q € [2,00), u € WH(R?) with ||u|lwi« < A, where A, depends only on
C1,Cy and q.

To describe furthermore c. we recall the Mountain-Pass type reduction,
see [1] (also [18, 31, 34]). Consider, for a fixed u € E*, the map ¢, : E~ — R
defined by ¢, (v) = ®.(u + v). Observe that, for any v,w € E~,

"

¢ (v)[w, w] = —[w]* + /RS<Ma(93)w,w> — U (u+v)[w, wl.

Since |V|w < 1 and W, is strictly convex, there is a unique h.(u) € E~ such
that

(2.3) Ou(he(u)) = max ¢, (v).

veEE~

It is clear that v # h.(u) if and only if ®.(u + v) < ®.(u + h.(u)). Define
I.: ET = R by I.(u) = ®.(u+ ho(u)), that is,

Fa(w) = 5 (l? = o)) + 5 [ (Mol A et hefu)
— U (u+ he(u)).

Set
No={ue EY\{0}: I'(u)u=0}.

In the following we will call {h.(-), I.(-), 42} the "mountain-pass" reduction
for the equation:

—ia - Vu+ pu+ M (z)u = f.(z,|u|)u.

Plainly,

(see |1, 14, 18]). This, jointly with (2.2), implies

Lemma 2.3. There is a sequence {e,} C E* \ {0} such that, denoting
Up = €y + h5<€n)7
O (u,) = c. and PL(u,) —0

as n — o0.
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Furthermore, one has the following

Lemma 2.4. Let u, = u,} 4+ u, be a (PS). sequence for ®. and set v, =
wh 4+ he(u)), z, = u;, — ho(ul). Then ||z,]| — 0 and v, is also a (PS).
sequence for ®., that is, u is a (PS). sequence for I.. Consequently, either
c=0o0rc>ec..

Proof. 1t suffices to show that ||z,|| — 0. Observe that
0= (v,)z, = —(he(w,)), 20) + /J<Mevn, Zn) — V() 2,
.
and since u, is a (PS) sequence,
o(1) = DL (uy)z, = —(uy,, 2n) + /RS(MEun,zr) — WL (uy,) 2
Thus,
o) = 2l = [ (Mot 20) + (Ve +20) = Wilo) 2

Since F.(z,u) is strictly convex, (V. (v,42,)—W.(v,)) 2, > 0, which, together
with the fact that |V|. < 1, implies

o(1) = (1= [Vlso)llzal*
Thus, ||z,|| = 0. Finally, it follows from (2.2) that if ¢ # 0 then ¢ > ¢.. O

Below, for notational convenience, we denote by ®, the energy functional
of the equation

(2.4) —ia- Vu+ pu+ M(0)u = (0, |u|)u.

We define correspondingly c¢g, the critical set %5, and the "mountain-pass"
reduction {hyg, Iy, A} for (2.4).

Lemma 2.5. We have

(1) For any uw € E* \ {0}, there is a unique t. = t.(u) > 0 such that
teu € Az Moreover, lim._,ot.(u) = to(u), ||he(teu) — ho(tou)| — 0,
and limsup,_, ¢. < Io(tou). In addition, if u € Ag then to = 1.

(2) lim. o c. = ¢p.
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Proof. Tt follows from [1, 14] that, for any u € E* \ {0}, there is a unique
te = t.(u) > 0 such that t.u € AZ, and moreover {t.(u)}o<-<1 is bounded.
It is easy to check that, if t. — o then h.(t.u) — ho(tou). Consequently,
limsup,_,, c. < Ip(tou). It is clear that, since t.u € A, one has tou € .
Thus, if u € Aj, there must be ty = 1. As a consequence, we see that

limsup ¢. < ¢.

e—0
We now verify that
(2.5) hlgll_)iglf ce > cp.

Assume by contradiction that c. < ¢y and let § > 0 be small so that c¢. <
co — 0 along a sequence ¢ — 0. For any e. € A, with ®.(u.) < ¢y — 6,
us = e. + he(e.), it is clear that {u.}.~o is bounded in E. A concentration
argument shows that there exist {y.} C R* and R > 0,0 > 0 such that

(2.6) lim inf lu.|* > o.
e—0 Br(ye) €
In particular, we choose, by Lemma 2.3, u; = e., +h, (e, ), j — 00, satisfying
1 1
(2.7) Ce; < O (uy) < e +3 and H(I);j (ug) || < i
Note that

o(l) + ¢, = / Fe, (2, u )
R3
where F., (z,u;) = 3 f., (z,u;)|u;[* — F,(z,u;). Set y; = y.,. Plainly, if {y;}
is bounded then u; — v # 0, a solution of (2.4) with energy
co > Po(v) = [ Fo(0,v) <liminf | F, (z,u;) = liminfc;,

R3 J—00 R3 J—00

contradicting to limsup;_, ., ¢; < co — 0.

Assume that {y;} is unbounded. Set v;(z) = wu;(x + y;), M;(z) =
M(ej(x 4 y;)) and Fj(z,v;) = F((¢j(z + y;),v;). Then

& (v;) = DL (u;) = 0.

L. forq e [2,3), vj(x) = v(z)
a.e. for z € R* and ¢, — & as j — oco. By (2.6), v # 0. Clearly v solves
(2.4) with the energy denoted by ®o(v). Then

One may assume that v; = vin E, v; — v in L]

o(l) +c., > liminf/]:"j(:c,vj) > /.7:"(0,1}) = Oo(v) > o,

j—00

again a contradiction. O
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In order to establish our multiplicity results, we recall an abstract critical
point theorem, see [7, 13|. Let X, Y be Banach spaces with X being separable
and reflexive, and set £ = X @Y. Let S C X* be a countable dense subset.
Let P be the family of semi-norms on E:

ps: E=X0Y =R, plr+y) =|s@)|+yll, se8.

Denote by Tp the topology on E induced by P. Let T, be the weak*-
topology of E*.

For a functional ® : E — R and numbers a,b € R we write ®* := {u €
E:®u) <a}, &,:={ue E:®(u)>a}, and & := &, N P, Assume

(@) ® € CYE,R); @ : (E,Tp) — R is upper semicontinuous, and &’ :
(®,, Tp) — (E*, Ty+) is continuous for every a € R.

(®y) there exists r > 0 with p := inf &(5,Y) > &(0) = 0 where S, Y := {y €
Yoyl =rk;

(P3) there exist a finite-dimensional subspace Yy C Y and R > r such
that we have for £y := X x Yy and By := {u € Ey : ||ul| < R}:
b :=sup ®(Ep) < oo and sup ®(Ey \ By) < inf &(B,Y).

We consider the set M(®¢) of maps g : & — E with the properties
(1) g is P-continuous and odd;
(17) g(®*) C @ for all a € [p, b];

(1i1) each u € ®° has a P-open neighourhood O C FE such that the set
(id — g)(O N ®°) is contained in a finite-dimensional linear subspace.

The pseudo-index of ®¢ is defined by
¥(c) :== min{gen(g(®) N S,Y): g € M(P°)} € NgU {0}

where gen(-) denotes the usual symmetric index. Additionally, set for d > 0
fixed

Mo(®9) := {g € M(®%) : g is a homeomorphism from ®¢ to g(®?)}.
Then we define for ¢ € [0, d]
Yale) i= min {gen(g(0) NS, : g€ My(@%)}.
Note that, by definition, ¢(c) < 14(c) for all ¢ € [0, d].
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Theorem 2.6 (|7, 13|). Let (®1) — (P3) be satisfied, and assume that O is
even and satisfies the (PS).-condition for ¢ € [p,b]. Then ® has at least
n = dim Yy pairs of critical points with critical values given by

¢ :=inf{c>0:4¢(c) >i} € p,b], i=1,..,n.

If ® has only finitely many critical points in <I>f), then p < cp < cy < -+ <
¢, < b.

Remark 2.7. Setting X = E~ and Y = E™, it flows from the definition and
Lema 2.1 that the functional ® = &, is even and satisfies (®;) and (Py).

3 A strongly indefinite quadrature form

In order to construct the subspace satisfying the assumption (®3) we make
certain preparations in the following two sections.

In general, for any 0 # v € R, set A, = —ia - V 4 74, a self-adjoint
operator on L? with spectrum o(A,) = R\ (=], 7). By ¢5), |- II4
and £ = E @ Ej we denote the inner product, norm and orthogonal de-
composition associated to the operator |A,|'/2, see, e.g., [17]. Without loss
of generality we always assume below v > 0. Let S, denote the Sobolev
embedding constant:

Sqlulg < [Vulz + [ul;

for uw € H'. Note that, if ¢ = 6, then notation Sg = S and Slul2 < |Vul3.
Recall that

(8.1 SVuli <|1A,[M2ul3,  ACTas

2q/(4—q)’u|§ <| |A7|1/2U|§

for ¢ € [2,3] and all u € E (see, [17, Remark 3.2|). In particular, if ¢ = 3
then SY/2|ul? < ||A,|Y%ul2 for all v € R.

Consider the quadrature form
R3

for u € E, where \ stands for a 4 x 4 symmetric real matrix with norm
|A] < . Denote, for ¢ € [2,3],

l,:= inf max M
weBN\{0} veE; U+ V2

14



and let o(u) € E be such that

W) — max a(u+v) _ a(u+ o(u))
()= X 0 ™ Tut o)l

(o(u) is unique, see [17]). It is clear that

q—2 %5
(32) Vg = 2—qfq ’
is the least energy of
(3.3) —ia - Vw + yBw + dw = |w|!%w .

Set ag(w) = [ps (Ayw, w) and let Ay, denote the minimal eigenvalue of
A. Observe that, by interpolation,

2(3—q) | |3(q—2
[l < O,
which together with (3.1) implies
(7 + D200 S22 o2 < |4, 20
Therefore,

a(u+o(u)) _ a(u) S 2(3-q) _ 3(4=2)

3.4 = Y4+ Amin) @ S
&4 ut o = Jup =0 A

In particular, by definition, taking v = 1 and A = 0, (3.2) yields

p—2
(3.5) Tp = o S26-2)
(it is also easy to show that 7, > }’2;; 5215((51):1?)) ).

Remark that, by definition, for any ¢ # 0, there holds
a(u+o(u) a(tu+to(u)) < a(tu + o(tu))
lu+ o (u)|2 C|tu + to(u)|2 = [tu+o(tu)?
_ a(u+ o(tu)) < a(u+o(u))
lu + %a(tu)lg T futo(u)?

hence

(3.6) to(u) = o(tu) and l(u) = £(tu).

15



Let, as before, {h(-),1(-), 4} be the "mountain-pass" reduction for (3.3).
Set

a(u+o(u))

(w) = ( q

u+o(u)lg

Plainly, one checks ([17]) that, for any v € £ @ Ru,

>

_1
t= )q_Q, W = tu+to(u).

(3.7) 0= %[a(t&,v) -

|awq—2aﬁﬂ.
RS

This implies that fu € 4, and by the uniqueness of #(u)(> 0), h(u) and
o(u) (see [17]), h(tu) = to(u). Note that, in particular,

~

(3.8) hu) =o(u) ifue.N.

Lemma 3.1. Assume that v > 0 and let {h(-),I(-), A} be the "mountain-
pass" reduction for the equation (q € [2,3])

—ia - Vw + yfw + Aw = v|w|"w .
Then for allu € N

a(u+ h(u)) 2(3-q) _3(4-2)
————— > (v + M) ¢ S % ..
fut A = (7 F Amin)

Proof. Let u € A and w = u + h(u), and set @ = v/ @y = p1/(@=Dy 4
v/@ Dh(u). Then w satisfies (3.7) for all v € E; & Ru, that is, & =
a2y e # . Thus, o(d) = h(a) = vY@ () by (3.8) and the u-
niqueness of h(-), and

alu+o(w)  a(pt@ Dy + M@ Vg(y))
[u + o (u)2 ~ @y + a0 (u)|2
a(v( @ Ny 4 o (v Dy,))
- ‘yl/(qfl)u + J(yl/(Q*l)u)‘g
a(yl/(q_l)u + yl/(q_l)h(u))
|1/ eV + yl/(q—l)h(u)g
~alu+ h(u))
o fu+ h(u)[2”

This, together with (3.4), implies the desired estimates. O
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4 Preliminary results

Firstly, we recall a result on the representation of solutions to certain constant
coefficient systems .

Lemma 4.1. Let M be a 4 x 4 symmetric constant real metric and either
F(u) = Zlul? or F(u) = 2 |ul’ + 2 |ul?, and let u be a solution of

—ia - Vu + Bu+ Mu = VF(u), u € H'(R?, CY).

Then the energy
1
O(u) = —/ (—ia - Vu,u).
6 Jrs

Proof. By the Pohozev identity (]|21])
/ (—ta - Vu,u) = g/ —{((8+ M)u,u) + 2F (u).
R3 R3
On the other hand,
/ (—ia - Vu,u) =/ —{(B+ M)u,u) + VF(u)i.
R3 R3
Thus,
1 _ _ __ n(3—p) »
5 [+ 20w = [ sr) - vra=2E=2 [ p,

so the energy functional

O (u) =P (u) — %Mu)u
- /Rg<—m Vau, u) + (8 + M)u, u) — m(?;p_p) L

In the following by M, we denote the constant matrix ufS or uly. Ad-
ditionally, write M#(x) for the matrix function V*(z)8 or V*(z)I, where
VH = max{u, V(z)}, V*(x) = V*(ex) (the identity matrix I, will be omitted
below. Moreover, set W*(z) = min{v, W(z)}, W7 (z) = min{v;, Wj(z)},
and W (x) = W (ex), W (x) = W, (ex).

17



Consider, for any 7 < p < 7, and koo < v, 01,15 < K,

(4.1) —ia - Vu + Bu+ Myu = vlulP~2u,

(4.2) —ia - Vu + Bu+ Myu = vi|ulP*u + vy|ulu,

(4.3) —ia - Vu + Bu + M (z)u = WY (x)|ulP~u,

(4.4) —ia - Vu + Bu+ M (z)u = W (@)|ulP~>u + W2 (2)|u|u .

4.1. The equation (4.1). Its solutions are critical points of the func-

tional
1 _ 1 v
) s = 5 (It =l IP) + 5 [ M =2 [ Jul

2 P Jrs

defined for v = u™ +u~ € E. Denote the critical set, the least energy, and
the set of least energy solutions of I',,, as follows

Ly ={ueE: T, (u) =0},
Vv = If{Ly (u) © w € £, \ {0}},
T = 10€ Lyt Tp() = Yo [1(0)] = o).
The following conclusions are from [18]:
i) L # 0, Y >0, and L, C 5, WY
i) Y is attained, and %, is compact in H'(R?, C*);
ii1) there exist C,c > 0 such that |u(z)| < Cexp (—c|z|) for all z € R? and
U € Fy-

Using v, we have the following representation

Lemma 4.2. Assume M, = pf and let u be a least energy solution of (4.1).
Then

2(3—p) =2

Vv :7p(1+ﬂ) P2 pp-2,

18



Proof. Set

v(@) = <1—l|i,u>p2u<1iu>'

Then v is a ground state of (1.9). In virtue of Lemma 4.1, one has

b = %AB<—¢Q.VU,U> - (1iu)’32(1+u)2 (% /R3(—z'a-Vu,u>)

2(3—p)

(L)

ending the proof. O

Lemma 4.3. Let —1 < p; < 1 and v; >0, j = 1,2, with min{us — 1, v1 —
v} > 0. Then Yy < Vuowe- In particular, Y, < Y if 1 < po, and
o > Yuvo Zf 1 < Vs.

Proof. The conclusion follows from the representation of 7,, in Lemma 4.2

it M, = pB. If M,, = p then the conclusion follows directly from the repre-
sentation of I',,. O

Set Mo, = M, and Yoo = Vrs... Consider
(4.5) —ia - Vu+ Bu+ Mou = KooulPu.

Lemma 4.4. Let 7 <t < Too and Koo <V < K.

2(3—p)

() ()
T = v 1+ 7+ oo -

Proof. Let u be a least energy solution of (4.5) and set

moo(lJru))piz ¢ 1+ p

(4.6) (@) = bu(€r), b= <y(1 o =i

1) M,, = pf. It is clear that v is a solution of (4.1) with desired inequality
(by using Lemma 4.1).

2) M, = p. Writing u = (uj,us) € C? x C?, observe that (4.1) is
equivalent to
—i0 - Vg + (1 + p)uy = vluP~y,
—io - Vuy — (1 — p)uy = v|ulP 2u,
with the energy functional

1 , v
() =5 [ (i V) + (1l = (1=l = 2 [ fup.
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Now let u be a least energy solution of (4.5) and v be defined by (4.6). Setting

(1+p)(1 - 7o)
(14 7oo) (1 = )’

the function v is a least energy solution of

(4.7) n=

— i - Vg + (14 p)vy = v|v[P~2u,
—io - Vo, — (1 — p)vy = v[o|P vy

with energy

1 , v
10)i=3 [ (mia- Vo) + (@ )l =1 = wlal = % [ 1ol

Since 2 )
M= Too
n—1= <0,
(14 7o) (1 = 1)
ie., n <1, one has I',, (v) < I(v) which, together with Lemma 4.1, implies
the desired first inequality. m

Letting [r] denote the integer part of r € R, as a consequence we have

Lemma 4.5. There holds m,, < 7. where
() (=)™
m= |[|— )
Koo 1+p

4.2. The equation (4.2). Its solutions are critical points of

Vo V1
Do) = Ty (1) = 2 [ =) =2 [ up
R3 P Jrs
on u € E, where

1 _ 1 v

Lo () = 5 (I I = 7 1P) + 5 [ () =2 [
1 _ 1 12

@) = 5 (1017 = 07 7) + 5 [ =2 [

R3 R3

Let V.5, Vs Y denote the linking levels of T'yz, Ty, Ty, respectively.
One has

(4.8) VYuv < Yuvrs  Vuv < Yuwa -
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Lemma 4.6. v,; is attained provided that

33/2
4.9 g < —=5.
( ) T 6V22
Proof. Let {u,} C A, be such that I(u,) = I ,5(un, + ho(un)) = ¢ = Y.
It is not difficult to check that {w, = u, + ho(u,)} is bounded in E. By a
Lions’ concentration principle {w,} is either vanishing or non-vanishing.
Assume that {w,} is vanishing. Then |w,|s — 0 for s € (2, 3), one gets,

L (i + o)) = éa(wn) +o(1).

Similarly,
6c

3
W2 =X 4 o(1).
unf} = 2+ of1)
Let I',5 be the energy functional and (h(-), I(-),.#) the "mountain-pass"
reduction of
—io - Vi + i + M, = va|0|w.
Let ¢, > 0 be such that 4, = t,u, € .# and set W, = t,u, + B(tnun)

Plainly, {t,} is bounded, hence [w,|; — 0 for any s € (2,3). By definition,
I'o(w,) < Tup(wy,) and I'yp(wy,) < T'yp(w,). Thus

This yields that

Hm Lo(wn) = lim Duolidn) = ¢

which, together with the fact that u, € M , implies that

. 1 . 1 .
Lo(y,) = a(wy,) = —l/szn@ — C,
6 6
that is,
A 61" ,5(1, )\ 1/3 a(t, . 6¢c\ 1/3
o (S U)oy
12) |20y, [3 V2

Now, by virtue of Lemma 3.1 with ¢ = 3 and v = v,, we see that

53/2
C 2> —F,
~ 6v3
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a contradiction.
Therefore, {w, } is non-vanishing, that is, there exist r,§ > 0 and z,, € R3
such that, setting v, (z) = w,(z + x,), along a subsequence,

/ v, |2 > 6.
+(0)

Without loss of generality we assume v,, — v. Then v # 0 and is a solution
of (4.2). And so v,y is attained. ]

Lemma 4.7. v,; is attained provided the following:

2(3-p) Vo 2 G372
(4.10) () ( ) <2
D) = 6,
Proof. Assume M, = pf3. Consider the norm ||ul|, = ||A,|"?ul, on E in-

duced by the operator A, = —ia -V + (14 p)B. Then 1) follows from (4.8)
and Lemmas 4.2 and 4.6.
Consider 2). Observe that, since p < 0, for u # 0,

L) = [ (i T+ (B, + 5 [ il = B, )

2
121 p 125} 3)
— | (Zp+2
| (B + %21

<%/Rg((—ia-v+(1+,u)6)u, u) — % |ul|?

R3
Now the conclusion follows from (4.8) and Lemmas 4.2 and 4.6. O
In the sequel, by 7 < 1% (resp. 17 < 1) we mean that min{vf — vy, 3 —

vot >0 (resp. min{vi — vi,vz — 3} > 0) for any vectors v; = (v],13).

Additionally, set for 7 = (uy, po) € R?,

pidy 0 w0
M; = = .
g ( 0wl ) ( 0 ko )
For any fix = (tr1, o) € R?, k= 1,2, Mz, > Mg, if fiy < flo. The following

conclusion is clear.

Lemma 4.8. Let pi; > —1 and U; > 0 for j = 1,2. If ps > py and v* >
then Y, ;m < Y. If min{uo — p1, 7 — 02} > 0 then yu,m < Y.
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Proof. We only verify the case M, = pf3 (the other is clear). In fact, u is a
least energy solution of (4.2) if and only if v(z) = bu(z/(1 + u)) is a least
energy solution of

1
—ia-Vu+ fv = T (blpj—iz [v[P~2v + % |v|v)

with the energy
v(v) = (1+ p)*b*y(u).

The conclusion follows easily by taking b = 1, (112“)1/ =2 and 1:—2”, respec-

tively. O]

Remark 4.9. Similarly, if My < My, and v, > U5 then v, < Vji,s,, Where
vz denotes the energy of (4.2) with M, replaced by M.

Below, let u be a least energy solution of
(4.11) —i - V4 Bu 4+ Mot = Koo |uP™?u 4 Koo |u|u

with the energy denoted by 7s which is attained if vg < S%2/6k2, by
Lemma 4.6. For 7 < u < 7 and kjo < 15 < Ky, set

1+
o(e) =bu(er), &= 11 b=max{b, b},
where )
bl _ (6“100)?2 and bg _ 5'%200‘
%1 D)
Then, if M, = p3, v solves
: Fioo(1 + ) Lo R2co(1 4 p)
i 1 — P 20\ - T )
ioc- Vo + (1 + p)pv b2, (15 7)) v P + ba (L 7o) valvlv,
and, if M, = p, v solves
, Fiso(1 + 1) Lo, Raco(l 4 p)
P Myv = P 200" T )
o - Vo + v+ Mgv 2 (1T 7o) v 4+ ba(1 £ 7o) vo|v|v

with energy denoted by I*(v), where i = (u1, p2) with

=81 +7) = 1=p, pp=1-¢§1—-7x)>p.
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By dfinition, Remark 4.9 and Lemma 4.1, it is clear that

o < () = (P,

1+pu
Set
1+Too)2fz”)< 2 )1»22 if b, > b
— N
o 1+p K1
4.12 = o0
@12 mr)=q 1A |
(— , otherwise.
R200
Then

m(:uv 77) I*(U) = I

and we have

Lemma 4.10. For 7 < i < 7 and Kjoo < v; < Kj, there holds

m(p, V) Yo < V-

4.3. The equation (4.3). The solutions of (4.3) are critical points of

Joo ] I L
o) = 3 (It = o 7)+ 5 [ ) =3 [ wel
2 2 R3 D Jrs3

onu € F = Et@® E~. Let ¢ denote the Minimax level of ®* deduced
by the linking structure (see (2.2)). Write ht”, I# A* and so on, for
the notations associated to the Mountain-Pass induce. Recall that, for any
u € Et\ {0}, there is a unique ¢ = t(u) > 0 such that t(u)u € A" ([18]).
It is easy to check that ¢# = inf{I"(u) : u € #}}.

In the sequel we denote

oo Too Koo o0 __ [ TooKoo
O =] , C=cl )

N = AT

and I'oo =1k, Yoo = Vrera- As a consequence of Lemma 2.5 we have
Lemma 4.11. ¢° = 7o as e — 0.

Remark 4.12. Similar, one obtains easily that lim._,o ¢ = 7.

As a consequence one has

Lemma 4.13. ®* satisfies the (PS). condition for ¢ < v if € small.
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Proof. Writing I(u) = ®*(u), let I(u,) — ¢ and I'(u,) — 0. Then w, is
bounded and we can assume that u,, — u. Clearly I'(u) = 0. Set z, = u, —u.
Note that z, = 0in E, z, — 0 in L] for ¢ € [1,3), and z,(z) — 0 a.e.
in z. It is easy to check that ®(z,) — ¢ — ®*(u) and (®°)(z,) — 0.
If ¢ = ®*(u) then 2z, — 0 and we are done. If ¢ — ®*(u) > ¢ then
c > ct 4 ¢, a contradiction. ]

4.4. The equation (4.4). Its solutions are critical points of
v v 1 v 3
O (u) = BE" (u) — 5 [ Wyl (2)lul
3 R3

with 7 = (v1,1,). Let ¢*” be the linking level (see (2.2)). Write ®% and ¢*
for g = 7o and U = (K100, K200 ). We have, as Lemma 4.11, the following

Lemma 4.14. ¢ — v ase — 0.
Also as Lemma 4.13 there holds the following
Lemma 4.15. ®7 satisfies the (PS). condition for all ¢ < vs.

Proof. Denote I(u) = ®*” and let I(u,) — ¢, I'(u,) — 0. One can assume
u, — u and set z, = u,, —u. Then z, is a (PS). sequence for <I>f° where ¢ =
c—1(u). By Lemma 4.14, if I(u) # ¢ then c—I(u) > 7y, a contradiction. [J

5 Proofs of main results: the subcritical case
Setting u(x) = w(ex), the equation (1.3) is equivalent to the following
(5.1) —ia - Vu + Bu+ M (z)u = We(z)|ul/2u.

Proof of Theorem 1.1. Without loss of generality, we may assume that 0 € ¥
and z, = 0. Observe that 7 = V(0) and x, = W(0). Solutions of (5.1) are
critical points of the functional ®.(u) := ®I%*(u). For notational convenience
we denote ®g(u) =T',.,. We will utilize Theorem 2.6. Obversely, ®. is even,
and in virtue of Remark 2.7 the conditions (®;) and (®,) are satisfied. It
remains to verify (®3).

Let u € %, and let x, € C§°(RT) be such that y,.(s) =1 if s <r and
xr(5) =0if s > r+ 1. Set u.(x) = x,(Jz|)u(z). Recall that |u(x)| < Ce el
for some C,c > 0 and all z € R3, hence ||u, — u|]| — 0 as r — oo. Then
|luf — u®| < |lup —ul| = 0, Po(u,) = Yrw, and ®f(u,) — 0 as r — co. Let
ho : ET — E~ be defined so that ®g(u + ho(u)) = max,ecp- Po(u + v) (see
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(2.3)). Plainly, |Ju, —ho(u,)|| = 0 and ||u, —1,| — 0 where 4, = u,} +ho(u)
(see Lemma 2.4). Therefore,

max Do (u +v) = Dy(i,) = Po(u,) + 0(1) = Yrw, + 0o(1).
vekb™

Observe that since V(ex) — 7 and W(ex) — K, as ¢ — 0 uniformly in
|z| < r+ 1, we have that, for any § > 0, there are s > 0 and g5 > 0 such
that

5.2 D, < Yo + 0
(5.2) pomax (W) < Yrw, +

for all » > r5 and ¢ < &5.

Let v/ = (2j(r + 1),0,0), define u;(z) = u(x —y/) = u(x1 — 2j(r +
1), 22, 23), urj(z) = u.(x —y?) for j = 0,1,...,m — 1. Setting 7, = (2m —
1)(r+1), it is clear that supp u,; C B;,,(0). Obviously {u,"}7' are linearly
independent. Indeed, if w* = Z;.”:_Ol cju,; = 0, denoting w = z;n:_ol Cjlyj,
one has w = w™ +w™ and

—[w”|* = ar(w) = ZCJZQT(U:_J) = a-(u,) ZCJQ

which implies ¢; = 0,7 = 0,1,...,m — 1. Now set

E., =FE @®span{u,; : j=0,....,m—1}
=E & Span{u:fj :j=0,...,m—1}.

By virtue of Lemma 2.5, let t.,; > 0 be such that tgrju;rj € .. Observe
that

58) B, e = M = L
. . + . . + . + o —
(5.4) ll_I)% 7“linolo he(terjuy;) = ll_rg(l) he(teju;) = ho(u™) = u™,
(5.5) ll_r)% Th_glo ||hs(terjuj~rj) — tenjui || = ll_r)% [he(teju™) — teju”|| = 0.
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It is not difficult to check the following

max & P ( ( Z tejul; + he( tajujj))
7=0
m—1
=0 (Dt + Loy ) + o(1)
7=0
m—1

tejum) +o(1,)
0

Il
&
—

J

3
L

q)a(tejufrj) + 0(1?“)

T
1L

(ba(taju + teju,;) + o(1;)

<.
Il
o

3
L

= O(tul; + he(teu))) + o(1,)

<.
I
o

3
L

= Do (tojuy; + ho(tojuy;)) + o(1ye)

<
Il
o

3
L

= : CDQ(U) =+ 0(175)
=My + 0(17"6)

o

where o(1,) means arbitrary small as r — oo, and o(1l,.) means arbitrary
small as r sufficiently large and ¢ sufficiently small.

Now, by assumptions and Lemma 4.5, for any 0 < § < 7o, — m s, one
may choose r > 0 large and then ¢,, > 0 small such that, for all ¢ < ¢,
maxyep,, Pe(w) < 7o — 9. Now by Theorem 2.6 one gets the multiplicity
conclusion.

By Lemma 2.2 we see that the solutions are in ﬂsZQWLS.

Finally, repeating the proof of [20, Lemma 4.6] gives the exponential
decay.

Now, as (5.2), one can choose r > 0 and ¢, > 0 such that, if ¢ < ¢g,,,

O (w) < Yoo for allw € E,,.

It follows from Lemmas 4.13 that ®. satisfies the (PS).-condition for all
¢ < Y0, that is, the general condition (®3) is satisfied. Now by applying
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Theorem 2.6, one sees that either ®. has infinitely many critical points, or
has at least m pairs of critical points with different critical values 0 < 2 <
< el < supye gy, Pe(w) < Yoo O

Proof of Theorem 1.2. We are sketchy. Assume z,, = 0 and consider u =
Tw =V (0), v =k =W(0) and &, = ™", &y =T',,. Let u € Z,,,., Po(u) =
Yror- As before. define u, and w,;,j = 0,..,m—1, and set the m-dimensional
subspace E,,. Then one checks that, for w € E,, with {(w) = max ((E,,),

Bo(w) = —L 2 ()l

(ml(w)P =2 +o(1)
=% (m(—(l i :">3_p) ’QJ) i o(1)

by (1.6) as r — oo. Now Theorem 2.6 applies. O

Remark 5.1. Let u be a solution with ®.(u) < A. Plainly one checks the
following

(5.6) Au = ((1 + Vo) +ie Z akﬁkV(ex)>u +r.(u)u
k=1

where
3

re(u) = (ié Z oW (ex) — W5|u|p*2) P2

k=1
> uoLu
+ilp — 2Welu Y akﬂ%[—k} .
= [
By the Kato’s inequality we get (by sgn denoting the sign function)
Alu| > R[Au(sgnu)]

(5.7) > ((1+Vo)? —e|VV (ex)]) [u| — We|u?~?

(cf. [11]) which, together with the regularity estimates, implies that there is
A > 0 depending on A but independent of € such that

Alu| > —=A|u].
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Now the sub-solution estimate shows that there exists Cy > 0 independent
of € > 0 with

(5.8) lu(z)] < Co / u(y)]| dy

B1(0)

for all z € R3. In addition, letting ¢ = min{(1 + V(x))? : z € R3}, the
estimate (5.6) implies that there exists £; > 0 such that, for all £ < e,

o _
(5.9) Aful 2 2 [u] = (5luf**=)u].

Proof of Theorem 1.3. If the potential M(z) = V(x)l,, the concentration
had been proved in [15], we need to deal with here the other potential M (z) =
V(z)B. Moreover we give only the proof for the case (2) of (P;) because the
case (1) can be handled similarly.

We may assume z,, = 0, 7, = V(0) and x = W (0). The existence follows
from Theorem 1.2. Note that, by Remark 4.12, the least energy

(5.10) Ce = Yoy as € — 0.

The remainder will be argued in several steps.

Step 1) Let e; — 0, u; € X where J; = J#,. Then {u;} is bounded.
A concentration argument shows that there exist a sequence {;} C R* and
constants R > 0,6 > 0 such that

(5.11) liminf/ ;|2 > 6.
1700 JBr(y))
Set vj(z) = uj(x + y;). Then v; solves, denoting VSJ_ (z) = V(ej(z +y})) and
W (1) = Wies(a + 1))
(5.12) —ia- Yoy + (1+ V2, (2)) Buy = WL, () oy,

with energy

A

N p—2 A
ey =) = P [ W@l

Plainly, R

ésj = (I)gj (’Uj) = ¢5j (Uj) = Cg;-
We may assume additionally v; — v in E and v; — v in L] for ¢ € [1,3)
with v # 0 by (5.11).
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Since V' and W are bounded, without loss of generality, we assume
Viejy;) — Vo and Wi(ejy;) — Wy as j — oo. By virtue of the bound-
edness of VV and VW one sees that Va](x) — Wy and Wsj () — Wy as
j — oo uniformly on any bounded set of z. Consequently, by (5.12), for any
p € Cgos

0=lim [ (—ia-Vu;+ (1+V,(2)Bv; — We,(2)];[P~2v;, ¢)

J—00 Jp3
= | (—ia-Vo+ (1+Vp)Bv—Wo|v|' v, ),
R3
which implies that v solves
(5.13) —ia- Vo + (14 V) v = Wylv[P~2v

with the energy

p—2
FVOWO(U) = 2 / WO‘U’p > TWoWo-
P JRr3
By a Fatou’s Lemma,

Wolv? < liminf [ W, ()]v,[?
R3 J—00 R3

which, jointly with Lemma 2.5, implies that

Cyowe (v) < liminf e, < gy,
j—00

(recalling that (i)aj and ®., have the same least energy c.;). Therefore,

(5.14) ]lggo Ce; = FVUWO (U) = TVoWo-

Let n : [0,00) — [0,1] be a smooth function satisfying n(s) = 1 if s <
1, n(s) = 0 if s > 2. Define 9;(x) = n(2|z|/j)v(z). One has

(5.15) |lv—70;]| =0 and |v—17;|; >0 asj — o0
for g € [2,3]. Setting z; = v; — ¥;, it is not difficult to verify by applying a

Brézis-Lieb’s argument ([36]) that along a subsequence,

J—00

(5.10) i | [ W, @) (0l - 5 - 5| =0
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and

j—o00

(5.17) lim ‘/Rs ng (x)(\vj‘pf%j — |zj\P*2zj - !ﬁj|p7217j)90 =0

uniformly in ¢ € E with [¢[| <1. Using the exponential decay of v, (5.15),
and the facts that V. (z) — Vo, W, (z) — Wy as j — oo uniformly on any
bounded set of x, one checks easily the following

(5.18) /Vaj(a:)vjﬁj%/ Volul®
R3 R3

and

(5.19) / W, (2)]3,]7 — / WolvlP,
R3 R3

consequently,

b, (2) = e, (v;) = Tvowo (v)
1 N .
o [ W@l = Ll - 5P) + o)
D Jgs
=o(1)
as j — 0o, which implies that
(5.20) Q. (z) = 0

as j — oo. Similarly, by (5.17),

A

O ()¢ = /]Rg W, (@) (o317 %05 — |2P225) = [55[7725;) 0 + o(1) = o(1)

as j — oo uniformly in [|¢|| < 1, which implies that

A

(5.21) . (z) = 0

as j — 0o. Now one has

1. 1 1 R
e, (z) = 5, (%)% = (5 - 5) /]RB We, 7P

which, jointly with (5.20) and (5.21), shows that ||z;|| — 0 as j — oco. This,
together with (5.15), implies v; — v in E. Note that by (5.12) and (5.13)

A

Azy = W, (@) (jusl)oy = Wo (Julyu = (Vi (2)Bv; = VoBu).
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It yields |Azj|]s — 0. Therefore v; — u in H'.

Step 2) v;j(x) — 0 as |x| — oo uniformly in j € N. Assume by contradic-
tion that the conclusion does not hold. This, jointly with the sub-solution
estimate (5.8), implies that there exist o > 0, z; € R? with |z;| — oo, and

: : 12 o
Cp > 0 independent of j such that o < |v;(z;)] < C’O(fBl(wj) |v;[#) . Since
v; = v in H' one gets

1/2
o< CO(/ |'Uj‘2) — 0,
Bi(zj)

a contradiction.

Step 3) {e;y;}; is bounded. Assume by contradiction that e;|y;| — oo.
Then Vy > 7, and Wy < K so Yyyw, > Vrox Dy Lemma 4.3. However, by
(5.14) and (5.10), c.; = Yvwy, < Vrux, @ contradiction. Therefore, we can
assume €;4; — yo, Vo = V' (yo) and Wy = W (yo) which, together with (5.13),
implies that v is a least energy solution of (1.7). Now by Step 2 it is easy to
see that one can assume that y; =y} is a maximum point of |u;|.

Step 4) lim._,odist(ey., /) = 0. It is sufficient to check that yo € <.
Assume indirectly that yg € 7. Then it is easy to check by the definition of
& that Vv (o) w(y) > Vrurs Which, together with (5.14) and (5.10), implies

lim ¢ = W(ow (o) > Vrox = limee,

a contradiction. Finally, assuming in addition that ¥ N % # (), one has
o =V NW, solim,_,dist(ey., ¥ N #) = 0 and v. converges in H! to a
least energy solution of (1.8).

Step 5) There is C' > 0 such that for all € small
(5.22) ue ()| < Cem Vo tla=vel Vi e R

It suffices to verify this for sequences. By Step 2 and (5.9) we may take 6 > 0
and R > 0 such that |v;(z)| < ¢ and

g
Alv;| > Z\Uﬂ

for all || > R, 7 € N. Let I'(y) = I'(y, 0) be a fundamental solution to —A +
o/4. Using the uniform boundedness, one may choose I' so that |v;(y)| <
9T(y) holds on |y| = R, all j € N. Let Z; = |v;| — . Then we obtain

Az = %zj.
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By the maximum principle we can conclude that Z;(y) < 0 on |y\ >R It
is well known that there is C" > 0 such that I'(y) < C"exp(—+/c/4]y|) on
ly| > 1. We see that

0 ()| < Cexp(—+/o/4]yl)

for all y € R? and all j € N, that is,

|UJ( )| < Cexp(— Vo |x—yj

for all z € R3 and all j € N.
The proof is hereby complete. O

6 Proofs of main results: the critical case
Setting u(z) = w(ex), the equation (1.4) is equivalent to the following
(6.1) —ia - Vu + Bu + M (z)u = Wio(z)|ulP~2u + Wae(z) |uu.

Proof of Theorem 1.4. We may assume that 0 € ¥, z, = 0 and 7 = V(0),
kv = W;(0). Solutions of (6.1) are critical points of the functional ®}(u) :=
OTRv (u) with K, = (K1, k2). Denote ®f(u) = ~v;z,. We will adopt an
argument different from that of Theorem 1.1. Let u € Z,z, be a solution of
(4.2) with p = 7 and ¥/ = R,,. Define u,, u,;,j7 =0,...,m — 1, and set E,, as
before.

By virtue of Lemma 2.5, let t.,; > 0 be such that tgmu € .. Observe
that

ll_r% rlggo terj = hm tsj =1,

lim lim he(teju,;) = lim he(tu)) = ho(u™) = ™,
e—0

e—0r—o0 "
g T s () — by | = lim e tegu®) — 0 | =0,
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One checks easily the following

max &;(w) =P;

7=0
m—1
= @Z(tsjujj +teju,;) +o(1y)
7=0
m—1
= @:(twu:_j + ha(tejuq—fj)) +o(1,)
7=0
m—1
= (I)S(tﬂjuj_j + h0<t0jujj)) + o(1,.)
7=0
m—1
= Do(u) +o(1,e)
7=0

= m’yTr{v _'_ 0(17'5)

where o(1,) means arbitrary small as r — oo, and o(1l,.) means arbitrary
small as r sufficiently large and e sufficiently small.

Now, by assumptions and Lemma 4.10, for any 0 < 6 < v —m ¥,z,, one
may choose r > 0 large and then &, > 0 small such that, for all ¢ < &,,,
maxyep, Pr(w) < yg — J. Theorem 2.6 applies. [

Proof of Theorem 1.5. Assume 0 € # := #1 N\ Ws, v, = 0 and 7, = V(0),
R = (K1, ko) = (W1(0), W5(0)). Solutions of (6.1) are critical points of the
functional ®*(u) := ®7*F(u). Denote ®}(u) = v,z Let u € %,z be a
solution of (4.2) with p = 7, and ¥ = K. Define u,, u,;,j =0,...,m — 1, and
set F,, as before. Then one finds

1%%); P (w) = myr,z +o(le).

By assumptions and Lemma 4.10, for any 0 < 0 < v — m ¥z, Ohe may
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choose r > 0 large and then &, > 0 small such that, for all ¢ < &,
maxyep, Pr(w) < yg —J. Theorem 2.6 applies. O

Proof of Theorem 1.6. We deal with again the case (2) of (P;) in (Q3). The
proof will be carried out along the lines of proof of Theorem 1.3. So we are
sketchy.

Given arbitrarily a sequence €; — 0 as j — oo, let u; € JH; = JL,.
Then {u;} is bounded. It is not difficult, by (Q1), to check that {u;} is
non-varnishing. Therefore there exist a sequence {y;} C R3 and constants

r > 0,9 > 0 such that
liminf/ |uj|? > 6.
i J B, ()

Set v;(x) = uj(x + y;). Then v; solves, denoting X7€j (z) = V(ej(z +¢})) and
Wie, () = Wi(e;(x + y/))) for k = 1,2,

(6.2)  —ia- Vo;+ (14 V., (2))Bv; = Wie, (2)|v; [P~ 2v; + Wae, () ]v;]v;

with the associated energy functional (denoted by (f;) and least energy

6y =02, (0) = [ (e o)
R3

where H(e;z, |u]) = ’?2—2 e, () |ul? + tWo, (x)|ul?. Plainly,

éaj = (D:] (’U]) = (I):J (UJ) = Cg. .

J

Additionally, v; — u # 0 in E. We can assume that V(e;y;) — Vo and
Wi (e;y;) — Whio as j — 00. One sees easily that u solves

(6.3) —ia - Vu+ (1 + V) Bu = Wig|u[P~u + Waglu|u
with the energy Ty 1y (u fR3 (0,ul) == Jzs p2 2W1o\u]p + Wgo\ul?’
Yvow,- Lhe Fatou lemma yllds
(6.4) lim ¢, = FVoWo<u) = Yot
Jj—o0
and

im [ Al = [ 0 = g,

Jj—o0 R3

Let n : [0,00) — [0,1] be a smooth function satisfying n(s) = 1 if s <
1, n(s) = 01if s > 2. Define 0;(x) = n(2|z|/j)u(x). One has ||u— v,|| = 0
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and |u — 7|s — 0 as j — oo for s € [2,3]. Setting z; = v; — ¥;, one checks
casily that, along a subsequence (see [13, 36]),

02 (2)) =% (v7) — Ty, (w) + (1)

as j — oo, that is, @):J(z]) — 0. Similarly, i):;(z]) — 0. Now a standard
argument yields v; — u in E as j — oo. Observe that by (6.2) and (6.3)
Agzj = — (VE] (z)Bv; — VoPu)
+ (ngj (2)]v; [P %05 — Wiglu[P~?u) + (Wae, () |vj]v; — Waglulu).
By the exponential decay of u and Lemma 2.2, it is easy to show that
|Apzj|2 — 0. Therefore v; — u in H'.

As before, one checks that v;(z) — 0 as |z| — oo uniformly in j € N,
and {@-y} }; is bounded. Clearly, one may assume that y; = y; is a maximum
point of |u;]|.

In order to show lim,_,o dist(ey., &) = 0, assuming y; — yo it is sufficient
to check that yo € &/. Denote W = (W;, Ws), By (Ps), 7.,z is archived, it
hence follows that

. BT TwR . i .
Jim ey = im 2 < 00 = T

which, together with (6.4), shows
W o)W o) S Tk

Since W (yo) < & one has V (yo) < 7. If & = W (1), ie., yo € #, there must
be V(yo) = 7. If W(yo) < R then we must have V(yy) < 7,. In conclusion,
Yo € .

Finally, the argument of Step 5) of proof of Theorem 1.3 yields that there
exists C' > 0 such that for all j € N
us(0)] < Ce Vo

where w = a? — 72.

The proof is completed. O
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