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Abstract

We study semi-classical solutions to the nonlinear Dirac equation

−i~α · ∇w + aβw +M(x)w = f(x, |w|)w

for x ∈ R3, where M(x) denotes the scaler field V (x) or V (x)β, and f
describes the self-interaction which is either subcritical: W (x)|w|p−2,
or critical: W1(x)|w|p−2 +W2(x)|w|, with p ∈ (2, 3).

We prove multiplicity results with the number of solutions obtained
depending on the ratio of minV and lim inf |x|→∞ V (x), as well as
maxW and lim sup|x|→∞W (x) for the subcritical case and maxWj

and lim sup|x|→∞Wj(x), j = 1, 2, for the critical case.
We show also certain concentration phenomenon of the families of

semi-classical ground states at saddle points of M(x) = V (x)β.

Mathematics Subject Classifications (2000): 35Q40, 49J35.
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1 Introduction and main results
In quantum theory in order to describe the translation from quantum to

classical mechanics, existence of semi-classical solutions of stationary quan-
tum systems possesses an important physical interest. There have been large
amounts of works on existence, multiplicity and concentration phenomenon of
semi-classical solutions of nonlinear Schrödinger equations arising from non-
relativistic quantum mechanics. In comparison, only a few similar results are
known for nonlinear Dirac equations arising from relativistic mechanics. In
particular, as far as the authors know, there is no result on multiplicity of
semi-classical solutions to the Dirac equation. There is also no result on con-
centration at saddle points, typically, if the potentials are of the form V (x)β
with V : R3 → R and β = diag(I2,−I2), a 4 × 4 diagonal matrix (see be-
low). Mathematically, the nonlinear Dirac equation is more difficult because,
unlike the spectrum of the Laplacian which is bounded below, the spectrum
of the Dirac operator is neither bounded below nor above. Additionally, the
concentration phenomena is quite complicated depending on the potentials,
and looking for conditions that ensure multiplicity is novel.

In this paper, we are mainly interested in utilizing variational methods to
obtain multiplicity results for the Dirac equation, by introducing some new
conditions depending on the behaviors of the potentials near the infinity,
which can be directly verified. There are two new ingredients. One is to give
a representation of ground state of the associated linear autonomous problem
(the so-called limit equation) which yields the comparison conditions and etc.
The other is to construct subspaces on which the relative energy functional
is bounded above, say by b, and satisfies the Palais-Smale condition below
the level b, and thus we are able to apply an abstract critical point theorem.
We also consider the concentration phenomena for the Dirac equation with
scale potential which is incomparable at different space points. Moreover, we
will deal with the case of critical nonlinearity.

We now recall the problems and state our results. Consider the nonlinear
Dirac equation, which occurs in the attempt to model extended relativistic
particles with external fields (see e.g. [22, 33]), given by

−i~∂tψ = ic~
3∑

k=1

αk∂kψ −mc2βψ − P (x)ψ +Qψ(x, ψ)
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for the (wave) function ψ : R × R3 → C4 which represents the state of a
relativistic electron. Here x = (x1, x2, x3) ∈ R3, ∂k = ∂/∂xk, c is the speed
of light, m > 0 is the mass of the electron, ~ denotes Planck’s constant, and
α1, α2, α3, β are 4× 4 complex matrices

β =

(
I 0
0 −I

)
, αk =

(
0 σk
σk 0

)
, k = 1, 2, 3

with
σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The matrix potential P (x) stands for external fields, and the nonlineari-
ty Q : R3 × C4 → R represents a nonlinear self-coupling. Assuming that
Q(x, eiθψ) = Q(x, ψ) for all θ ∈ [0, 2π], the standing wave solutions are of
the form ψ(t, x) = e

iθt
~ w(x), and searching for such solutions is reduced to

finding solutions of the equation

(1.1) −i~α · ∇w + aβw +M(x)w = Fw(x,w)

for w : R3 → C4, with a > 0, M(x) a 4× 4 matrix-valued potential function,
F (x, u) a nonlinearity, α = (α1, α2, α3), and α · ∇ =

∑3
k=1 αk∂k.

In the literature, there are many results concerning existence of solution-
s of (1.1) under various hypotheses on the potential and the nonlinearity
(see [22] for a survey). In [5, 10, 28] the authors studied the problem with
M(x) = V (x)I4 and V (x) ≡ ω ∈ (−a, a) and the nonlinearity of the so-called
Soler model F (w) = 1

2
H(w̃w) with H ∈ C2(R,R), H(0) = 0, w̃w := 〈βw,w〉;

and in [23] the authors considered the nonlinearity F (w) = 1
2
|w̃w|2+b|w̃αw|2

with w̃αw := 〈βw, αw〉, α := α1α2α3, by using shooting methods. Here and
in the sequel 〈·, ·〉 stands for the inner product in C4. Such nonlinearities
were later studied by using for the first time a variational method in [21],
where more general super-linear subcritical F (w) independent of x were con-
sidered. Existence and multiplicity results for (1.1) with M(x) and F (x,w)
depending periodically on x were obtained in [6] by using a critical point
theory. For non-periodic potentials (the Coulomb-type potential is a typi-
cal example), existence and multiplicity of solutions were studied in [16] for
asymptotically quadratic nonlinearities and in [18] for super-quadratic sub-
critical nonlinearities, where M(x) and F (x,w) were assumed to have limits
as |x| → ∞.

For small ~, the standing waves are referred to as semi-classical states.
To describe the translation from quantum to classical mechanics, existence
of solutions w~, ~ small, is of great physical importance. Only very recently,
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existence and concentration phenomena of semi-classical ground states of
the Dirac equation (1.1) with M(x) = V (x)I4 and nonlinearity of the form
Fw(x,w) = W (x)h(w) have been studied, in [14] for V (x) ≡ 0 and h(w)
super-linear and subcritical, in [15] for V : R3 → R and h(w) super-linear
and subcritical and in [17] for V : R3 → R and h(w) =

(
g(|w|) + |w|

)
w,

g(|w|)w subcritical.

Recall that the matrix-valued potential M(x) is called a Scalar potential
if

(1.2) M(x) = V (x)β or M(x) = V (x)I4

where V (x) is a real-valued function and I4 the identity in C4, see [35]. In
this paper we are interested in such potentials. More precisely, for p ∈ (2, 3),
writing ε ≡ ~ and assuming without loss of generality that a = 1, we consider
the equation with subcritical nonlinearity

(1.3) −iεα · ∇w + βw +M(x)w = W (x)|w|p−2w,

and the equation with critical nonlinearity

(1.4) −iεα · ∇w + βw +M(x)w = W1(x)|w|p−2w +W2(x)|w|w.

We consider the potentials (1.2) with the following assumptions, for (1.3)

(P0) V, W ∈ C1 ∩ L∞(R3,R), |V |∞ < 1, V (x) attains a global minimum,
and W (x) attains a global maximum with infx∈R3 W (x) > 0;

and for (1.4)

Q0) V, Wj ∈ C1 ∩ L∞(R3,R), |V |∞ < 1, V (x) attains a global minimum,
and Wj(x) attains a global maximum with infx∈R3 Wj(x) > 0, j = 1, 2.

Notations: In order to describe our results some notations are in order:

τ := minV ; V := {x : V (x) = τ}; τ∞ := lim inf
|x|→∞

V (x);

κ := maxW ; W := {x : W (x) = κ}; κ∞ := lim sup
|x|→∞

W (x);

xv ∈ V such that κv := W (xv) ≡ max
x∈V

W (x);

xw ∈ W such that τw := V (xw) ≡ min
x∈W

V (x);

and for j = 1, 2,

κj := maxWj; Wj := {x : Wj(x) = κj}; κj∞ := lim sup
|x|→∞

Wj(x);
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xjv ∈ V such that κjv := W (xjv) ≡ max
x∈V

Wj(x).

Case (A): The subcritical case. Firstly, we consider equation (1.3)
and we make the assumption

Theorem 1.1. LetM(x) be of the form (1.2), and assume (P0) holds, τ < τ∞
and κ∞ ≤ κv. Let m be the largest integer such that

(1.5) m <
(1 + τ∞

1 + τ

) 2(3−p)
p−2

( κv
κ∞

) 2
p−2
.

Then there is E > 0 such that, for ε ≤ E, (1.3) possesses at least m pairs of
solutions in

⋂
s≥2W

1,s(R3).

Theorem 1.2. Let M(x) be of the form (1.2), and assume (P0) holds, τw ≤
τ∞ and κ∞ < κ. Let m be the largest integer such that

(1.6) m <
(1 + τ∞

1 + τw

) 2(3−p)
p−2

( κ

κ∞

) 2
p−2
.

Then there is E > 0 such that, for ε ≤ E, (1.3) possesses at least m pairs of
solutions in

⋂
s≥2W

1,s(R3).

For showing the concentration of ground states we assume additionally

(P1) One of the following assumptions holds:

(1) τ < τ∞, and there is Rv > 0 such that W (x) ≤ κv for all |x| ≥ Rv;

(2) κ > κ∞, and there is Rw > 0 such that V (x) ≥ τw for all |x| ≥ Rw.

Set

A :=

{
{x ∈ V : W (x) = κv} ∪ {x 6∈ V : W (x) > κv}, for (P1)-(1);
{x ∈ W : V (x) = τw} ∪ {x 6∈ W : V (x) < τw}, for (P1)-(2) .

Obviously, A is bounded. Moreover, if V ∩ W 6= ∅, then κv = κ, τw =
τ, {x 6∈ V : W (x) > κv} = ∅ = {x 6∈ W : V (x) < τw}, consequently
A = V ∩W .

Theorem 1.3. Let M(x) be of the form (1.2), and assume (P0)− (P1) hold.
Then, for sufficiently small ε > 0, (1.3) possesses a least energy solution
wε ∈

⋂
s≥2W

1,s(R3). Moreover, wε satisfies:
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(a) There exists a maximum point xε of |wε| with limε→0 dist(xε,A ) = 0
such that, for any sequence xε → x0 (ε → 0), the sequence uε(x) :=
wε(εx+ xε) converges in H1(R3) to a least energy solution of

(1.7) −iα · ∇u+ βu+M(x0)u = W (x0)|u|p−2u .

If particularly V ∩ W 6= ∅ then limε→0 dist(xε,V ∩ W ) = 0 and uε
converges in H1(R3) to a least energy solution of

(1.8) −iα · ∇u+ βu+Mmin u = κ|u|p−2u

where Mmin = τβ if M(x) = V (x)β and Mmin = τI4 if M(x) = V (x)I4.

(b) For some c, C > 0, |wε(x)| ≤ C exp
(
− c

ε
|x− xε|

)
for all x.

Case (B): The critical case. Next we consider equation (1.4). In the
following let S denote the best constant of the Sobolev inequality

S|u|26 ≤ |∇u|22 for all u ∈ H1(R3).

Let γp denote the least energy of the equation

(1.9) −iα · ∇u+ βu = |u|p−2u.

In addition to (Q0), we will use the following assumption:

(Q1) There holds

(1 + τ∞)
2(3−p)
p−2

( κ2∞

κ
1/(p−2)
1∞

)2
≤ S3/2

6γp
.

For ~x = (x1, x2) and ~y = (y1, y2) in R2, we use ~x ≥ ~y to denote x1 ≥ y1
and x2 ≥ y2, and ~x > ~y if ~x ≥ ~y with min{x1 − x2, y1 − y2} > 0. In what
follows, denote, for µ ∈ (−1, τ∞] and ~ν = (ν1, ν2) ∈ R2 with ~ν ≥ ~0,

(1.10) m(µ, ~ν) = min

{(1 + τ∞
1 + µ

) 2(3−p)
p−2

( ν1
κ1∞

) 2
p−2

;
( ν2
κ2∞

)2}

and let ~κ = (κ1, κ2), ~κ∞ = (κ1∞, κ2∞), ~κv = (κ1v, κ2v).

Theorem 1.4. Let M(x) be of the form (1.2), and assume that (Q0)− (Q1)
hold, τ < τ∞, and ~κv ≥ ~κ∞. Let m be the smallest integer satisfying m ≥
m(τ, ~κv). Then there exists E > 0 such that, for ε ≤ E, (1.4) possesses at
least m pairs of solutions in

⋂
s≥2W

1,s(R3).

6



For another multiplicity result we assume further the following

(Q2) W̃ := W1 ∩W2 6= ∅.

Let xw ∈ W̃ be such that τw ≡ V (xw) = min
x∈W̃ V (x).

Theorem 1.5. Let M(x) be of the form (1.2), and assume that (Q0)− (Q2)
hold and τw ≤ τ∞. Let m be the smallest integer satisfying m ≥ m(τw, ~κ).
Then there eixsts E > 0 such that, for ε ≤ E, (1.4) possesses at least m pairs
of solutions in

⋂
s≥2W

1,s(R3).

For stating a concentration result we assuming additionally the following:

(Q3) One of the following assumptions holds:

(1) τ < τ∞, and ∃Rv > 0 such that Wj(x) ≤ κjv if |x| ≥ Rv for
j = 1, 2.

(2) ~κ > ~κ∞, and ∃Rw > 0 such that V (x) ≥ τw if |x| ≥ Rw.

Set, if (Q3)-(1) holds

Av := {x ∈ V : Wj(x) = κjv, j = 1, 2} ∪ {x 6∈ V : Wj(x) > κjv, j = 1, 2};

and if (Q3)-(2) holds

Aw := {x ∈ W̃ : V (x) = τw} ∪ {x 6∈ W̃ : V (x) < τw}.

In the following theorem, A stands for Av in the case (Q3)-(1), and Aw in
the case (Q3)-(2). Obviously (as before), A is bounded, and A = V ∩ W̃ if
the intersection is not empty.

Theorem 1.6. Let M(x) be of the form (1.2), and assume (Q0)− (Q3) are
satisfied. Then, for sufficiently small ε > 0, (1.4) possesses a least energy
solution wε ∈

⋂
s≥2W

1,s(R3). Moreover, wε satisfies:

(a) There exists a maximum point xε of |wε| with limε→0 dist(xε,A ) = 0
such that, for any sequence xε → x0 (ε → 0), the sequence uε(x) :=
wε(εx+ xε) converges in H1(R3) to a least energy solution of

(1.11) −iα · ∇u+ βu+M(x0)u = W1(x0)|u|p−2u+W2(x0)|u|u .

If particularly V ∩ W̃ 6= ∅ then limε→0 dist(xε,V ∩ W̃ ) = 0 and uε
converges in H1(R3) to a least energy solution of

−iα · ∇u+ βu+Mmin u = κ1|u|p−2u+ κ2|u|u .
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(b) For some c, C > 0, |wε(x)| ≤ C exp
(
− c

ε
|x− xε|

)
for all x.

Remark 1.7. 1) Observe that in (1.5), m can be sufficiently large if τ closes
sufficiently to −1, or τ∞ closes sufficiently to ∞, etc. One may make similar
comments on (1.6).

2) In [17], one ground state of (1.1) with either M(x) ≡ 0 and f(x,w) =
W (x)(|w|p−2 + |w|)w, or M(x) = V (x) and W (x) ≡ 1, was obtained un-
der assumptions different from those in the present paper. Observe that if
W (x) = W1(x) = W2(x) (hence, κ∞ = κ1∞ = κ2∞), then (Q1) reads simply
as (1 + τ∞

κ∞

) 2(3−p)
p−2 ≤ S3/2

6γp
,

and (1.10) reads as (for µ ∈ (−1, τ∞] and ν = ν1 = ν2)

m(µ, ~ν) =
( ν

κ∞

)2
.

2 Variational setting
Let | · |q denote the usual Lq-norm, (·, ·)L2 the L2-inner product. Set A =
−iα · ∇ + β, a self-adjoint operator acting on L2. A Fourier analysis shows
that σ(A) = σc(A) = R \ (−1, 1) where σ(·) and σc(·) denote the spectrum
and continuous spectrum respectively.

Consider the Hilbert space E = H1/2 equipped with the equivalent inner
product

(u, v) := <(|A|1/2u, |A|1/2v)L2

and induced norm ‖u‖2 := (u, u) = ||A|1/2u|22. Then there are decompositions

L2 = L− ⊕ L+, u = u− + u+

and
E = E− ⊕ E+, E± = E ∩ L±,

orthogonal with respect to the products (·, ·)L2 and (·, ·), such that A|L− ≤ −1
and A|L+ ≥ 1. Recall that E embeds into Lq for q ∈ [2, 3] continuously and
Lqloc compactly for q ∈ [2, 3). In fact we have (see, e.g., [17]):

1) |u|22 ≤ ‖u‖2 for all u ∈ E.

2) For any q ∈ [2, 3] and for all u ∈ E, S
3(q−2)

2q |u|2q ≤ ‖u‖2 where S is the
best Sobolev embedding constant.
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In the following, let

Mε(x) = M(εx),

Wε(x) = W (εx) and Wjε(x) = Wj(εx) for j = 1, 2,

f(x, |u|) =

{
W (x)|u|p−2, in Case (A),
W1(x)|u|p−2 +W2(x)|u|, in Case (B),

F (x, u) =
∫ |u|
0
f(x, t)t dt and Fε(x, u) = F (εx, u),

Ψε(u) =
∫
R3 Fε(x, u).

Define the functional

(2.1)
Φε(u) =

1

2

∫
R3

〈−iα · ∇u+ βu+Mε(x)u, u〉 −Ψε(u)

=
1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

2

∫
R3

〈Mε(x)u, u〉 −Ψε(u)

where (and in the sequel) ‖u+‖2−‖u−‖2 refers to the splitting E = E−⊕E+.
Denoting Ee = E− ⊕ R+e and Êe = E− ⊕ Re for e ∈ E+ \ {0}, and ÊH =
E− ⊕ H for any finite dimensional linear subspace H ⊂ E+, it is easy to
check the following

Lemma 2.1. One has:

1) Ψε is weakly sequentially lower semicontinuous and Φ′ε is weakly se-
quentially continuous.

2) Φε possesses the linking structure:

1◦ There exist r > 0 and ρ > 0 independent of ε such that Φε|B+
r
≥ 0

and Φε|S+
r
≥ ρ, where B+

r = {u ∈ E+ : ‖u‖ ≤ r} and S+
r = {u ∈

E+ : ‖u‖ = r};
2◦ For any finite dimensional linear subspace H ⊂ E+, there exist

R = RH > 0 and C = CH > 0 such that Φε(u) < 0 for all
u ∈ ÊH \BR and max Φε(ÊH) ≤ C.

Let cε denote the minimax level of Φε deduced by the linking structure

(2.2) cε := inf
e∈E+\{0}

max
u∈Ee

Φε(u) = inf
e∈E+\{0}

max
u∈Êe

Φε(u).

Let Kε := {u ∈ E : Φ′ε(u) = 0} be the critical set of Φε. Note that if
u ∈ Kε then

Φε(u) = Φε(u)− 1

2
Φ′ε(u)u =

∫
R3

1

2
f(εx, |u|)|u|2 − F (εx, |u|) ≥ 0.
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Using the same iterative argument of [21, Proposition 3.2] one obtains easily
the following

Lemma 2.2. If u ∈ Kε with Φε(u) ≤ C1 and |u|2 ≤ C2, then, for any
q ∈ [2,∞), u ∈ W 1,q(R3) with ‖u‖W 1,q ≤ Λq where Λq depends only on
C1, C2 and q.

To describe furthermore cε we recall the Mountain-Pass type reduction,
see [1] (also [18, 31, 34]). Consider, for a fixed u ∈ E+, the map φu : E− → R
defined by φu(v) = Φε(u+ v). Observe that, for any v, w ∈ E−,

φ
′′

u(v)[w,w] = −‖w‖2 +

∫
R3

〈Mε(x)w,w〉 −Ψ
′′

ε (u+ v)[w,w].

Since |V |∞ < 1 and Ψε is strictly convex, there is a unique hε(u) ∈ E− such
that

(2.3) φu(hε(u)) = max
v∈E−

φu(v).

It is clear that v 6= hε(u) if and only if Φε(u + v) < Φε(u + hε(u)). Define
Iε : E+ → R by Iε(u) = Φε(u+ hε(u)), that is,

Iε(u) =
1

2

(
‖u‖2 − ‖hε(u)‖2

)
+

1

2

∫
R3

〈Mε(u+ hε(u)), u+ hε(u)〉

−Ψε(u+ hε(u)).

Set
Nε := {u ∈ E+ \ {0} : I ′ε(u)u = 0}.

In the following we will call {hε(·), Iε(·),Nε} the "mountain-pass" reduction
for the equation:

−iα · ∇u+ βu+Mε(x)u = fε(x, |u|)u.

Plainly,
cε = inf

u∈Nε

Iε(u).

(see [1, 14, 18]). This, jointly with (2.2), implies

Lemma 2.3. There is a sequence {en} ⊂ E+ \ {0} such that, denoting
un = en + hε(en),

Φε(un)→ cε and Φ′ε(un)→ 0

as n→∞.
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Furthermore, one has the following

Lemma 2.4. Let un = u+n + u−n be a (PS)c sequence for Φε and set vn =
u+n + hε(u

+
n ), zn = u−n − hε(u

+
n ). Then ‖zn‖ → 0 and vn is also a (PS)c

sequence for Φε, that is, u+n is a (PS)c sequence for Iε. Consequently, either
c = 0 or c ≥ cε.

Proof. It suffices to show that ‖zn‖ → 0. Observe that

0 = Φ′ε(vn)zn = −(hε(u
+
n ), zn) +

∫
R3

〈Mεvn, zn〉 −Ψ′ε(vn)zn,

and since un is a (PS) sequence,

o(1) = Φ′ε(un)zn = −(u−n , zn) +

∫
R3

〈Mεun, zn〉 −Ψ′ε(un)zn.

Thus,

o(1) = ‖zn‖2 −
∫
R3

〈Mεzn, zn〉+
(
Ψ′ε(vn + zn)−Ψ′ε(vn)

)
zn.

Since Fε(x, u) is strictly convex,
(
Ψ′ε(vn+zn)−Ψ′ε(vn)

)
zn ≥ 0, which, together

with the fact that |V |∞ < 1, implies

o(1) ≥
(
1− |V |∞

)
‖zn‖2.

Thus, ‖zn‖ → 0. Finally, it follows from (2.2) that if c 6= 0 then c ≥ cε.

Below, for notational convenience, we denote by Φ0 the energy functional
of the equation

(2.4) −iα · ∇u+ βu+M(0)u = f(0, |u|)u .

We define correspondingly c0, the critical set K0, and the "mountain-pass"
reduction {h0, I0,N0} for (2.4).

Lemma 2.5. We have

(1) For any u ∈ E+ \ {0}, there is a unique tε = tε(u) > 0 such that
tεu ∈ Nε. Moreover, limε→0 tε(u) = t0(u), ‖hε(tεu) − h0(t0u)‖ → 0,
and lim supε→0 cε ≤ I0(t0u). In addition, if u ∈ N0 then t0 = 1.

(2) limε→0 cε = c0.
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Proof. It follows from [1, 14] that, for any u ∈ E+ \ {0}, there is a unique
tε = tε(u) > 0 such that tεu ∈ Nε, and moreover {tε(u)}0≤ε≤1 is bounded.
It is easy to check that, if tε → t0 then hε(tεu) → h0(t0u). Consequently,
lim supε→0 cε ≤ I0(t0u). It is clear that, since tεu ∈ Nε, one has t0u ∈ N0.
Thus, if u ∈ N0, there must be t0 = 1. As a consequence, we see that

lim sup
ε→0

cε ≤ c0.

We now verify that

(2.5) lim inf
ε→0

cε ≥ c0.

Assume by contradiction that cε < c0 and let θ > 0 be small so that cε <
c0 − θ along a sequence ε → 0. For any eε ∈ Nε with Φε(uε) ≤ c0 − θ,
uε = eε + hε(eε), it is clear that {uε}ε>0 is bounded in E. A concentration
argument shows that there exist {yε} ⊂ R3 and R > 0, σ > 0 such that

(2.6) lim inf
ε→0

∫
BR(yε)

|uε|2 ≥ σ.

In particular, we choose, by Lemma 2.3, uj = eεj+hεj(eεj), j →∞, satisfying

(2.7) cεj ≤ Φεj(uj) ≤ cεj +
1

j
and ‖Φ′εj(uj)‖ ≤

1

j
.

Note that
o(1) + cεj =

∫
R3

Fεj(x, uj)

where Fεj(x, uj) = 1
2
fεj(x, uj)|uj|2 − Fεj(x, uj). Set yj = yεj . Plainly, if {yj}

is bounded then uj ⇀ v 6= 0, a solution of (2.4) with energy

c0 ≥ Φ0(v) =

∫
R3

F0(0, v) ≤ lim inf
j→∞

∫
R3

Fεj(x, uj) = lim inf
j→∞

cj,

contradicting to lim supj→∞ cj ≤ c0 − θ.
Assume that {yj} is unbounded. Set vj(x) = uj(x + yj), M̂j(x) =

M(εj(x+ yj)) and F̂j(x, vj) = F ((εj(x+ yj), vj). Then

Φ̂′j(vj) = Φ′εj(uj)→ 0.

One may assume that vj ⇀ v in E, vj → v in Lqloc for q ∈ [2, 3), vj(x)→ v(x)
a.e. for x ∈ R3, and cεj → c̃0 as j → ∞. By (2.6), v 6= 0. Clearly v solves
(2.4) with the energy denoted by Φ̂0(v). Then

o(1) + cεj ≥ lim inf
j→∞

∫
F̂j(x, vj) ≥

∫
F̂(0, v) = Φ̂0(v) ≥ c0,

again a contradiction.
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In order to establish our multiplicity results, we recall an abstract critical
point theorem, see [7, 13]. LetX, Y be Banach spaces withX being separable
and reflexive, and set E = X ⊕ Y . Let S ⊂ X∗ be a countable dense subset.
Let P be the family of semi-norms on E:

ps : E = X ⊕ Y → R, ps(x+ y) = |s(x)|+ ‖y‖, s ∈ S.

Denote by TP the topology on E induced by P . Let Tw∗ be the weak∗-
topology of E∗.

For a functional Φ : E → R and numbers a, b ∈ R we write Φa := {u ∈
E : Φ(u) ≤ a}, Φa := {u ∈ E : Φ(u) ≥ a}, and Φb

a := Φa ∩ Φb. Assume

(Φ1) Φ ∈ C1(E,R); Φ : (E, TP) → R is upper semicontinuous, and Φ′ :
(Φa, TP)→ (E∗, Tw∗) is continuous for every a ∈ R.

(Φ2) there exists r > 0 with ρ := inf Φ(SrY ) > Φ(0) = 0 where SrY := {y ∈
Y : ‖y‖ = r};

(Φ3) there exist a finite-dimensional subspace Y0 ⊂ Y and R > r such
that we have for E0 := X × Y0 and B0 := {u ∈ E0 : ‖u‖ ≤ R}:
b := sup Φ(E0) <∞ and sup Φ(E0 \B0) < inf Φ(BrY ).

We consider the setM(Φc) of maps g : Φc → E with the properties

(i) g is P-continuous and odd;

(ii) g(Φa) ⊂ Φa for all a ∈ [ρ, b];

(iii) each u ∈ Φc has a P-open neigbourhood O ⊂ E such that the set
(id− g)(O ∩ Φc) is contained in a finite-dimensional linear subspace.

The pseudo-index of Φc is defined by

ψ(c) := min{gen(g(Φc) ∩ SrY ) : g ∈M(Φc)} ∈ N0 ∪ {∞}

where gen(·) denotes the usual symmetric index. Additionally, set for d > 0
fixed

M0(Φ
d) := {g ∈M(Φd) : g is a homeomorphism from Φd to g(Φd)}.

Then we define for c ∈ [0, d]

ψd(c) := min
{

gen(g(Φc) ∩ SrY ) : g ∈M0(Φ
d)
}
.

Note that, by definition, ψ(c) ≤ ψd(c) for all c ∈ [0, d].
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Theorem 2.6 ([7, 13]). Let (Φ1) − (Φ3) be satisfied, and assume that Φ is
even and satisfies the (PS)c-condition for c ∈ [ρ, b]. Then Φ has at least
n := dimY0 pairs of critical points with critical values given by

ci := inf{c ≥ 0 : ψ(c) ≥ i} ∈ [ρ, b], i = 1, ..., n.

If Φ has only finitely many critical points in Φb
ρ, then ρ < c1 < c2 < · · · <

cn ≤ b.

Remark 2.7. Setting X = E− and Y = E+, it flows from the definition and
Lema 2.1 that the functional Φ = Φε is even and satisfies (Φ1) and (Φ2).

3 A strongly indefinite quadrature form
In order to construct the subspace satisfying the assumption (Φ3) we make
certain preparations in the following two sections.

In general, for any 0 6= γ ∈ R, set Aγ = −iα · ∇ + γβ, a self-adjoint
operator on L2 with spectrum σ(Aγ) = R \ (−|γ|, |γ|). By (·, ·)γ, ‖ · ‖γ
and E = E−γ ⊕ E+

γ we denote the inner product, norm and orthogonal de-
composition associated to the operator |Aγ|1/2, see, e.g., [17]. Without loss
of generality we always assume below γ > 0. Let Sq denote the Sobolev
embedding constant:

Sq|u|2q ≤ |∇u|22 + |u|22
for u ∈ H1. Note that, if q = 6, then notation S6 = S and S|u|26 ≤ |∇u|22.
Recall that

(3.1) S1/2|u|23 ≤ | |Aγ|1/2u|22, γ(6−2q)/qS
1/2
2q/(4−q)|u|

2
q ≤ | |Aγ|1/2u|22

for q ∈ [2, 3] and all u ∈ E (see, [17, Remark 3.2]). In particular, if q = 3
then S1/2|u|23 ≤ | |Aγ|1/2u|22 for all γ ∈ R.

Consider the quadrature form

a(w) =

∫
R3

〈Aγλw,w〉 with Aγλ = −iα · ∇+ γβ + λ

for u ∈ E, where λ stands for a 4 × 4 symmetric real matrix with norm
|λ| < γ. Denote, for q ∈ [2, 3],

`q := inf
u∈E+

γ \{0}
max
v∈E−γ

a(u+ v)

|u+ v|2q

14



and let σ(u) ∈ E−γ be such that

`(u) := max
v∈E−γ

a(u+ v)

|u+ v|2q
=
a(u+ σ(u))

|u+ σ(u)|2q

(σ(u) is unique, see [17]). It is clear that

(3.2) γq =
q − 2

2q
`

q
q−2
q

is the least energy of

(3.3) −iα · ∇w + γβw + λw = |w|q−2w .

Set a0(w) =
∫
R3〈Aγw,w〉 and let λmin denote the minimal eigenvalue of

λ. Observe that, by interpolation,∫
R3

|u|q ≤ |u|2(3−q)2 |u|3(q−2)3 ,

which together with (3.1) implies

(γ + λmin)2(3−q)/q S3(q−2)/2q |u|2q ≤ | |Aγ|1/2u|22.

Therefore,

(3.4)
a(u+ σ(u))

|u+ σ(u)|2q
≥ a(u)

|u|2q
≥ (γ + λmin)

2(3−q)
q S

3(q−2)
2q .

In particular, by definition, taking γ = 1 and λ = 0, (3.2) yields

(3.5) γp ≥
p− 2

2p
S

p
2(p−2)

(it is also easy to show that γp ≥ p−2
2p
S
1/2(p−2)
2p/(4−p)).

Remark that, by definition, for any t 6= 0, there holds

a(u+ σ(u))

|u+ σ(u)|2q
=
a(tu+ tσ(u))

|tu+ tσ(u)|2q
≤ a(tu+ σ(tu))

|tu+ σ(tu)|2q

=
a(u+ 1

t
σ(tu))

|u+ 1
t
σ(tu)|2q

≤ a(u+ σ(u))

|u+ σ(u)|2q

hence

(3.6) tσ(u) = σ(tu) and `(u) = `(tu).
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Let, as before, {ĥ(·), Î(·), ˆN } be the "mountain-pass" reduction for (3.3).
Set

t̂ = t̂(u) =
(a(u+ σ(u))

|u+ σ(u)|qq

) 1
q−2
, ŵ = t̂u+ t̂σ(u) .

Plainly, one checks ([17]) that, for any v ∈ E−γ ⊕ Ru,

(3.7) 0 = <
[
a(ŵ, v)−

∫
R3

|ŵ|q−2ŵv
]
.

This implies that t̂u ∈ ˆN , and by the uniqueness of t̂(u)(> 0), ĥ(u) and
σ(u) (see [17]), ĥ(t̂u) = t̂σ(u). Note that, in particular,

(3.8) ĥ(u) = σ(u) if u ∈ ˆN .

Lemma 3.1. Assume that ν > 0 and let {h(·), I(·),N } be the "mountain-
pass" reduction for the equation (q ∈ [2, 3])

−iα · ∇w + γβw + λw = ν|w|q−2w .

Then for all u ∈ N

a(u+ h(u))

|u+ h(u)|2q
≥ (γ + λmin)

2(3−q)
q S

3(q−2)
2q . .

Proof. Let u ∈ N and w = u + h(u), and set ŵ = ν1/(q−1)w = ν1/(q−1)u +
ν1/(q−1)h(u). Then ŵ satisfies (3.7) for all v ∈ E−γ ⊕ Ru, that is, û =

ν1/(q−2)u ∈ ˆN . Thus, σ(û) = ĥ(û) = ν1/(q−1)h(u) by (3.8) and the u-
niqueness of ĥ(·), and

a(u+ σ(u))

|u+ σ(u)|2q
=
a(ν1/(q−1)u+ ν1/(q−1)σ(u))

|ν1/(q−1)u+ ν1/(q−1)σ(u)|2q

≤ a(ν1/(q−1)u+ σ(ν1/(q−1)u))

|ν1/(q−1)u+ σ(ν1/(q−1)u)|2q

=
a(ν1/(q−1)u+ ν1/(q−1)h(u))

|ν1/(q−1)u+ ν1/(q−1)h(u)|2q

=
a(u+ h(u))

|u+ h(u)|2q
.

This, together with (3.4), implies the desired estimates.
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4 Preliminary results
Firstly, we recall a result on the representation of solutions to certain constant
coefficient systems .

Lemma 4.1. Let M be a 4 × 4 symmetric constant real metric and either
F (u) = ν

p
|u|p or F (u) = ν1

p
|u|p + ν2

3
|u|3, and let u be a solution of

−iα · ∇u+ βu+Mu = ∇F (u), u ∈ H1(R3,C4).

Then the energy

Φ(u) =
1

6

∫
R3

〈−iα · ∇u, u〉.

Proof. By the Pohozev identity ([21])∫
R3

〈−iα · ∇u, u〉 =
3

2

∫
R3

−〈(β +M)u, u〉+ 2F (u).

On the other hand,∫
R3

〈−iα · ∇u, u〉 =

∫
R3

−〈(β +M)u, u〉+∇F (u)ū.

Thus,

1

2

∫
R3

〈(β +M)u, u〉 =

∫
R3

3F (u)−∇F (u)ū =
ν1(3− p)

p

∫
R3

|u|p,

so the energy functional

Φ(u) =Φ(u)− 1

3
Φ′(u)u

=
1

6

∫
R3

〈−iα · ∇u, u〉+ 〈(β +M)u, u〉 − ν1(3− p)
3p

∫
R3

|u|p

=
1

6

∫
R3

〈−iα · ∇u, u〉.

In the following by Mµ we denote the constant matrix µβ or µI4. Ad-
ditionally, write Mµ

ε (x) for the matrix function V µ
ε (x)β or V µ

ε (x)I4 where
V µ = max{µ, V (x)}, V µ

ε (x) = V µ(εx) (the identity matrix I4 will be omitted
below. Moreover, set W ν(x) = min{ν,W (x)}, W νj

j (x) = min{νj,Wj(x)},
and W ν

ε (x) = W ν(εx),W
νj
jε (x) = W

νj
j (εx).

17



Consider, for any τ ≤ µ ≤ τ∞ and κ∞ ≤ ν, ν1, ν2 ≤ κ„

(4.1) −iα · ∇u+ βu+Mµu = ν|u|p−2u,

(4.2) −iα · ∇u+ βu+Mµu = ν1|u|p−2u+ ν2|u|u,

(4.3) −iα · ∇u+ βu+Mµ
ε (x)u = W ν

ε (x)|u|p−2u,

(4.4) −iα · ∇u+ βu+Mµ
ε (x)u = W ν1

1ε (x)|u|p−2u+W ν2
2ε (x)|u|u .

4.1. The equation (4.1). Its solutions are critical points of the func-
tional

Γµν(u) : =
1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

2

∫
R3

〈Mµu, u〉 −
ν

p

∫
R3

|u|p

defined for u = u+ + u− ∈ E. Denote the critical set, the least energy, and
the set of least energy solutions of Γµν as follows

Lµν := {u ∈ E : Γ′µν(u) = 0},
γµν := inf{Γµν(u) : u ∈ Lµν \ {0}},
Rµν := {u ∈ Lµν : Γµν(u) = γµν , |u(0)| = |u|∞}.

The following conclusions are from [18]:

i) Lµν 6= ∅, γµν > 0, and Lµν ⊂
⋂
q≥2W

1,q;

ii) γµν is attained, and Rµν is compact in H1(R3,C4);

iii) there exist C, c > 0 such that |u(x)| ≤ C exp (−c|x|) for all x ∈ R3 and
u ∈ Rµν .

Using γp we have the following representation

Lemma 4.2. Assume Mµ = µβ and let u be a least energy solution of (4.1).
Then

γµν = γp (1 + µ)
2(3−p)
p−2 ν

−2
p−2 .
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Proof. Set

v(x) =
( ν

1 + µ

) 1
p−2
u
( x

1 + µ

)
.

Then v is a ground state of (1.9). In virtue of Lemma 4.1, one has

γp =
1

6

∫
R3

〈−iα · ∇v, v〉 =
( ν

1 + µ

) 2
p−2

(1 + µ)2
(

1

6

∫
R3

〈−iα · ∇u, u〉
)

= ν
2
p−2
(
1 + µ

)− 2(3−p)
p−2 γµν

ending the proof.

Lemma 4.3. Let −1 < µj < 1 and νj > 0, j = 1, 2, with min{µ2 − µ1, ν1 −
ν2} > 0. Then γµ1ν1 < γµ2ν2. In particular, γµ1ν < γµ2ν if µ1 < µ2, and
γµν1 > γµν2 if ν1 < ν2.

Proof. The conclusion follows from the representation of γµν in Lemma 4.2
if Mµ = µβ. If Mµ = µ then the conclusion follows directly from the repre-
sentation of Γµν .

Set M∞ = Mτ∞ and γ∞ = γτ∞κ∞ . Consider

(4.5) −iα · ∇u+ βu+M∞u = κ∞|u|p−2u .

Lemma 4.4. Let τ ≤ µ ≤ τ∞ and κ∞ ≤ ν ≤ κ.

γµν ≤
(κ∞
ν

) 2
p−2
( 1 + µ

1 + τ∞

) 2(3−p)
p−2

γ∞ .

Proof. Let u be a least energy solution of (4.5) and set

(4.6) v(x) = b u(ξx), b =
(κ∞(1 + µ)

ν(1 + τ∞)

) 1
p−2
, ξ =

1 + µ

1 + τ∞
.

1)Mµ = µβ. It is clear that v is a solution of (4.1) with desired inequality
(by using Lemma 4.1).

2) Mµ = µ. Writing u = (u1, u2) ∈ C2 × C2, observe that (4.1) is
equivalent to {

− iσ · ∇u2 + (1 + µ)u1 = ν|u|p−2u1
− iσ · ∇u1 − (1− µ)u2 = ν|u|p−2u2

with the energy functional

Γµν(u) =
1

2

∫
R3

〈−iα · ∇u, u〉+ (1 + µ)|u1|2 − (1− µ)|u2|2 −
ν

p

∫
R3

|u|p.
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Now let u be a least energy solution of (4.5) and v be defined by (4.6). Setting

(4.7) η =
(1 + µ)(1− τ∞)

(1 + τ∞)(1− µ)
,

the function v is a least energy solution of{
− iσ · ∇v2 + (1 + µ)v1 = ν|v|p−2v1
− iσ · ∇v1 − η(1− µ)v2 = ν|v|p−2v2

with energy

I(v) :=
1

2

∫
R3

〈−iα · ∇v, v〉+ (1 + µ)|v1|2 − η(1− µ)|v2|2 −
ν

p

∫
R3

|v|p.

Since
η − 1 =

2(µ− τ∞)

(1 + τ∞)(1− µ)
≤ 0,

i.e., η ≤ 1, one has Γµν(v) ≤ I(v) which, together with Lemma 4.1, implies
the desired first inequality.

Letting [r] denote the integer part of r ∈ R, as a consequence we have

Lemma 4.5. There holds mγµν ≤ γ∞ where

m =

[( ν

κ∞

) 2
p−2
(1 + τ∞

1 + µ

) 2(3−p)
p−2

]
.

4.2. The equation (4.2). Its solutions are critical points of

Γµ~ν(u) := Γµν1(u)− ν2
3

∫
R3

|u|3 = Γµν2(u)− ν1
p

∫
R3

|u|p

on u ∈ E, where

Γµν1(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

2

∫
R3

〈Mµu, u〉 −
ν1
p

∫
R3

|u|p,

Γµν2(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

2

∫
R3

〈Mµu, u〉 −
ν2
3

∫
R3

|u|3.

Let γµ~ν , γµν1 , γµν2 denote the linking levels of Γµ~ν , Γµν1 , Γµν2 , respectively.
One has

(4.8) γµ~ν < γµν1 , γµ~ν < γµν2 .
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Lemma 4.6. γµ~ν is attained provided that

(4.9) γµ~ν <
S3/2

6ν22
.

Proof. Let {un} ⊂ Mµ~ν be such that I(un) = Γµ~ν(un + h0(un)) → c = γµ~ν .
It is not difficult to check that {wn = un + h0(un)} is bounded in E. By a
Lions’ concentration principle {wn} is either vanishing or non-vanishing.

Assume that {wn} is vanishing. Then |wn|s → 0 for s ∈ (2, 3), one gets,

Γµ~ν(un + h0(un)) =
1

6
a(wn) + o(1).

Similarly,

|wn|33 =
6c

ν2
+ o(1).

Let Γ̂µ~ν be the energy functional and (ĥ(·), Î(·), M̂ ) the "mountain-pass"
reduction of

−iα · ∇ŵ + βŵ +Mµŵ = ν2|ŵ|ŵ.

Let tn > 0 be such that ûn = tnun ∈ M̂ and set ŵn = tnun + ĥ(tnun).
Plainly, {tn} is bounded, hence |ŵn|s → 0 for any s ∈ (2, 3). By definition,
Γ̂µ~ν(wn) ≤ Γ̂µ~ν(ŵn) and Γµ~ν(ŵn) ≤ Γµ~ν(wn). Thus

Γµ~ν(wn) = Γ̂µ~ν(wn) + o(1) ≤ Γ̂µ~ν(ŵn) + o(1)

= Γµ~ν(ŵn) + o(1) ≤ Γµ~ν(wn) + o(1).

This yields that
lim
n→∞

Γ̂µ~ν(wn) = lim
n→∞

Γ̂µ~ν(ŵn) = c

which, together with the fact that ûn ∈ M̂ , implies that

Γ̂µ~ν(ŵn) =
1

6
a(ŵn) =

1

6
ν2|ŵn|33 → c,

that is,

|ŵn|3 =
(6Γ̂µ~ν(ŵn)

ν2

)1/3
and

a(ŵn)

|ŵn|23
= ν2|ŵn|3 = ν2

(6c

ν2

)1/3
+ o(1).

Now, by virtue of Lemma 3.1 with q = 3 and ν = ν2, we see that

c ≥ S3/2

6ν22
,
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a contradiction.
Therefore, {wn} is non-vanishing, that is, there exist r, δ > 0 and xn ∈ R3

such that, setting vn(x) = wn(x+ xn), along a subsequence,∫
Br(0)

|vn|2 ≥ δ.

Without loss of generality we assume vn ⇀ v. Then v 6= 0 and is a solution
of (4.2). And so γµ~ν is attained.

Lemma 4.7. γµ~ν is attained provided the following:

(4.10) (1 + µ)
2(3−p)
p−2

( ν2

ν
1/(p−2)
1

)2
≤ S3/2

6γp
.

Proof. Assume Mµ = µβ. Consider the norm ‖u‖γ = ||Aγ|1/2u|2 on E in-
duced by the operator Aγ = −iα · ∇+ (1 + µ)β. Then 1) follows from (4.8)
and Lemmas 4.2 and 4.6.

Consider 2). Observe that, since µ ≤ 0, for u 6= 0,

Γµ~ν(u) =
1

2

∫
R3

〈(−iα · ∇+ (1 + µ)β)u, u〉+
1

2

∫
R3

µ〈(I − β)u, u〉

−
∫
R3

(ν1
p
|u|p +

ν2
3
|u|3
)

<
1

2

∫
R3

〈(−iα · ∇+ (1 + µ)β)u, u〉 − ν1
p

∫
R3

|u|p

Now the conclusion follows from (4.8) and Lemmas 4.2 and 4.6.

In the sequel, by ~ν1 ≤ ~ν2 (resp. ~ν1 < ~ν2) we mean that min{ν21 −ν11 , ν22 −
ν12} ≥ 0 (resp. min{ν21 − ν11 , ν

2
2 − ν12} > 0) for any vectors ~νj = (νj1, ν

j
2).

Additionally, set for ~µ = (µ1, µ2) ∈ R2,

M~µ =

(
µ1I2 0

0 µ2I2

)
=

(
µ1 0
0 µ2

)
.

For any ~µk = (µk1, µk2) ∈ R2, k = 1, 2, M~µ2 ≥M~µ1 if ~µ1 ≤ ~µ2. The following
conclusion is clear.

Lemma 4.8. Let µj > −1 and ~νj > 0 for j = 1, 2. If µ2 ≥ µ1 and ~ν1 ≥ ~ν2

then γµ1~ν1 ≤ γµ2~ν2. If min{µ2 − µ1, ~ν
1 − ~ν2} > 0 then γµ1~ν1 < γµ2~ν2.
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Proof. We only verify the case Mµ = µβ (the other is clear). In fact, u is a
least energy solution of (4.2) if and only if v(x) = bu(x/(1 + µ)) is a least
energy solution of

−iα · ∇v + βv =
1

1 + µ

(
ν1
bp−2
|v|p−2v +

ν2
b
|v|v
)

with the energy
γ(v) = (1 + µ)2b2γ(u).

The conclusion follows easily by taking b = 1,
(
ν1
1+µ

)1/(p−2) and ν2
1+µ

, respec-
tively.

Remark 4.9. Similarly, ifM~µ1 ≤M~µ2 and ~ν1 ≥ ~ν2 then γ~µ1~ν1 ≤ γ~µ2~ν2 , where
γ~µ~ν denotes the energy of (4.2) with Mµ replaced by M~µ.

Below, let u be a least energy solution of

(4.11) −iα · ∇u+ βu+M∞u = κ1∞|u|p−2u+ κ2∞|u|u

with the energy denoted by γ ~∞ which is attained if γ ~∞ < S3/2/6κ22∞ by
Lemma 4.6. For τ ≤ µ ≤ τ∞ and κj∞ ≤ νj ≤ κj, set

v(x) = bu(ξx), ξ =
1 + µ

1 + τ∞
, b = max {b1, b2} ,

where
b1 =

(ξκ1∞
ν1

) 1
p−2 and b2 =

ξκ2∞
ν2

.

Then, if Mµ = µβ, v solves

−iα · ∇v + (1 + µ)βv =
κ1∞(1 + µ)

bp−2ν1(1 + τ∞)
ν1|v|p−2v +

κ2∞(1 + µ)

bν2(1 + τ∞)
ν2|v|v,

and, if Mµ = µ, v solves

−iα · ∇v + βv +M~uv =
κ1∞(1 + µ)

bp−2ν1(1 + τ∞)
ν1|v|p−2v +

κ2∞(1 + µ)

bν2(1 + τ∞)
ν2|v|v

with energy denoted by I∗(v), where ~µ = (µ1, µ2) with

µ1 = ξ(1 + τ∞)− 1 = µ, µ2 = 1− ξ(1− τ∞) > µ.
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By dfinition, Remark 4.9 and Lemma 4.1, it is clear that

γµ~ν ≤ I∗(v) =
(b(1 + τ∞)

1 + µ

)2
γ ~∞.

Set

(4.12) m(µ, ~ν) =


(1 + τ∞

1 + µ

) 2(3−p)
p−2

( ν1
κ1∞

) 2
p−2
, if b1 ≥ b2( ν2

κ2∞

)2
, otherwise.

Then
m(µ, ~ν) I∗(v) = γ ~∞,

and we have

Lemma 4.10. For τ ≤ µ ≤ τ∞ and κj∞ ≤ νj ≤ κj, there holds

m(µ, ~ν) γµ~ν < γ ~∞.

4.3. The equation (4.3). The solutions of (4.3) are critical points of

Φµν
ε (u) =

1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

2

∫
R3

〈Mµ
ε u, u〉 −

1

p

∫
R3

W ν
ε (x)|u|p

on u ∈ E = E+ ⊕ E−. Let cµνε denote the Minimax level of Φµν
ε deduced

by the linking structure (see (2.2)). Write hµνε , Iµνε , N µν
ε , and so on, for

the notations associated to the Mountain-Pass induce. Recall that, for any
u ∈ E+ \ {0}, there is a unique t = t(u) > 0 such that t(u)u ∈ N µν

ε ([18]).
It is easy to check that cµνε = inf{Iµνε (u) : u ∈ N µν

ε }.
In the sequel we denote

Φ∞ε = Φτ∞κ∞
ε , c∞ε = cτ∞κ∞ε , N ∞

ε = N τ∞κ∞
ε ,

and Γ∞ = Γτ∞κ∞ , γ∞ = γτ∞κ∞ . As a consequence of Lemma 2.5 we have

Lemma 4.11. c∞ε → γ∞ as ε→ 0.

Remark 4.12. Similar, one obtains easily that limε→0 c
µν
ε = γµν .

As a consequence one has

Lemma 4.13. Φµν
ε satisfies the (PS)c condition for c < γ∞ if ε small.
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Proof. Writing I(u) = Φµν
ε (u), let I(un) → c and I ′(un) → 0. Then un is

bounded and we can assume that un ⇀ u. Clearly I ′(u) = 0. Set zn = un−u.
Note that zn ⇀ 0 in E, zn → 0 in Lqloc for q ∈ [1, 3), and zn(x) → 0 a.e.
in x. It is easy to check that Φ∞ε (zn) → c − Φµν

ε (u) and (Φ∞ε )′(zn) → 0.
If c = Φµν

ε (u) then zn → 0 and we are done. If c − Φµν
ε (u) ≥ c∞ε then

c ≥ cµνε + c∞ε , a contradiction.

4.4. The equation (4.4). Its solutions are critical points of

Φµ~ν
ε (u) = Φµν1

ε (u)− 1

3

∫
R3

W ν2
2ε (x)|u|3

with ~ν = (ν1, ν2). Let cµ~νε be the linking level (see (2.2)). Write Φ ~∞
ε and c ~∞ε

for µ = τ∞ and ~ν = (κ1∞, κ2∞). We have, as Lemma 4.11, the following

Lemma 4.14. c ~∞ε → γ ~∞ as ε→ 0.

Also as Lemma 4.13 there holds the following

Lemma 4.15. Φµ~ν
ε satisfies the (PS)c condition for all c < γ ~∞.

Proof. Denote I(u) = Φµ~ν
ε and let I(un) → c, I ′(un) → 0. One can assume

un ⇀ u and set zn = un − u. Then zn is a (PS)c sequence for Φ ~∞
ε where c =

c−I(u). By Lemma 4.14, if I(u) 6= c then c−I(u) ≥ γ ~∞, a contradiction.

5 Proofs of main results: the subcritical case
Setting u(x) = w(εx), the equation (1.3) is equivalent to the following

(5.1) −iα · ∇u+ βu+Mε(x)u = Wε(x)|u|p−2u .

Proof of Theorem 1.1. Without loss of generality, we may assume that 0 ∈ V
and xv = 0. Observe that τ = V (0) and κv = W (0). Solutions of (5.1) are
critical points of the functional Φε(u) := Φτκv

ε (u). For notational convenience
we denote Φ0(u) = Γτκv . We will utilize Theorem 2.6. Obversely, Φε is even,
and in virtue of Remark 2.7 the conditions (Φ1) and (Φ2) are satisfied. It
remains to verify (Φ3).

Let u ∈ Rτκv and let χr ∈ C∞0 (R+) be such that χr(s) = 1 if s ≤ r and
χr(s) = 0 if s ≥ r + 1. Set ur(x) = χr(|x|)u(x). Recall that |u(x)| ≤ Ce−c|x|

for some C, c > 0 and all x ∈ R3, hence ‖ur − u‖ → 0 as r → ∞. Then
‖u±r − u±‖ ≤ ‖ur − u‖ → 0, Φ0(ur) → γτκv and Φ′0(ur) → 0 as r → ∞. Let
h0 : E+ → E− be defined so that Φ0(u + h0(u)) = maxv∈E− Φ0(u + v) (see
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(2.3)). Plainly, ‖u−r −h0(u+r )‖ → 0 and ‖ur−ûr‖ → 0 where ûr = u+r +h0(u
+
r )

(see Lemma 2.4). Therefore,

max
v∈E−

Φ0(u
+
r + v) = Φ0(ûr) = Φ0(ur) + o(1) = γτκv + o(1).

Observe that since V (εx) → τ and W (εx) → κv as ε → 0 uniformly in
|x| ≤ r + 1, we have that, for any δ > 0, there are rδ > 0 and εδ > 0 such
that

(5.2) max
w∈E−⊕Rur

Φε(w) < γτκv + δ

for all r ≥ rδ and ε ≤ εδ.
Let yj = (2j(r + 1), 0, 0), define uj(x) = u(x − yj) = u(x1 − 2j(r +

1), x2, x3), urj(x) = ur(x − yj) for j = 0, 1, ...,m − 1. Setting rm = (2m −
1)(r+ 1), it is clear that suppurj ⊂ Brm(0). Obviously {u+rj}m−1j=0 are linearly
independent. Indeed, if w+ =

∑m−1
j=0 cju

+
rj = 0, denoting w =

∑m−1
j=0 cjurj,

one has w = w− + w+ and

−‖w−‖2 = aτ (w) =
∑
j

c2jaτ (u
+
rj) = aτ (ur)

∑
j

c2j

which implies cj = 0, j = 0, 1, ...,m− 1. Now set

Em =E− ⊕ span{urj : j = 0, ...,m− 1}
=E− ⊕ span{u+rj : j = 0, ...,m− 1}.

By virtue of Lemma 2.5, let tεrj > 0 be such that tεrju+rj ∈ Nε. Observe
that

(5.3) lim
ε→0

lim
r→∞

tεrj = lim
ε→0

tεj = 1,

(5.4) lim
ε→0

lim
r→∞

hε(tεrju
+
rj) = lim

ε→0
hε(tεju

+
rj) = h0(u

+) = u−,

(5.5) lim
ε→0

lim
r→∞

‖hε(tεrju+rj)− tεrju−rj‖ = lim
ε→0
‖hε(tεju+)− tεju−‖ = 0.
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It is not difficult to check the following

max
w∈Em

Φε(w) = Φε

(m−1∑
j=0

tεju
+
rj + hε(tεju

+
rj)
)

= Φε

(m−1∑
j=0

tεju
+
rj + tεju

−
rj

)
+ o(1r)

= Φε

(m−1∑
j=0

tεjurj

)
+ o(1r)

=
m−1∑
j=0

Φε(tεjurj) + o(1r)

=
m−1∑
j=0

Φε(tεju
+
rj + tεju

−
rj) + o(1r)

=
m−1∑
j=0

Φε(tεju
+
rj + hε(tεju

+
rj)) + o(1r)

=
m−1∑
j=0

Φ0(t0ju
+
rj + h0(t0ju

+
rj)) + o(1rε)

=
m−1∑
j=0

Φ0(u) + o(1rε)

=mγκ + o(1rε)

where o(1r) means arbitrary small as r → ∞, and o(1rε) means arbitrary
small as r sufficiently large and ε sufficiently small.

Now, by assumptions and Lemma 4.5, for any 0 < δ < γ∞ −mγκ, one
may choose r > 0 large and then εm > 0 small such that, for all ε ≤ εm,
maxw∈Em Φε(w) ≤ γ∞ − δ. Now by Theorem 2.6 one gets the multiplicity
conclusion.

By Lemma 2.2 we see that the solutions are in ∩s≥2W 1,s.
Finally, repeating the proof of [20, Lemma 4.6] gives the exponential

decay.
Now, as (5.2), one can choose r > 0 and εm > 0 such that, if ε ≤ εm,

Φε(w) < γ∞ for allw ∈ Em.

It follows from Lemmas 4.13 that Φε satisfies the (PS)c-condition for all
c < γ∞, that is, the general condition (Φ3) is satisfied. Now by applying
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Theorem 2.6, one sees that either Φε has infinitely many critical points, or
has at least m pairs of critical points with different critical values 0 < c0ε <
· · · < cm−1ε ≤ supw∈Hm Φε(w) < γ∞.

Proof of Theorem 1.2. We are sketchy. Assume xw = 0 and consider µ =
τw = V (0), ν = κ = W (0) and Φε = Φτwκ, Φ0 = Γτκ. Let u ∈ Rτwκ, Φ0(u) =
γτwκ. As before. define ur and urj, j = 0, ..,m−1, and set the m-dimensional
subspace Em. Then one checks that, for w ∈ Em with `(w) = max `(Em),

Φ0(w) =
p− 2

2pκ2/(p−2)
`(w)p/(p−2)

≤ p− 2

2pκ2/(p−2)
(m`(u))p/(p−2) + o(1)

= γp

(
m
((1 + τw)3−p

κ

) 2
p

) p
p−2

+ o(1)

<γ∞ + o(1)

by (1.6) as r →∞. Now Theorem 2.6 applies.

Remark 5.1. Let u be a solution with Φε(u) ≤ Λ. Plainly one checks the
following

(5.6) ∆u =
(

(1 + Vε)
2 + iεβ

3∑
k=1

αk∂kV (εx)
)
u+ rε(u)u

where

rε(u) =
(
iε

3∑
k=1

∂kW (εx)−Wε|u|p−2
)
|u|p−2

+ i(p− 2)Wε|u|p−3
3∑

k=1

αk<
[u∂ku
|u|

]
.

By the Kato’s inequality we get (by sgn denoting the sign function)

(5.7)
∆|u| ≥<

[
∆u(sgnu)

]
≥
(
(1 + Vε)

2 − ε|∇V (εx)|
)
|u| −Wε|u|2p−3

(cf. [11]) which, together with the regularity estimates, implies that there is
λ > 0 depending on Λ but independent of ε such that

∆|u| ≥ −λ|u|.

28



Now the sub-solution estimate shows that there exists C0 > 0 independent
of ε > 0 with

(5.8) |u(x)| ≤ C0

∫
B1(0)

|u(y)| dy

for all x ∈ R3. In addition, letting σ = min{(1 + V (x))2 : x ∈ R3}, the
estimate (5.6) implies that there exists ε1 > 0 such that, for all ε ≤ ε1,

(5.9) ∆|u| ≥ σ

2
|u| − (κ|u|2(p−2))|u|.

Proof of Theorem 1.3. If the potential M(x) = V (x)I4, the concentration
had been proved in [15], we need to deal with here the other potentialM(x) =
V (x)β. Moreover we give only the proof for the case (2) of (P1) because the
case (1) can be handled similarly.

We may assume xw = 0, τw = V (0) and κ = W (0). The existence follows
from Theorem 1.2. Note that, by Remark 4.12, the least energy

(5.10) cε → γτwκ as ε→ 0.

The remainder will be argued in several steps.
Step 1) Let εj → 0, uj ∈ Kj where Kj = Kεj . Then {uj} is bounded.

A concentration argument shows that there exist a sequence {y′j} ⊂ R3 and
constants R > 0, δ > 0 such that

(5.11) lim inf
j→∞

∫
BR(y

′
j)

|uj|2 ≥ δ.

Set vj(x) = uj(x+ y′j). Then vj solves, denoting V̂εj(x) = V (εj(x+ y′j)) and
Ŵεj(x) = W (εj(x+ y′j)),

(5.12) −iα · ∇vj +
(
1 + V̂εj(x)

)
βvj = Ŵεj(x)|vj|p−2vj

with energy

ĉεj = Φ̂εj(vj) =
p− 2

2p

∫
R3

Ŵεj(x)|vj|p.

Plainly,
ĉεj = Φ̂εj(vj) = Φεj(uj) = cεj .

We may assume additionally vj ⇀ v in E and vj → v in Lqloc for q ∈ [1, 3)
with v 6= 0 by (5.11).
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Since V and W are bounded, without loss of generality, we assume
V (εjy

′
j) → V0 and W (εjy

′
j) → W0 as j → ∞. By virtue of the bound-

edness of ∇V and ∇W one sees that V̂εj(x) → V0 and Ŵεj(x) → W0 as
j →∞ uniformly on any bounded set of x. Consequently, by (5.12), for any
ϕ ∈ C∞0 ,

0 = lim
j→∞

∫
R3

〈
− iα · ∇vj + (1 + Vεj(x))βvj − Ŵεj(x)|vj|p−2vj, ϕ

〉
=

∫
R3

〈
− iα · ∇v + (1 + V0)βv −W0|v|p−2v, ϕ

〉
,

which implies that v solves

(5.13) −iα · ∇v + (1 + V0)βv = W0|v|p−2v

with the energy

ΓV0W0(v) =
p− 2

2p

∫
R3

W0|v|p ≥ γV0W0 .

By a Fatou’s Lemma,∫
R3

W0|v|p ≤ lim inf
j→∞

∫
R3

Ŵεj(x)|vj|p

which, jointly with Lemma 2.5, implies that

ΓV0W0(v) ≤ lim inf
j→∞

cεj ≤ γV0W0

(recalling that Φ̂εj and Φεj have the same least energy cεj). Therefore,

(5.14) lim
j→∞

cεj = ΓV0W0(v) = γV0W0 .

Let η : [0,∞) → [0, 1] be a smooth function satisfying η(s) = 1 if s ≤
1, η(s) = 0 if s ≥ 2. Define ṽj(x) = η(2|x|/j)v(x). One has

(5.15) ‖v − ṽj‖ → 0 and |v − ṽj|q → 0 as j →∞

for q ∈ [2, 3]. Setting zj = vj − ṽj, it is not difficult to verify by applying a
Brézis-Lieb’s argument ([36]) that along a subsequence,

(5.16) lim
j→∞

∣∣∣∣∫
R3

Ŵεj(x)
(
|vj|p − |zj|p − |ṽj|p

)∣∣∣∣ = 0
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and

(5.17) lim
j→∞

∣∣∣∣∫
R3

Ŵεj(x)
(
|vj|p−2vj − |zj|p−2zj − |ṽj|p−2ṽj

)
ϕ

∣∣∣∣ = 0

uniformly in ϕ ∈ E with ‖ϕ‖ ≤ 1. Using the exponential decay of v, (5.15),
and the facts that V̂εj(x) → V0, Ŵεj(x) → W0 as j → ∞ uniformly on any
bounded set of x, one checks easily the following

(5.18)
∫
R3

V̂εj(x)vj ṽj →
∫
R3

V0|v|2

and

(5.19)
∫
R3

Ŵεj(x)|ṽj|p →
∫
R3

W0|v|p,

consequently,

Φ̂εj(zj) = Φ̂εj(vj)− ΓV0W0(v)

+
1

p

∫
R3

Ŵεj(x)
(
|vj|p − |zj|p − |ṽj|p

)
+ o(1)

= o(1)

as j →∞, which implies that

(5.20) Φ̂εj(zj) → 0

as j →∞. Similarly, by (5.17),

Φ̂′εj(zj)ϕ =

∫
R3

Ŵεj(x)
(
|vj|p−2vj − |zj|p−2zj)− |ṽj|p−2ṽj

)
ϕ+ o(1) = o(1)

as j →∞ uniformly in ‖ϕ‖ ≤ 1, which implies that

(5.21) Φ̂′εj(zj) → 0

as j →∞. Now one has

Φ̂εj(zj)−
1

2
Φ̂′εj(zj)zj =

(1

2
− 1

p

)∫
R3

Ŵεj |zj|p

which, jointly with (5.20) and (5.21), shows that ‖zj‖ → 0 as j →∞. This,
together with (5.15), implies vj → v in E. Note that by (5.12) and (5.13)

Azj = Ŵεj(x)f(|vj|)vj −W0f(|u|)u−
(
V̂εj(x)βvj − V0βu

)
.
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It yields |Azj|2 → 0. Therefore vj → u in H1.

Step 2) vj(x)→ 0 as |x| → ∞ uniformly in j ∈ N. Assume by contradic-
tion that the conclusion does not hold. This, jointly with the sub-solution
estimate (5.8), implies that there exist σ > 0, xj ∈ R3 with |xj| → ∞, and
C0 > 0 independent of j such that σ ≤ |vj(xj)| ≤ C0

( ∫
B1(xj)

|vj|2
)1/2. Since

vj → v in H1 one gets

σ ≤ C0

(∫
B1(xj)

|vj|2
)1/2

→ 0,

a contradiction.

Step 3) {εjy′j}j is bounded. Assume by contradiction that εj|y′j| → ∞.
Then V0 ≥ τw and W0 < κ so γV0W0 > γτwκ by Lemma 4.3. However, by
(5.14) and (5.10), cεj → γV0W0 ≤ γτwκ, a contradiction. Therefore, we can
assume εjy′j → y0, V0 = V (y0) and W0 = W (y0) which, together with (5.13),
implies that v is a least energy solution of (1.7). Now by Step 2 it is easy to
see that one can assume that yj = y′j is a maximum point of |uj|.

Step 4) limε→0 dist(εyε,A ) = 0. It is sufficient to check that y0 ∈ A .
Assume indirectly that y0 6∈ A . Then it is easy to check by the definition of
A that γV (y0)W (y0) > γτwκ, which, together with (5.14) and (5.10), implies

lim
ε→0

cε = γV (y0)W (y0) > γτwκ = lim
ε→0

cε,

a contradiction. Finally, assuming in addition that V ∩ W 6= ∅, one has
A = V ∩ W , so limε→0 dist(εyε,V ∩ W ) = 0 and vε converges in H1 to a
least energy solution of (1.8).

Step 5) There is C > 0 such that for all ε small

(5.22) |uε(x)| ≤ Ce−
√
σ/4|x−yε| ∀x ∈ R3.

It suffices to verify this for sequences. By Step 2 and (5.9) we may take δ > 0
and R > 0 such that |vj(x)| ≤ δ and

∆|vj| ≥
σ

4
|vj|

for all |x| ≥ R, j ∈ N. Let Γ(y) = Γ(y, 0) be a fundamental solution to −∆+
σ/4. Using the uniform boundedness, one may choose Γ so that |vj(y)| ≤
σ
4
Γ(y) holds on |y| = R, all j ∈ N. Let z̃j = |vj| − σ

4
Γ. Then we obtain

∆z̃j =
σ

4
z̃j.
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By the maximum principle we can conclude that z̃j(y) ≤ 0 on |y| ≥ R. It
is well known that there is C ′ > 0 such that Γ(y) ≤ C ′ exp(−

√
σ/4|y|) on

|y| ≥ 1. We see that

|vj(y)| ≤ C exp(−
√
σ/4|y|)

for all y ∈ R3 and all j ∈ N, that is,

|uj(x)| ≤ C exp(−
√
σ/4|x− yj|)

for all x ∈ R3 and all j ∈ N.
The proof is hereby complete.

6 Proofs of main results: the critical case
Setting u(x) = w(εx), the equation (1.4) is equivalent to the following

(6.1) −iα · ∇u+ βu+Mε(x)u = W1ε(x)|u|p−2u+W2ε(x)|u|u.

Proof of Theorem 1.4. We may assume that 0 ∈ V , xv = 0 and τ = V (0),
κjv = Wj(0). Solutions of (6.1) are critical points of the functional Φ∗ε(u) :=
Φτ~κv
ε (u) with ~κv = (κ1v, κ2v). Denote Φ∗0(u) = γτ~κv . We will adopt an

argument different from that of Theorem 1.1. Let u ∈ Rτ~κv be a solution of
(4.2) with µ = τ and ~ν = ~κv. Define ur, urj, j = 0, ...,m− 1, and set Em as
before.

By virtue of Lemma 2.5, let tεrj > 0 be such that tεrju+rj ∈ Nε. Observe
that

lim
ε→0

lim
r→∞

tεrj = lim
ε→0

tεj = 1,

lim
ε→0

lim
r→∞

hε(tεrju
+
rj) = lim

ε→0
hε(tεju

+
rj) = h0(u

+) = u−,

lim
ε→0

lim
r→∞

‖hε(tεrju+rj)− tεrju−rj)‖ = lim
ε→0
‖hε(tεju+)− tεju−‖ = 0.
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One checks easily the following

max
w∈Em

Φ∗ε(w) = Φ∗ε

(m−1∑
j=0

tεju
+
rj + hε(tεju

+
rj)
)

= Φ∗ε

(m−1∑
j=0

tεju
+
rj + tεju

−
rj

)
+ o(1r)

= Φ∗ε

(m−1∑
j=0

tεjurj

)
+ o(1r)

=
m−1∑
j=0

Φ∗ε(tεjurj) + o(1r)

=
m−1∑
j=0

Φ∗ε(tεju
+
rj + tεju

−
rj) + o(1r)

=
m−1∑
j=0

Φ∗ε(tεju
+
rj + hε(tεju

+
rj)) + o(1r)

=
m−1∑
j=0

Φ∗0(t0ju
+
rj + h0(t0ju

+
rj)) + o(1rε)

=
m−1∑
j=0

Φ∗0(u) + o(1rε)

=mγτ~κv + o(1rε)

where o(1r) means arbitrary small as r → ∞, and o(1rε) means arbitrary
small as r sufficiently large and ε sufficiently small.

Now, by assumptions and Lemma 4.10, for any 0 < δ < γ ~∞−mγτ~κv , one
may choose r > 0 large and then Em > 0 small such that, for all ε ≤ Em,
maxw∈Em Φ∗ε(w) ≤ γ ~∞ − δ. Theorem 2.6 applies.

Proof of Theorem 1.5. Assume 0 ∈ W := W1 ∩ W2, xw = 0 and τw = V (0),
~κ = (κ1, κ2) = (W1(0),W2(0)). Solutions of (6.1) are critical points of the
functional Φ∗ε(u) := Φτw~κ

ε (u). Denote Φ∗0(u) = γτw~κ. Let u ∈ Rτw~κ be a
solution of (4.2) with µ = τw and ~ν = ~κ. Define ur, urj, j = 0, ...,m− 1, and
set Em as before. Then one finds

max
w∈Em

Φ∗ε(w) = mγτw~κ + o(1rε).

By assumptions and Lemma 4.10, for any 0 < δ < γ ~∞ − mγτw~κ, one may
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choose r > 0 large and then Em > 0 small such that, for all ε ≤ Em,
maxw∈Em Φ∗ε(w) ≤ γ ~∞ − δ. Theorem 2.6 applies.

Proof of Theorem 1.6. We deal with again the case (2) of (P1) in (Q3). The
proof will be carried out along the lines of proof of Theorem 1.3. So we are
sketchy.

Given arbitrarily a sequence εj → 0 as j → ∞, let uj ∈ Kj ≡ Kεj .
Then {uj} is bounded. It is not difficult, by (Q1), to check that {uj} is
non-varnishing. Therefore there exist a sequence {y′j} ⊂ R3 and constants
r > 0, δ > 0 such that

lim inf
j→∞

∫
Br(y′j)

|uj|2 ≥ δ.

Set vj(x) = uj(x+ y′j). Then vj solves, denoting V̂εj(x) = V (εj(x+ y′j)) and
Ŵkεj(x) = Wk(εj(x+ y′j)) for k = 1, 2,

(6.2) −iα · ∇vj + (1 + V̂εj(x))βvj = Ŵ1εj(x)|vj|p−2vj + Ŵ2εj(x)|vj|vj

with the associated energy functional (denoted by Φ̂∗εj) and least energy

ĉεj = Φ̂∗εj(vj) =

∫
R3

H̄(εjx, |vj|)

where H̄(εjx, |u|) = p−2
2p
Ŵ1εj(x)|u|p + 1

6
Ŵ2εj(x)|u|3. Plainly,

ĉεj = Φ̂∗εj(vj) = Φ∗εj(uj) = cεj .

Additionally, vj ⇀ u 6= 0 in E. We can assume that V (εjy
′
j) → V0 and

WK(εjy
′
j)→ Wk0 as j →∞. One sees easily that u solves

(6.3) −iα · ∇u+ (1 + V0)βu = W10|u|p−2u+W20|u|u

with the energy ΓV0 ~W0
(u) =

∫
R3 H̄(0, |u|) :=

∫
R3

p−2
2p
Ŵ10|u|p + 1

6
Ŵ20|u|3 ≥

γV0 ~W0
. The Fatou lemma yilds

(6.4) lim
j→∞

cεj = ΓV0 ~W0
(u) = γV0 ~W0

and
lim
j→∞

∫
R3

H̄(εjx, |vj|) =

∫
R3

H̄(0, |u|) = γV0 ~W0
.

Let η : [0,∞) → [0, 1] be a smooth function satisfying η(s) = 1 if s ≤
1, η(s) = 0 if s ≥ 2. Define ṽj(x) = η(2|x|/j)u(x). One has ‖u − ṽj‖ → 0
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and |u − ṽj|s → 0 as j → ∞ for s ∈ [2, 3]. Setting zj = vj − ṽj, one checks
easily that, along a subsequence (see [13, 36]),

Φ̂∗εj(zj) = Φ̂∗εj(vj)− ΓV0 ~W0
(u) + o(1)

as j → ∞, that is, Φ̂∗εj(zj) → 0. Similarly, Φ̂∗
′
εj

(zj) → 0. Now a standard
argument yields vj → u in E as j →∞. Observe that by (6.2) and (6.3)

A0zj = −
(
V̂εj(x)βvj − V0βu

)
+
(
Ŵ1εj(x)|vj|p−2vj −W10|u|p−2u

)
+
(
Ŵ2εj(x)|vj|vj −W20|u|u

)
.

By the exponential decay of u and Lemma 2.2, it is easy to show that
|A0zj|2 → 0. Therefore vj → u in H1.

As before, one checks that vj(x) → 0 as |x| → ∞ uniformly in j ∈ N,
and {εjy′j}j is bounded. Clearly, one may assume that yj = y′j is a maximum
point of |uj|.

In order to show limε→0 dist(εyε,A ) = 0, assuming yj → y0 it is sufficient
to check that y0 ∈ A . Denote ~W = (W1,W2), By (P3), γτw~κ is archived, it
hence follows that

lim
j→∞

cεj = lim
j→∞

cτw~κεj
≤ γV (0) ~W (0) = γτw~κ,

which, together with (6.4), shows

γV (y0) ~W (y0)
≤ γτw~κ.

Since ~W (y0) ≤ κ̄ one has V (y0) ≤ τw. If ~κ = ~W (y0), i.e., y0 ∈ W , there must
be V (y0) = τw. If ~W (y0) < ~κ then we must have V (y0) < τw. In conclusion,
y0 ∈ Aw.

Finally, the argument of Step 5) of proof of Theorem 1.3 yields that there
exists C > 0 such that for all j ∈ N

|uj(x)| ≤ Ce−
√
ω/2|x−yj |

where ω = a2 − τ 2.
The proof is completed.
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