DESINGULARIZATION OF CLIFFORD TORUS AND NONRADIAL
SOLUTIONS TO YAMABE PROBLEM WITH MAXIMAL RANK

MARIA MEDINA, MONICA MUSSO, AND JUNCHENG WEI

ABSTRACT. Through desingularization of Clifford torus, we prove the existence of a sequence of
nondegenerate (in the sense of Duyckaerts-Kenig-Merle ([?])) nodal nonradial solutions to the
critical Yamabe problem

-2 _4_
—Au = %hﬂ"z u, u € DV(R™).
The case n = 4 is the first example in the literature of a solution with mazimal rank N =
2n + 1+ 2o
.
Introduction

Consider the problem

—Au = y|ulPtu in R, = u € DI2(RM), (0.0.1)

where n > 4, p = 242 and DM?(R") is the completion of C§°(R™) with the norm [Vull g2 @n)-

When u > 0, problem (??) arises in the classical Yamabe problem or extremal equation for
Sobolev inequality. For positive or sign-changing u Problem (?7?) corresponds to the steady state
of the energy-critical focusing nonlinear wave equation

OPu — Au — |ulﬁu =0, (t,z) e Rx R™ (0.0.2)

These are classical problems that have attracted the attention of many researchers ([?, 7, 7, 7, 7]).
The study of (??) naturally relies on complete classification of the set of non-zero finite energy
solutions to Problem (??) which is defined by

n(n — 2 4
Y= {Q e DA(RM\{0} : —AQ = nin—2) 1 )|Qyn—zQ} : (0.0.3)
By the classical work of Caffarelli-Gidas-Spruck [?] all positive solutions to (??) are given by
U 2 = 0.0.4
and all its translations and dilations
Uy = a”22U<yay>, a>0,5eR" (0.0.5)
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For sign-changing solutions much less is known. A direct application of Pohozaev’s identity
gives that all sign-changing solutions to Problem (??) are non-radial. The existence of elements
of ¥ that are nonradial sign-changing, and with arbitrary large energy was first proved by Ding
[?] using Ljusternik-Schnirelman category theory. However no other qualitative properties are
known for Ding’s solutions. Recently more explicit constructions of sign changing solutions to
Problem (??) have been obtained by del Pino-Musso-Pacard-Pistoia [?7, ?]. In [?], the second
and the third authors established the rigidity of the solutions constructed in [?] by showing that
they are nondegenerate, (in the sense of Duyckaerts-Kenig-Merle ([?])). (See definitions below.)

The purpose of this work is to give a positive answer to an open question formulated in the
work of M. Musso and J. Wei ([?]): whether there exists a solution that, apart from nondegen-
erate, is maximal. To properly explain this framework, let us denote by

2:={Q € DR\ {0} : ~AQ =1|QI"'Q}

the set of non trivial finite energy solutions of (?7). It can be seen that the equation in (?7)
is invariant under four transformations: translation, dilation, orthogonal transformation and
Kelvin transform. More precisely, if @ € X, then:

(i) Q(y + a) € X for every a € R™;

(ii) A%Q(Ay) € X for every A > 0;

(iii) Q(Py) € X for every P € Oy, where O,, denotes the classical orthogonal group;

(iv) [y1*"Q(lyl"%y) € =.
Denote by M the group of isometries of D12(R") generated by these transformations. Then, M
generates a family of transformations in a neighborhood of the identity (see [?, Lemma 3.8]) of
dimension

N:=2n+1+ ”(”2_1) (0.0.6)

In particular, M generates the vector space

5 (2 =n)yaQ + |y‘28yaQ — 2.y -VQ, 8,.Q, 1<a<n,
Jg = span @, |
(yaayﬁ_yﬁaa)Q, 1<a< f<n, 2Q+?J‘Q

Consider the associated linearized operator around ) € %, i.e.,

Lg = —A —yp|QP?Q,

and its kernel
Jg == {f € D*R"): Lof = 0}.

Clearly jQ C Jg. Indeed, following the work of T. Duyckaerts, C. Kenig and F. Merle ([?]), we
can define the notion of nondegeneracy.

Definition 0.0.1. @) € X is said to be nondegenerate if Jg = 5@.

Let @@ be nondegenerate. Its rank is defined as the dimension of jQ, which is at most N. Actually,
for positive solutions = U can be proved to be nondegenerate as a consequence of the radial
symmetry, and Jy,, which is

- —2
JW:{HQWvLy-VW, Oy W, 1<a<n},

has rank n + 1 ([?]). In this case, the rank is strictly less than N.
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In [?], the authors give the first example of nodal nonradial sign-changing solution satisfying
the nondegeneracy condition. Indeed, they consider the solution wuy of (??) built in [?, Theorem
1] given by

k n—2
ur(y) =Uy) = > _my, * Ulpy'(y = &) +o(1),
j=1

where

n—2

Cn L 2gmi L 2 T2
Mk’ L ﬁ? 5] L (6 k 70a" ')7 U(y) T <1 _|_ ’yP) )

and they prove that juk = Jy,, where the dimension of these vector spaces is 3n — 1, i.e. the
rank is 3n — 1. Also in this case, the rank is strictly less than N.

The purpose of this work is to provide the first example in the literature of a nondegenerate
solution u to (??) which has the mazimal rank N.

Definition 0.0.2. A nondegenerate solution ) € X is said to be mazimal if
dim(Jg) = dim(Jg) = N,
where N was defined in (?7).

Thus, our main result can be formulated as follows.

Theorem 0.0.3. Let n > 4. Then, there exists a sequence of nodal solutions to (77), with
arbitrarily large energy, which are mondegenerate according to Definition ??7. If n = 4 these
solutions are mazimal in the sense of Definition 77.

To prove this result, we will build a solution in the following way: let k and h be two large
positive integers (not necessarily equal) , and

2 2
Jn—2 en—2
o= ?7 )\ = h2 ; (007)

where § and ¢ are positive parameters so that

cl<5<cl_1, 02<5<02_1,

for some constants ¢y, co > 0 which are independent of k£ and h as they tend to infinity. Consider
now the points

ri(j—1)
=1 p2(e F,0,...,0) eR2xR" 2 j=1,....k

2mi(l—1) (0.0.8)
mi=vV1-X20,0,e & ,0,...,0) ER*xR*x R % 1=1,...,h,
which clearly satisfy
P +ut=1, | +A=1 (0.0.9)
Consider
k h
u@) =U®W) =Y Uue,(y) =D Uni () + 6() (0.0.10)
j=1 =1

where U is defined in (?7),

o2 (Y =& n2 Yy —7
Uty )= 70 (P28, ) =T (P51, (0.0.11)
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and ¢ is a small function when compared with the other terms (for the sake of simplicity we do
not make explicit the dependence of u in k and h).
2

Notice that functions U, U, ¢, and Uy ,, are invariant under rotation of angle " in the (y1,y2)

plane and of angle 2% in the (ys,y4) angle. Furthermore, they are even in the y,-coordinates,

for « = 2,4,5,...,n and invariant under Kelvin’s transform (due to (?7)). Assume that ¢ also
satisfies these properties (we will prove this in Part 77).
Consider the following set of functions:

n—2
20(y) = —5—uly) + Vuly) -y, (0.0.12)
z()—ﬁu() a=1 n (0.0.13)
Ozy‘—aya y7 - 9ty I b
o1 () = — o tu(y) + 91 uy)
n1(y) = = 1oy uly) + g uly), o
9 3 (0.0.14)
zn+2(y) = y487y3u(y) + yg@U(y)7
Znt2ra(y) = —2y120(y) + yP21(y), a=1,2,3,4, (0.0.15)
Znta = —Ya” + 1124(y), a=3,...,n,
+ata(y) Yaz1(y) + y12a(y) (0.0.16)
Zontat2(y) = —Yaz2(y) + y22a(y), a=3,...,n,
and
23— = —YaZ + y32a(Y), a=95,...,1n,
3n+a—2(Y) Yaz3(y) + y32a(y) (0.0.17)
Zanta—6(Y) = —Yaza(y) + Yaza(y), a=5...,n.

Functions (?7) and (??) are related to the invariance of problem (?7) under dilations and
translations respectively, and (??) to the rotation in the (y1,y2) and (ys,y4) planes. Likewise,
(?7) arise from the invariance under Kelvin transform, and (??), (??) from the rotation in the
planes (yla ya)7 (y27ya)7 for a = 35 L and (937ya)> (y4>ya) for o = 57 sy N If we denote by
L the linearized operator around u associated to (77?), i.e.,

L(¢) := Ap + pylulP?ugp, (0.0.18)

(?7)-(?7?) provide Ny := 5(n — 1) elements of the kernel of L.

We will prove that these are indeed all the elements in the kernel, i.e., solution (77?) is a
second example of nodal nondegenerate solution of (??). But what is more remarkable here is
that if n = 4, then Ny = N, that is, the solution is maximal in the sense of Definition 77, which
is the first example of a nondegenerate maximal solution in the literature, and answers the open
question formulated in [?].

Remark 0.0.4. When p # A\ h # k, our solution is different from the ones constructed in
[?, ?]. In [?] the symmetric case p = A\, h = k is considered, which corresponds to the Clifford
torus. In this case the solution has an additional symmetry which reduces the problem to one
dimensional. Because of this symmetry the rank of the solutions constructed in [?] can be shown
to be strictly less than N. Thus our solutions are new. Our construction can be considered as
a sort of desingularization of Clifford torus. For geometric application of desingularization of
Clifford torus, we refer to recent papers [?, ?] and the references therein.
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Remark 0.0.5. The construction can be extended to higher even dimensions, that is, one can set
bubbles in an analogous way in the (ys,ys), (y7,9s), - - ., planes, in such a way that the solution
is expected to be nondegenerate and the elements corresponding to the invariances generate
a space of dimension exactly N. Therefore, this type of construction presumably provides a
sequence of nodal nondegenerate and maximal rank solutions of (??) for any even n > 4. For
odd dimensions, the existence of a maximal solution is still an open question.

Remark 0.0.6. Nondegenerate solutions to (??) play an important role in the analysis of possible
singularity formations in energy-critical wave equations. We refer to [?, 7, 7, 7, 7, ?] and the
references therein.

Remark 0.0.7. The existence of sign-changing solutions for critical exponents in other contexts
has been studied in [?, 7, ?].

Remark 0.0.8. There have been many papers on the uniqueness and nondegeneracy of positive
solutions to semilinear equations, whether or not for classical nonlinear Schrodinger equations [?]
or for nonlinear fractional equations [?, ?]. The rank of the positive solutions is at most n+1. For
sign-changing solutions the nondegeneracy question is in general quite difficult without knowing
the precise behavior of the solution. Our result is the first of the type for sign-changing solutions
with maximal rank.

Along the work we will denote points y € R™, n > 4, as
Yy = (ya g)a Y= (y17y2)7 Z) = (y37y4)7 if n= 4>
y=(9,99), 5:= (y1,92): §:= (Y3:94), ¥ = (Y5,---,Yn), if n =5,
and we will work with the norms
2 2n _
[Alles = 1L+ [y])" 2% Bl o @yl = 1+ 91"l oo ). (0.0.19)
where 5§ < g <n is a fixed number.

Part ?? of the paper is devoted to prove that (??) solves (??), and Part ?? concerns the proof
of its nondegeneracy.

Part 1. Construction of the solution

To prove that (?7?) is a solution of (??) we use a Lyapunov-Schmidt reduction method,
following the ideas of [?]. We linearize the equation around a first approximation and take
advantage of the invertibility tools available for this setting. Then, performing a careful analysis
of the error of the approximation and of the non linear terms we solve the problem by a fixed
point argument. Let us point out that the precise scaling of the parameters u and A plays a
fundamental role here.

Recalling the definitions given in (??), (?7) and (?7), the main result of this part can be
stated as follows.

Theorem 1.0.1. Let n > 4, and let k,h be positive integers so that k = O(h). Then, for
sufficiently large k and h there is a ﬁm’te energy solution of the form

ukh( ZUM§J ZUAW +Ok¢( )+Oh(1)a
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where o (1) and on(1) denote quantities that tend to zero when k and h tend to infinity respec-

tively.

Denote

1.1. ERROR OF THE APPROXIMATION

Us(y) ZUMSJ ZUA ul

and suppose that the solution u we are looklng for has the form

u = U, + ¢,

where ¢ is a small function when compared with U,. Then solving equation (??) is equivalent

to find ¢ such that

where

A +py|Uf~ ¢+ E+yN(¢) =0, (1.1.1)

E = AU, +~|U.P7'U.,

N(9) := [Us + P H(Us + ¢) — U7 UL = p|ULJP g,

In this section we try to estimate the error term E. In particular,

p—1

k h k h
7_1E =\U - Z Ulhéj - Z Usmi U-— Z U#,ﬁj - Z Uxmi
=1 j=1 =1

j=1

h
Z 8] ZZ:Uim
=1

We divide the study of the error in three diffentent regions. Roughly speaking, we will estimate
first the || - ||«« norm of the error far from the points &; and 7, then around &;, and finally around

n, forany j =1,...,

of k and h.

kand [l =1,...,h. Indeed, let @ and & be positive numbers independent

Bxterior region: y € {M5_,{ly — & > 21} n {0l {ly — m| > &}}.
For y in this region we can estimate

1B <C

i 4
n—2 n—2
(1 + !y| !" ly — &2
oot oA
— sty (1.1.2)
; ly = &2 lz; ly —m|"—2

1+|y! Z\y «Sy!’” Z!y ml”2
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where in the last inequality we have used that here

k n=2 h n=2
'z k—1> A3 < h—l)
<C<1— , — < C(1-——].
z_:l ly — &2 kn—? ; ly — m| 2 hn=2
] =
Thus
n—+2—
N+ ™75 Bll ek, (-5 E10iobs -l 530
n—2 n—2
cofEEE AT (1.1.3)
kot hat
< C(k' " a+h'"a).
Interior regions around &;: y € {|y — &| < ¢} for some j =1,... k.

Let j be fixed. For some s € (0,1) we have

Y E =p(Uye, +s(= Y Upe, +U = ZU,\,” P U= Upe, +U - ZUMZ

i#] i#]
P
r=2 Uk, ZUA,m'
1#£] =1
Let us define
_ ni2 a
Bjly) =n > EE+py),  lyl <
I
Thus,
— n—2
7 'Ejly) =p (> U—p (G -&)+nz UE+uy)
7]
h p—1
n—2__n=2 _ —
= wT AT U 1(§j+uy—m)> (=Y Uy —p (& - &)
1=1 i#]
n—2 " e (1.1.4)
+p2 U(€j+uy)—ZH2 AT U (&G +py —m)

— WU+ py) — ZUpy pHE = &)
i#£]

h
n+2  _ n+4+2 _
=D AT UPOTNE + py —m),
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and consequently

— k)" 4+ (uA) T h | nee iz wio
|Ej<y>\<c[( WP PR
- (1.1.5)
P2 ng2
<C|l—/——F+pz2 |.
T+l ]
Noticing that h = O(k) we can compute
n4+2— 20— n _n
11+ )™ 5 e ) < O < Ok (1.16)
(lyl<5%)

Interior regions around n;: y € {|ly — | < %} for some [ =1,...,h.
The estimates in this region follow analogously to the previous case, but interchanging the role
of u, k and A, h. Thus, considering

A~

A n+2 &
Ei(y) == A2 E(m + py), lyl <+
we get
. A2+ (N Tk nse nia . ni2
) <o |V TR e )
+ |y
n—2 (].]_7)
Az n+2
S 1+7|y|4 +)\ 2 ]
and therefore ,
n42— =2 2 n _n
I+ TyD)™™7 Eill oy < o) < CA < ChT s (1.1.8)

1.2. BUILDING THE SOLUTION

Recall from Section ?? that to find a solution to (?7) we will prove the existence of a function
¢ that solves (?7?7). We will try to build this function in a special form.

Let ((s) be a smooth function such that ((s) =1 for s > 1 and ((s) = 0 for s > 2, and let
@, & > 0 be fixed numbers independent of k and h. Define

&y o J SOy = Gl i gl > 1,
! Ctha Yy — &) if |yl < 1,

2 JChaT Yl Py — milylP)) if Jyl > 1,
o {C(héél\y—ml) if |y < 1.

A function of the form
k h
b= b+ i+ (1.2.1)
j=1 =1
is a solution of (??) if we solve the system
Ad+p U7 G061+ G U7 + E+9N(9)] =0, I=1,....h, (1.2.3)
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k h
AY+pyUP g+ [py(JUP = 0P (=D ¢ =Y 4)
j=1
k h A k o
+pyUP (Y ¢ ZQ)W +py U7y (1 =)y (1.2.4)
j=1 =1 j—l

h
+ py|UL [P~ 12 (1— &)+ ( 1—2@ ZQ )(E+N(¢)) = 0.

7=1 =1

We assume in addition the followmg symmetry properties on qﬁj and qbl,

2#(] 1),

6@ 9,y') = ¢1(e” 99,9),  i=1,...k (1.2.5)
where
¢1(y17"'ayja"'vyn) :¢1(y17"'a_yj7"'ayn)a j:2’4’57"'an7
o1(y) = lyl* o1 (lyl ), (1.2.6)
_ 2m(l—1) .
d) (y7y? ) ¢1(y7 h y)y)u l:17"‘7h7
and
A~ ’ A _27r(l71)l-A ’
¢](yay7y) :¢1(y76 h yay)v l:]-v h7 (127)
where
(Z)l(yl?"'vyja""yn) :d)l(yl?"'a_yj?"'ayn): j:274757"'an7
é1(y) = lyI* " d1(lyl2y), (1.2.8)
~ 27((] 1)2 . ’ .
¢1(yay7 ) ¢1( y)yvy)a ]:]-avk

Assume in addition that

[0l <o 1) =2 6160 + ), (1.2.9)

61l <py dily) == A7 bilm + Ay),
for p > 0 small.
Lemma 1.2.1. There exist constants ko, ho, C, po such that, for all k > kg and h = hg, if 5]-,
j=1,....k and ¢;, | = 1,...,h satisfy conditions (??)-(??) with p < po then there exists a

unique solution 1 = (¢, (51) to equation (?7), that satisfies the symmetries

VYL, Yay ) =01,y =Yy -.), @ =D5,...,n, (1.2.10)
A Gy, ,

V@ 5y) =ve Foggy), i=1...,k (1.2.11)

SN - 2w (l—1) .
b(@,9:y) =@ e " 9y, I=1,....h, (1.2.12)
D(y) = |yl (ly?y), (1.2.13)

and such that B A
llle < C [IBalle + iille + 5 + A~ (1.2.14)

Moreover, the operator ¥ satisfies

=1 2, =2 2, -1 =2 S Ay
W (g1, ¢1) — Wiy, 91) [« < Cl[o1 = dnll« + o1 — ill+)- (1.2.15)
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Proof. We write equation (??) as

k h
A+ pyUP™ ) + V(y)e + py|U P O (1= () §jl—@¢n+ﬂﬂw> 0, (1.2.16)
j=1 =1

where

k h k h
V() =py(UP7H = 0P (=3 8= ) +mUP QG+ Q).
j=1 =1 j=1 =1

= Vi(y) + Va(y),

and i .
—Z Z (E+yN(¢)) =0.
j=1 =1

Consider first the problem

AY + pyUP~ e = h, (1.2.17)
where h is a function satisfying (?7?)-(??), |||« < +oo and
h(y) = [y 2h(ly|%y). (1.2.18)

Let 5
ZazayaUa a=1---, .

(1.2.19)

Due to the oddness of Z, and assumption (??) on h it yields
/ Zoh=0foralla=5,---,n

The cases a = 0,1,2,3,4 also vanish proceeding as in the proof of [?, Lemma 4.1] as a conse-
quence of (??)-(??). Thus we can apply the linear existence result [?, Lemma 3.1] to ensure the
existence of a unique solution 1 to (?7) such that

/ UP1Zp=0foralla=0,1,...,n,

and ||¢||« < CJ|h||«. Notice in addition that the functions

Va(y) =V, G5, —Yir-- > Yn), @ =05, ,n,
2w (j—1) . )
Tﬁm(y) ( k y,y’y% ]:1,--.,k,
27r(l 1) .
Yau(y) =¢(G.e = 'y), 1=1,...h,

Y1 (y) = ly1P "0y 2y),
also satisfy (?77?) and thus, by the uniqueness,
Y= wa = Y125 = Y341 = Y1
foralla =5,...,n,5=1,...,k, | = ,h, i.e., ¥ satisfies (?7?)-(??). Therefore, (??7) has a
unique bounded solution ¢ = T'(h) satlsfylng symmetrles (7?7)-(??) and
[9]l« < CllAl+

for a constant depending only on g and n.
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We will solve (?7) by means of a fixed point argument, writting
k h
Y= =T(Vp+py UL O (1=3)d;+ Y (1= Q) + M(1)) = M(3)),
j=1 =1
1 € X, where X is the space of continuous functions ¢ with ||¢||. < +oc satisfying (?7)-(?7?).
Thanks to the special form of U, and to the symmetry assumptions on aj and ¢y,
k h
Vi +py U7 (0= Gy + (1= Q)d) + M ()
j=1 =1
satisfies (?77)-(??) and (??) if ¢ € X, and M is well defined. Actually, we claim that M is a
contraction mapping in the [/||« norm in a small ball around the origin in X. Indeed,

2 k h
Z Uﬂzfj + Z Unmi
j=1 I=1

k h
Vi(w)| < vp(p — 1>\U 50> U, + 3 Uh)
j=1 =1

k n=2 h n-2
2 A2
< CUP2(y) R N A
Liy—gr " L
and thus
k n=2 h )\HT—Q
_ oz
Viv(y <C¢*Up1y N AT
vl < 0 | 30t e + S
Proceeding as in (??) we get
Vi e < Clllls (k"7 + ' 3). (1.2.20)
On the other hand,

h
Vatbllaw < D IPUP G e + > IPUP ™ 0G|
— = (1.2.21)

=
< Ol (K™% +1179),
and putting together (??) and (?7) we conclude
IVllw < Clllla (6" 7 +1177), (1.2.22)
Assume |y — &| > & and |y — | > % for all j and I. We knew that in this region
|E|we < C(K' "7 + B 4).

Moreover,

From (?7), we get

bz B < Clnl Az
) AV X 1 .
n=2 4 |y — &2 A2 |y — gy |2

16,(y)| < CHEII*M
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Moreover,
UP=2|y > < UP||y)3.
Hence, proceeding again as in (??), we obtain

M () [lex < CE" 0 (14 [|§1]12) + Ch' "4 (1 + [|$1]12) + Clo012. (1.2.23)
Likewise, if |y — &;| > % and |y — | > %,

k h - WA
U265+ D d)llee < Ok 0[Sy« + Ch' 4[] .. (1.2:24)
j=1 =1

Moreover, for 11,1 satisfying |91 < p, ||¢2]| < p it follows
M (1) = M (2)[l4x < Cpllthr = thal|s.

Joining (?7?), (?7) and (?7?), we see that for p small enough the operator M defines a contraction
map in the set of functions ¢ € X with

6l < CUBLIL+ k5 + bl +873), [@1ll. <y lldalle <,
for p small. Therefore, there exists a solution of (??) satisfying conditions (??)-(??). The
Lipschitz condition (?7?) easily follows. O

Consider the operator \Il(gl, qgl) Equations (??) and (??) reduce to solve one of each, for
example for ¢; and ¢;.
We try to solve first

Gy +pAUL T Cidy + G [pYIUP (@1, 61) + B+ N ()] = 0 in B,
or equivalently,
Ady + YU, P71 61 + G E +9N(y, $1) =0, (1.2.25)

where

N(@161) = p(IUC) = Uy 1)1 + G [pIU 100, 01) + N(9)]

Consider first a general function A and the problem

A+ YUY 16+ h =2U" Z in R”, (1.2.26)
where L
.4 _n=2 - _ n hZ[)
Zo(y) = p 2 Zy (y 51) , o = fR =
M fR7l Up

with Zy defined in (?7).

Lemma 1.2.2. Suppose that h is even with respect to each of the variables ya,ya, ys, - - ., Yn and
such that

27 (1—1)

hy) =yl 2Ryl ?y), hy) =h@e " g.y), 1=1,....h (1.2.27)

Assume that

hy) == p"% h(& + )
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satisfies ||h||«x < +00. Then problem (??) has a unique solution ¢ := T(h) that is even with
respect to the variables yo, Y4, Y5, ..., Yn, invariant under Kelvin’s tranform, i.e.,

o) = ly1* "oyl ?y),
and with g(y) = M%ﬁa(& + py) satisfying

R oUPZo=0,  ||gllx < Clhllss.

Proof. We assume with no loss of generality that
/ hZy=0, ie., @ = 0.
Thus, equation (??) is equivalent to

Ag—i-p’y\U\p_lg: —h in R".

Due to the evenness of h we know that

/ hZ, =0, =245 ,n. (1.2.28)
The proof of
hZ; =0
R
follows exactly as in the proof of [?, Lemma 4.2], so we focus on the case av = 3.
Indeed, denote by w,(y) := ,u_nT_QU(/fly) and J(t) := [pn wu(y — & + tes)h(y) dy. Notice
first that
/ Oyswp(y — &)h(y) dy = hZ3. (1.2.29)

2n(l=1)

On the other hand, defining 7 := (y, e  n ¢,y for somel =2,3,... h, it can be checked that
|5 — & + tes|]® = |y — &1+ tef, t e R",
where € := (0,0, cos(ﬂh_l)), - Sin(%h_l)),O, ...). Thus, after a change of variables, by (?7),

IO = [ i+ teh@) di = [ wly =+ )0 dy

Rn

Differentiating here,

iJUt:O:COS <27r) [ Bty = 0o dy
—sin (h)/ Oyawuy — E0)h(y) dy

= cos <27T(lh_1)> /n hZs dy — sin <2”(lh_1)> /n hZy dy.

Applying (??) and (??) we conclude that necessarily [p,hZ3 = 0. Thus, by [?, Lemma 3.1]

there exists a unique solution E satisfying

13lls < Cllhlus, /R GUP 121 = 0.
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The invariance under Kelvin transform and the symmetries are obtained as a consequence of
the uniqueness. O

Likewise, we rewrite

Ay + py|ULP 11y + G | py|ULP 10 (4, <Z§1) +E+ ’YN(<Z5)} =0 in R",
as )
Ay + py|Uni [P 01 + GLE + 4N (1, 1) = 0, (1.2.30)
with R .
N(G1,61) = PV = [Una P61+ G [V 01, 60) + N(9)]
and we consider the problem

A+ pyUS, 1o+ h = éUY,  Zo in R", (1.2.31)

where h is a general function and

. n- - o hZ,
Zo(y) = \""T Z <y 771) , o= Jan 2o

T =152
)\ fR" Uf M1 Z2

Lemma 1.2.3. Suppose that h is even with respect to each of the variables yo, Y4, ys, ..., Yn and
such that

h(y) =yl 2h(|y|y),  h(y) = h(e
Assume that
nt2 ~
h(y) == A2 h(m + \y)

satisfies ||h||lw < +00. Then problem (2?) has a unique solution ¢ := T'(h) that is even with
respect to the variables yo, Y4, Y5, . .., Yn, invariant under Kelvin’s tranform, i.e.,

3(y) = [yl "o (lyl *y),
and with qZ(y) = A%é(n1 + \y) satisfying

R oUP 2o =0, [[¢]l« < Cllh]ss.
The proof of this result is analogous to the one for Lemma 77, interchanging the roles of
and & with A and 7y, so we skip it.

We use these lemmas to solve the projected versions of (??) and (?7), that is,

Ay + p YU [P 1+ CLE +N(y, 1) = aU Zo,

. L o (1.2.32)
A1+ py|Uni [P 61 + GLE +N(by, 1) = &0UR,  Zo,
in R™, with
oo S G BT NG 0NZo [ GE 49N, 61)) 20

1 ) 0- 1
S Upe) 28 Jen U300 25
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Proposition 1.2.4. There exists a unique solution ¢1 = (gl,q?)l) = (31(5),&51(5)) to (??) such
that

I palls == Iy ]l + 1l < C(k™a + R ),
and

NGy, 61)|lsx SCk ™0, [Ny, b1) |l < Ch ™ w . (1.2.33)

Proof. Denote by T and T the linear operators predicted by Lemma ?? and Lemma ?? respec-
tively. Thus, solving (??) is equivalent to solve the fixed point problem

(3 _ [ TCE+NGLo) | _ [ W&o | _.
¢ o SR NS : M(1).
o1 T(GE +N(ér, 1)) M(d1, h1)
Let us focus first on M@l, q?)l) =T(,E+ 7N(El, ng)) Recall that
N1, 61) 1= UL 'C) = [V + o [plU 0@, 61) + N (@)

Denote in general

fly) = "> (& + py).

Consider B B
fily) = pC (UL = [Upe, P71y
FOI' ‘y| < Mk’
k
i) = 'p«U(y) Y U 6 - &)
j=2
+Zu AU E + py — )
WU 4 )P - UP () (y)‘-
Noticing that
k k
D U+p MG —&)<Cur k2 jnl_g <op'T, (1.2.34)
Jj=2 j=

and

ZM AR UNNE + py —m))
(1.2.35)

n—
2

h 2 n—=2 n—=2 n—2 n—2
< Czuf)\—T <SCpzZ N T h<COuz,
=1

doing a Taylor expansion we get

1A(y)] < O™ UP2(y) [ (y)] < Cu™T UP~(y) ][]« (1.2.36)

and, proceeding as in the computations for the interior error,

1 F1ll < Cr2al|Gy]l.



16 M. MEDINA, M. MUSSO, AND J.WEI

For the term
o= (G = VUM,

we have

~ = (8% ~ n =
LI <T@l vl > 2 falle < Gzt (1.2.37)

Consider now
f3 = Cup|ULP (b, 61).
Using (?7), (??) and (??) we get that, for |y| < ma

()| < CUP™ 12 |08y, 1) | oo )

UL (1.2.38)
<OUP W T ([Glls + 1l + k

Dy )

~ n = N 1—n 1_,
[f3llex < Cp2a([|é]l« + [|@]l« + &« + B a).
Denote

Notice that .
N(@) = Vi + o1[P"H (Vi + b1) — |[VaP~ Vi — p| VP b1,

where d1(y) := u"7 (&1 + py), and

k
Valy) : ) =Y Uly+u (& - &)
Jj=2

—Zu AU + py — )

+ T U+ ).
Hence, for
— k — h A = N
b=d1+ > b+ Y di+ (e, ),
j=2 =1
one has

611 < CU'T (Gl + 11l )+u%llw(gl,$1)lle(Rn)-

Furthermore, in the region |y| < ﬁ it holds U(y) ~ unT_Q and thus, after a second order Taylor
expansion one has

~ ~ n—2 ~
|f1(y)| S CIVAP~2 |1 |> < CUP 272 |y
(1.2.39)
<CUP 'u"s (||¢1H*+H¢1||*+||‘1’|| )

and ) A
U illee < Cuda ([ lls + [« + K5 + BI8),
Finally, by (??), we know
1 sllow < Cpi%. .
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Likewise, one can obtain analogous estimates for

PGE + NG, 1)

to conclude that M maps functions ¢ with ||¢1]]. < C (/ﬂ% —|—)\2lq) into the same class of functions.
Besides, one can prove that the map is indeed a contraction, and thus we conclude the existence
of a unique solution to the system (?7?). O

Remark 1.2.5. The symmetry conditions (??) and (??) follow straightforward as consequence
of the uniqueness.

1.3. PrROOF OF THEOREM 77

Thanks to Proposition ?? we have ¢; and <Z>1 solutions to (??). Thus, if we find ¢ and ¢ in
(?7) so that ¢y(d,¢) = ¢9(d,e) = 0 they actually solve (??) and (?7?). Repeating this argument
forevery j=1,....,k—1landl=1,...,h —1 we conclude that

with ¢ defined in (??) is the solution to problem (??) we were looking for. Thus, we want to
prove the existence of ¢ and ¢ so that (we keep the names in an abuse of notation)

@(.6) = [ GE+N(1.60)Z0 =

éo0,2) = / (GE ANy, 0) 2 = 0.

Indeed, we will prove that

) 1
% (0,€) = — An—kn_Q [Bay . — ap ] + WGM(& €),

) | (1.3.1)
¢o(d,e) = _AnW[Eb}L,h - bi,h] + W@k’h(é’ £).

Here A, is a fixed positive constant that depends on n, while for i =1, 2, aﬁl’k, bihh are positive
constants, of the form a;,k =al +0(3), biz,h =% +0(3), as k,h — oo, with a!, and b}, positive
constants. Furthermore, ©y j,(0,) denotes a generic function, which is smooth in its variables,
and it is uniformly bounded, together with its first derivatives, in § and ¢ satisfying the bounds
(?7), when k — oo and h — oco. By a fixed point argument one can prove the existence of a
solution (4, ) to the system

¢o(d,e) = ¢o(0,e) = 0. (1.3.2)

Thus, if we prove that (??) holds, we conclude the proof of Theorem ?7.
Both estimates in (??) follow in the same way, so let us prove the first one. We write

o) = [ FZo+ | @-0EZo+q [ N7 (133)

and we analyze every term independently. For § and e satisfying (?7?), we have that

Claim 1:
1

_ )
EZ, = —An—[&z}hk — a%k} + kn_l@k,h(&s). (1.3.4)

kn—2

]Rn
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Claim 2:
- — 1
[ @~ 0EZ0= 00 (1.3.5)
Claim 3:
N(by, ¢1)Z0 = =
R’I’L
as k and h — oo. It is clear that these claims imply the validity of the first equation in (?7).

@th((s, 6), (1.3.6)

Proof of Claim 1. Let us denote
o] &
Eat = {0l_i{ly — &1 > TH o0k dly -l > 31

For @ > 0 independent of £ we can write the first term as

EZo :/ EZ0+/ EZO+Z/ EZ0+Z/ . (1.3.7)
Rn 517k Ext £J,k

ﬂl,h

Considering E1(y) = ,unT E(& + py) and using (?77?) we obtain

/ _EZy= / E1(y)Zo(y) dy
B(&1,%) B(0,-%)

UP Uy — (&5 — €1)) Znsr dy

B

3
]
\

i#17BOE)

T /B(O UPTNU(&G + py) Zng dy

a

h
—w Y WA / Up U6+ pmy — m)) Znga dy
s [ (O)+ VP = U V() e dy
B(0,2)
nt2
K2 / UP(& + p1y) Zn+1 dy
B(0

- / CUP(y—p & — €)) Zngr dy
B(0

nt2 _ nt2 —
_ 2 A -2F / Up()\ 1(51 + py — nl))ZnJrl dya
=1 B(0,35)

Bi

)

where

=S Uy —u & — &) + 1T U + py)
J?ﬂ

&+ ny —m)).
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Doing a Taylor expansion, for j # 1 there holds

[ v n G ez = 0 0065.)
- j = k,h\ 0, )
B(O,%) 7o & =&l g - &f?
and
/ UPT U (& + py —m)) Zo dy = e (1+ A (9,¢))
B(0,5) SRR G —mn2 g =P

' uk
where ¢; is some positive constant, and, as before, ©y,(d,¢) denotes a generic function, which
is smooth in its variables, and it is uniformly bounded, together with its first derivatives, in §
and ¢ satisfying the bounds (??), when k — oo and h — co. Proceeding in a similar way,

n—2

po2 /( ,)Up W& + ) Zody = cop™= (1+(Mk) Orn(d,€)),
B(0,5

for some positive constant cy. On the other hand,

n+t2 77+2 1 2
o2 / UP (& + py) Zo d,y‘ Cu = / > < <Oz Tk (1.3.8)
B(0.5) B(0.5) y (L4 Jy[)n—2
S [ v G- ez
_]751 B ’uk
n+2
Iz / 1
< - @ P —
; & — &l Jpoz) T+ D" (1:3.9)
)
C(uk) Z & — § ‘n+2’
J#1 !
and
h —2 +2
S [ v+ - )2
= B0, )
L 1.3.10
< Cz,u ~2 | nt2 1 - ( )
— B(0,2) (1 + [y[)™
< Ou AT hi?
Finally, putting together (?7), (??) and (?7?),
‘ / )+ sV)Pt = UP NV (y) Zo dy‘
(1.3.11)
2 n+2 n+2 nt2 o
<C | p" T k2 + (uk) 27”+u2)\2hk
’fj gl‘n
J#1
To estimate the second term in (??) we apply Holder inequality to get
‘/E EZo| < C||(1+ \y’)nﬂLg_iEHLq Eap 1L+ Ty)) ™" 25 Zy H T (Bat)’ (1.3.12)
xt
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Proceeding as in [?] we have

—n—2+207 n=2_ ., 9, % _pn
11+ [y) ™" >0 Zo| <Cp TR,

LTT (Eat)
and using the estimates obtained in Section 77 we see that
9_2n n—2

1L+ J)™ 2 Bl agaty < Clu3

and thus, substituting in (?7),

T AT RT2RIT),

n—27.2(n—2) n=2 =2y n 93 n—2
_ W k J/p) A2 k h
EZy) L C + IR . 1.3.13
‘/Emt " ( = Kk (3.13)
Arguing as in [?] the third term in (??7) can be estimated as
2
EZy| < p" 2 : (1.3.14)
;/ B(&,9) (N ) (uk)n—4 Z’fy fl‘n 2
Likewise,
__ n—2 N __
’/ EZy| = ‘)\2/ Ei(y)Zo( Ay +mr)
B(nh%) B(O’)\h
n=2 n+42—2n 2
<Az (L +[yl) A ElHLq(|y\<Aih)
n— 2+ —n=2 -1
1+ T 7 Ay +m — q .
I+ y) " on o™ Oyt m =&l g1 o
Noticing that
—n—24+2n _n—2 —
I+ w2 Zo(e™ Ot = DI 2
n=2 AR thThdt ! n—2 2_
SCue (/ (n+22nq) S Cpz (M)
1 t q’/q—1
by (??) we conclude that
h
Z/ CEZo| <CAN'ThTap"T (AR 0k (1.3.15)
=1 B(”]l:%)

Claim 1 follows from these estimates applying the fact that h = O(k).
Proof of Claim 2. Let us estimate the second term of (?7?). Notice first that

/ (¢, —1)EZy| < C / _ EZy|,
n {y—& >}

and we separate this integral as
h

_ EZ(]:/ EZO—I— / _ EZ()—F / ) E70
/{y—§1|>‘,j} Ext Z {ly—&il<g} ; {ly—ml<3}

Thus, Claim 2 follows from (??), (??) and (?7?).
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Proof of Claim 3. Notice that

[ NGw00Zo=pF | NGy, bu)(Er + ) Zofy),
and thus, from estimates (?7) — (??) and the fact h = O(k) we conclude

N(p1 61)Z0 < CK "% / U1z,
R’I’L n

and the claim follows.

Part 2. Nondegeneracy

As stated before, the goal of this part is to prove the nondegeneracy (see Definition ?7?) of
the solution u provided by Theorem ?? (we drop the dependence on k and h by simplicity).
Recalling the functions z, defined in (??)-(??) we can formulate the result in Theorem 77 as
follows.

Theorem 2.0.1. There exists a sequence of solutions u to Problem (??7) among the ones con-
structed in Theorem 77 for which all bounded solutions to the equation

—Ap — yplulP"2up =0 (2.0.1)
are linear combination of the functions zq for a« =0,..., Ng — 1. (Recall that Ny := 5(n —1).)

For later simplification, we introduce the following functions
zg =2, if B#n+3,n+4,n+5n+6,
_ 2.0.2
Znioia = ZO‘Z%M it a=1,2,34. (202)

Since zg are linear combinations of the original functions zg, the statement of Theorem ?7? is
equivalent to say that there exists a sequence of solutions among the ones constructed in Theorem
?? for which all bounded solutions to (??) are linear combinations of zg, for § =0,..., Ny — 1.

Thus, let ¢ be a bounded solution of (?7), namely L(p) = 0, with L defined in (?7). We
decompose p as

No—1
p(y) = > aszsly) + 3(y), (2.0.3)
B=0
where ag are chosen so that
/ uPlz50 =0 (2.0.4)

holds. Notice that, since zg € ker{L}, one has L(¢) = 0 and thus our goal will be to prove that
actually ¢ = 0.

Recall that our solution v has the form
k h
u(y) =U(Y) =Y Vg () = D Uru(y) + 6(y), (2.0.5)
j=1 =1

where ¢ is defined in (??7) as ¢ = Z;?:l % + Zlhzl b1+ .
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We introduce the following functions

n—2
Zoo(y) = U+ 9] (y) + VU +4](y) -y
s (2.0.6)
Za = — =1,...,n.
o(y) 8yaU( )+8ya¢( y) o« n
For j fixed in {1,...,k}, we define
_ n—2 _ _
20j(y) = —5—[Ung; + 91(w) + VUng; + 051(y) - (y = &)
Z1(y) =& - VylUug, + 6i1(w),  Zaj(y) =& - Vy[Upug, + i1(y),
_ P B
Zocj(y) = @[Uu,ﬁj(y)—i_qs]]? a:37"'7n
For [ fixed in {1,...,h}, we define
N n—2 ~ ~
Zoj(y) = T[Ux,m + d)(y) + VUxy, +0)(y) - (y — m)
Z31(y) == - Vy[Uny + 1)(v), Zuly) = ni - Vy[Uny + &1l(y),
N 0 A
Zal(y) = aiya[UA,m(y)‘F(ﬁl]a a = 172,5,6,...,71
In Appendix ?? we provide the expressions of the functions zg, 8 = 0,..., Ny — 1, in terms of

the functions Zno, Zaj, j = 1,...,k, and Za,l, l=1,...,h, forany a = 0,...,n. These relations
will be useful in other parts of our argument.

We rearrange the functions above in (n 4 1) vector fields as

— _ T
Hoc = |:ZO¢07ZO¢17“'7ZOtk)Zalu"'7Zahi| ) azO,l,...,n, (207)

_ T
and, for any given vector d = [do, di,. .., dy, dl, . ,dh} € R 7 we use the notation

k h
d -1, := dyZuo + ZEZ Z

With this in mind, we write the function ¢ in ( ?) as

By) = an a(y) + ¢ (1), (2.0.8)
a=0
where
_ _ A 1T
Ca ‘= [Ca()acalv'"acakacala-"acah] ’ a:O,...,n,

are (n + 1) vectors in R¥+"+1 chosen so that

/ UP™ Zaop™ = 0, a=0,1,...,n,
/ Ufjg]l QJSOJ-:()? j:l,...,k, a:071,"‘7n7

/ U/p’m1 apt =0, l=1,....,h, a=0,1,...,n.
R™
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Hence, to prove that ¢ = 0 we have to see that ¢, = 0 for every a and o = 0. This will be
consequence of the following three facts.

Fact 1: Since L(¢) = 0, one has that
n
> o+ L) = —L(g™), (2.0.9)
a=0

with L defined in (7?). We write o = ¢ + E?:l @j + Z?zl @7, where

—L(¢5) = Y ca0L(Za0),
a=0

—L@) =Y Cail(Zag)s  G=1,0 ik,
a=0

L") =) éaul(Zat),  1=1,...,h.
a=0

Furthermore, let us define

n—2__ 2 n=2
W) =T ey + &), At(y) = AT GOy +m),

and
k N h
™ == lleog Il + D> 125 1 + > 6 I+
=1 =1

Thus, as we will prove in Section 77, there exists a positive constant C' such that

942 "
le™ Il < CR2F ) [ call- (2.0.10)

a=0

Fact 2: Condition (??) is equivalent to

n n k
DI R Ol L T ED LY T
a=0 R R? j=1 R

a=0

h
+Zéa1/ Zalup_1z5

(2.0.11)
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Let us denote

COS (=

cos 1=

and

where 1 and 0 are
define
oo

and

Thus,

M. MEDINA, M. MUSSO, AND J.WEI

17
cos 09

i cos B, ]

1
cos 0y

| cosOn—1 |

1
e R

En—&—l

0,
S = sin 6o ’
| sindy_y
- OA .
’ N sin 6o 7
i sin 0,1 ]
1 [0
1 ’ 5. 0

— 2
0. — =
J k
A 2
0, = —
T
0:=

Proposition 2.0.2. Solving system (?7) is equivalent to solve

1

Co - -1

1

—cO0s

(-1,
(2.0.12)
(l - 1)7
0
O (2.0.13)
0

k-dimensional vectors, and 1 and 0 are vectors of dimension h. Likewise,

éal

Cal
Cai=1 ... | ERF, o 1= e R,
Cak L éozh
¢
c R(DE b | O | e patDR
Cn
07
+c1 - -1 +c3 - =1
0 _i (2.0.14)
+ Rh,k[COa C1, ... Cn]7
O
+cp- | sin | = t1 4+ Rpilco, ¢, .- cnl, (2.0.15)
0
1
+co- | —COS | = tg+ Rh’k[co, Cly... Cn], (2.0.16)
—1
0
+cq - Q = t3—|—Rh7k[Co,Cl,...0n], (2.0.17)
sin
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Cc3 -

fora=25,...,n,

C -

Co -

Co

Co -

C1 -

Ccql

0
OA + ¢y
—sin
17
Co- | —1
-1
_9_
Cco - 1
_0_
_9_
Cq 0
_1_
0]
cos | —cy-
0 |
0
% —C1 -
0 |
0 1
0 | —c3-
cés_
9 _
0 —C3 -
sin |
0
0 +c3
cOs
0
0 + ¢4
sin
0
Co, —CO0S

1

-1 = t4—|—Rh7k[Co,Cl,...Cn],

—cOs

=to + Rplco, c1, ... cnl,

=tny1 + Rh7k[60, Cly. .. Cn],

= tlnyo + Rh7k[60, Cly. .. Cn],

0
€08 | =tpt3+ Rpklco,c1,. ..
0
0
SiAl’l =tpta + Rh,k[007 Cly. ..
0
0
0 | =tuys + Ryglco,ca,. ..
cOos
0
0 | =tn+6+ Rpxlco, e,
sin
0
—C0S | = tny7 + Rpglco, c1,. .. cnl,
O -
0 1
_@ = tn+8 + Rh,k[007 Cly--- cn]u
0

=tntats + Rh,k’[CO> C1y. .- C'n]’

- Cn),

25

(2.0.18)

(2.0.19)

(2.0.20)

(2.0.21)

(2.0.22)

(2.0.23)

(2.0.24)

(2.0.25)

(2.0.26)

(2.0.27)

(2.0.28)
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fora=5,...,n,
o _ 0 -
co - 0 +c3- —§in = ton4s + Rhk[co, c1,. .. cnl, (2.0.29)
| cos | | 0]
_ 0 - _ 0 ;
co - Q +cq- —§in = ton+6 + Rh7k[60, Cl,y... Cn], (2.0.30)
| sin | .| 0 ]
and, fora =5,...,n,
_ 0 ;
Ca —§in = tonta+t2 + Ry klco, c1, . . . cnl, (2.0.31)
- 0 -
_ 0 ;
Co - OA = t3n+a—2 + Rh,k[CO, Cly ... Cnl, (2.0.32)
—sin
_ 0 i
Cqo - 0 = tan+a—6 + Rth[C(), Cly. .. Cn]. (2.0.33)
| —cos |
Here t;, i1 =0,...,5n — 6, are fited numbers such that
1
1t:]] < Clle~]I-
Moreover, Ry, i[co,c1, ... cy] stands for a function, whose specific definition changes from line to

line, which can be described as follows:

Rh,k[COa Cly... Cn] = @k‘,hL (0007 ey CTLO) + @k,hz (617 .. aék‘)
+ ék,h/: (61, R 6h)

and £ : R"* - R, £ : RF(H) 5 R L RMHD 5 R are linear functions uniformly bounded
when k,h — oo, and

O = O(k' ), Opp = O(k™ 1), Orn = O(k~

Q3

),

where O(1) denotes a quantity uniformly bounded when k,h — oo, and § < q < n is the number
fized in (?7).

We will prove this result in Section ?77?.
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Fact 3: Multiplying (??) for every Zao, Zaj, Zot,=0,1,...,n,j=1,....,kand l=1,...,h
and integrating in R™ we get a system of the form

[ Jen L( (") )Za0
Jrn L ‘PL Zoa

o o .

C1 1 . J_ —

M|l | =—1. with To = | Jpn L(©) Zak | . (2.0.34)

: : 1 Z

Cn Tn Jon L QO ol
f]R" ah i

Due to the symmetries, the matrix M has the form
| My O
=]

where M; and M, are square matrices of dimensions (5x (k+h+1))? and ((n—4) x (k+h+1))?2
of the form

A B C D E .
BoEGonT o
My=|CT & J K L|, M= 0 :
DT BT KT N N S
~ ~ ~ - Hn
ET 1T [T NT P 0 0 0
with
L(Za)Zeo ([ L(Za >7 D, (JEZa0)Za),
Hy=| (JLZai)Zuo), (fL ZaZoi)y;  ([LZa)Za) |, (2035
(f L(Zam>Za0>m ( ) m.j (f L(Zam)Zal)ml
fori,j=1,...,kand m,l =1,..., h. Thus, solving (??) is equivalent to find a solution of
Co o
c1 1 N
Mi|co|=1|mr|, Hycq =1o for a=5,...,n, (2.0.36)
€3 r3
C4 T4

with 7, defined in (?7).

Proposition 2.0.3. There exists ko, hg such that, for all k > ko, h > hg, system (?7) is solvable.
Moreover, the solution has the form

1 0 0 0 0
co=wvo+to| —L | +t1| 0| +t2| 0 | +t3] 0| +t4|0
—1 0 0 0 0
0 0 0 0 0 0
+% | O | +# | oS |+ | sin | +4| 0 | +4 0 + 1o 0 )
0 0 0 0 cos sin
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0 R o 0] v
co=wvt+ty| 1|+t | T2 |+t —msm +t3| 0| +t4] 0
0 -1 0 0 | 0
0 0 0 0] o] o
+to| 0 | +% | —cos |+t | —sin | +4 | O |+ | O | +42 | O |,
0 0 0 0 | 0 | 0
0 R 0 0
= v2+to| 0| +1 ot | T A | s | 0 2| 0
0 0 -1 0 0
0 0 0] [ 0 0 0
—|—f0 1 —|—f1 0 +Z2 0 —|—Lt0 0 +£1 0 —I—tAQ 0 ,
0 0 0 | | 0 0 0
0 0 0 1 0
cs = v3+ig 0 +t1 ] 0| +ta| O | +1t3 -1 + 14 0 )
-1 0 0 — 11_A2 cOs ﬁsin
0 0 0 0 0 0
+ EO 0 + fl 0 + %2 0 =+ 7?0 0 + 7?1 0 + 1?2 OA ,
0 0 0 0 —c0s —sin
0 0 0 0 1
ca=va+to | O | +t1 | O | +ta| O | +13 0 . + 14 -1
0 0 0 SEsin — r5Cos
0 0 0 0 0 0
+ %o 0 + 4 0 + 9 0 +£0 0 +£1 0 —|—£2 0 s
0 0 0 1 0 0
and, fora =5,...,n,
Iy 0 0 0 0
Ca = Vo t+ ta -1 + Va1l €5 + Va2 sin + ﬁal 0 + ’9042 0 ’
-1 0 0 cos sin

for any to,t1,t, t3,ta, to,t1,t2,t0,t1,t2, and te,Tal, Va2, Val, Va2 Teal parameters. The vectors
Vo € RFFIHL gre fized and satisfy

lvall < Clle*, @ =0,1,...,n.

Proof. Proceeding as in [?, Proposition 6.1] it can be checked that, for any o = 0,...,n,
— n—2 1 N n—2 1L
[Tall < Cu 2 [lem ], lFall < CAZ [l |,
and combining this estimate with Lemma ??7 and Lemma ?? we obtain the result. (|
We shall use the following notations: for any o = 0,1,...,n,
c Cal éal
Co = [ o } eRFFM =] ... | eRF éi=| ... | eRY (2.0.37)
(03 A~

Cak Cah
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fog = |: ?Aa :| S Rk+h7
Ta
where o A
To 1= : eRF, 7y = : e R"
f n L(SOJ_)ZOék fRn L(‘:DJ_)ZAah
2.1. SOLVING THE SECOND SYSTEM IN (77)
Let a be fixed in {5,...,n}. This section is devoted to solve
ﬁaca =Ta, (211)
where 74 is the vector defined in (?7?).
Using (?7?) and (??) and the fact that L(z,) = 0 it follows that
3 k+h+1 3
rowi(Hy) = Z row;(Hg).
1=2
Iy ) 3 1
As a consequence, | —1 | € ker(H,), and hence H,c, = 1, has a solution only if - | —1 | =
-1 -1
0. This last orthogonality condition is indeed fulfilled since one has
k+1 htk+1
rowi(ra) = Y _row;(ra) + »_ row(ra), (2.1.2)
j=2 I=k+2
again as consequence of the fact that L(z,) = 0. Thus, the general solution to (??) has the form
0 L
ca=1|-. |+t| -1 |, teR,
Ca -
—1
where ¢, solves
HoCo = 7:(17 (213)
with o
H, ’Ya]Alkxh:|’ a=5...m

H. —
“ [ Yolnxr  Ha
being H,, and H, square matrices of dimensions k X k and h x h respectively, defined by

</ L(Zoc,i)Za,j dy) ) ﬁa = (/ L(Za,l)Za,m dy)
ij=1,.k lLm=1,..h

H, =
and
o= | L) Zon
By 1sx¢ we mean a s X t-dimensional matrix whose entries are all 1. Observe that
Yol < CEY20, (2.1.4)
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for some fixed constant C. Arguing as in [?], one can show that H, and H,, are circulant
matrices of dimensions (k x k) and (h x h) respectively (see [?] for properties). Moreover, [?,
Proposition 5.1] ensures that

H,[¢o] =30, Haléa = Sa, (2.1.5)
has a solution if
5o COS =354 -sin =0 and 8§, -cOs = §q - sin = 0.
Actually, if a solution to (??) exists, it has the form
Co = W + D1COS + Ugsin, &4 = Wa + D1¢Os + Dasin,
for all vy, U9, 11, 9 € R, where w,, W, are the unique solutions to
H, Wy =34, We - COS =W -sin =0

and

Hotho = 80, Wa - cOS = g -sin = 0.
Furthermore, in [?, Proposition 5.1] it is proved that there exists a constant C' independent of
k so that, for all k large

[@all < CE" [0l and [@all < CK"~*|3al.

We start with the observation that system (?7) is solvable. Indeed, since L(zptat+4) =
L(Zonta+2) = 0, one has that 7, -¢os = 7, -sin = 0. Similarly, one gets that 7, -cos = Fo-sin = 0,
as consequence of the fact that L(zspt+a—2) = L(Zanta—6) = 0. Moreover, the vector lgxpco
is a multiple of I, and 1j,44Cq is a multiple of 1. Thus Lxpéa - €08 = Lpxpéa - sin = 0, and
L)y xkCa - €08 = 1% Co - sin = 0. Now we observe that the solution of system (?7?) has the form

Co = Wq + V1COS + Vssin

. . . R (2.1.6)
Cq = Wq + V1COS + VosIn,
for any value for 7y, Us, 11, 9 € R, where w, and W, are the unique solutions to
H W =T — YalixnhWa, W -COS = W, -sin = 0,
A . . . . . (2.1.7)
Hog = 7o — YalpxkWa, Wq - €OS = W, - sin = 0.
Moreover, there exists a constant C' so that
[@all < CR™[[Fall and [l@a|l < CE"4|7all. (2.1.8)

Existence and uniqueness of solutions to (?7) satisfying (??) follows from a contraction map

argument. Indeed, [ ZA}; } is a solution if and only if it is a fixed point to A, go‘ =
(04 o

;! <[ Ta — YalpxpWa } ), where we denote by T, the linear map T, <[ ga ]) _ ({ H, w, })7

[0}

Ta — YalpxkWa el Ho,
which is invertible for vectors that are orthogonal to ¢os, sin, in their first components, and to
c0s, sin in their second components. Let

w, _ —dp— X VTN
Be= (] 5 | € Koo Il < bl and 1l < ek



NONRADIAL NODAL SOLUTIONS WITH MAXIMAL RANK 31

E — - — — ~ A~ ~ o .
where K, :={ zZ)a ] € R¥ . 15, - COS = We - sin = 0, W, - cOS = g - sin = 0}. Then, choosing
(0%

r large but fixed, and thanks to (?7?), one has that A, is a contraction in B,. This gives the
existence of solutions to (?7?), satisfying (?7).

Summarizing the above arguments, we have

Lemma 2.1.1. Let a € {5,...,n} be fived. Then system (??) is solvable, and the solution has
the form

0 1 0 0 0 0
Ca=| Wo | +t| -1 | 4+71 | TS | +Ts| sin |+04| 0O | +in| 0 |, (2.1.9)
We, -1 0 0 cOs sin

o

for any values of t,U1,U2,01,09 € R. In the above formula [ Zé } is the unique solution to

(??), and satisfies (77).

«

2.2. SOLVING THE FIRST SYSTEM IN (77?)

This section is devoted to solve the first system in (?7), namely

€o 70
C1 1
M1 C = T9 . (2.2.1)
C3 T3
C4 T4

Using (?77?) and (??) and the fact that L(z,) = 0 for every a = 0, ..., 4, together with the result
in Section 77, we observe that

k h

rowy (M1) =Y rowyyi (M) + rowpsnpori(M) + Y rowe 14i (M) + rowapssniari(M),
=1 =1

k

1 _ _

TOWg 4 hy2(M1) =—— [ cos 0;10Wj py24i(M1) — sin 9¢YOW2k+2h+3+i(M1)]

V1-p? ;
h

+ > rowakhyari(M),
i=1

k
1 — _
rowag2n+3(M1) =——— [ sin 0;rowy p24i(M1) + cos 9i1"0W2k+2h+3+i(M1)]
V1= ;

h
+ E TOW3k42h+3+i (M1),
=1
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k
rowskysha(Mi) = Y roWspssnaari(Mi)

=1

h
1 N o
+ ﬁ [; 08 0;x0W 4,4 3h+4a+i(M1) — sin HirOW5k+4h+5+i(M1)] ,

k
rOW 4 ants(M1) = Y 10Wapanis4i(Mi)
i=1

h
1 .ooa N
+ ﬁ LE 1 sin (91‘I‘OW4]€+3}1+4+Z'(M1) -+ cos HiI‘OW5]€+4h+5+i(M1)] .

From these facts we deduce that system (?7) is solvable only if

ro
r1
ro | cwj=0,  j=0,1,...,4, (2.2.2)
r3
T4

where (recall definitions (??7) and (77))

1 0 0
1 0 0
” 0 0
01 1 0
_ 1 &os ——L sin
-1 V-2 Vi-p?
0 -1 0
0 0 1
wor=| 0 |, w:= 11_M25Tn , wy = | — 11_H2m : (2.2.3)
0 0 -1
0 0 0
0 0 0
-1 0 0
0 0 0
0 0 0
L 0 I 0 | I 0 |




NONRADIAL NODAL SOLUTIONS WITH MAXIMAL RANK

33

(2.2.4)

_ 0 - - 0 -
0 0
0 0
0 0
0 0
0 0
0 0
w3 = Q W4 Q
0 0
1 0
-1 0
— 11_/\2 cOs ﬁsfm
0
0 -1
18 1.
| oesin | BvaseSl
which belong all to ker(Mj). On the other hand, using again that L(z,) = 0 for every o =
0,...,4 one sees that the vectors r,, satisfy the following relations
k+1 h+k+1
row(rg) = Z [row;(r9) 4+ row;(r1)] + Z [row;(rg) + row;(rs)]
=2 I=k+2
| ke - -
row(r1) :\/17—7 JZ_; [cos B;_1row;(r1) — sinf;_1row;(r2)] + Z row;(ry),
. k41 B B
rowy (r2) :\/Tﬁ 12232 [sinf;_1row;(r1) + cos f;_1row;(ra)] + Z row;(ra),
k+1 | btk A A
rowy(rs) = Z; row;(r3) + Ny Z [cos 0;_1row;(r3) — sin 91_1rowl(r4)} ,
J= l=k+2
kt+1 | bk

rowy(ry) = Z row;(r4)

Jj=2

_l’_i
\/ 2
=AM 55,

sin él,lrowl(rg) + cos él,lrowl(m)} )

These facts imply that the orthogonality conditions (?7?) are satisfied, and thus (??) is solvable.

The solution to (??) has the form

0
Co
Co 9
C1
C1 0
cy | = & + twg + swi + rwa + vws + vwy,
C3 0
Cq4 53
0
C4
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for any values of t, s,r,u,v € R, where ¢, := [ go‘ } are solutions of
(6%
Co To
C1 7:1 _
Qléa | =7 |, Ffu= { ra ] (2.2.5)
3 T3 fa
C4 T4

Here @ is the square matrix of dimension [5(k + h) x (k + h)]? defined as

A B C D E
BT F G H I
Q=|c" ¢" J K L
DT HT KT M N
ET T [T NT Pp

where every submatrix of () has dimension (k + h) x (k4 h) and entries of the form

/ L)W,

where

(i) In A: VW Gj(Zo )i=1,... ks (Zot)i=1,..n}
(ii) In B: V € {(Zo;),
(iii) In C: V € {(Zy;

)
)i=1 ok}
o (Zo)i=1
(iv) In D: V € {(Zo;)j=1...k, (Zo1)i=1....
) Ji=1
)
=1,

)
) A
) vk (Z2)1=1,.. 0 }-
) Ji=t1....h}-
(V) InE: Ve {(70]' i 1 4l)l:17...,h}'
(vi) In F: VW € {(Z4; j:l,...,ka(
(vii) In G: V € {(Z1)=1.. wh W e{(Za))j=1. k> (Zat)i=1,..n}-
(viii) In H: V € {(Z1))j=1,... k> (Z1 I=1,.. ,h} W e {(Z3j)j=1....k» (A 30)1=1,...h }-
(X) Inl: Ve {(le)j:L (le L } W e {(24] 7=1,...,k> (Z4l l:l,...,h}-
(x) InJ: VW € {(ZQj)jzl,...,kl(Z2l)l:1,...,h}- X
(xi) In K: V € {(Z2j)j=1,..k» (Za)i=1,..n}, W € {(Z3j)j=1,...k» (Zs1)i=1,...,n}-
(xii) In L: V € {(Zaj)j=1,.. .k Zo)i=r,.}, W € {(Z4j)j=1,... ks (Za)i=1,..1}-
(xiii) In M: V,W € {(Z?)])] 1. ,k,(Z3z)z 1, b} )
(xiv) In N: V € {(Z3j)j=1,..k ,(231)}:1,‘..,}1}7 W € {(Z4j)j=1,...0 (Za)i=1,..1n}-
(XV) In P: V, W e {(74]')]':1 77777 ks (Z4l)l:1,...,h}~

Let us analize the structure of every matrix, where we will make use of the notation
BOJLOQ = /L(Za11>2a217 (2.2.6)

_ o2 ~ 2
= k(j—l) and 0 := h(l—l)

>
<)
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Matrix A. Due to the invariance properties one can check that for 7,7 = 1,...,k and I,m =
1,...,h,

/L(ZOZ‘)ZOJ‘_/ L(Z01)Zo ji—j|+1
/L(ZOI)ZOmZ/ L(Zov) Zoi—m| 415

/n L(Zoj) Zo1 = /n L(Zo)Zo; = /n L(Zo1) Zo1 = Boo-

Thus we can write B
A [ A Ay = Boolkxn ]
Az = Boolnxk A 7

where A and A are circulant matrices of dimensions (k x k) and (h x h) (see [?]).
Matrix B. Applying the invariance properties like in matrix A we obtain
B By i= ( L(Zo;)Zn)

By = (f L(ZOl)le)lzl h,j=1,...k 0

B— j=1,...k,1=1,...,h

)

where B is a (k x k) circulant matrix. Rotating in the (y1,y2) and (ys3,y4) one obtains
/L(ZQj)le = COSg]’BO]_ — Sing]’ﬁog = COS@jﬁOl,

/L(ZOl)le = COS gjﬁlo — Sinajﬂgo = COS @610,
forj=1,...,k, Il =1,... h, since Bpz = P20 = 0 due to the symmetry properties. Notice that

both expressions are independent of .

Matrix C. Likewise,
6 Cl = (f L(70j)22l)
Cy = ([ L(Zu)Z5)

_ j=1,....k, 1=1,....h

)

I=1,...,h, j=1,...k

whith C being a (k x k) circulant matrix and
/L(ZQj)ZQl :singjﬂ(n, j:L...,k, l=1,...,h,
/L(Zol)ZQj :Singjﬁlo, jzl,...,k‘, lzl,...,h.

Matrix D. _
1 J L(Z0;) Z3 J=1,k, 1=1,...,h

b= Dy = (f L(ZOI)Z?)]‘) » ’

I=1,...,h, j=1,...k
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whith D being a (h x h) circulant matrix and
/L(Zoj)Zgl:COSélﬂog, jIl,...,kj,lZl,...,h,

/L(ZAOl)Zgj:COSélﬁgo, j:1,...,]€,l:1,...,h,

where we have used that Sys = B49 = 0.

Matrix E.

0 By = ([ LZoj)Zu) _

By = (f L(ZOZ)74j>z:1 h,j=1,...k E

whith F being a (h x h) circulant matrix and
/L(Zoj)24l:sinél[303, jzl,...,k‘,lzl,...,h,
/L(ZOI)Z4j:Siné1530, jZl,...,k‘,lZl,...,h.

Matrix F.
F F1 = (f L(le)211>

j=1,...,k,1=1,...,h
= (f L(Zu)le)

I1=1,...,h, j=1,...k

where F and F are (k x k) and (h x h) circulant matrices respectively and
/L(le)le = /L(211>Z1j = COS2 gjﬂll + Sin2 @»622,

forj=1,....k, Il =1,..., h, using that B1o2 = Bo1 = 0.

Matrix G.

e Gy = <f L(le)221>j:1 ook, =1,k

G = (f L(le)72j>z:1 h,j=1,...k

where G is a (k x k) circulant matrix and
/L(le)ZQl = /L(le)Z2j = cos 0, sinf; 311 — sin 6, cos 0892,

forj=1,...,k, l=1,... h.

Matrix H.

0 Hy = (f L(le)23l>

j:].,...,k,l:l?""h
Hy = (f L(le)Z3j>

H:

I=1,...,h, j=1,...k

Y
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where, since 14 = B41 = fa3 = B32 = o4 = Baz = 0,
/L(le)Zgl = cos 0 cos 0,513,
/L(ZU)Zgj = COS@j COS Qlﬁgl,

forj=1,...,k,l=1,... h.
Matrix 1.

where
/L(le)24l = COS@j sin élﬂlg,
/L(le)Z4j = cos 6, sin 6351,

forj=1,....k l=1,... h.

Matrix J.
) 7 Ji = (f L(Z2j)Z2l)j:1,..‘,k,l=17--~7h
Jo 1= <f L(Z2Z)Z2j>l:1 by =1,k !

where J and J are (k x k) and (h x h) circulant matrices respectively and

/L(ZQj)ZQ[ = /L(ZQZ)ZQj = Sin2 ajﬁll + COS2 5j622,

for j=1,...,k, 1=1,... h.

Matrix K.
0 K= ( L(Z2))Z )
K. ::( L(Z)7Z )
2 J L(Z2)Zs I=1,...h, j=1,...k
where
/L(ZQj)Zgl = singj cos élﬁlg,
/L(Zgl)Z:J,j = sin 6, cos 0,551,
forj=1,....k l=1,... h.
Matrix L.
0 Ly = ( L(Z2:)2. )
I_ ! J L(Z2)) Za G=1, ik 1=1,...,h

)

9

37
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where
/L(ZQj)Z4l = Sinéj sin élﬂl?n
/L(ZQZ)Z4j = singj sin élﬁgl,

forj=1,....k;l=1,...,h

Matrix M

. 1 J L(Z35) 23 J=1,.k, 1=1,..h
M. ::( L(Z3)Z ) M |
2 f ( 31) 37 I=1,. b, =1,
where 1 and AT are (J x k) and (h x h) circulant matrices respectively and, since fys = 13 = 0,

L(Zs3j)Z3 = /L(ZSI)ZZij = cos? 0833 + sin® 0 B4,

forj=1,...,k, l=1,... h.

Matrix N. =
N 1 J L(Z35) Zy i=l. =1,k
N, :—_( L(Zy)Z ) N |
; J L(Z31) Z 4 I=1, . h, =1,k

where N is a (h x h) circulant matrix and

/L(Zgj)24l = /L(Zgl)Z4j = cos ; sin élﬁgg — siné cos 91644,
forj=1,....k l=1,... h.
Matrix P.

P Py i= (f L(Z4))Zu)
! J L(Z45) 2 G=1,k,1=1,....h
P2 = (f L(Z4Z)Z4j>
where P and P are (k x k) and (h x h) circulant matrices respectively and
/L(Z4j)24l = /L(Z4l)Z4j = sin? 0,833 + cos? 0, Bu,

forj=1,....k l=1,... h.
Notice that

P =

I=1,...,h, j=1,...k

F=J and M = P.
Henceforth, system (?7) can be decomposed in two different systems in the following way,

A B C 0 0 o 70 Ay By Ci D1 Ey Co
B F G o o0lla 3 Bl R G H L ||a&
éT éT J 0 0 Co = | 7o — Cg Gg Ji Kb Ly ca |, (227)
0 0 0 M 0| T3 Dy Hy K M N || ¢
0o 0 0 o P|Lc Ty Ey I3 Ly Ny P &4



[ A 0 0
0 F 0
0 0 J
DT 0 0
| ET 0 0
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b E]
0 0
0 O
NN
NT P |

¢o 7o Ay By (p
é1 71 B R G
o | =7 |- CF GF I
és P DT HT KT
¢y Py Ef it

By [?, Proposition 5.1] we know that the systems

A B T 0 0](g
B F G o o|l|la
c"Gd T 0 o]
0 0 0 M 0 C3

0 0 0 0 P|Ll@
A 0 0 D E &

0 F 0 0 0 &1
0 0 J 0 0 éo
DT 0 0 M N é3
ET 0 0o NT P ¢4

are solvable if the orthogonality conditions

hold. Moreover,

wo
wy |+
w2

T3 = W3 + £4C08 + t5sin

- €0S = 34 - sin = 0,

Cq = Wy +%6ﬁ+f78i7n, Vig, t7 € R,

1 =Wy + £1Cf)S + fQan Vfl,fg € R,

Co = Wy + fgc(A)S + tA4SiAn, Vfg, £4 € R,

wo
w3 | +15
Wy

0 cos
0 | +ty| —cos | +13
1 0

V¥4,f5 € R,
0 cos
0 + 56 —c0s =+ 2?7
1 0

50
S1
= | 3
53
S4

sin
—sin |,

0

sin
—sin |,

0

Dy Ej Co
Hy I C1
Ky Lo Co
Ms Ny Cc3
NlT Py Cy4
0,

V%MEQ,EZ& € Ra
V£5, Lt6, £7 S R,

39

(2.2.8)

(2.2.9)

(2.2.10)
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wo wWo
with | ... |, | ... | fixed vectors such that
Wy Wy
wo C S0 ’lf}[) C .§0
R R U e T = e (2:211)
W4 S4 W4 84
Co
Co
We will prove that (?7) and (?7) have a solution | ... | in the space
C4
Ca
o
v )| |, eoeos=csn=0, & cos=0-s=0,
T E4 ’ 61'C6S261'Si1’120, ég'C@S:éQ'SiHZO.
¢4

We need the following auxiliar result, whose proof follows straightforward using the same argu-
ment as in Lemma 77 so we skip it.

Lemma 2.2.1. Let h, g be functions in R™ such that h(y) = h(e%(jfl)y, 9,y") forallj=1,...,k
and g(y) = g(7, e (= 1) ,y') for alll=1,... h. Then,

[ 2uwhwiy = [ Zuwh)dy=o0.v1=1....n,

/nzsj(y)g(y)dyz/ Z4i(y)g(y)dy =0, Vj=1,...,k.

n

Let us focus on (??). By (?7),

Tg-1= Z/ 1) Zs;
= ; [ / Ly zk:zm>z2j + / L(aioé%l)%

a=0i=1

Notice that the second term vanishes due to Lemma 77 since, by the symmetry properties of
the functions,

n h k h h k
S U 27 =3 [0 220 =Y [ 24 ),
—0 =1 j=1 =1 =1 j=1
and L(Zl?: Z;) is invariant under rotation of angle eF U1 in the (y1,y2) plane. Therefore,
= (/ ZZZM 221> > sinf; + (/ Ly ZZM-)Zm) D cosf;=0. (2.2.12)
a=0 i=1 j=1 a=0 i=1 j=1
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On the other hand, as a consequence of [?, Lemma 6.1],

(?04-?1)-@:(?04-?1)‘%:0.

41

(2.2.13)

Using the invariances under rotation in the planes (y1,y2) and (ys3,y4) and Lemma ?? we get

n k n h
/L(90 )Z3J - /L(Z 27041)23] + /L(Z 2&1)7?)]
a=111=1 a=1 =1
n k
— [ L0323 ZuiZn,
a=1 =1
and thus
n k o k
7’3-COS=/L( ZZM')Zgl ZCOSHJ =0
a=1i=1 j=1
Analogously,

T3 -sin = 7y - COS = T4 - sin = 0.
Let us now check the last term in (?7). We expect
(CF [¢o) + GE[e1] + Ju[éa] + Ki[és]) + Li[ea]) - T =0,
(A1léo] + Bi[ér] + Ci[éa] + Diés] + Er[éd]
+BT[éo] + Fi[é1] + Gi[éa] + Hy[és) + 11 [é4]) - €05 = 0,
(A1[éo] + Biler] + Culéa] + Difes] + Erfcy]
+BQT[50] + Fi[é1] + Gi[éo] + Hiés] 4 I1[é4]) - sin = 0,
T(e1] + KT'[éo]) + My[é3] + NiJé4]) - co5 = 0,
3 [61] 4+ K3 [éa] + Mi[es] 4+ Ni[éq]) - sin = 0,
+ 11[é1] + LE[¢o] + N [é3] + Py[é4]) - 05 = 0,
+ I3 (1] + L3 [éo] + N3 [3] + Py[éa]) - sin = 0,
where ¢, .. ., ¢4 satisfy
él-cés:él-sfn:(),
G - cOS = &g - sin = 0.

Notice that, since Co and G2 have all their rows identical,

h
C3 [éo] - T= pio (ZCOZ) ZSIH@ =0,

=1

h k
Gg[él] 1= (B11 — B22) (Z 615) Zsingj Cosgj =0.
=1

j=1
Likewise, using the definition of J; and Lemma 77,

(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)

2.2.18
2.2.19
2.2.20
2.2.21
2.2.22

~~ ~~ —~ —~
~— ~— ~— ~— —

(2.2.23)
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since L (Z?Zl 72]-) is invariant under rotation of angle ¢;, and

Kilés) - 1= Bi3(és - cos) ZsmG =0,

Ly[é4) - 1= B13(é4 - sin) ZSlHQj =0.
Thus, (??) follows. Furthermore, again by [?, Lemma 6.1],

(A1 + B3)j = /L(Zoz)(Zoj +215) =0,

(By + Fl)jl = /L(Zu)(Zoj -I-le) =0,

(C1+ G = /L(Zzl)(ZOj +215) =0,
and thus (A; + BI)[éo] = (B1 + F1)[é1] = (C1 + G1)[é2] = 0. Likewise,

(D1 + Hi)j = /L(Z3l)(Z0j +Z1;) =0,

(E1+Il)jl:/L(Z4l>(Z + Z15) =0,

and therefore (D1 + Hi)[és] = (E1 + I1)[¢a] = 0. (?7?) can be analogously proved. Furthermore,

k
DQT[éO] €os = f331(¢g - cos) ZCOSQ =
Jj=1

h h k
M, [és] - cos = [533 (Z ¢3; coS> él> + Baa (Z ¢4; sin? él>] Zcosaj =0,

=1
h ~ A
Njy[é4] - €08 = (Bsg — Baa) (Z ¢4 sin 6; cos 91> Zcosgj =0,
=1
and, due to (?7),

HI[¢)]- @65 = B31(é1 - cos) Zcos =0,

KI[éy] - @65 = B31(és - cos) Zsmﬁ cosf; | =0,

o (?7?) holds. Identities (??)-(??) can be obtalned in a similar way, and thus (??) is solvable.
An analogous reasoning proves the solvability of (?7). Thus, the systems (?7) and (??7) have a
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solution in X with the form (?7?), where [wo, ..., Wy, Wo, - . . , W] satisfies (?7). It can be checked
that
Baa| SCE™2"™ 0 =0,2,4,  |faal <CE™15 o =1,3,
1Baran| < CE20 a1, a0 =0,1,3, oy # as. (2:2.24)
where 4, o, Was defined in (77?), and henceforth, by (??) and recalling that h = O(k),
[@all < CE"HIFall,  ll@all < CE"Hiiall,  a=0,1,...,4.

As it was done in the case o > 5, we will solve the systems by means of a fixed point argument.
If we denote

A B C 0 0 A, B, O, D, E
BN F G o o]| _ Bl B G H L
Miy=|¢c"d" 7 o ol|, Mi=|CF G n K L |,
0 0 0 M 0 Dy Hy K; M; N
0o 0 0 0 P Ej Iy L Ny P
A 0 0 D E Ay By Cy Dy Ej
0O F 0 0 0 R Bl R Gy Hy I
Mi=| 0 0 J 0 0|, M:=|c GF J Ky Ly |,
DT 0 0 M N DI HI' KT M, N
ET 0 0 NT P ef 1 LT N P
then [wo, ..., W4, W, ..., W] is a solution of (?7)-(?7?) if and only if it is a fixed point of
wo 70 Wo 70 wo
_ T L W1 1 . w1
F 1124 =61 T9 — Ml we |, | To — Ml w9 ,
0 T3 w3 73 w3
I UAJ4 | T4 Wy T4 Wy
where
wo wo wo wWo
w w1 w Wy
S wa , | wa = Ml wa ,Ml We
w3 w3 w3 w3
wy Wy wy (O

Notice that S is a linear map which is invertible for vectors satisfying the orthogonality conditions
(?7). Let

wo wo wo To
L IR N I e oy e e A e ]
w4 W4y W4y T4
wo 70
| | < k™Y },
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for some fixed r large, where

wo Wo
K:={| ... | eR™ | ... | € R%" satisfying (?7).}.

~

Wy Wy
Thanks to the particular form of the matrices My, M (all their submatrices are combinations of
sinus and cosinus multiplied by a term [, ,) and (?7) it can be checked that F' is a contraction
mapping that sends B, into B,. This finishes the proof of the existence of a solution to (??)-(?7)
satisfying (77?).
Define the vectors

o
‘oo>o‘ o

wn
©©>@-‘o

‘ =]

S OO DO DO DD

n
|
=

, (2.2.25)

N
S
1
OO DO O DO DO OO O
S
=
Il

S OO DO O DO D ®m

=] ge)

Q
1}
1)
=
=

(2.2.26)

>

(@)
»n
|

<>
S
I
OO O OO DO O OOl O OO
>
=
I
OO Q OO DO DO O DO
<
(V)
Il
<
B

OO !B, OO OO OO

We can summarize this section in the following lemma.
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Lemma 2.2.2. System (?7) is solvable, and the solution has the form

Co
=w + towp + 1wy + tows + t3ws + t4wy

Cq

+ Totlp + Ty + Tolia + totig 4 t101 + tadls,

where

w::[O wyg wog 0 wp wpy 0 wy we 0 w3 ws 0 7wy 12)4]T
(Wo, - .., Wy, Wo, . .., Wy being the unique solution to the system (??)-(??) satisfying (?7)and
(?7)), to, ... ta, to, L1, 2, to,t1,t2 € R and &, . .., &4, wo, . . . , Wy, To, Ur, U, g, U1, Uo are defined

in (77), (""), (77), (?7) and (77).
2.3. PROOF OF PROPOSITION 77

With this in mind, we observe that Proposition 77 is a consequence of the following estimates:
ifk, h —» o0

/|uyp—1ZaZB_/Up \Z24 0= D ) ifa=p=0,
/UP 1Z1—|—O T EAT) ifa=B#£0, (2.3.1)
Oy

) otherwise,

= O(,unTiz) otherwise,

/|u|p12al2ﬂ /UP 122 +O )\ ) lfa = B g 07 l — m7

:/Up 12200\ T ) ifa=p8+0,1=m, (2.3.3)
=O(A ) otherwise,

/ |u‘p_17aiZ/3 = O(,unT_Q), /|u|p_12alZﬁ = O()\nT_Q)’ (2.3.4)
/\u|p_lzai2ﬂl = O(u"T A7), (2.3.5)

In the formulas above, ¢,j =1,...,k, l,m=1,...,h, a,86=0,...,n
The proof of (?7) and (?7?) follows like (8.3) in [?], and (?7?), (??) are obtained analogously.
Let us prove (?77).
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The key point here is to notice that if y € B(¢;, %) then |y —n| > C, with C independent of 4,
[ and k, and |y &i| = C whenever y € B(n;, 2‘) where C is independent of i, [ and h. Consider
the case @« = = 0. We split the integral into four parts.

/|U|p ZoiZo = / - !u|p‘lZOiZoj+/ P Z0i Zo;
B(&,%) B(m, %)

+ / |u|p*170i20j
R™\B(0,2)

g
B(0,2)\(B(&:, 7)UB(m, %))
=:11 + 2 + i3 + 14,

|u[P~ Z0; Zo;

Firstly, using the definition of Zo; and ZOZ,

n—2

— A447 n— n—
il < C _ |u|p_1Z0¢ﬁ < C/LTQ)\TQ / Up_1Z0
B(&, %) ly — mil B(0

n—2  n—2
<COpz XNz,
where the second inequality follows by the change of variable x = &; + py. io follows in the same
way only by translating to x = n; + Ay. On the other hand, we have that

n—=2 n—2 1
3<CM2)\2/ — dy < C,u2 N7
re\B(0,2) |Y|* Y[ 2[y|" 2

7Nk)

To estimate i4 we take into account that, since &; and 7, are separated, |y — fi\*(”*m and |y —
771]*("*2) cannot be singular at the same time, so the behavior of the integral comes determined
by the singularity of only one of them. That is,

n— n— 1 1
i <Op"T AT fulP~! — _
BO2\(B(E,Z)UB(m, %) ly = &l" =2 |y — il
n—2  n— 1 1
<Op' 7T A% / ( st H) dy
BO2\(B(&, S)UB(m,2)) \|y — &l ly —m|
<Op"T\7T
The case a, 8 # 0 follows analogously just by noticing that
n—2 n—2
_ Wz . Az
Zoim P, Za~ o
T Ay =T
and hence (?7?) is proved.
We now need the following result.
Proposition 2.3.1. The functions m, can be decomposed as
k h
Ta(y) = Y Taj(¥) + > fat + Taly),
7j=1 =1

where

_2n(j—1) . _2n(l-1) .

Taj(y) =Ta1(e™ & 4,0,9), Tat(y) = Fa1 (€™ G,Y).
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Furthermore, there exists a positive constant C' such that
~ 1-z 1-2
|Talls < C(k @ +h " a), a=0,1,...,n,
= - = n—-2
Tatlls SCk a9, a=0,...,n, where To1 :=p 2 Ta1(&1 + py),

2 e 2 n=2 .
|Taills S Ch @, a=0,...,n, where Ta1:=A 2 Ta1(n1 + A\y).
We omit the proof of this result.

Thanks to Proposition 7?7, we get

\ [ 1 Zems

< Clmsulln \ J

< Clmglls, (2.3.6)

< Ol#alls. (2.3.7)

\ [ 1 Zaims

Notice next (see (8.5) in [?] for a proof) that

/Up—lzg = /Up—lzl2 >0,

— 1 1, p—1
tﬁ = —j‘(]p_lzg/@ w Zﬁ,

which satisfies [t5| < C||¢"||«, with C independent of k and h.
Consider (??) for f = 0. Thus, by using the definition of zp, (??)-(??), (?7), (??) and
Proposition 77 we get

and thus we can define

n k h
CaO/ Zaoup_lzo+20aj/ Zajup_1z0+zéal/ ZoguP 2o
a=0 " j=1 R =1 "
k h
= coo/Uplzg - Zcoj/Uplzg - ZéOI/Uplzg
j=1 =1
k h N " Coo
- chj/Up—lzg - Zé:n/Up_lZg +O(k' e +h' )L
j=1 =1 Cno
. ) . Co
+O(k )L | ... |[+0h L] ... |,
E’Il én

where £, £ and £ are linear functions with coefficients uniformly bounded in k& and h. Identity
(??) follows straightforward from here. (??7)-(??) are obtained in the same way.
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2.4. PROOF OF (?7)

We proceed as in [?, Section 9]. Indeed, we decompose @3‘ as

n
<P0l = Z Caowim with L(‘Pi‘o) = —L(Zao);

which is equivalent to

Alpa0) + 27U (@a0) + a0(y) a0 = —L(Zao), (2.4.1)
where ag(y) := py(Ju[P~'—UP~1). Adapting the arguments of [?] it can be seen that a € Lz (R™),
lyI ™" "2 L(Zoo) (1| ~*y) = —L(Zoo) (y), (2.4.2)
2L Zao) (91 2) = L(Za0)(w)s @ = 1,....m, (2.4.3)

and
IL(Zaol 22, <O +A"). (2.4.4)

We will solve (??) as a fixed point problem. Let us consider the problem
Lo(p) = h = ao(y)¢,
where Lo(p) := Ap + pyUP~tp and h € L%(Rn) satisfies
h(y) = |yl ™" h(ly|?y)-
Let T be the operator that associates to every ¢ the solution ¢ to this problem, that is,
¢ =T(h—ao(y)e)

Naming A(¢) := T'(h — ao(y)¢) we are going to see that this operator is a contraction and that
maps the ball

n—1 n—1 —n _
B:={p € D*R"): ¢/l < C(um + A7), 0(y) = [yl "6yl )},
into herself. Indeed, assume ¢ € B. Thus,

ao(y)o(y) = [yl =" a0yl *y) oyl ),
and, by [?, Proposition 9.1], we know that

< _ n n E
ol < Ol = 000l g oy <€ (101, o gy + 000161, )

LA+
and p(y) = [y|> "o (ly|2y).
We study the last term in two different regions. First, in

n a &
R™ \ ({U§:1B(§ja E)} U {UiL,B(m, E)})
we can estimate ag as

2

n—2 n

la0(y) “wgiﬁy5w2 Eﬁy

m ‘ n—2
and consequently,

2n —(n—1) —(n—1)
_ ~ao(y)["2dy < C (k +h : (2.4.5)
R\ ({UE_, B(&5, YU, B(m, §)})
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Consider now j € {1,...,k} and the ball B(¢;, $). Here
lao(y)] < ClUpg; (9) P,

and thus
k i (r—1);2%
lao(y)| 2 dy < C / e
Z/gj,k Z B, |1+ 1y =&l
2 2n 1 (pfl).fifg (246)
ot ][]
B0, &) L1+ [y
< Ck~D,
Likewise,
Z / lao(y)|*+2 dy < Ch==D), (2.4.7)
ﬁl,h

Putting (??), (??) and (??) together we conclude that if ¢ € B, then
lao()#ll, 2y g < N llzoe @ llao@) 22, o) < <O +\"7),

Furthermore
| A(¢1) = A(@2)]l < Cllao(y)(dr = @2)|l 2z ()
< Cllao)ll, zp, - H¢>1 b2l (2.4.8)
= o(1)[|¢1 — P2l

where o(1) denotes a quantity which goes to zero when k, h tend to infinity. Thus, A defines a
contraction mapping whenever

Bl 20, < OO+ 2.
Hence, considering h = L(Z40), by (?7?) we conclude the existence of a solution to (?7) satisfying

ledolls < Cu™ T + 2.
Consider now j € {1,...,k}, L € {1,...,h}, and let us write,

n

B = CajPajy  With  L(@y;) = —L(Zay),
a=0

n

QZJ_ = Z cal@i—lv with L(@i—l) = _L(Zal)'
a=0
Performing the change of variables

—1 n—2__ 2 n—2 _
G W) =uT oy + &), oY) = AT gy +m),

the previous equations turn into
:L R
AGy) +pyUP NG ) + pva; ()% = hi(w),
AB) +pyUP NG + pran(y) i = l(y),
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where
3 B _ nt2 _ —

@(y) = py ("7 Jul(py + &))"

a(y) = py (A Jul Oy + )P = UPY, huly) = — AT L(Zat) Ay + ).

Performing an analogous fixed point argument we conclude (?7?)

2.5. FINAL ARGUMENT

o
Let | ' | be the solution to (?7) provided by Proposition ??, and let g, t1, to, t3, ta, to, t1, t2,

Cn
fo,fl,fg, and to,Ual, Va2, Val, Va2, @ = 5, n, be the associated parameters. Thus, it follows
straightforward the existence of a unique vector of parameters

--atm nlv 27 nl? n2>

* * kR R My M v gk —k =% Ak A~k
(toa--->t4athtlth’toatlthatEwV517V527V51?V527'
€o

‘U | solves the system in Proposition ?? and, equivalently, (??). Moreover,

such that

Cn
t* * t* t* t* E* E* %* tA* 7 f* t* —% —k  AX * t* —% % ~ % ~ % < C 1
[[(t0, 11, £2, 83, t4s Lo, t1, by 105 U1, L2305, Va1, Vsas D31, D52, - - - 5 Uy Vints Unas Pt D) | < Cllo |l

and therefore
Co

C1

< Clig™ll-

Cn

This estimate, together with (??), allows us to conclude

ca =0 YVa=0,...,n

and thus ¢ = 0. Replacing this in (??) the proof of Theorem ?? is complete

2.6. APPENDIX
According to their definitions, see (??)—(??) and (?7), it is convenient to rewrite the functions

Zo A8
3

20(y) =Zo(y) — Z [Z0j(y) + Z1;(y

j=1

M:—

[Zoz )+ Za(y)|
-1
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N L _
cos0:7 —sin6,; 72 5
() =Za(y) — Z i215(y) - i22i(y) _ ZZu(y),
— 1—n =1
j
k — — h
sinf;7Z41;(y) +cosl;Z -
2a(y) =Za(y) — Z iZ15(y) & i22i() _ Z Zau(y),
— L—p =1
j
k h 3 7 inb 7
_ cos 0, Z3(y) — sin 0, Zy(y)
23(y) =Zs(y) = Y Zai(w) = !
e = V1=)2
k Ao . an A5
_ sin 0,731 (y) + cos 6; Z4(y)
2(y) =Zay) =Y Zaj(y) = > ’
~ = V1=)2
k o h
2a(y) =Za(y) = Y Zoj(y) = Y Zaily), a=5,....n
j=1 =1
koo h
st (V) = =D Zoj(y)s znsa(y) = = Y Zuly),
j=1 =1

Znt7(y) = =1 — Zcos@ Z3i(y) + V1 — /\2ZCOS 0,20y
Zn+s(y) = =1 —p? Zcos§j74j(y) +v1-— )2 Zsin 017(y)
j=1 =1
k —_——
Zntatd(y) = —\/1—MQZCOSHjZaj(y), a=D5,...,n,
j=1
k o h .
Zonts(y) = =1 — p? ZsinHngj +4v1-=)\2 ZCOS 0,7
j=1 =1

k h
22n+6(y) =—4/1-— Mg Z sin§j74j +v1-— A2 Z sin 0[Z2l
j=1 =1
and, for « = 5,...,n,

k h
Zontat2(y) = —V1 — p? Z sinf;Zaj, Zanta—20y) = —V1— A2 ZSiH 01231,
j=1 =1

h
24n+a_6(y) =—V1- )\2 Z COS 91241.
=1

The proof of the above identities follows from straightforward computations, and the symmetry
properties for U(y) +¢(y), for Uy¢; (y) + ¢;(y) and Uy, (y) + ¢1(y) respectively.
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A less straightforward computation gives that, « = n + 3,n +4,n + 5,n + 6, we have

Znt3(y) = 21 — 2/ 1 — ZCOSG rOJ + le}
Zn+4 =29 — 21— ZS]HQ ZOJ —l— le]

(2.6.1)

Zn+5(y) =21 — 2\/ 1-— )\2 Z COS él [Zo[(y) =+ Zgl} N
=1
h A A A~
zn+6(y) =21 — 2\/ 1-— )\2 Z sin 91 [Zol(y) + Z4l} .
j=1

We shall prove the validity of the first identity in (??). The proofs of the validity of the the
other expressions in (?7) are similar. We write

0 -2
Zog =2+ T, T(w)i= (g = 1) - = 20 (=5uly) + Vuly) -y)
Thus (??) follows from (??) and from
k
T(u) = -2 &1 [Zoj + VU, + 0)(w) - &1 - (2.6.2)
j=1

From the explicit expression of w in (?7), we get
k h
T =TW+9) =) TWUpg; +65) = 2 TWUrm + 1)
j=1 I=1

We shall first show that T(U + ¢)(y) = 0, and T'(Uy 5, + d)(y) =0 forany l=1,...,h.

Observe that, if v is any smooth function and if we define h(z) := 8%1 <|z|2_”v(%)), then

we have

_ 2z n=2 ( z ERWES

h@‘|w[2q(mQ+WQw>Qwﬂ
L L ov e
|z|" 021 \ |22)
and g(y) := |y|}l_2h(#) takes the form
n—2 ov
mwz—%l[ o(y) + Voly) - ]+H2y<>

With this is mind, one gets that if v is Kelvin invariant v(y) = |y|" v (ﬁ) , then

L ov(y \_ o [n=2 . 2 00
ly|"=2 Oy, <|y2> = =2y { 9 v(y) + Vo(y) y} + |y| o (y). (2.6.3)
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On the other hand, if v is Kelvin invariant (with respect to the origin) and even in 1, then also
the function aa—y”l is Kelvin invariant, that is %’l(y) = |y[”_2§—y”1 (#) . By (?7), we get that any

function v which is invariant under Kelvin transform (with respect to the origin) and even in
the y; direction, one that T'(v)(y) = 0. Since the functions (U + ¢)(y), and (U, + ¢1)(y) for

any [ = 1,...,h are invariant under Kelvin transform and even in y;, we get the proof of our
claim.
Let us fix j € {1,...,k}. We write, for v(y) = (Une, + ;) (1),
_ ov n—2
T(Ung +6)W) = (9 =g (y) = 20y = 1[5 0(v) + Voly) -]

::’}:(v)
= 2(&)1 [Zoj(y) + Vouly) - ] -
We claim that Tj(Ue, + ¢;)(y) = 0. To prove this fact, we recall that

v(y) == Upg, + 0;)(y) = /fnTiQ(U + 1) <y ;§j> ’

see Section 77. Also, p and [¢] are related so that Uy, ¢ +$j is invariant under Kelvin transform.
Thus, from (?77), we get

1 ov [y ) ov [n -2 ]
T;(v =———— | —5 | — ) +2(& v(y) + Voly) -y .
We note that, in this case, U, ¢, + aj is not even in the y; variable, so that one gets
1 v ( Yy ) ov
e\t ) = 5w — (& l(n—2)v(y) +2Vu(y) - y].
i () = 9 ® ~ 6 (1= 20(0) +290(0) -4
This concludes the proof of (77).
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