Free and harmonic trapped spin-1 Bose-Einstein
condensates in R’

Menghui Li ! Xiao Luo ? Juncheng Wei ? Maoding Zhen *

1 School of Mathematics and Information Science, Henan Normal University, Xinxiang,
453007, Henan, P. R. China
2 School of Mathematics, Hefei University of Technology, Hefei, 230009, P. R. China
3 Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada
4 School of Mathematics, Hefei University of Technology, Hefei, 230009, P. R. China

Abstract

We investigate physical states of spin-1 Bose-Einstein condensate in R? with mean-field interac-
tion constant ¢y and spin-exchange interaction constant c;, two conserved quantities, the number
of atoms N and the total magnetization M are involved in. Firstly, in the free case, existence and
asymptotic behavior of ground states are analyzed according to the relations among ¢y, ¢;, N and
M. Furthermore, we show that the corresponding standing wave is strongly unstable. When the
atoms are trapped in a harmonic potential, we prove the existence of ground states and excited
states along with some precisely asymptotics. Besides, we get that the set of ground states is stable
under the associated Cauchy flow while the excited state corresponds to a strongly unstable standing
wave. Our results not only show some characteristics of three-dimensional spin-1 BEC under the
effect between the spin-dependent interaction and the external magnetic field, but also support some
experimental observations as well as numerical results on spin-1 BEC.
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1 Introduction

Bose-Einstein condensate (BEC) is a macroscopic quantum phenomenon that at very low temperature,
identical bosonic particles tend to occupy their lowest quantum state and act as a single particle. BEC
was first created using ultracold alkali-metal atoms in a single spin state and atoms were spatially
confined with magnetic traps [2,17]. In this situation, the spin direction of the atoms follows the
magnetic field and thereby the spin degree of freedom is frozen.

BEC with spin degree of freedom, called spinor BEC, has been achieved experimentally and attracted
considerable interest [25,28,43,44]. In this case, ultracold atoms are confined in an optical dipole trap,
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unlike in magnetic trap, the direction of atomic spins can change due to the interparticle interaction so
that all hyperfine states are active. The order parameter of a spin-F BEC has 2F+1 components that
can vary over space and time, producing a very rich variety of spin textures [42,44].

In the mean field theory, a physical state of a spin-1 BEC is described by 3 components of complex
order parameter ®(z,t) = (<I>1(x,t), <I>o(w,t),<I>_1(x,t)) (r € RY d = 1,2,3) and the time evolution of
the mean field dynamics is governed by [25, 31]

oFE

J

where h is the Planck constant, ®% denotes the complex conjugate of ®;. Here E = E, ., (®) is defined
by

h? c c N N .
By () = / ) (mrvw V[P - Tnt - T (1@ P + |8 F,2 + |2 cmbr?))dx, (1.2)
R

with m the mass, V' the trapping potential, n = |®1 [*+|®[>+|®_1|?, ®*(xz,t) = (@} (z, 1), P} (z,t), P4 (z,1)).
¢o denotes the mean-field interaction and ¢; the spin-exchange interaction. ¢y and ¢; are both tunable

in experiments. The mean-field interaction is attractive if ¢y > 0 and repulsive if ¢ < 0. The BEC
system is called ferromagnetic if ¢c; > 0 and antiferromagnetic if ¢; < 0. F,, Fy, I, are the Pauli spinor
matrices
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From (1.1)-(1.2), in the dimensionless form, the spin-1 BEC can be described by the following coupled
Gross-Pitaevskii system
i0p®1 (x,t) = —AD; + V(2)®y — (co + ¢1)|®1 2Py — (co — ¢1)|P_1 2Py
— (co + 1) |®o[*®1 — c1®* | Do |*,
101 (x,t) = —AD_| + V(2)®_1 — (co+¢1)|P_1*P_1 — (co — ¢1)|®1*P_;
— (co+ €1)|®o*P_1 — c1 P} [P,
i0,®o(z,t) = —ADg + V(2)®g — co|Po[*Po — (co + c1)(|P1]* + [@-1]) P
— 20,1 D_, B},

(1.3)

under the following two conserved quantities

/Rd (7 + 2, + ®f)dx = N, . (7 — @2 ,)de = M,

where N is the number of atoms and M denotes the total magnetization. f, = ®? — ®2, determines
the net magnetization of the spin-1 BEC system. When f, = 0 (hence M = 0), the spin-1 BEC has
no magnetism, otherwise the BEC has magnetism. Usually, a state of f, = 0 will be a polar state or

antiferromagnetic state, and a state of f, # 0 may be a ferromagnetic state, a broken-axisymmetry
state or others, see [13,31] for details.



Let us recall that standing wave for (1.3) is a solution of the form (®q(¢,x),®_1(t,x), Po(t,z))
with (¢, ) = e /Nty (2), _y(t,x) = e Ntyy(z), Bo(t,z) = e M ug(z), where p, X are real
numbers and (u1, uz,up) € H'(R?, R3) satisfies the system of elliptic equations

— Auy + V(2)ug = (u+ Nug + (co + e1)u + (co — c1)uru3 + (co + e1)uduy + crugud,
— Aug + V(2)ug = (1 — Nug + (co + ¢1)us + (co — ¢1)udug + (co + e1)udug + cruiul, (1.4)

— Aug + V(2)ug = pug + cous + (co + c1)(ud 4 u3)ug + 2¢1uiusug,

along with the constraints

/ (uf + u3 + ud)dz = N, (uf — u3)dz = M. (1.5)
Rd Rd

Under certain conditions, the existence and stability of solutions to (1.4)-(1.5) have been studied by
many authors, see [14-16,26,32,33,36] and the references therein. For the one-dimensional case d = 1,
Cao, Chern and Wei in [14] proved the existence of ground states for (1.4)-(1.5) with V(z) = 0,¢9 >
0,¢1 > 0, by minimizing the corresponding energy under (1.5). The results of [14] have been generalized
in [36] to spin-1 BEC with an external Ioffe-Pitchard magnetic field. When d = 2 and ¢y > 0, motivated
by the recent works [20,21] on two-component attractive BEC, Kong, Wang and Zhao [32] gave the
existence and detailed asymptotic behavior of ground states for (1.4)-(1.5) with harmonic trapping
potentials. Turning to d = 3, ground states for (1.4)-(1.5) were investigated by Lin and Chern in [33],
where V(z) is a harmonic potential with Zeeman effect and ¢y < 0,¢; < 0. Furthermore, Hajaiej
and Carles in [26] proved the existence and stability of ground states for (1.4)-(1.5) in R%(d = 1,2, 3),
where V(z) is a harmonic potential under Ioffe-Pritchard magnetic field and ¢y < 0, ¢; < 0. For
numerical results on ground states and excited states of spin-1 BEC, we refer the reader to [15,16] and
the reference therein.

In R3, no matter when V(z) = 0 or V(z) # 0, for the case ¢y > 0, the study on solutions to (1.4)-
(1.5) is absent in the literatures. In this situation, the problem becomes more difficult, one reason is
that, the energy functional E,, ., defined by (1.2) is indefinite when ¢y > 0, while it is positive definite
when ¢y < 0 and ¢; < 0. Moreover, E, ., is always unbounded under (1.5) for any |M| < N when
co > 0 and ¢g + ¢1 > 0. Exploring physical states of spin-1 BEC relies on a good understanding of the
spin-exchange interaction term. Experimentally, the existence of ground state is related to the range of
o, c1 and the initial data, which determines the number of atoms N and the total magnetization M.

In addition, the characteristics of BEC are different in one-dimensional (1D), 2D and 3D. For 1D
system, the attractive interaction can compensate exactly for the dispersion of a wave packet, leading
to an integrable, and highly stable, soliton solution. BECs with attractive interactions have interesting
collapse phenomenon in 2D. When the critical number of condensate atoms exceeds the critical number
which has been measured precisely and predicted by physicists, the condensate would collapse [8]. This
phenomenon is caused by the decrease of the mean-field interaction energy with increasing condensate
number, and it can not be balanced by the kinetic energy of atoms eventually, so the condensate tends
to collapse upon itself. In 3D, for the homogeneous case, all solutions are predicted to be unstable. For
an inhomogeneous condensate, however, if the nonlinearity is relatively weak, the spatial localization
provided by an external trap potential can stabilize the condensate against collapse [40].

Based on these facts (two main motives) described above, in this present paper, we investigate the
existence, stability and asymptotic behavior of ground states and excited states for (1.4)-(1.5) with
co > 0 in R3.



When V(z) = 0, system (1.4)-(1.5) is free of the electromagnetic trap and becomes the following

— Auy = (4 Nur + (eo + en)ui + (co — er)uru + (co + er)ugur + cruzug,
— Aug = (u — Nug + (co + c1)us + (co — ¢1)utug + (co + c1)udug + crujud, (1.6)

— Aug = pug + coup + (co + c1) (U 4 u3)ug + 2¢1urusug

with

/}R3 (uf + u3 + ud)dz = N, g (uf — u3)dz = M. (1.7)

Solutions to system (1.6)-(1.7) can be found as critical points of Iy(ui,us2,ug) constrained on My,

where )
I()(ul,UQ,uO) = B /RS (‘VU1’2 + ’VU2|2 + ’VU0|2)dl’
1
_ = / ((Co +c1) (u‘l" + ué‘) + cwé) dr — 1 / uruguida
4 R3 R3

1
-5 /R3 ((co — cl)u%u% + (co + cl)(u% + u%)u%)d:ﬂ,

and

Mg = {(ul,uQ,uo) e Hl(]RS,]Rg)‘ /R3 (u% +u§ —i—ug)daz =N, (u% — u%)daz = M}

R3

Before introducing the main results, we recall some definitions (see also [5]).

Definition 1.1. (i) We say that (v1,v2,v0) is a ground state of (1.6)-(1.7) if

Iyl Mo (v1, v2,0) = 0
and
Ip(v1, va,v0) = inf {Io(ul,ug,uo) s.t. I pmp (w1, u2, up) = 0 and (uq, ug,up) € ./\/lo}.

(i) We say that (wi, w2, wo) is an excited state of (1.6)-(1.7) if

Io| mo (w1, wa, wo) = 0

and
Io(wl,wg,wo) > inf {Io(ul,uQ,uo) s.t. I(/)|M0(U1,U2,U[)) =0 and (ul,UQ,U()) S Mo}

We emphasize that this definition is meaningful even if the energy Iy is unbounded from below on
M. In addition, variational problems with the energy restricted on the manifold Mg is particularly
appropriate for the study of the stability properties of the ground states, as all the energy, the number
of atoms N and the total magnetization M are conserved along the flow generated by (1.3).



Definition 1.2. (i) We say that the set G is orbitally stable if G # () and for any € > 0, there exists
a d > 0 such that, provided that an initial datum ®(0) = (1(0), P2(0), Po(0)) for (1.3) satisfies

inf || (1, ug, uo) — (@1(0), 2(0), @0(0))\\H1(R3£3) <4,

(u1 ,u2 7uo)E G

then (@1, ®o, ®g) is globally defined and

inf H(ul,u2,u0) — ((I)l(t), @Q(t),q)o(t))HHl(Rg, c?) <e Vi>0,
(u1,u2,u0)EG )

where (®1(t), ®2(t), Po(t)) is the solution to (1.3) corresponding to the initial condition (®1(0), ®2(0), Po(0)).
(ii) A standing wave (e H TNy, (z), e=HH=Ntyy (2), e~ Hhug(z)) is said to be strongly unstable if for any
€ > 0 there exists

(21(0), @2(0), Po(0)) € H(R3,C?),

such that
H(ub Uz, UO) - (q)l(())a <I>2(0)7 (PO(O)) “Hl(R3,(C3) <,

and (<I>1(t), <I>2(t),<I>0(t)) blows-up in finite time, namely Tmax < +00, where T, > 0 is the positive
maximal time of existence.

Set

(H1): ¢ >0,0<M<N<(@2+V5M,

4N?
(H2): ¢ >0, N>(2+V5)M, &< .
co [(3N+M)§— N+M(5N+M)] N+ M

SNEM\3 Al
(H3) : c1<O,O<M<N,cl>[( ) NQ]NN
= ¢~ (N+M)(BN+ M)

-1,

- 1.

We can now state our first result regarding existence, stability and asymptotic behavior for ground
states of (1.6)-(1.7).

Theorem 1. Let ¢y > 0 and one of (H1),(H2),(H3) hold. Then
(i) there ezists a ground state (u1,usg,up) of (1.6) on My with some pg, Ao € R;

(i)
Ip(ay, a2, up) — 400, / (|Vﬂ1‘2 + ‘VQQ‘Q + ‘VﬂoP)dx — 400, as N — 0;
R3

Io(ﬂl,ﬂg,ﬂo) — 0, / (|Vﬂ1|2+|V@2‘2+|V@0‘2)dx—)0, as N — 4o0;
R3

(iii) the corresponding standing wave (e~ {Ho+20)tg, (), e~iro=Rolty, (3), e~Hotgg(z)) is strongly un-
stable.



Remark 1.1. To the best of our knowledge, this is the first theoretical result dealing with the existence,
asymptotic behavior and stability/instability of standing waves for ground states of three-dimensional
spin-1 BEC in both ferromagnetic and antiferromagnetic cases. Our main results in this aspect support
the experimental observation that existence of ground state of spin-1 BEC is related to the range of
co,c1 and the initial data, which determines the number of atoms N and the total magnetization M,
see [11]. Theorem 1 generalizes the main results of [6] from ground states of BEC to spin-1 BEC.
Furthermore, these results generalize the work of [32] and [14] from ground states of spin-1 BEC in R?
and R to ground states of spin-1 BEC in R3, respectively. Theorem 1 together with the main results
in [14, 32] indicate that the characteristics of spin-1 BEC are different in one-dimensional (1D), 2D
and 3D. In 3D, for the homogeneous case, the authors in [32] and [40] predicted that all states of BEC
are unstable. We give a complete positive answer from the aspect of ground states for spin-1 BEC.

Remark 1.2. (H1), (H2) or (H3) in Theorem 1 ensures that the corresponding limiting problem

— Aty = (u+ Ny + (co + c1)@ + (o + c1)adan,
— Atig = piig + coag + (co + 01)?1%@0, (1.8)

N+ M
[ tmPae =202 [ Jads = N
R3 2 R3

has a positive ground state. Indeed, the authors in [6] showed that when ¢* > 0 and co+ ¢1 > ¢*, (1.8)
has a positive ground state solution, where

. ek _WEM@ta)  No g

; ; AN N+ M
N(N+M) mln{ M+N(CO+CI)2’ (N+M)cg}

2
By direct calculation, we can show that ¢* > 0 and cg + ¢1 > ¢* are equivalent to

3N+M\3  VN+M(5N+M) N+M
Ug )2 — 23 }vg _ @ _ (BN+M)N+M)
N2 co+c1 4\/N[(W)% . N%] )

which degenerates to

o _ (BN + M)(N + M)

0<
Coter  4YN[(BNFM)E _ N3]

M
) H—2< — < 1.
. if Vb <N<

(3N;-M)%_N%]4\/N
All of these observations give the classification of conditions (H1)—(H3) with ey 1 <0

in (H3) and 7 AN — 1> 0 in (H2), see Proposition 2.1 for details. Based
[(3N+M)?f N+M(5N+M)] N+M

on this existence result on (1.8), we can prove that the ground state energy of (1.6) is strictly less than
that of its corresponding limiting problems. Then the compactness of the related Palais-Smale sequence
follows and the ground state obtained is fully nontrivial.

To prove Theorem 1, we adapt a minimax method and the classical Berestycki-Cazenave argument [3].
Comparing with discussing BEC system without the spin-exchange interaction term, see [6,9,20,21,38]
and the references therein, we however need to overcome some extra difficulties. In order to employ



the energy estimate to derive the compactness of the Palais-Smale sequences, some delicate estimates
and new ideas are also needed to handle with the spin-exchange interaction term in the corresponding
energy. Actually, one needs to choose some test functions skillfully, so that the ground state energy
of (1.6) is strictly less than that of its corresponding limiting problems, see Lemma 3.7 for details.
Indeed, it is a test to find the constraints corresponding to the limiting problems. In addition, due
to the uncertainty of the sign of the spin-exchange interaction term in the corresponding energy, we
need some refined calculations to show that the combining of the attractive mean-field interaction term
and the spin-exchange interaction term (ferromagnetic or antiferromagnetic) in the energy functional
is non-negative. This is significant in analyzing the structure of the corresponding energy functional
under constraint (1.7). Finally, to obtain the L? convergence of the Palais-Smale sequence, it is then
necessary to study carefully the signs of the multipliers (i.e p+ A, ©— A, p) in various cases and ensure
that all multipliers are negative, for which we need to make full use of the fact that the ground state
energy of (1.6) is strictly less than that of its corresponding limiting problems. Some of these ideas
originate from a recent work [19] by Forcella, Yang, Yang and the second author in this present paper.

Next, we consider the harmonic trapped case, where a confining electromagnetic potential V (z) = |z|?
is added in the system. The energy functional

1
I(uy,ug, up) := Ip(uy, ug, up) + 3 /3 |:L"|2(u% + u% + ug)dw
R

corresponding to problem (1.4) restricted to
M= {(Ul,UQ,UO) EA‘/ (u%—i—u%%—u%)dx:N, (u%—u%)dx:M}
R3 R3

has a totally different structure. Here the working space
A= {(ul,uQ,uo) € H'(R? R?)| / |2 (uf +u3 + ud)dz < +oo}, (1.10)
R3

is a Hilbert space equipped with the norm

2

(w1, w2, uo)|la := (/ (|Vu1|2 + |VU2|2 + |Vuo|2)dm +/ (1 + |x|2) (u% + u% + u%)d:v)
R3 R3

Motivated by [4], in order to get ground states, for any » > 0 and N < %, we first consider the
following local minimization problem

m?" = 1nf I Ui, U2, UQ),
N (u1,u2,u0)EMNB(r) (ur, uz, o)
where
B(r) == {(ULU%UO) € A}H(ul,u%uo)ﬂi < r}
and

(1, g, uo) |2 == /3 (V7w + [Vual? + [Vuof2) + o (63 + 03 + 3) ) da-.
R

Our main result in this aspect is the following



Theorem 2. Let 0 < M < N, ifcg >0, cg+c1 >0, then

(i) for any r > 0, m}y has a minimizer if N < <;

(ii) for any r > 0, there exists No = No(r) < 5, such that for any 0 < N < Ny, each minimizer
of mly is a critical point of I(u1,us,ug) restricted to M. Moreover, there exists N € (0, No| small
enough, such that for any 0 < N < Ny, the minimizer of m'y is a ground state of (1.4) on M;

(iii) for r >0 and 0 < N < Ny, denote
MYy = {(’U,l,’U,Q,U()) € M N B(r)|I(u1, uz,up) = m’j\,},
then for any (uin,uan,uon) € MYy, there holds

,
my
N

(w1, uz2n, won) (13

, N -3, asN—=0".

_>

N W

Further,
| (w1, uan, uon) — (l10%o, 120%0, loo o) |3 = O(N?),

where W is the unique normalized positive eigenvector of the harmonic oscillator —A + |z|? and

lio :/ unVodz, fori=1,2,0;
R3
(iv) the set M’y is stable under the flow associated with problem (1.3).

Based on the ground states obtained in Theorem 2, we are able to get an excited state.

Theorem 3. Suppose ¢y >0, cg+c1 >0,

(i) for any r > 0 and 0 < M < N < Ny, there exists an excited state (1,2, Uo) of (1.4) on M,
with some [i, \e R;

(ii) the corresponding standing wave (e_i(ﬂJF)‘)thl, e~ iA=Nt g, e‘iﬂtzl0> 1s strongly unstable.

Remark 1.3. The signs of these ground and excited state solutions obtained in Theorem 1-Theorem
3 are positive if ¢ > 0, while (uy,usz,ug) € (R™,RTRT) or (u1,us,up) € (RT,R™,R") when c¢; < 0.
Indeed, for any (uy,us,ug) € H'(R3,R3), the spin-exchange interaction term and energy functional
satisfy

—/ ]u1|]uQ|]u0|2daf§/ ulungde/ |y ||ug| |ug|*da
R3 R3 R3

and

! >0
IO(U17U2,U()) > 0(‘“1’7‘U2’,IUO|), . 7
To(—lal, Juzl Juol) = To(hur], —fual, o), e1 <,

then for any approximate solution sequence {(Uipn,Uzn, Uon)}, we have {(|uinl, |u2nl, |uon])} is also an
approzimate solution sequence when c; > 0 and {(—|uin|, |uznl, [uon|)} or {(|uin], —|uanl, |von|)} is also
an approximate solution sequence when c; < 0.

Remark 1.4. Theorem 3 together with Theorem 2 yield the multiplicity of standing waves for problem
(1.3) and correspond to the numerical results established in [15]. This indicates that the introduction of
an external harmonic trapping potential enriches the solutions set of (1.3). Theorem 2 (iii) shows that
the standing waves of problem (1.3) associated to the set M’y behave like the first eigenvector of the



harmonic oscillator —A+ |z|? for small N. This exact localization also benefits from the introduction of
the harmonic trapping potential in problem (1.3). Item (iv) of Theorem 2 indicates that the introduction
of the trapping potential || leads to a stabilization of system (1.3), as problem (1.3) without the term
|z|>u has at least one unstable standing wave and whose all solutions are predicted to blow up in finite
time, see [32,40]. In this sense, the influence of the trapping potential term |z|>u on system (1.3) is
important. In 3D, the authors in [40] described that for an inhomogeneous condensate, however, if the
nonlinearity is relatively weak, the spatial localization provided by an external trap potential can stabilize
the condensate against collapse, our results are consistent with this phenomenon.

Remark 1.5. Under the conditions of (ii) in Theorem 2, we show that

inf I(uy,ug,up) < inf I(uqy,uz,ug), (1.11)
(ur,uz,u0)€MOB(5) (u1uz,u0)€MN (BI\B(3))

see Lemma 4.6. This inequality is crucial for us to prove that each minimizer of m'y is a critical point
of I(uy,ug,ug) restricted to M. This is motivated by [4], where the following similar strict inequality
was obtained,

inf I(u,u2,up) < inf I(u1,uz,up). (1.12)
(u1,uz,u0) EMNB(EF) (u,uz,u0)eMN (B(r)\B(NT))

However, a necessary condition r > 6 must be imposed in (1.12) to ensure that MNB(5C) # (0. Indeed,
if (u1,uz,ug) € M N B(EE), then by (4.3), 3N < ||(u1, uz, uo)||2 < %5, which implies v > 6. That is,
the proof in [4] does not apply for all r > 0. This observation was first pointed out by Luo, see Remark
1.5 of [37]. Instead of (1.12), the author in [37] proved an inequality similar to (1.11) by assuming that
MN (B(r)\ B(})) # 0. However, this condition may not obviously hold for small N > 0. We give a

detailed proof in Lemma 4.6. See [18] for a similar description.

Remark 1.6. In addition, the condition 0 < M < N in Theorem 2 and Theorem 8 can be broadened to
0 < |M| < N, while it fails in Theorem 1. Indeed, in the proof of Theorem 1, condition M > 0 ensures
that the Lagrange multipliers are all negative, which is vital in recovering the L? strong convergence
of the related Palais-Smale sequences. However, when a harmonic trapping potential is involved, the
compactness issue become simple.

Remark 1.7. The results in Theorem 2 and Theorem 3 can be extended with slightly modifications
to the case where the trapping potential |x|? is replaced by a more general harmonic trapping potential
V(z) = ar|z1|? + as|za|? + as|zs|?, a; > 0(i = 1,2,3), which is called the anisotropy factors of the trap
in quantum physics and trapping frequency of the ith-direction in mathematics, see [10, 23, 24].

Notations. In the paper, we use the following notations. L? = LP(R?) with norm [|f| 1»rs) =
| £llz», HY(R?) is the usual Sobolev space, with H!(R3,C3) or H!(R3,R3) for vector valued functions,
HY(R3 C) or H'(R?) = H'(R3 R) for scalar functions. H(R?) denotes the dual space of H'(IR?).
Re and Im are for the real and imaginary part of a complex number, and z stands for the complex
conjugate of z.

The paper is organized as follows. In Section 2, we introduce some preliminary results. In Section 3,
we focus on the free case and prove Theorem 1. In Section 4, we deal with the harmonic trapped case
and prove Theorem 2. Finally, Theorem 3 will be proved in Section 5.



2 Preliminaries

In this section, we give some preliminaries which are useful for the rest of the paper. First, we give
some compact embedding results.

Lemma 2.1. (Compact embedding)
(1). (Willem [45]) Denote the radially symmetric subspace of H'(R3 R3) as

H, = {<u1,u2,u0) € H'(R3 R3)| u;(z) = wi(|z]), V2 € R3, i =1, z,o},

then H, << LP(R3) x LP(R3) x LP(R3) for any p € (2,6).
(2). (Pankov [39]) The embedding A — LP(R3) x LP(R?) x LP(R3) is compact for any p € [2,6). Here
A is defined at (1.10).

We now recall the scale field equation

—Au+u=1ud, zeR3
(2.1)

w>0 and uec HYR?).

From [30], there exists a unique positive radial solution Q(x) € H*(R3) for (2.1). Further, Q(z) satisfies
the Pohozaev identity [ps |VQ[*dz + 3 [5s Q*dx = %ng Q*dz. Then, we get

25 2 45 2
/RS\VQ| dx—B/RSQd:U, /Rst:C—Zl RSQal:z. (2.2)

In the following, we always denote
Co:= | Q*dx. (2.3)
R3
For any fixed ¢o + ¢; > 0, we consider the following equation

—Au= (4 Nu+ (co+ c1)u?,

N+ M 24
u€ H' (R and / lu|?dx = —g : (2:4)
R3

By scaling, we can see that there exists a unique positive solution wj(z) to (2.4) with

wi(z) = (_(”“))%Q((— (A +m)2a),

co + C1
2
where A+ pu = — (W) . Furthermore, w satisfies the Pohozaev identity
o+c1) 55—
2 3 4
|Vwi|°de = —(co+c1) [ wide. (2.5)
R3 4 R3

It follows that the corresponding energy is

N+ M 1 1
my ———,cotc | :=L(w): = / |Vw1]2dac — —(co+ 01)/ w‘l"dx
2 2 R3 4 R3

(2.6)
1

= —(cp +cl)/ wzlldl’ > 0.
8 R3
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Similarly, for any fixed ¢g > 0, there exists a unique positive solution wq(x) for the following equation

— Au = pu + cou®,

2.7
u € H'(R?) and |u|?dz = N. 2.7)
R3

Moreover, the corresponding energy is
1
ma(V'N, c) := Ir(wp) : / |Vwg|*dz — co/ wadr = 800/ wadz > 0. (2.8)
R3 R3

For 7 € R and v € H*(R3), we introduce an operator 7 xu as (7 xu)(z) = e%u(eTm). Then it is easy
to get the following lemma, so we omit the details of the proof.

Lemma 2.2. There holds

sup I1 (7 * wy) = I1(wy) = my. (2.9)
TER

For fixed ¢y > 0, we consider the following system

— Al = (4 Nag + (co + ¢1)a@; + (co + e1)@da,
— AUO ,UJUO + COUO + Co + Cl)U%UO, (210)

N M
/ = + / \to|2dz = N

Proposition 2.1. Let ¢g > 0 and one of (H1) — (H3) holds, then (2.10) has a positive ground state
solution.

Proof. From [6], we know that when ¢* > 0 and co+c¢; > ¢*, (2.10) has a positive ground state solution,
where

. ek (Nt M)(eo+a)  Ne (211)

. . AN N+ M
N(N+M) mln{M;N(cO+CI)27 (N+M)cg}

By direct calculation, we can show that ¢* > 0 and co+c¢; > ¢* are equivalent to the following conditions

3N+M\S  VNEMGBN+M)| [NtM 3N+M %_ N+AT)
(p)r - RO MM ) v !
N2 co+C1 N2 V2

WR[EGM)E - N _ater min{m [(5) - N3] VAN }
(5N + M)(N + M) co (MM )2 "VN+M]J

Let M = kN, k € (0,1), by direct analysis, we can deduce that for any k € (0, 1),

[(34—14:)3_@(5—1—/6)]\/1—|—l~c<\/1+k‘<[(34—1{:)3_(1—1—/6)3} 1+k

2 2v2 2 2 2 2 2

11



and

Therefore,
34+k\3 5 +K)] /1 + /1 +
[( 2 ) B ] 604_61
or
\/T 1+ k)5 + k)
2 (&) + Cl [ % _ 1}
Thus,

2 22

3+k\3 \/k+1(5+k)] L+k _ < <(1+k:)(5+k:)
2 co+c1 4[(3—!—1@)%_1}.

Since (#)% . Hfﬁk) > 0 for any k € (0,v/5—2] and (#)% —7”1621\2% < 0forany k € (v5-2,1),
then

if ke (vVb—2,1),

0<

w _ (L+R)G+E)
co+a 4(#)%71}’

5 VE+1(5+k) k ¢ (
[(3;/4) B +21/;+ ] 1; <604(:C1<41[(3+k)3_1}

and

Therefore, for any 0 < M < N, we have

3 3 3
[(31\7;1\4)2_ N+1\24\(/5§N+M)} N+M \/W [(3N+M)2_(N-|2—M)2} /N;M

N2 V2N N2 ,
WN[(FM)2 N3] VAN VN[(EYM)E - N
(5N + M)(N + M) N+ M (M )2 ’
and s
(M) — N+A§%N+M)}\/W< o _ _(BN+M)(N+M)
v DA AVN([()E - N

which degenerates to

c (5N+M)(N3+M)‘ . if %6(\[—2,1)-
@Fe AV - N

Thus, if ¢ > 0 and one of (H1) — (H3) holds, then (2.10) has a positive ground state solution. O
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Denote the positive ground state solution of (2.10) obtained in Proposition 2.1 as (v1,vp), then
(v1,vp) satisfies the Pohozaev identity

/]Vm]de—i-/ Vol ?da
R? R?

5 5 5 (2.12)
=—(co+ 1) / vide + co/ vodz + = (co + cl)/ vivdde.
4 R3 47 Jp3 2 R3
Denote the corresponding energy as
1 1
mg := J(v1,v0) : = / (]Vvllz + ]Vvo\z)dx — / ((co + cl)vi1 + covg)dx

1
— =(co+ 1) / vivddr > 0.
2 R3

Similar to (2.9), we can deduce that sup,cr J(7 * v1, T *x vg) = J(v1,v0) = ma.
For any u € H*(R?), by Lemma 2.4 in [6], u satisfies the classical Gagliardo-Nirenberg inequality

A 43 0 \ 5 / 59, \2
< . . .
/Rgu dx < 9C, ( - [Vul d:r:) ( RBu dx) (2.14)

For any (u1,us,up) € H'(R3,R3), there also holds the similar inequality.
Lemma 2.3. For (u1,us,ug) € H'(R3 R3), there holds

3 1
/ (u% + u? + u%)Qda: < C;(/ (]Vu1|2 + |Vug|? + |Vu0|2)da:> . (/ (uf +u3 + u%)dm) ) (2.15)
R3 R3 R3

where Cy = %?.

Proof. Consider the minimization problem:

Q - | f F ’ 9 )
(0’0’0);&(“17“;2’0)61‘[1(R3,R3) (ul (25 Uo)

where

NI

3
(Jos (V2 4 Vual? + [ Vuol?)d) *(fos (uf + 3 + ) )
Jies (ud + 3 + u3) dr

F(uy,u2,up) =

To obtain (2.15), it is sufficient to show Q = ?"(%CO. Let Q(x) be the unique positive solution to (2.1)

and set 0 0 0
(Uh’UQ,UO) = (ﬁ)%a%)a
then by (2.2),

3 1
(fRS |VQ|2d$> ’ (fRB Q2d95> ’ B 3v3Ch

Jgs Q*dx 4
By direct calculation, for arbitrary (u,us,ug) € H'(R?,R3), there holds

2
‘V\/u% +u3 + u%‘ < [Vuol? + |Vur|? + |Vug|?,

13

F(Ul, uz, UO) =



therefore, by (2.14),
3
(oo (VVaF+aZ+aB)dr) * ((fuo(d + 03 + ud)dr)
Jgs (U@ + uf + u3)?dx
3 1
(Jos (VT + B+ @) de)* (fus (VT + B+ uf) )’
Jes (Vi 23 4 uf) do

N

F(uy,u2,ug) >

>

3v/3Cy
VR

Thus, we get 2 = 3‘(%00. O

In the end, we list a well known Liouville type result, which is crucial for us to determine the signs
of Lagrange multipliers.

Lemma 2.4. (Ikoma [27]) Suppose 0 < p < 25 whenn > 3 and 0 < p < oo when n = 1,2. Let

u € LP(R™) be a smooth function and satisfy —Au > 0 in R™. Then u =0 holds.

3 Proof of Theorem 1

In this section, we are devoted to studying the existence, stability, and asymptotic results of solutions
to (1.6), i.e. the following system

— Auy = (4 Nug + (co + c1)ud + (co — 1) urul + (co + c1)udug + crusud,

— Aug = (u — Nug + (co + c1)us + (co — ¢1)utus + (co + c1)udus + crusud, (3.1)

— Aug = pug + coug + (co + cl)(u% + u%)uo + 2c1u1uUg.
Recall

Mg = {(ul,uQ,uo) € H'(R* R?)| / (uf +u3 +uj)dx = N, (ui —u3)dx = M},
R3 R3

we set Mg, := H, N My. By the Palais’ principle of symmetric criticality (Theorem 1.28 in [45]), the
critical point of Ip on My, is actually a critical point of Ip on M. Therefore, we always work in a
radial setting throughout this section.

Now, we show that Io(u1,ug,up) has a mountain pass structure on My. For [ > 0, we define

Al = {(ul,uQ,uo) S M0| /R?’ (|VU1|2 + |VU2|2 + |Vu0]2)d:£ < l}

and
B) := {(Ul,UQ,UO) € Mo}/ (|VU1|2 + |V'LL2|2 + |VU0|2)d:U = l}.
R3
Lemma 3.1. Suppose cg > 0 and cy + c¢1 > 0, then there exist Iy > 0 small enough and

1 2
o Y
Bmax{%‘), 3co +61}C*N§

4
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such that
Io(ul,UQ,uO) >0 fOT (ul,UQ,U()) S Al1
and

inf Io(uy, ug, ug) > sup Io(u1, ug, up),
Blz A11

where Cy is defined in (2.15).

Proof. For any (u1,us2,up) € My, by Holder’s inequality, we get

3 3 1 1
/ uupuide < (/ uédac)Q : (/ u%u%d:c)Q < / ugdx + / utuddz.
R3 R3 R3 2 R3 2 R3

By (2.15), we deduce that
/ (uil +uj + ué)dw < / (u% +u3 + u%)zdac
R3 R3
3 1
< C'*(/ (|Vu1\2 + |Vug|? + ]Vu0|2)dx> 2. (/ (u% + u? + u%)dx) :
R3 R3

3
:c*(/ (1Vu1? + [Vual? + [V ) dzr) * V3.
R3

[NIES

If ¢g > 0 and ¢; > 0, then together (3.2) with (3.3), we can see that

1
- / ((co + 1) (uil + ug) + coué> dr + 1 / uyuguida
4 R3 R3

1
+3 /3 <(co —c1)uiug + (o + 1) (uf + u%)u%)dw
-

SCO+61/ (u‘{+u§)d1‘+co/ uédﬂc+cl/ uédm+c()/ utudda
4 R3 4 Jps 2 Jrs 2 Jrs

R

cotc
24 / (u? 4 ud)uddz
2 R3

co+ 1 4,4 CO/ 4 c1 4 Co 4, 4
< d — d — d — d
< /R:s(u1+u2) T+ 0 T+ [ 0 T+ Rg(ul—&-uz) T

co+c1

/ (uiL + uj + 2ué)dm
4 Jus
< 3¢o 2 2 2
S\7 + ¢ ) Cs - (’VU1| + |[Vug|* + [Vug| )dx
If ¢g > 0 and ¢; < 0, by (3.3) and direct calculation, we have

1
- / ((CO + cl) (u‘lL + u%) + coué> dr + 1 / u1u2u3dx
4 R3 R3

1
+ 2/ <(co — cl)u%u% + (co + cl)(u% + u%)u%) dx
]R3

3
2

Nz.

@)

0

4

ud 4 u3 + u%)2dﬂc +2 / (u1 + uQ)2u%d3: + (uf — ug)zd:v
2 R3 4 R3

W

Jo
<9 [ ()i < PO [ (Va4 [VuaP + [Vuol)de) N2,
4 R3 4 R3

15
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Combining (3.4) and (3.5), for ¢g > 0 and ¢y + ¢1 > 0, there holds

((co + cl) (u‘l1 + ué) + coué) dx + c1 / u1u2u(2)d93
3 R3

R

1

5 /3 ((Co — c1)ufus + (co + 1) (uf + u%)ug) dx (3.6)
R

3 3
< max{%o, % + 61}0*</ (|VU1|2 + |VU2’2 + ‘VU0|2)dx) QN%’
R3

which yields that

1
To(un, s, ) > 2/3 (IVurl? + [Vusl? + [Vuol)de (3.7)
R
Co 360 % 1
_ =0 Nz,
max{ 11 ’

+ cl}C*(/Rg, (IVur” + [Vuz|* + |W0|2)df”)

Let

1 co 3cg } 13
=T — —, — CiNaz2.
f(zx) 5% max{ 12 +c1 x
Then it is easy to see that the function f(x) has a unique maximum point xg with
1 2
xTo i — 3 1 )
Smax{%o, 0+ cl}C*N§

and further f(z) > 0 when 0 < z <[ < x¢. It follows from (3.7) that
Io(uq,ug,up) > f(/R3 (IVur|® + [Vus|* + |Vu0\2)d:n) >0, for (uj,ug,up) € Ay .
Now, we take arbitrary (u1,uz2,up) € Aj, and (vi,v2,v0) € By,, that is
/]R3 (IVui]|? + [Vus|® + [Vug|*)da < I3 and /Rfﬂ (V1] + |Voo|* + [V |?) dz = L.
For ¢g > 0 and ¢; > 0, we have
/R3 ((co + cl) (u‘lL + ug) + cmté) dx + 4cy /RS u1u2u(2)d$
+2 /]R3 ((co — c1)ufus + (co + 1) (u + u%)ug) dx (3.8)
= ¢ /R3 (u% + u + ug)de + 2¢; /]12{3 (u1 + uQ)ngdx + cl/ (u% - u%)de > 0.

RB

Again by Holder’s inequality,

1
2/ uupuide < / uédw—i—Q/ utuddz,
R3 2 R3 R3

then for ¢y > 0 and ¢; < 0, we have

41 ulugu%da: > uéda: +4c¢q u%u%dm
R3 R3 R3
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It follows that

/ ((co +c1) (ui‘ + ué) + cwé) dr + 4cq / uruguida
R3 R3

+ 2/ ((co —c1)uiuj + (o + 1) (uf + u%)u%) dx
R3
> / ((CO + cl) (uil + u%) + coué) dr +c / uédm + 4 / u1u2d1: + 2(00 - cl) / ulugdx
R3 R3 R3 R3

= (co—i-cl){/ (u%+u§+u$)d$+2/ u1u2da:} >0,
R3 R3

as ¢g + ¢1 > 0. Hence, from (3.8) and (3.9), we conclude for ¢y > 0 and ¢y + ¢ > 0,

/ ((co +¢1) (ui1 + ug) + coué) dx + 4c; / uyupuida
R R (3.10)

+ 2/ ((CQ - cl)u%u% + (co + cl)(u% + u%)u%)daj > 0.
R3

(3.9)

Then by (3.6), we get

Io(vi, v2,v0) — Io(u1,u2, ug)

1
= 2{/ ('V“1'2+'W2‘2+|Vvo!2)dx—/ (IVer 2 + Ve 2 + [Vt 2)de |
R3 -
1
i { /R3 ((CO *er) (U% * u%) * coué)dx B /Rg, ((CO +ci1) (U% + Ug) + cové)dx)}
1
+of / ((eo = ex)udud + eo ) (0 + )
R
— /R3 ((00 - 01)7)%11% + (CO + 61)(7}% + v%)v%)daz} + <01 /RS upugudde — ¢y /R3 wagdx)
1 1
> §(l2 —l) — 1 /RS ((co + 01)(1)11 + v%) 4 cové)dx
_ 1/ ((60 —e1)vvs + (co+ i) (vf + v%)v%) dr — ¢ / v1vvdda
R3 -

2

1 3 3
2 5l =)~ maX{cf 20 +01}C’*N;(/ (IVo1]* + [Voa|? + [ Voo )d$)2

1 Co 300
= 2 —b) - max{4 = +01}C’ N3 —f(l2)—§l1>0,

when we choose [} small and Iy = x¢ is the maximum point of f(x). Then

inf Io(u1, ua, ug) > sup Io(ui, uz, up).
1) All

Therefore, we complete the proof.

For [ > 0, we denote

Dl = {(ul,UQ,U()) € Mo{/ (|VU1‘2 + ‘V'LLQP + \Vu0]2)d:c Z 3l, Ig(ul,uQ,uo) § O},
R3
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then similar to Lemma 4.5 in [6], A;, and D, are connected sets on My. Hence, the functional Iy
possesses a mountain pass structure on M. For simplicity, we just denote A;,, B;, and D;, as A, B,
D respectively. Define the path I'y as

Ty = {h e C([0, 1], Mo,)|n(0) € A, h(1) € D},

then we get

:= inf Ig(h(t)) > inf I, > 0. 3.11
o0 hlélrotfen[gﬁ] o(h(t)) > in o(u1,u2,up) (3.11)

Next, we give some properties of og. Before this, we provide some important Lemmas. Define the
Pohozaev manifold of system (3.1) as

Py = {<u17U27U0) € Mo| Po(uy, ug, ug) = 0}, (3.12)
with

Py(ug,uz,ug) = / (|Vu1|2 + [Vug|? + |Vu0]2)d:v — Z{ / ((CO + cl)(lfl1 + u%) + coué>dx
R3 R3

+ 2/ ((C() — cl)u%ug + (c() + cl)(u% + u%)ué)dw + 4¢q / u1u2ugdaz},
R3 R3

then it is easy to get following Lemmas.
Lemma 3.2. Suppose (u1,uz,up) € H' (R R?) is a solution of (3.1), then Py(uy,us,ug) = 0.

Lemma 3.3. Iy(uy,us,ug) is bounded from below and coercive on Py. Moreover, there exists a positive
constant C, such that Io(uy,uz,up) > C for any (ui,ug,up) € Po.

For 7 € R and (ug,uz,up) € H'(R3,R3), we introduce an operator 7 * (uy, us, ug) as

3T

(7% (u1,u2,u0)) (z) = €= (ur (e @), uz(e"z), up(e"x)), (3.13)

then it is easy to see that
16 v )P = [ (08448 5 e
R3 s
Define
U(1) = Io (7 (u1, u2, uo)),

then we give following lemma.

Lemma 3.4. Suppose co > 0 and ¢y + ¢1 > 0, then for any (u1,us,up) € My, there exists a unique
70 € R, such that 19 * (u1,u2,up) € Py and further

U(79) = max ¥(7) > 0.
TER

Moreover, if Py(uy,usz,up) =0, then ¥’ (0) < 0.
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Proof. For any (u1,us,ug) € My, by direct calculation, we get

1
¥(r) = 3 [ (Vurl + Vol + [VuoP)da

1
— 1637{ /3 ((co + 01) (ui1 + ug) + Coug>d$ +4c /
R

R
+ 2/ ((co —e1)ufus + (co + 1) (uf + u%)u%) dx} (3.14)
R3

uluzu%d:v
3

and
y(ry = 627/ (Vi + [Vusl® + Vo) de
dT R3
3
_ 7637{ / ((co + cl) (ui1 + u%) + coué) dr + 4cy / uluQu(Q)daj
4 R3 R3
+ 2/ ((CO — c1)ujus + (co+ c1)(uf + u%)u%)dm} (3.15)
RS
By (3.10), we get for any (uq,ug,ug) € Mo,

d d
lim —¥(r)=0" and lim —¥(7) = —o0. (3.16)

T——00 dT T—+o0o dT
By (3.15), we can see that there exists a unique 79 € R, such that

d

W]y, = ol (2, 0)) =0,

Thus, 7o * (u1, u2,up) € Po. Moreover, 7y is the unique maximum point of ¥(7), that is

U(rp) = max U(r) > 0.

Since 7 x (u1,ug2,up) € Py if and only if W' (7) = 0. If (u1,u2,up) € Py, then 7 = 0 is the maximum
point, we have that U”(0) < 0. We claim that U”(0) < 0. Assume by contradiction, that is ¥/(0) =
U”(0) = 0, then necessarily [ps (|Vuil* + [Vua|® + |[Vug[?)dz = 0, which is not possible because
(u1,ug2,up) € Mg. Thus, we get ¥”(0) < 0. O

Lemma 3.5. Py is a C' submanifold in Mg with codimension 3.
Proof. By (3.12), it is easy to see that Py is defined by Py(u1, ua,ug) = 0, G(u1,u2,up) = 0, F(u1,uz) =

0, where

G(u1,us,up) :/

(ui +u3 +uj)dx — N, F(ul,uQ):/ (ui — u3)dx — M.
R3

R3
Since Py(u1,uz,uq), G(u1,us,up), F(ui,us) are class of C1, we only need to check that

d(Po(u1,us, up), G(ur, uz, uo), Fu1,uz)) : H'(R*,R%) — R® is surjective.
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If this is not true, dPy(uy, u2,up) has to be linearly dependent from dG(uq,us,up) and dF (ui,uz) i.e.

there exist v, 9 € R such that

Jrs 2Vur1 Ve + 2(v1 + o)up)da

=3 [rs ((co + c1)uip + (co — er)urude + (co + e1)ugurp + cruguge)de,
Jrs (2VuaVy + 2(vy — vo)vep)da

=3 [ps ((co + c1)udy + (co — c1)udugy + (co + c1)udugh + clulu%¢)dx,
ng(QVUOVC + 21r1up()dx

=3 Jas (coug¢ + (co + c1)(uf + u3)uoC + 2c1uruguo()da,

for every (p,1,() € H, so

— 2Auy + 2(v1 + vo)u; = 3(co + cl)ui’ +3(co — cl)u1u§ + 3(co + cl)ugul + 361u2u3,

— 2Aug + 2(v1 — va)uz = 3(cp + cl)u% + 3(co — Cl)U%UQ + 3(co + cl)ugug + 301u1ug,

— 2Aug + 2v1ug = 3coud + 3(co + ¢1) (u? + u3)ug + 6crurusug.

The Pohozaev identity for above system is

/ (IVur|? + |Vus|* + |V |*)dx — %{ / ((co + 1) (uf +u3) + qw%)dx
R3 R3

+ 2/ ((co - cl)u%u% + (co + cl)(u% + u%)u%)dw + 4y / ulungdx} =0.
R3 R3

Therefore, ¥”(0) = 0, which contradicts with ¥”(0) < 0. Hence, Py is a natural constraint.

Lemma 3.6. Suppose ¢y > 0 and cg + ¢1 > 0, then there holds

o9 = inf To(ug,ug,up) = inf maon(T* (ul,ug,uo)),
(u1,u2,u0)€Po (u1,u2,u0)€Mp TER

where o is defined in (3.11).

Proof. We prove (3.17) in the following two steps:
Step 1: There holds

My 1= inf max Iy (7 * (u1,uz,ug)) = inf Io(u1, usg, ug).
* (u1,u2,u0)EMo TER 0( ( LE 0)) (u1,u2,u0)€Po 0( 172 0)
Indeed, by Lemma 3.3,

mo 1= inf Iy(ug,uz,up) > C >0
(u1,u2,u0)E€Po

(3.17)

(3.18)

is well defined. On the one hand, for any (uy,u2,ug) € Py C My, by Lemma 3.4, there exists a unique

70 € R, such that 7o * (u1, uz, up) € Py and

B o 0) =gl »ontn) = g+ o ).
Then
mg = inf Io(uy, ug, ug) > inf max Io (7 * (w1, ua, ug)) = M.
’ (u1,u2,u0)€Po o(u1, uz, 0)_(u1,u27u0)€/\/l0 TER 0( (11,02, 0)) :
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On the other hand, for any (u1, us,up) € My, again by Lemma 3.4, there exists a unique 79 € R, such
that 7o * (u1,u2,up) € Py and further

max Io (7 * (uy, us, u = Io(79* (u1, us, uw > inf Io(uy, ug, ug) = m
max o (7 * (u1,ug,up)) = Io(7o * (u1, ug, 0))_(1“7“27“0)6730 o(u1,u2,up) 05

which follows that

My = inf maXI()(T* (uq,ug, uo)) > myg.
(u1,u2,u0)EMo TER

Therefore, we have proved (3.18).
Step 2: There holds

= inf I = Mo = M.
7= 2, ey @) = mo =m

We first show that for any h = (hy, ha, ho) € Lo, h([0,1]) NPy # 0. In fact, for any h € I'o, by (3.6),

we get

Po(11(0): 1200, 10(0) = | (VRO + [Tha(0) + [Vho(0)?)d

_ §{ /R?’ ((Co + 1) (h1(0)* + ha(0)4) + coh0(0)4) dr + 4cy / h1(0)ha(0)ho(0)%dx

4 R3

+2 /RS ((e0 = e1) B (0)2ha(0) + (co + 1) (1 (0)? + h2(0)*)ho(0)? ) da | (3.19)

2/ (1AL (0)2 + [Vha(0)? + [Vho(0)]?)de
R3

3 3
—3max{j),f+c1}c*(/ (\Vh1(0)|2+|Vh2(o)|2+|Vh0(o)|2)dx)2N% >0,
R3

since h(0) € A;, and [ is small. Again by h = (hy, he, hg) € 'y and (3.10), we have

Polla (), a0, ho(D) = [ (V1) + [Tha(DP + [Vho(D)P2)da

_ §{ /RS ((60 +er) (1) + ha(1)Y) + coho(1)4)dx + 4y / hy(1)ha(1)ho(1)2dz

4 s
+2 /R ({0 = en) m(1)ha(1)? + (co + e1) (1 (1) + ha(1)2)ho(1)? ) da |

= 2Io(h1(1), ha(1), ho(1)) — i{ /

9 ((co +e1) (B (1)* + ha(1)%) + coh0(1)4)dx

- 2/ ((co —c1)h1(1)2ho(1)% + (co + 1) (M (1)* + h2(1)2)h0(1)2)dx
RS
+ 4cq /Rg h1(1)h2(1)h0(1)2dx} < 2Iy(h1(1), ha(1), ho(1)) < 0.

Together with (3.19), there exists o € (0,1), such that Py(h(tg)) = 0, that is ~([0,1]) NPy # 0. It
implies that

o)y} > inf Io(’u,l, ug, UO) = my. (320)
(u1,u2,u0)€EPo
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For (u1,ug,up) € My, denote (uf, us, uy) as the Schwarz symmetrization rearrangement of (ug, ug, up),
then by [35], we have

L (0P + 196 + (9aiR)do < [ (19l + Vol + Vo) da

and
/\uﬂpdac:/ wiPdz, ¥p € [Loo), i=1,2,0.
R3 R3

It implies that

Io (7 (uf, u3,ug)) < Io(7 * (u1,uz, up)). (3.21)
Since
TEIPOO Io(7 * (u},u3,uj)) = 0% and TEI}}OO Io (7 * (u}, u3, uj)) = —oo,

then it is easy to see that there exist sufficiently negative 7 and sufficiently large 7, such that 7 %
(ul, ub,uf) € A and 7 * (u}, us, ufy) € D. Let

ho(t) == ((1 — t)11 + t72) * (u],u3,vg), for ¢t >0,
then ho(0) € A and ho(1) € D, which implies that hy € T'g. Hence, by (3.21), we get

171—13]1? I (7’* (ul,u2,u0)) > I¥1>88{ I (ﬁo(t)) > tlél[g:}li} I (ﬁo(t)) > 0g.

It follows that

My = inf maXIO(T* (uq,ug, uo)) > 0yp.
(u1,u2,u0)EMo TER

Together with (3.18), (3.20), we get o9 = my = m,. Therefore, we complete the proof. O]

Let w1, wg and (v1,vp) be the ground state solution to (2.4), (2.7) and (2.10) respectively. Denote

the corresponding energy as mq(4/ NZM,CO tc1) := L (wy), ma(VN, ¢p) := Ir(wg) and ms := J(vy,v0),

which have been defined in (2.6), (2.8) and (2.13).

In the following lemma, we give an estimation of the minimax value .

Lemma 3.7. Suppose ¢y, c¢1 and M, N satisfy the conditions in Theorem 1, then there holds

N+ M
ao<m3<min{m1( —; ,co+cl),m2(\/ﬁ,co)}.

Proof. For any b > 0, define

Ty := {u € HY(R?) : / wlde = b}.

R3

From Proposition 2.1, we know that ms3 can be achieved by (v1,v9) € Tuin X Ty. By the standard
2

decay result, we get that

vi(x) = O(|x\*1e*\/ *(’”)‘)‘m'), vo(x) = O(|x\*1e*\/j”‘x|>, as || = oo
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and |v1(z)| < C, Jvo(z)] < C in R3, for some C, C > 0. We now take

ifé('f() 7) c1 >0,
|;Ep|k , 1< 07

u'(z) =

Wher60>0,0<k‘<%and
p(x) € CF(B2(0)), 0<¢(x) <1, ¢(x)=1in Bi(0).

(3.22)

Then we can choose a proper 6, such that (vi,u*,vg) € My. Thus, for any 7 € R, we get (vi, 7*xu*,vg) €

M. By Lemma 3.4, there exists 79 € R, such that 7o * (v1,7 x u*,v9) € Py, then we have

/ (Vor? + [V(r % u) 2 + [V 2)da
]R3

3 (v e) o+ ru)?) + cnf)de 4 3eie™ [ waida
R3 R
70
i 362 /3 ((CO . Cl)’l)%(T *u*)Q 4 (CO + Cl) (’U% -+ (T *u*)Q)vg)dJI.
R

Thus, by (2.12), we get e™ — 1 as 7 — —oo. Moreover, we can see that as 7 — —o0,

2
/ (1 xu*)?vdde = 02eB207 (C2+0(1)) > 70220 e(B2k)T
R3

and
[ ot s = e (G o),
R3
for some Cy, Cy > 0. In addition, there also exists a Cy > 0, such that as 7 — —oo0,
[t ety = 307G o)) > ot
R3

for ¢; > 0. Therefore, we conclude from (3.23)-(3.25) that if ¢; > 0,

70 = (u1 ugirquf(‘))epo Io(ul’ U2, uo) < Iy (7'0 * (1)1, T % u*, UO))
e e370
= / (\Vw!? + !Vvop)da: - / ((Co + 01)1)% 4 Cov§>dm
2 s L
370 e2(T+70) o3(r+70)

2

2 R3
6270 9 9 €3TO 4 4
< / (IVv1]* + [Vvo|?)dx — / ((co+01)vl —|—cov0>dx
2 R3 4 R3
370 62(T+To) 3(t+70)

5 /]R3 (co+ c1)vivgde +

5 (co =)0 T(Co + (1)) — —

< Ip(v1,0,v9) = J(v1,v9) = m3, as T — —o0.

23

/ (co + c1)vivgda + \Vu*|?dr — / (co+ ¢1)(u*) dz
R3 2 R3 4 R3

370
¢ / ((CQ - Cl)U%(T*u*)2 + (co+ 1) (7 *u*)%é)c& — 3™ / v1 (T % uF)vdde
R3

/ \Vu*2da — € / (co+ ¢1)(u*) dz
R3 4 R3

370 370 ~
e (& (CO + Cl)c292€(372k)T _ 61637'0 ? (

(3.23)

(3.24)

(3.25)

(3.26)



270 370

Since v, v1 > 0, by (3.22), we obtain ¢; [p; v1(T *x u*)v3dr > 0, for ¢; < 0. Then if ¢; < 0,
c / (V12 + [Voo 2)da — &
2 Jas 1

/ ((Co + cl)vil + CQUé) dx
R3
637'()

e2(T+70) e3(T+70)
- / (co + c1)vivgdx + \Vu*|?dx —
2 R3 R3 4

og <

5 /RB (co+ C1)(u*)4dl’

3710
- 62 / ((co —c1)vi (T *u*)? + (co + 1) (7 % u*)%%) dx — 137 / v (T *uM)vdde  (3.27)
R3

R3
627’() 637’0
= / (Vv |? + |V ?)dz — 1 / ((c0+c1)vj*+c0v§>dg;
R3 R3
370 2(T+70) 3(t+70)
i / (co + c1)vivgdx + S / \Vu*|?dx — ¢ / (co+ ¢1)(u*) dz
2 RS 2 R3 4 R3
€3T0 370

— e
— 5 (e~ ¢1)0%eB=27(Cy + 0(1)) —

4 (co + c1)Ca0%eB~2)T 016370?6(%—@7

< Iyp(v1,0,v9) = J(v1,v0) = M3, as T — —o0.
Together (3.26) with (3.27), we get that for ¢; > 0 or ¢; < 0,
oo < J(Ul,vo) = ms.

From the proof of Theorem 1.2 in [6], it is easy to see that under the condition of Theorem 1, we have

mg < min {ml (« /N;M7CO + cl),mQ(\/N, co) } Therefore

N+ M
00<m3<min{m1( _g ,co—&—cl),mg(\/ﬁ,co)}.

O

In the following Proposition, we prove the existence of bounded Palais-Smale sequence for Iy (uy, uz, ug)
restricted to My, at level og.

Proposition 3.1. Suppose ¢y > 0 and co+c; > 0, then there exists a Palais-Smale sequence {(u1n, uon, uon)} C
Mo, for Iy at level og. In addition, {(uin, uan, uon)} is bounded in H*(R3,R3) and satisfies

Po(win, u2n, uon)

3
= [, (%l 4 Vunl?  uon Pyt g { [ (ot ex) b 4d) + o o
R3 R3

+ 2 /3 ((CO - cl)u%nugn + (co + 01) (u%n + u%n)u%n) dx + 4c /3 ulnu2nu(2)nd:c}
R R

— 0, asn — oo.

(3.28)

Proof. Let I (7’, (uq,ug, uo)) =1 (T* (uqg,ug, uo)) and

o = {B e C([0,1],R x Mo,)| 7(0) = (0,1(0)), (1) = (0, (1)), h(0) € A, h(1) € D},

24



then it is easy to see that

0, ) =

Take a sequence {g,} := {(gln,ggn,g(m)} C Iy, such that

1
I t)) < —. 3.29
max 0(9n(1)) < 00+ (3.29)
Let §, := (0,g,) € T, then we get
Ty (an(®) Io(gn(t)) < o0+~ = G0+
= m —_ = —.
trél[g,)l(] 0R9n te[%,}f} 0R9n =70 n o0 n

By Lemma 2.3 in [29], there exists a sequence {(Tn, (U1p, Uon, 11()”))} C R x My, such that

(1) lim To(7n, (Girn, Gizn, fion)) = Go = o0;

(2). lim || + dist((dn, Gian, Gion), gn(t)) = 0;

n—-+00

(3). let E:=R x H, and E~! denote the dual space of E, then there holds

% - 1
’ I{)‘RXMO (Tn7 (ulmu2n;u0n)) HE_I S 2\/;

{0y G s ). (7 )| = 24/ 2 . )

for all (7, (uf,u}, uj)) € T(

That is,

o , Where
T7L7(u1’ﬂau2n7u0’n))

T( = {(7‘, (uT,uE,uS)) € E‘/ (uiﬂm%—u;ﬂzm—us%n) dx = O,/ (uiﬂln—u§ﬂ2n> dx = O}.
R3 R

Tny(ﬂln»ﬂQnyf’IOn)) 3

Let
(ulna U2, uOn) = (Tn * aln: Tn * 712717 Tn * 'aOn)7

then by point (1),
Io(U1n, U2n, uon) = Io(Tn * Uin, Tn * U2n, Tn * Uon) = iO (Tna (@1, Ton, ﬂOn)) — 09, asn—oo. (3.30)

Further, by direct calculation, we can obtain from (3) that

<j6 (Tn, (ﬂln, a2n7 aOTL))v (17 (07 07 O))>

3 4 _
:e2T”/ (IViian|® + |Viign|? + [Viign|?) dz — 637"{/ ((Co+01)(u1‘n+“3n) “0“3”)6“
R 4 R3 (3.31)

+2 /3 ((co — ¢1) 3,03, + (co + 1) (@3, + a%n)agn> dx + 4cq /
.

)
ulannuondx}
R3

= PO (Tn * (a1n7 ﬂ?na a[)n)) — O, as n — 00,

that is Py(u1n, Uon, uon) — 0 as n — oo.
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Next, we are going to show that I(’)|M0(u1n, U2n, Uon) — 0 as n — oo. For this, it is sufficient to show
that there exists a constant C' > 0, such that

* ok ok C * ok ok
‘<I(/)(u1n7u2n7u0n)7 (u17u27u0)>‘ < %H(ulvubuo)ua (332)

for all

%k ok o %k k * * * _
(uh U, UO) € T(uln,uzn,uon) = {(Ula Ug, UO) € H, (ululn + UgUgn + u0u0n> dx =0,

RS

/ <u>{u1n — ugugn) dx = 0}.
R3

For any (uf,u3,uy) € T we set (4}, us, uy) = (—7n) * (uf, ud, uy), then

Uln,U2n,U0n,) I
(07 (ﬂivﬂ;ﬂé)) € T(Tn,(ﬂm,@n,ﬁm))
and .
<I(/J (Tn7 (ﬂlna a??’w 71071))7 (0 (ufa ﬁ’;7 718))> = <I(/)(u1n7 U2ny UOn)a (UT7 'LL;, US))
By point (2), we may assume that 7,, — 0 as n — co. For n sufficiently large, we have

k o~k ~

10, 5,5, 7)) [, = 11 s, )
= /RS (V@i + [Vas|* + |Vig|*) de + /RS ((@})? + (a3)* + (p)*) d

—— /R3 (IVui]* + |Vus|® + \VuS]Q)dx + /}R3 ((uf)2 + (ub)? + (u8)2)dx
< 2||(uf, ub, ug)|>.
Then by point (3), we get

[(I) (Wi, uan, won), (ui, ub, uf))| = [(I (T, (T1n, tion, Gon)). (0, (@5, @5, 05)) )|

< 2\/>H Uiﬂ;ﬂjo HE‘ < 2\/>|| ul’u25u0

thus we get (3.32). Together with (3.30), (3.31), {(win,uon,uon)} is a Palais-Smale sequence for I
restricted to Mo,r- Moreover, direct calculatlon gives

1
Io(w1n, Uzn, ton) = Lo(Uin, U2n, Uon) — gPO(ulnauQnauOn) +o(1)
1
= / (\Vu1n|2 + |VUQn’2 + ‘VU0n|2)dl’
6 Jus
Since {(w1n, u2n, von)} C Mo, and Io(wip, ugn, ton) — 0o as n — 0o, then we get the boundedness of
{(u1n, uon, ugn)} in HY(R3,R3). Therefore, we complete the proof. O

By Proposition 3.1, we get a bounded Palais-Smale sequence {(u1y,, u2n, uon)} for Iy at level oy with
Py(uin, uon, upn) = o(1). Therefore, there exists (uq, g, ) € H,, such that up to a subsequence, as
n — 400,

(ulna U2n,, UOn) - (ﬂl, U9, ﬂo), in H,.
(Ui, Usn, Uon) — (T1, s, Tg), in LE(R3) x LHR3) x LYR3), Vt € (2,2%). (3.33)
_>

(U1n, U2n, Uon) — (U1, U2, o), a.e. in R3.
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Further, since I(’)}MO (Uin, U2n, uon) — 0, there are two sequences {\,}, {un} C R, such that

/3 (Vuln - Vo1 + Vugy, - Voo + Vugy, - V¢0)d$
R

_ / ((co +c1) (uz{’ndn + u%nqﬁg) + cou3n¢0) dz — (co — 1) /
R?’

2 2
(U1n¢1u2n + Ulnu2n¢2) dx
R3

— (co+c1) /RS (U1n¢1u(2)n + U3, tonPo + UznB2u, + Ugnuon%) dx (3.34)
—c /RS (¢1uan%n + Ut Poud, + 2U1nu2n’u0n¢0> dx

= ln /R3 <u1n¢1 + ugn o + u0n¢0) dx + Ay, /11%3 (uin®1 — ugnd2)dx + o(1)

— G+ ) [

uonpodr + o(1),
R 3

, Ui prdr + (Mn - )‘n) /

R

U2n¢2dl' + Mn/
3

R
for any (¢17¢27¢0) € Hl(R37R3)'

Lemma 3.8. {\,} and {u,} are bounded sequences in R. In addition, up to subsequence, at least one
of {\n} and {pn} converges to a negative value.

Proof. Choose (¢1, ¢2,¢0) = (u1n,0,0) in (3.34), we can obtain

/ |V, [2de — (co+ 61)/ uj,dx — (co— 01)/ ul,u3, dx
R3 R3 R3

(3.35)
—(co+ 1) / ut, ud,dr — c; / Ui Uon Ui, dr = (fin + /\n)/ u?, dx + o(1).
R3 R3 R3
We choose (¢1, ¢2, o) = (0, u2p,0) and (0, 0, upy,) respectively in (3.34), then
/ [Vugn|?dz — (o + cl)/ ug,dx — (co — cl)/ u? u3 dx
R? R R? (3.36)
— (co+ 1) / ud,ud,dr — ¢ / Ut U, dr = (f — )\n)/ u3, dx + o(1)
R3 R3 R3
and
/ \Vugn|*de — co/ ug,dx — (co + 01)/ ud, ud,da
R R R (3.37)

- (co + cl) /R3 u%nugnda: — 21 /R3 ulnu2nu(2)ndx = U /R3 ugnd:v +o(1).

Since {(uin, uzn,uon)} is bounded in H'(R? R?), it is easy to see that {\,}, {un} are bounded se-
quences in R. We may assume that A, — A\g and p, — 1o as n — 0o. Moreover, since (U1y,, U2n, Uon) €

27



Mo, we then get from (3.35)-(3.37) that

:U'nN + A M = Mn/ (uln + u2n + uOn dl’ + An / uln - u2n dx
R3

R3
:(un+/\n)/ ud,de + (pn — )/ uzndac—l—un/ ud, dx
R3 R3
/ (IVurn|® + [Vugn |* + |Vugn |*) dx (3.38)
R3

- { /3 ((Co + 01) (uln + ugn) + cou0n da: + 4cy /3 ulannUOndaz
R R

+ 2 /3 ((co — cl)u%nu%n + (co + cl)(uln + u2n)u0n) dx} +o(1).
-

Together with (3.28), that is Py(u1n, uon, uon) = o(1) as n — oo, we can deduce that

1
N + Ay M = _Z{ / ((co + cl) (u‘lln + uén) + Couén> dx + 4cy / ulnugnugndw
R3 R3

(3.39)
+ 2 /3 ((CO - cl)u%nugn + (co + cl) (u%n + u%n)u%n> dx} +o(1).
R
Again by (3.28), we obtain that
1
To(Uin, Uzn, Uon) = g{ /3 ((Co +e1) (ui, +us,) + couén> dx + 4c; /3 U UonUa, T
R R
+2 /]R3 <(c0 —c1)ui,uz, + (co +c1)(ui, + ugn)u%n) dx} +0o(1),
from (3.39), we get
pnN + Ay M = —21y(u1n, uop, upn) + o(1) = —2009, as n — oo. (3.40)
Therefore, we get puoN + AgM = —209 < 0, which implies that one of pg, Ag is negative. O

Lemma 3.9. Suppose po+ Mo < 0, po — Ao < 0 and pg < 0, then (uin, uon, uon) — (41, U2, 0gy) s
strongly in H'(R3,R3).

Proof. Suppose g < 0, we prove that ug, — @ is strongly in H'(R3). By (3.33), it is easy to see that

lim (u%n + u%n)ugndaﬁ = / (ul + u2)u0da: and lim UipUon U, dr = / U1 UaUide.
n—oo Jp3 R3 n—0o0 Jp3 R3
Take (¢1, P2, ¢0) = (0,0, upn, — Uo) in (3.34), we then deduce that
\ Vuon, - V(uon, — ag)dz = po /3 Uon (Uon, — Uo)dx + o(1). (3.41)
R R

Since ug, — @g in H'(R3), then for any ¢ € H(R?),

Vg - Vodr — ¢y /
R?:

RS

Uyddx — (co + c1) / (af + u3)topdz

R (3.42)

— 201/ U uougpdr — MO/ ugpdr = 0.
R3 R3

28



Take ¢ = ug, — o in (3.42), we get [ps Vg - V(uon — to)dx = o [gs Uo(uon — Uo)dz. Thus, together
with (3.41), we obtain [gs |V (uin — o) |?dz — po [gs(uin —t0)?*dz = o(1), it yields that {ugn} is strongly
convergent to g in H'(R?). Similarly, if pg+ Ao < 0, we can show that w1, — @ is strongly in H'(R3)
and if pg — Ao < 0, ug, — Uy is strongly in H*(R3). Therefore, we complete the proof. O

Proof of Theorem 1. (i) By (3.33), we get (u1, g, o) satisfies the following system

(co — ¢1)urtia + (co + ¢1)Uday + citintiz,

(co — ¢1)urtis + (co + c1)Udtn + crty s, (3.43)

— Aty = (po + Xo)t1 + (co + c1)as
— Adig = (pg — Xo)iia + (co + ¢1)a@3

— Aug = HoUg + Coﬁg + (C() + cl)(u% + ﬁ%)ﬂo + 2ciuiust.

Next, we show that g + \o, po — Ao and pg are all negative. By (3.38) and (3.40), we can see that

(i, + )\n)/ ul dx + (g, — )\n)/ u, dx + un/ ud,dx — —209 <0, asn — oo,
R3 R3 R3

which implies one of g + Ag, o — Ao and pg is negative. By Lemma 3.8, there exist five possibilities:
Case 1: \g <0, o <0, pp— Ao <0 and pg + Ao < 0;

Case 2: \g <0, po <0, pg— Ao >0 and pg + Mg < 0;

Case 3: A\g <0, pg >0, pg— Ao >0 and pg + Mg < 0;

Case 4: \g >0, o <0, up— Ag <0 and pg + Ao < 0;

Case 5: \g >0, pup <0, po— Ao <0 and ug+ Ao > 0.

We now argue by contradiction to rule out Case 2, Case 3 and Case 5. Suppose Case 2 holds, i.e.
Ao <0, o <0, pup—Ag > 0 and pg+ Ag < 0. From the proof of Lemma 3.9, we get that both uy, — @y
and wug, — g are strongly in H'(R?). In addition, by (3.43) and Lemma 2.4, we get %2 = 0. By the
structure of system (3.43), we have 41 =0 or uy = 0. If a3 = uy = 0, then ug satisfies

- — =3
— Auo = UoUp + CoUg,

/ |ﬁ0’2dl‘ = N.
R3

Lemma 2.3 in [22] shows that m(b,co + ¢1) and ma(b, cp) is strictly decreasing with respect to b. So
we have

oo = lim Io(uin, U2n, von)
n—o0

o1
= lim f{ / ((co +c1) (u‘fn + u%n) + couén) dx + 4c; / U Uonud, d
R3 R3

n—oo 8

+2 /R3 ((60 — c1)uiud + (co + 1) (uf + U%)U%)d:ﬂ)dw}

1
= co/ ]ﬂ0|4dx = mg(vN,co),
89 Jus

which contradicts to Lemma 3.7.
If 4y = us = 0, then u; satisfies

— Aty = (o + Xo)t + (co + c1)as,

M+ N
/ ’ﬂ1|2d$ = + .
R3 2
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We have
oo = lim Io(uin, uon, ton)

n—oo
1
= lim f{ / ((co + 1) (uty, + u3,) + couén) dz + 4c¢; / Ui Uonud, d
n—o0 8 R3 R3

2 /Rs ((CO —c1)uiuy + (co + 1) (uf + u%)ug)dx)dx}

1 N+M
:(co+01)/ |121|4da::m1(
8 s 2

which contradicts to Lemma 3.7 as well. Hence, Case 2 is impossible.

Suppose Case 3 holds, i.e. \g <0, pog >0, o — Ao > 0 and pg + A\g < 0. From the proof of Lemma
3.9, we get uy, — 41 is strongly in H!(R3). Moreover, by (3.43) and Lemma 2.4, it is easy to see that
iy = Ug = 0. Therefore, u; satisfies

7CO+61>7

— Aty = (o + Xo)tr + (co + c1)as,
N+ M 3.44
/ a2z < Y M (3.44)
R3 2

Thus, we obtain

oo = lim Io(uin, uon, Uon)
n—oo

1
= lim f{ / ((co + 1) (ut, + u3,) + couon dw + 4y / Ui Uonud,, d
R3

n—oo 8 R3

+ 2/R3 ((co - 01)u1u2 + (co + 01)(u1 + u3 uo)dx)dx}

1
_ 8(co+cl)/ il de = ma (2. 0 + 1) > m (
R3

which contradicts to Lemma 3.7. Hence, Case 3 can not happen.

Suppose Case 5 holds, i.e. A\g >0, pg <0, pg— Ao < 0 and po + Ag > 0. From the proof of Lemma
3.9, we get that both wug, — 2 and ug, — g are strongly in H!'(R3). In addition, by (3.43) and
Lemma 2.4, we get u; = 0. By the structure of system (3.43), we have g = 0 or ug = 0. If u; = 62 =0,
then ug satisfies

— Atlg = oo + C(]’ljg,

/ |to|?dx = N — M,
]RS
so we have

oo = lim Ip(uin, uon, ton)
n—oo

1
= lim f{ / ((co + 1) (ut, + u3,) + cou%n) dz + 4c¢; / Ui Uonud, d
n—o0 8 R3 R3

2 /Rs ((CO —c1)ufuy + (co + 1) (uf + u%)ug)dx)dx}

= ;Co/ ]710|4d3: = mg(\/N—M,C()) > mg(m,co),
R3
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which contradicts to Lemma 3.7.
If 4y = up = 0, then uy satisfies

— Aty = (o + Xo)a + (co + c1)a3,

N-M
/ o2 = .
R3 2

Thus, we obtain

oo = lim Io(uipn, U2n, von)

n—oo
1
= lim f{ / ((co + 1) (ul, +u3,) + couén)dx + 4y / Ui Uonud,, d
n—o0 § R3 R3

2 /Rs ((CO —c1)ufuz + (co + 1) (uf + u%)w%)dx)dz}

- M

1 N N+ M
= (Co+61)/ |112\4da::m1( ,Co+61) >m1<
8 s 2

T,CO +Cl>,

which also contradicts to Lemma 3.7. Hence, Case 5 can not happen. Therefore, we get that ug +
Ao, po — Ao and po are all negative. By Lemma 3.9, (u1n, u2n, uon) — (U1, U2, up) is strongly in
H'(R3 R3). Then (i1, s, u0) € My is a solution to (1.6). Further, from Lemma 3.2 and Lemma 3.6,
we can see that (a1, U2, o) is a ground state solution of (1.6). Hence, we complete the proof of Theorem
1 (i).

(ii) Let (ay,u2,up) € Mo be the ground state solution for (1.6) obtained in Theorem 1 (i), then
Py(uy,u2,u9) = 0, that is

/ (|Vu1]2+\VuQ|2+!Vu0|2)dx—i{/ ((co+c1) (at + ) + cotig ) da
R3 R3

(3.45)
- 2/ <(c0 —c1)uius + (co + c1) (@] + ﬁ%)a%)da: + 4e; / alﬂgﬁgdx} = 0.
R3 R3

Together with (3.6), we get

1
§ /3 (|Vﬂ1‘2 + ‘VEQ‘Q + ‘VﬂoP)daﬁ
R
3 3
< maX{C*O, =04 CI}C*</ (IVa|* + [Vazl* + \Va0|2)dx) N3,
47 4 R3
then
4 2
/ (IVa|* + |Vas|* + |Viao|*)dz > ( 1) .
R3 3max{co,300+4cl}C*N§
Thus,

/ (IVal? + [Vasf? + |Vao*)de — +oo, as N — 0.
RS
Further, by (3.45), we get

1
Io(ﬂl,ﬁg,ﬁo) = 6 /3 (‘Vle’Z + ‘Vﬂg’z + ’Vﬁ0|2)d:11 — 400, as N — 0r.
R
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Now, we consider the asymptotic behavior of (41, @, wg) as N — +oo. Define

@ = \[ L e x @), ) =0, won@) =\ [ o e w @),

where Q(x) and Cj are defined in (2.1) and (2.3), then it is easy to see that (ujn, uan, uon) € Mo and
further by direct calculation and (2.2), we get

/3 (IVurn|* + [Vuan|? + |Vuon |?) dz
R
M

N M
= e \VQ! de + ——— 27/ IVQ|?dz = 627/ IVQ|?dx = 3Ne™".
Co CoC Jas

Moreover, by (2.2) and (3.5), we deduce

/ ((co + 01 U1N + u2N) + cou0N> dx + 4c; / uy NuaNud N d
R3

/3 co— 1) uf Nusy + (co+ Cl)(U%N + u%N)“(%N) dx
R

co/ ( 1N+u2N+u0N) dm+201/ (U1N+U2N)2U(2)Nd$—|—01/ (U%N—ugN)de
R3 R3 R3

CO/S (Co 3TQ2 (r2) NCoMegTQ2(T$))2dI
R
(c;)

+2

= Co
R3

+ 201

)
[y

/]Rs <M 7 Qra)- ]\rgoMe?)TQz(Tm))dx + /R3 <?}’/[0€37Q2(m)>2dx

M
67’ 4
Q" (tx)dx + 1 /3 (—CO

2
) QY (rx)dx
M(N — M)
RS C?
coN? + 1 M? A 2ciM(N — M) 4 A
= C—ge 4 , Q" (z)dr + C—ge i - Q" (z)dz
4(coN? + ey M?) 5 8etM(N — M) 5 4(coN? +eiM? +2e:M(N — M))

g e —|——6 = (&

Co Co Co

QY (rx)dx

T

Choose

T:ln( NCo )
C()N2+01M2+261M(N—M) ’

then

3
/ (’VulN‘Q—l—‘Vu2N|2—|—|Vu0N|2)dx—4{/ ((c0+c1)(u§1N+u§N)+cou§N)d:v
R3 R3

+ 4eq /3 ulNUQNu(Q)Nda:+2/3 ((co — cl)u%NugN + (co + cl)(u%N —i—u%N)u%N)dx}
R R

3(coN? + et M? + 2¢;M (N — M))

3T
=0.
Co ©

= 3Ne2 —
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It yields that

In(uin, uan, uoN)

1 1
= 5 [, (Ve Fuawl? + 9uon?)e = { [ (o en) b + ) + v
R3 R3

+ 4y / wy NUsNUA N AT+ 2/ <(co — cl)u%NugN + (co + cl)(u%N + u%N)u8N>da:}
R3 R3
1
= 6 /3 (’VUlN‘Q + ‘VUQNF + |VUON’2)d$
R
_ Ne*™ N( NCj
N coN? + ¢y M2 4 2¢c;M(N — M

2 2
Hence, we conclude that

2
)) — 0, as N — +o0.

0 < Io(ty,u2, to) = inf Io(ut, ug, ug) < Ip(uin, uan,uon) = 0, as N — +o0.
(u1,u2,u0)€Po
Moreover,
/ (IVa1 > + |Vae|* + |Vio|*)dz = 61 (i1, Ga, Gg) — 0, as N — +o0.
R3
Therefore, we complete the proof. O

For any (u1,us,up) € H(R3,R3), we introduce the function

7_2

3
n(r): = 5 /}1{{3 (IVur |2 + |Vug|? + [Vug|?) dz — TZ{ /R3 ((co +e1) (uf + u3) —|—coué)dm

+ 2/ ((co - cl)u%u% + (co + cl)(u% + u%)u%)dw +4c¢q / uluQu%d:c}, for 7 > 0.
R3 R3
Notice that () = Io(InT % (u1,u2, up)). It is clear that for any (u1,uz,uo) € H*(R? R?), there exists
a unique critical point 79 > 0 for n(7), which is a strict maximum and In 7y x (u1,ug, ug) € Po.
Lemma 3.10. Let m = inf (y, , ug)ep, lo(u1, u2,uo), then
Po(uy,uz,ug) <0 = Py(ur,uz,up) < Io(u1,uz,up) —m.

Proof. By direct calculation, we get Py(u1, uz,up) = n'(1). Thus the condition Py(u1, ug,ug) < 0 implies
that 79 < 1. For (uq1,us,ug) € My, we have
7@ = [ (TuP + [Vl + Vo P)ds
-
37 4, .4 4 2
(co+ 1) (ul +u3) + coug )dz + ey | wugugda
2 R3 R3

+ 2/ ((co —cp)uiud + (co+ 1) (ui + u%)u%)dm},
R3

then there exists a unique 71 € R, such that n”(71) = 0. Since 7'(79) = 0, we have

3
n"(10) = —Zm{ /RB ((co + 1) (uf +u3) + coué) dx + 4c /

R
+ 2/ ((co — e1)ufuj + (co+ c1)(uf + u%)ug)dx} < 0.
R3

UlUQU%diB
3
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Then it is easy to see that n(7) is concave in (79, 4+00). As a consequence,
To(u,uz, ug) = n(1) = n(7o) + (1 —70)7'(1) = n(0) + Po(ur, uz,uo) > m+ Po(ua, uz, uo),
thus Po(ul,’LLQ,’LLU) < Io(ul,UQ,uO) —m. O

Proof of Theorem 1. (iii) Suppose @ := (uy, U2, uo) be the solution obtained in (i) of Theorem 1.
Let G := 7% @ := 7 x (41, U2, Up), since @ € Py, then for every 7 > 0, Py(7 *x 41, T x Ug, T x Ug) < 0. Let
®7 = (P7, 3, ®)) be the solution of system (1.3) with initial datum @, defined on the maximal interval
(Tmin, Tmax)- By continuity of Py, provided |¢| is sufficiently small we have Py(®7(t)) < 0. Therefore,
by Lemma 3.10 and recalling that the energy is conserved along trajectories of system (1.3), we have

Po(®7(1)) < Io(B7 () — m = Io(ii,) —m =1 —6 < 0,

for any such ¢, and by continuity again we infer that Py(®7(t)) < —d < 0 for every ¢t € (Tinin, Tmax)-
To obtain a contradiction, we define

= /RB |2 (@1 (¢, 2))* + (5(t, ) + (®G (¢, 2))?)da,

then
_QZIm/ 2207 ( tw28t<1)7txd:c—421m/ it z)z - 7P (¢, x)d.
Thus
( _421111/ a,@f (t, )z VO (t,x) + D7;(t, )z - VO] (¢, x))d
7=0
Since
2 2 3
421111/ O7(t, x)x - 70, P (t, x)d :4ZZIm D7 (t, x)xy - OO P (t, x)dx
7=0 k=1
2 3
= —4ZZIm t x)@k(q)T (t, z)xy)dx
7=0 k=1
2
—4 Zlm 6t (t, @)z - 77 (t, @ dac—i—?)ZIm/ O, ®F (t, 2)®7;(t, z)dx |
7=0
we have

£(t) _421111/ (087 (1) - 2] (1,2) + B (1, )2 - VOB (1, 2) ) o
7=0

=4 ZIm &g@" (t, )2z - 797 (¢, x)dx + 321111 ” 0y @7 (t, 2)®7(t, z)dx
7=0
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From the virial identity (see Lemma 3.7 in [26]), we get
£ =8 [ (VIR + Va3 +[VaFP)ds
R3
2 =T =T
— 600/ ((@{)2 + (®7)% + (<1>g)2) dx — 601{4/ Re®| &, (D7) %dx
R3 R3
T T 2 T T T
# (@07 - @37)7 + 2(@0? + (@5)) 05 de .
Since
P@7(0) = [ (VI + Va5 + [VaG)ds
R3
3 T\2 T\2 T\2 2 3 ITH [ HT\2
—Zeo [ (@24 (@5)2+ (@5)?) dz— o4 | Re®]B5(®f)%de
4 R3 4 R3
T T 2 T T T
+ [ ((@D? - @D)? + 2077 + (03)) (7)) |,
we have f!(t) = 8Py(®"(t)) < —80 < 0, and as a consequence

0< f(t) < =6t2 +O(t), forall t € (—Timin, Timax)-

Since the right hand side becomes negative for |t| sufficiently large, it is necessary that both Ty, and
Tmax are bounded. This proves that, for a sequence of initial data arbitrarily close to @, we have
blow-up in finite time, implying orbital instability. O

4 Proof of Theorem 2

In this section, we are going to investigate the existence, stability, and asymptotic behavior of solutions
o (1.4) with V() = |z|?>. We first recall some notations. Define

A= {(UI,UQ,UO) € H'(R* R%)| / 2|? (uf + uj + ud)dz < +oo}7
R3

then A is a Hilbert space equipped with the norm

NI

a1, w2, ) 1 = ( [ (09l + 19 uaP + [9u0P) + (14 fo) u + 43 +u3>)dw>
R
Denote

M(N) := {(ul,u2,uo) € A|/ (u% + u3 +u(2))dx =N, (u% - u%)dm = M},
R3 R3
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then the corresponding energy functional to (1.4) is defined as

1
I(u1,ug,ug) : = Io(u1, uz, ug) + B /3 |$’2(U% +uj + u%)dw
R
1

1
= 2/ (|Vul|2 + [Vug|? + |Vu0|2)dx + / |m]2(u% + u + ug)dx
R3 2 R3

1
_ ,{ / ((CO + cl) (1/1l + u%) + coué) dx + 4cy / u1u2u%dx
4 R3 R3

+ 2/3 <(CO - q)u%u% + (C() =+ Cl)(u% + u%)u%)dx},
R

for (u1,ug,up) € M(N). The solutions of (1.4) can be found as critical points of I(u1,ug, ug) restricted
to M(N). For simplicity, we just denote M(N) as M in the following. Define the Pohozaev manifold
of system (1.4) as

P = {(ul,uQ,uo) S M| P(Ulau%u()) = 0}7 (4'1)

where

P(uy,uz,up) : = /3 (IVur|* + [Vus|? + [Vuo|?) dz — /3 |2|? (uf + uj + u)dz
R R

— i{/s ((Co—l—q)(u%—i-ué) +Coué)d$+4c1/
R

R
+ 2/3 ((CO - Cl)U%ug + (Co + Cl)(u% + u%)u%)dg;}
R

By the similar argument as the proof of Lemma 3.5, we have

uluzu%dx
3

Lemma 4.1. P is a C! submanifold in M with codimension 3.

Lemma 4.2. Suppose (ui,u2,ug) € M is a solution of (1.4), then P(ui,u2,ug) = 0 and further
I(uy,ug,ug) > 0.

Proof. Since (u1,u2,up) is a solution of (1.4), we get that (u1,uz,ug) satisfies the following Pohozaev
identity
/ (|Vu1|2 + [Vug|? + |Vu0|2)dx + 5/ |x|2(u% + u + ug)dx
R3 R3

3
_ {/ ((co+cl) (u‘f—i—ué) —i—coué)daj
2\ Jis
+ 2/ ((co —c1)uiud + (co + 1) (uf + ug)ug) dz + 4y / UlUQU/(Z)d.'I)}
R3 R3

:3((,u+)\)/ u%dm+(,u—)\)/ u%d:ﬂ%—ﬂ/ u%dm).
R3 R3 R3

Multiplying the three equations in (1.4) by wuj, ua, ug and integrating by parts respectively, we then

(4.2)
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obtain
/R3 (IVur]? + [Vual* + [Vuo|*)dz + /]R o (uf + u3 + up)da
_ { / ((Co + 1) (uf +u3) + coué)dx
R3

+ 2/ ((co —c1)udud + (co + 1) (uf + ug)u(%) dz + 4y / uluQu%dx}
R3 R3

= ((LH—A)/ uide + (u — )\)/ u%dw+u/ u%dw).
R3 R3 R3

Together with (4.2), we have P(uy,uz2,up) = 0. It implies that

1 1

I(uy, ug, up) = / (|Vu1|2+IVuQ|2+|Vuo]2)d;r—|—/ |2 |? (uf + u3 + uf)dz
2 R3 2 R3

1

— f{ / (IVur|? + [Vua|* + |V |*)dz — / |2 |? (uf + u3 + ug)dﬂs}
3\ JRs R3
1

)
= / (IVur|* + [Vua|* + [Vuo|*)dz + / 2|? (uf 4+ u3 + ud)dz > 0.
6 R3 6 R3

Now, we prove a local minima structure for I(uq,us,ug) on M. Define

(1, w2, ug) || == /R3 ((WU1|2 + |Vug|* + [Vuol*) + |z[* (uf 4 u3 + “(2))>dx

and for any r > 0, let
B(r) = { (u1, w2, u0) € Al (ur, uz, uo)| [} <7}

Lemma 4.3. (Antonelli et al [1]) The pure point spectrum of the harmonic oscillator —A + |z|? is
o(—A+|z)?) = {& =3 + 2k, ke N},

and the corresponding eigenfunctions are given by Hermite functions (denoted by Wy, associated to &),
which form an orthogonal basis of L*(R3).

By Lemma 4.3, for any (u,u2,ug) € A, there holds

/ ((]Vu1|2 + [Vug|? + |Vu0‘2) + IxP(u% + ul + ug))dx > 3/ (u% + u3 + ug)daﬁ. (4.3)
R3 R3
Lemma 4.4. Suppose cg > 0 and cg + c¢1 > 0, then for any r > 0, it holds

MO B(r) # 0, UNgg (4.4)

and further I(uy,us2,ug) is bounded from below on M N B(r).
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Proof. For any r > 0, by Lemma 4.3, it is easy to see that ( NEM‘IJO, . NEM\IJO, 0) € M. Moreover,

if N <f,
N+ M ¢N—M 2
T )
‘K% 2 0 2 O F )1 A

. N/B (IV@oP? + |92 ) da = N 1| (0,0, 0)|13
R

=3N <r.

Hence, (\/NSM\IJO, \/NEM\IIO,O) € M N B(r). For any (u1,us,up) € M N B(r), by (3.6), we get

1 1
I(uy,ug,ug) > 2/ (IVur|? + |Vus|* + |Vug|*)dz + 2/ |2 |? (uf + u3 + uf)dz
RS R3

3
— max {CO 300 _|_61}C’ (/ (‘VU1|2+’VU2|2+|VUO|2)dx)2N%
R3

404
co 3co 9 co 3¢ 3 1
> — max{ —l—cl} *<H(u1,uQ,uo)H-> Nz > — max{ —I—cl}C’*mN?.
404 404
Therefore, we have proved that I(u1,us,up) is bounded from below on M N B(r). O

For any » > 0 and N < L, we consider the following local minimization problem:

. .
mhy = inf I(uq, us,ug).
N (u1,u2,u0)EMNB(T) ( T )

By Lemma 4.4, my is well defined.

Lemma 4.5. Suppose ¢g > 0 and ¢y + ¢1 > 0, then for any r > 0, there exists N = N(T), such that

n= inf I(uy,us,ug), N < N. 4.5
my (ul,uwol)neMmB(g) (u1,u2,up), for N < (4.5)

Proof. For any r > 0, if M N (B(r) \ B(})) = 0, then it is easy to see that (4.5) holds.
If M0 (B(r)\ B(%)) #0, then for any (u1, uz,up) € M N (B(r)\ B(})) and

1 2
ve )
4max{cy, 3co + 4¢1 }Cyr2

we have
1 1
I(uy,ug,up) = §H(u1,u2,uo)||[2-X — Z{ /3 ((co + 01) (ui1 + ug‘) + couf)l)dx
R<

ey / wrumidde +2 / ((eo = er)udud + (co + 1) (uf + ud)ud ) dr}
R3 R3

1 cp 3¢
> s,z o)}, — max {f 40+01}C’ (1, u, ) |3 N3
3 3
zg—max{%,%—kcl}Cﬂ%Nézﬁ

For any r > 0, by (4.4),

AAHBG)#& ﬁNSfé
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For any (u1,u2,u0) € M N B(}), we have

3
I(u, ug, up) < fH(ul,uQ,uo)HQ- <2< inf I(u1, u2, uo).-
AT8 16 (ur uz,u0)eMN (Br\B(%))

Take

e (e resT) 1)
N := min -, =7,
4max{co, 3co + 4c1 }Cur2 12

then we conclude that for 0 < N < N,

mhy < inf I(uy,ug,up) < inf I(uqy,ug,ug). (4.6)
(u1,u2,u0) EMNB(F) (uruz,u0)eMn (Br)\B(%))
Therefore, we complete the proof. O

In [4], the following strict inequality was obtained,

inf I(uy,ug,up) < inf I(uy,ug,up). (4.7)
(u17u2,uo)€MﬂB(%) (ul,uz,uo)EMﬂ(B(T)\B(NT))

However, a necessary condition 7 > 6 must be imposed in this case to ensure that M N B(&L) # (.
Indeed, if (u1,u2,up) € M N B(&L), then by (4.3),

Nr
3N < (s, w0} < 5
which implies » > 6. That is, the proof in [4] does not apply for all » > 0. This observation was pointed
out in Remark 1.5 of [37]. We give a detailed proof of the following lemma.

Lemma 4.6. Suppose co > 0 and co + ¢1 > 0, then for any r > 0, there exists Ny = Ny(r), such that
N < N07

inf I (ur,u2,up) < inf I(uy,ug,ug). (4.8)
(u1,uz,u0)EMNB(]) (ur uz,u0)eMN (Br)\B(%))

Proof. We first show that M N (B(r) \ B(})) # 0 for small N. For any 7 > 0 and (u1,us,u) €
H'(R3,R?), let 7% (u1, uz,ug) be the operation defined in (3.13), then by Lemma 4.4,

N IN
(Ul,UQ,U() —7'*( + \I/(), )GM

and by direct calculation, we get

(U, Ua, UO)HZ’A = e2TN/3 |V |2dz + e—2TN/3 |22 Wo2de.
R R

Denote
Dy :—/ |VWo|%dz, Ds :—/ |z|?Wo2de,
R3 R3

then it is obvious that
627—D1 + 8_2TD2 > 2/ D1Ds>.
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Hence for any r > 0, if we choose

3r
N<—n,
— 8v/D1Do

then there exists 7 > 0, such that H(Ul’ Us, UO)H?\ = %r, that is (U1, U, Up) € M N (B(r) \ B(%)) Let

~ 3r
Np := min {N, 7}
0= i 8vD.D,

we conclude (4.8) from the proof Lemma 4.5. O

Lemma 4.7. Suppose ¢y > 0 and cg + c¢1 > 0, then for any r > 0 and 0 < N < Ny, there holds

.
my < —.
N>

Proof. From the proof of Lemma 4.4, we get ( NJgM Uy, \/NEM\IIO, O) € M N B(r). Thus

N+ M N_—M
mhy = inf I(u, uz, up) < 1(\/ Yy, \/ W, 0)
(ul,uz,uo)EMﬁB(’l‘) 2 2
N N 3N
<= VU, |2 2\112)d — 2 (w0,0,0)]2 = =1
3 [, (V0 + law?)dx = (w0, 0,0)1F = 5

O

Proof of Theorem 2. (i) For any r > 0 and 0 < N < g, suppose {(u1n, Uzn, Uon)} C M N B(r) is a
minimizing sequence for mf, i.e. I(uip, U2, uon) — mfpy as n — oo. Then

| (w1n, Uon, uon) I3 = ||(U1n,u2n,U0n)||i + ||(U1n,u2mU0n)||%2 <r+N,

which implies that {(u1n, u2n, uon)} is bounded in A. Therefore, there exists (@1, @z, o) € A, such that
up to a subsequence, as n — oo,

(Utn, u2.ny uom) — (U1, U2,10), in A.
(uln,UQ7n,U()7n) — (ﬁl,ﬁg,ﬁo), in Lt<R3) X Lt(Rg) X Lt(Rg), Vit € [2,2*).

(uln,uz,n,uo,n) — (ﬂl,ﬂg,ﬂo), a.e. in R3.

Then we get (u1, U2, %) € M N B(r). Further, by the lower semi-continuity of the norm in A, there
holds
miyy < I(t1, U2, p) < nh—>120 I(w1n, u2n, uon) = miy.

It yields that (i1, @i, Uig) = my. Hence, m/y has at least one minimizer for any 7 > 0 and N < %.
(ii) For any 7 > 0 and 0 < N < Np, by (4.8), we can see that (u1,12,%) € B(5), which follows
that (a1, U2, Up) stays away from the boundary of B(r). Thus, (@1, a2, %) is indeed a critical point of
I(uy,ug,up) restricted to M and further (a1, a9, %) is a weak solution for (1.4) with some constants
it A as Lagrange multipliers.

Next, we show that (@1, @2, %) is a ground state solution for (1.4) as N small by contradiction. Let
N,, = min{%, No}, suppose there exists ro > 0 and {(v1ip, Van, von)} € M(Ny,), such that

I pm(vin, v2n,v0n) =0 and  I(v1n, van, von) < MYy .
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Then by Lemma 4.2, we get P(viy, van, von) = 0 and further by Lemma 4.7,

1 )
G / (Vo1 ]? + [ Vo |? + |Vvon|?)dz + = / |22 (v}, + 03, + v, )dx
R3 6 R3

<mjy —0, asn— oo

I('Ulny V2n, vOn) =

It implies that
H(UImUQm'UOn)H?\ = /]R3 (|vvln’2 + ’vv2n‘2 + ‘VUOnP)d$ + /]1%3 ‘$|2(’U%n + v%n + Ugn)dx — 0,

then (vin, vVon, von) € M(Ny,) N B(rg). We can see that I(viy, von, von) > m?n, which is a contradiction.

Therefore, (11, U2, Up) is a ground state solution of (1.4).
(iii) By Lemma 4.7, for any » > 0 and 0 < N < Ny, there holds

Denote
V= {(ul,ug,uo) e MNB(r ‘I UL, U, Ug) = mR,}

Suppose (u1n,uan, ugn) € MYy, by Lemma 4.2, we can see that

myy = I(uin, uan, uoN)

1 5

=5 /11{3 (|Vu1N]2 + |Vugn|> + \Vu0N|2)dx + G /RS |:c]2(qu +udy + ugN)da:
1

> 6{/ (‘VU1N|2 + |Vu2N’2 + IVUON‘Q)d.I‘ _|_/ |$’2(U%N i U%N n u%N)d;U}
R3 -

1
= 6||(U1N7U2NaUON)||ia
that is || (uin, uan, UON)H[Q-\ < 6m/y. Together with (4.9), we have

r 3

<||(U1N,U2JJVV»UON)||?\)§ - <6mTN>§ - <6-N

S
e

) = 97. (4.10)

Then by (3.6), we get

11

{/ ((co—i-cl)(ui‘N—i-u%N)+couéN>d:c+cl/ U N U NUS N dT
N 4 R3 R3

1

+ 3 /3 ((co — cl)u%Nu%N + (co + cQ(u%N + u%N)u%N)da:}
R

N)\»—t

3
< maX{%O 320 +61}C’ (/ (IVurn|* + |Vuan|* + [Vuon| )dx>2

2 3
3 3 ULIN, U2N 5 UON ) ||} \ 2
< max {jf i°+cl}c (i wan, o) |3 N 2_max{if 204—01}0*(“( - )”A)w
3
< 27max {éf z0+01}C’*N—>O, as N — 01,

41



which implies that

.11
Nh—r>%+N{4/Rg ((co +01)(uilN +u%N) —i—cou%N)dx—i—cl/guleNu%Ndx

R (4.11)

1
+ 5 /3 ((Co — 01)U%Nug1v + (co + c1)(u%N + u%N)ugN)dg;} =0.
R

Since I'| pm(u1n, uon, uon) = 0, there exist two sequences {un}, {An} C R, such that

un N + Ay M
- /3 (IVurn|* + |Vuan|? + |Vuon|?) dz + /3 2|? (uly + uiy +udy)de
R R
4 4 4 9 (4.12)
_ {/3 ((co +cl)(u1N +u2N) +cou0N)dx+401/3u1Nu2Nu0Ndx
R R
+ 2/3 ((co — cl)u%NugN + (co + cl)(qu + u%N)u§N>dx}.
R
Then by (4.3) and (4.11), we obtain
. NN+ ANM
1 ——— >3 4.13
N1—r>{)l+ N - ( )

By (4.9) and (4.12), we can see that
uNN + ANM = ||(u1n, uan, uon)||3 — {/3 ((Co + 1) (uiy + uay) + Cou3N>d$
R

+ 4¢q /5 Uy NuaNud N dT + 2/3 <(co — cl)u%NugN + (co + 01)(u%N + u%N)u3N>da:}
R R

1

= 2I(u1N, uaN, UoN) — 5{ /3 ((Co +c1) (U%N + U%N) + COU%N) dx
R

+4c; /3 ulNuzNugNd:c + 2/3 ((co — cl)u%NugN + (co + cﬂ(u%N —i—u%N)u%N)da:}
R R

3
< 2I(u1N,u2N,u0N) = 2mTN <2- §N = 3N.

Hence, together with (4.13), we get limy_,q+ W = 3. Further, we can deduce from (4.11) and
(4.12) that
| (w1, uan, uon)||2 21(uy N, uaN, uoN) 2m’
li A - 1 ) ) - 1 &Iy —3
N0+ N N0+ N NS0+t N

Next, we show as N — 07, there holds
[(u1n, uan, ton) — (1o Wo, l20Wo, loo o) I3 = O(N?), (4.14)

where lip = [ps uinVodz, for i =1,2,0. Set I, = [ps uinVpdz, for i = 1,2,0, then

o0 [e.e] oo
(N, uan, uoN) = <Zl1k‘1’k7zl2k‘1’k,210k\1’k>.
k=0 k=0 k=0
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Moreover, we can conclude

[e.e] [e.e]

N = ||(urw, uan, won) 172 = > (13, + B + B Wkll7 = D> (13 + 155 + 155 (4.15)
k=0 k=0
and [[(uin, uan, won) 13 = 2plo (3, + By + B IWkll} = 22520 &1y + 134 + 15,)- By (3.6) and (4.10),

we get

miy = I(uin, uan, uonN)

1 1
= §||(U1NuU2N7U0N)H?\ — {Z /R3 ((Co + 01)(u411N —i—u%N) + couéN)d:U + 01/ UlNUQNU(Q)Nd$

R3
1
) /5 ((Co —c)uiyuzy + (co+e1)(uiy + u%N)ugN)dac}
R

1 Co 360 2 % l

> 2||(U1N,U2N,UON)HA—ma { } < (IVurn|* + [Vuan|?* + | Vuon| )dx) 2
& 3c
> 2, wa, o)}~ max {220 4o L0l (i, wa, wow) [V
Co 360

> 2;0&(@ b2 12— 27max{ 2= cl}C*N2

1 & co 3¢

0 3¢

:2];)§k_£0 llk+l2k‘+l0k ;)50 l1k+12k+10k)—27ma {4 4 +61}C*N2.

Then by (4.9) and (4.15),

Mg

(61— 0) ) (T + 15, + Ioy) <Z§k—fo (Bx + 13 + lox)
k=1 k=1
<54max{cz 34 —i—cl}CN — 3N +mly < 54 max {if 3ZO+01}C*N2,
which yields that
> 54 max { & 3CO+01 CN2
Z T Be 15 < {5 3 i
prt 1—%
Thus
ka (B + 1+ 1850 = Y (& — ) U + By +16) + 0 > (B + 15, + 1oy
k=1 k=1
co 3¢ 2
co 3¢ 9 54max{ 2,5 —|—01}C’N
<54 —, — N
<5 max{4, 1 +01}C + & - 51 &

—51 {ZO i cl}C*NZ.

For N — 0T, we can see that

(w1, uan, won) — (lo®o, k2o Wo, looWo) I3 = H (lek‘l’k,zlzk\%,zlo;@‘l’k)

= ka(l%k + Iy, + I§) = O(N?)
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and

(w1, uan, won) — (loWo, l20Wo, loo o) |72 = H <lekwkazl2k‘l’kvzl0k\l’k>

Z Tk 15, + lox) = O(N?).
k=1

Therefore, it is obvious that (4.14) holds. We complete the proof of (iii) in Theorem 2. O

Next, we will show that the set M’y is orbitally stable under the flow of (1.3). To this end, we need
the following global well-posedness result.

Lemma 4.8. For any r >0, (u1(0),u2(0),u0(0)) in A be such that H(Ul(O),’U,Q(O),’U,Q(O))H?\ <r. Then
there exists Ng = No(r) > 0 sufficiently small such that for all 0 < N < No, if (u1(0),u2(0),u0(0)) €
M, then the corresponding solution to (1.3) exists globally in time.

Proof. The proof is based on the following continuity argument: Let I C R be a time interval and
X : I — [0,+00) be a continuous function satisfying for every t € I, X(t) < a + b(X(t))?, for some
constants a, b, > 0. Assume that for some tq € I, X (to) < 2a, b < 27%!~%. Then for every ¢t € I, we

have X (t) < 2a. Observe by the uncertainty principle (see e.g. [47]) that
/ 0) +u3(0) +ug(0))dz
<3 (/ (VO + V00 + [Fea(0)e) ([ o 00) +430) 00 te )
< [[(u1(0), u2(0), uo (0) 13 <.

By (3.6), we have
[7(u1(0), u2(0), uo(0))| < %ll(ul(o)vU2(0)7U0(0))||2A

+ max {Zf 340 +C1}C*</R3 (!Vu1(0)\2 + [Vus(0)[2 + |Vug(0 )]2)dx>§

w
l\)\»—‘

< C(r),

for some constant C(r) depending only on r. Similarly, by the conservation of mass and energy, we
have

(a1 (8), ua(), uo (£) 1 < 211 (w1 (0), u2(0), uo(0))]

Co 360

+ 2max {4 T +61}C*</Rs (IVur ()% + [Vuz () * + |Vuo (2| )dx)g

w\»—A

Set X(t) = |[(ur(t),uz(t),uo(t)||2, a = 2|I(uy,ua,ug)| + %H(ul,ug,uo)ﬂf\ and b = 2max{%°,?% +
c1}C, N2. We see that X(t) < at+b(X(t ))% for all ¢ in the existence time. Since X (0) = [|(u1, uQ,uo)H2

2a and a is bounded from above by some constant depending only on r, we apply the above contlnmty
argument with b < 27 3472 to get X (t) < 2a for all ¢ in the existence time. This shows that for
Jzs (u1 (0) +u3(0) + uO(O))daj = N is sufficiently small depending only on r, the corresponding solution
to (1.3) has bounded norm. The local theory implies that the solution exists globally in time. O
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Proof of Theorem 2. (iv) From Lemma 4.8, we know that if (u1(0),u2(0),uo(0)) € M, then the
corresponding solution to (1.3) exists globally in time. Suppose that there exists a ¢ > 0, a se-
quence of initial data (uln((), ), u2n (0, ), uon (0, )) C A and a sequence {t,,} C R such that the solution
(Uin, Uan, Uon) Of problem (1.4) with initial data (w1, (0, ), u2n(0, ), uon (0, -)) satisfies

inf 1
(u1,u2,u0)EMY,

(u1,u2,up) — (“1n(0a )5 u2n (0, -), uon (0 )HA

and
inf
(u1,u2,u0)EMY;

(u17u27u0) - (uln(trn ')uu2n(tnu ) uOn( ny ' )HA > €.

Without loss of generality, we may assume that {(uln(O, ), u2n, (0, +), won (0 )} C M, we claim that

{(uln(tn,.),ugn(tn,-) Uon (tn, )} C B(r). Indeed, if{(uln n ),UQthn, )5 won (tn, )} C A\ B(r), then
by the continuity there exists ¢, € [0, tn] such that {(u1n(tn, ), uon(tn, ), won(tn, )} € 0B(r). Hence
by the conversation laws of the energy and mass (see [12]), Lemma 4.5 and (4.8), we see that

I(u1n<07 ')a u2n(07 ')7 uOn(Oa )) = I(uln(ina ')7 u2n(%n7 ')a uOn(Ena ))

> inf I(uy,ug,ug) > inf i I(uy,ug,ug) > mly,
(u1,uz,u0)eMn (Br)\B(%)) (u1,uz,u0)€MNB(3)

which contradicts

inf
(u1,u2,u0)EMY;

(u1,ug,up) — (uln(O, ), u2n, (0, ), won (0 )HA — 0, asn — +oo.

Then {(uln(tn, Vs u2n (tn, ), on (tn, ))} is a minimizing sequence of m’y. Similarly to the proof of The-
orem 2 (i), there exists (v1,v2,v9) € MY, such that (uln(tn, )y un (tn, ), won (tn, )) — (v1,v2,vp) in A,
which contradicts

inf
(u1,u2,u0)EMYy,

(u1, w2, u0) — (win(tn, ), uzn(tn, ), won(tn, )|, > €o-

Therefore, we complete the proof of (iv) in Theorem 2. O]

5 Proof of Theorem 3

For any r > 0 and 0 < N < Ny, suppose (U1, Uz, Ug) € M N B(r) is the solution of (1.4) obtained in
Theorem 2 (i7), then we see that (i1, 2, %0) € B(5). By (3.10), we get for any (u1,u2,uo) € M, there
holds lim;_, 4 oo I(T * (u1, ug, uo)) = —oo. Hence there exists a large 7 > 0, such that

H(Tl * (ﬂl,ﬂz,ﬂo))"i >r and I(Tl * (’L~L1,’L~L2,1~L0)) < 0.
We now define a path as
P = {g€ (0,1, M)|g(0) = (@, iz, ), 9(1) = 1 * (@n, 2, 7o) },

then for ¢ € [0,1], it is easy to see that g(t) := ((1 —t) + t71) * (@1, Us, Uo) € I, that is ' # (). Hence,
the minimax value

= inf I(g(t
inf mase 1(9(t))
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is well defined. Further, we can deduce
o > max {I(al,az,ao),l(n X (al,f@,ao))} > 0. (5.1)

Indeed, for any g € I', we have g(0) = (u1,2,%0) € B(3) and g(1) = 71 % (11, U2, Uo) With H(ﬁ *
(al,ag,ao))HQA > r, then there exists to € (0, 1), such that g(t9) € 9B(r). Then by (4.5) and (4.8), we
get

max I (g(t)) > 1(g(to)) > inf I(ug,ug2,up)
te[o,1] (u1,uz,u0)eMN (Br)\B(%))

> inf I(uy,ug,ug) > inf I(uq,usg,ugp)
(u1,u2,u0)EMNB(]) (u1,u2,u0)EMNB(3)

=mpy = (a1, g, Uo) > 0> I (71 * (@1, U, Uo)),
which implies (5.1).
Lemma 5.1. Suppose cg > 0 and co + ¢ > 0, then for any r > 0 and 0 < N < Ny, there exists a

bounded Palais-Smale sequence {(uin, uan, uon)} for I restricted to M at level o. In addition,

P(u1n, u2n, uon) = / ([Vurn|® + [Vugn|* + |Vugn|*) dx

R3
3
— 7{ / ((Co +c1) (uzlln + ugn) + couén) dx + 4cq / Ui Uonud,, d
4 R3 R3

+2 /3 ((co — cl)u%nugn + (co + cl)(u%n + ugn)u3n> dx}
R
— / 2|2 (ui, +u3, + ud,)dz = o(1), asn — oo.
]R3
Proof. The existence of Palais-Smale sequence {(u1y,, uan, uon)} for I at level o with P (w1, ugn, ton) =

o(1) is similar to the proof of Proposition 3.1, we omit the details here. We only show {(w1y, uon, uon)} C
M is bounded in A. Indeed, direct calculation gives

1
I(Uln, U2n7U0n) = I(uln,u2n,u0n) — gP(UlruuQnauOn) + 0(1)
1 5
=5 /RS (IVuin|* + [Vuga|* 4 [Vuon|*) dz + 5 /RS 2|2 (uf, + u3, + u,)dz + o(1).

Since {(u1n, uon, won)} € M and I(uin,uopn,uo,) — o as n — oo, then we get the boundedness of
{(u1n, uon, uon)} in A. Therefore, we complete the proof. O

Lemma 5.2. Suppose ¢y > 0 and co+c1 > 0, for anyr >0 and 0 < N < Ny, let {(uin, uopn, uon)} C M
be the Palais-Smale sequence obtained in Proposition 5.1, then there exists (G, U, Ug) € M, such that
(U1n, U2n, Uon) — (U1, Ta, To) is strongly in A.

Proof. By Lemma 2.1 and Proposition 5.1, there exists (i1, g, tg) € A, such that up to a subsequence,
as n — +00,

(Uln,UQnauOn) - (’&1,’&2,’&0), in A.
(U1, Uz, Uop ) — (Ti1,To,Tg), in LE(R3?) x LYR3) x LY(R3), Vt € [2,2%). (5.2)

(uln,uQn,uon) — (ﬁl,ﬂg,ﬁo), a.e. in Rs.
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Since I"M(um, U2.n, Uo,n) — 0, then there exist two sequences {p}, {A} C R, such that
/3 (Vurn - Vo1 + Vg, - Vo + Vuoy, - Vo )dx
R

— [ (o e0) (s + ) + cvu) = (0 1) [

2 2
(u1n¢1u2n + ulanngbg) dx
RS

— (co + 01) /3 <u1n¢1u%n + U2, Uon o + Uznoud, + u%nuanﬁo) dx (5.3)
R
- /3 (¢1U2nu(2)n + u1n¢2ugn + 2’LL1nU2nU0n¢0) dzx + /3 |x|2 <U1n¢1 + u2n¢2 + u0n¢0>dl'
R R
= (Nn + )\n)/ U1n¢1d$ + (,Um - /\n) / UQn(f)de + ,u,n/ Uoan)odx + 0(1)7
R3 R3 R3

for any (¢1,¢2,¢0) € A. Since {(win,u2n,v0n)} C M is bounded in A by Proposition 5.1, take
(P1, P2, P0) = (Uin, U2n, Uon) in (5.3), then it is easy to see that we get {u,}, {\n} are two bounded
sequences in R. Suppose that u, — &, A\, — X as n — oo. Take (¢1, D2, b0) = (urn — U1, w2y — U2, Uoy —
Gg) in (5.3), then we get

/R3 (Vuin - V(uin — 1) + Vugy - V(ugn — G2) + Vo, - V(uo, — Go))da
- /R3 <(Co +c1) (U?n(um — Q) + u, (ugy — 1)) + coud, (von — ﬂ0)>daz
— (co— 1) /RS (um(um — Qy)u3, 4 ut, o (o, — ﬁz))d:c
— (co+c1) /11&3 (uln(uln — G1)ud, + (u3, + ud, ) uon (uon — Gio) + uzp (uan — ﬁg)u3n> dx
—a /R3 <(U1n — 1y )ugnud,, + uin(Uzn — U2)ud, 4+ 2u1nUnUon (Uon — ﬁ0)>dx
+ /1RS || (Uln(uln — 1) + u2p (U2, — U2) + Uon (Uon — fbo)>d$ (5.4)
= (fn + An) /]R3 Uin (U1 — U1)dx + (fn, — An) /R3 Uap (Ugy — Gg)dx + fiy, /R3 o (ton — Gp)dz + o(1).

By (5.2), we get (1, g, 1) satisfies (1.4). Thus using (uy, — U1, g, — U2, U, — Uo) as a text function
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in (1.4), we then obtain
/RS (Vg - V(uin — 1) + Vg - V(ugn — 2) + Vg - V(uon — Qo)) da
- /RS ((co + 1) (@ (wip — @) + @3 (uzn — fi2)) + cotig (uon — ﬁo))d:v
—(co—c1) /RS (al(um — d1) a2 + a2 (uzn — ﬁg))dx
— (co+ 1) /RS (al(uln — )i + (a2 + a2)iio(uon — Gio) + tiz(uzn — ﬁ2)a§)dx
_a /R 3 ((uln Q)G + iy (uzn — Gi2) G2 + 201 fip@o(uon — ao))dx
+ /W Pk (ﬁl(uln — 1) + G (uzn — G2) + fio(ton — ﬁ0)>dx

= (ﬂ+5‘)/ﬂ{3ﬂl(uln—ﬂl)dl'+(ﬂ_j‘)/

ﬂz(Ugn — ﬂg)dib + ﬂ/ ﬂo(’LLon — ﬂo)dl’
R3

R3

Together with (5.2), (5.4), we can see that

/ (IV (utn — ) + [V (tzn — )2 + [V (tign — t0)|?) de

R3
b TP (hasn = 0 + uz — f? + i ~ o) dr = o(0),
R

which gives

/ (IVutnl® + [Vuga|® + [Vugn|*) dz — / (Vi |* + [Vis|* + [Viig|*)dz, asn — oo
R R3

3
and
/ |x]2(u%n + u%n + ugn)dx — ]w\z(ﬁ% + ﬁ% + ﬁ%)dw, as n — oo.
]R3
Therefore, we get the strong convergence of (u1y, uop, ton) — (U1, U2, Up) in A as n — oo.
By the similar argument as the proof of Lemma 3.10, we have following lemma.

Lemma 5.3. Let 1 = inf(y, u, uo)ep I (u1,u2, u0), then

P(ul,uQ,uo) <0= P(ul,uz,uo) < I(ul,ug,uo) —m.

Proof of Theorem 3. (i) By Lemma 5.1 and Lemma 5.2, (4,42, 19) € M is a mountain pass type

solution to (1.4). Moreover, by (5.1),
o > max {I(’[Ll, U2, ﬂo), I(’Tl * (’[Ll, U2, ’ELo))} > 0.

Therefore, we complete the proof of (i) in Theorem 3.

(ii) Let (a1, G2, ) be the solution obtained in (i) of Theorem 3. Let @y := 7 4 := T % (U, Uz, Up),
since @t € P, then for every 7 > 0, P(7 * 01,7 x U2, T * ) < 0. Let ®7 = (@], @7, ) be the solution
of system (1.3) with initial datum @, defined on the maximal interval (Tinin, Tmax). By continuity of
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P, provided [¢| is sufficiently small we have P(®7(¢)) < 0. Therefore, by Lemma 5.3 and recalling that
the energy is conserved along trajectories of system (1.3), we have

P(®7(t)) < I(®7(t)) —h = (1) —1h =: —0 < 0,

for any such ¢, and by continuity again we infer that P(®7(¢)) < —6 < 0 for every ¢t € (Tinin, Tmax). T0
obtain a contradiction, we define

f=(t) = /Rg |2 * (@7 (1, 2))° + (@5(t, 2))* + (B (t, 2))) da,

from the proof of (iii) of Theorem 1, we have

) = 421111/ 8t it w)z - 7P (t,x) + O75(t, x)x - VO P (t, :c))d

7=0

=4 Zlm 3t<I>T (t, )2z - 797 (¢, v)dx + BZIm - O, ®F (t, 2)®7(t, z)dx
j=0

From the virial identity (see Lemma 3.7 in [26]), we have
f7 () —8/ (Ve +[Ves]* + vy )dw—8/RB [2[*((®7)* + (5) + (€5)*) dz
— 6co /RB ((@{)2 +(®5)* + (@g)Q)de - 601{4 /RS Red) &y (®f) da
+ [ (@07 - @D + 2072 + (03)) (0 |.

Since
P (1) = [ (V0P + VO3 + [Vai)do = [ aP (@7 + (@37 + (8))da
- Zco /Rg (@2 + (@5 + (<1>g)2)2dx - ic1{4/Rg Re®; &, (0F)
+ [ (@07 - @D + 2077 + (03)) (7)) |,
we have f/(t) = 8P(®7(t)) < —80 < 0, and as a consequence

0< fr(t) < =0t2 +O(t), forallt € (—Tmin, Tmax)-

Since the right hand side becomes negative for |t| sufficiently large, it is necessary that both 71, and
Thax are bounded. This proves that, for a sequence of initial data arbitrarily close to @1, we have
blow-up in finite time, implying instability. Therefore, we complete the proof of (ii) in Theorem 3. [
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