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Abstract. Let z = x+iy ∈ H := {z = x+iy ∈ C : y > 0} and θ(s; z) =
∑

(m,n)∈Z2 e
−sπ

y
|mz+n|2

be the theta function associated with the lattice Λ = Z⊕ zZ. In this paper we consider the fol-
lowing pair of minimization problems

min
H
θ(2;

z + 1

2
) + ρθ(1; z), ρ ∈ [0,∞),

min
H
θ(1;

z + 1

2
) + ρθ(2; z), ρ ∈ [0,∞),

where the parameter ρ ∈ [0,∞) represents the competition of two intertwining lattices. We find

that as ρ varies the optimal lattices admit a novel pattern: they move from rectangular (the

ratio of long and short side changes from
√

3 to 1), square, rhombus (the angle changes from
π/2 to π/3) to hexagonal; furthermore, there exists a closed interval of ρ such that the optimal

lattices is always square lattice. This is in sharp contrast to optimal lattice shapes for single theta

function (ρ = ∞ case), for which the hexagonal lattice prevails. As a consequence, we give a
partial answer to optimal lattice arrangements of vortices in competing systems of Bose-Einstein

condensates as conjectured (and numerically and experimentally verified) by Mueller-Ho [31].

1. Introduction and Statement of Main Results

Let z ∈ H := {z = x+ iy ∈ C : y > 0} and Λ = Z⊕ zZ be the lattice in R2. The theta function
associated with the lattice Λ is defined as

θ(s; z) =
∑

(m,n)∈Z2

e−s
π
y |mz+n|

2

. (1.1)

In 1988, Montgomery [33] proved the following celebrated result:

Theorem 1.1. For all s > 0 and z ∈ H,

θ(s; z) ≥ θ(s; z0) (1.2)

where z0 = 1
2 + i

√
3

2 (the triangular lattice, or called hexagonal lattice). Equality holds if and only
if z = z0 (up to the group G1 (See (3.2), Section 3)).

For the higher dimensional cases, the corresponding minimization problems on lattices was first
investigated in Sarnak and Strombergsson [35] and recently by Cohn-Kumar-Miller-Radchenko-
Viazovska [14, 15]. For relations with sphere packing problems, see Viazovska [39] and Cohn-
Kumar-Miller-Radchenko-Viazovska [14] and the references therein. We mention that minimization
problems for Dedekind eta function (equivalent to the theta function (1.1) via Melin transform)
also arise in the extremal determinants of Laplace-Beltrami Operators. See Osgood-Phillips-Sarnak
[32], Faulhuber [18] and the reference therein.

The celebrated Theorem 1.1 has laid foundations in many optimal lattice problems in num-
ber theory and has been frequently used in applied matthematical and physical models such as
crystallizations of particle interactions (Blanc-Lewin [12], Bétermin [7, 8], Bétermin-Zhang [6]),
Ginzburg-Landau theory in superconductors (Abrikosov [1], Sandier-Serfaty [36, 37], Serfaty [38]),
Ohta-Kawasaki models in di-block copolymers (Chen-Oshita [13], Goldman-Muratov-Serfaty [19],
Ren-Wei [34]), minimal frame operator norms (Faulhuber [17]) and many others. The related

1



2 SENPING LUO AND JUNCHENG WEI

Figure 1. Two lattices with centers at the lattice points and the half lattice points.

minimization of theta fucntions/eta functions on lattices has application to Gross-Pitaeskii the-
ory in superfluids or Bose-Einstein condensates (Aftalion-Blanc-Nier [3], Aftalion-Serfacty [4]),
Ohta-Kawasaki models triblock copolymers (Luo-Ren-Wei [29]) and many others.

In this paper, we consider a minimization problem with sum of two theta functions, which
represent two intertwining lattices, one lattice lying at the center of the other lattice. See Figure
1 and the physical explanation in the next section.

Let ρ > 0 denote the relative strength of the two lattices. Consider the following functional

W1,ρ(z) := θ(2;
z + 1

2
) + ρθ(1; z). (1.3)

It is easy to see that W1,ρ(z) is invariant under the group (see Section 3)

G2 : the group generated by z 7→ −1

z
, z 7→ z + 2, z 7→ −z. (1.4)

The new minimization problem we consider is the following

min
z∈H
W1,ρ(z), ρ ∈ [0,∞). (1.5)

Our main result is the following theorem which gives a complete characterization of the mini-
mization problem (1.5), as ρ varies:

Theorem 1.2. The minimization problem (1.5) admits a unique minimizer z1,ρ which moves
continuously on a special curve as the parameter ρ varies (up to the group G2). The trajectory
curve of the minimizer, denoted by Ωe (see Figure 2), is given by

Ωe := Ωea ∪ Ωeb,

Ωea := {z : x = 0, 1 ≤ y ≤
√

3},

Ωeb := {z : |z| = 1, 0 ≤ x < 1

2
}.

(1.6)

More precisely, there exist two thresholds σ1,a = 0.04016 · · · < σ1,b = 0.83972 · · · such that

(1) if ρ varies in [0, σ1,a], the minimizer z1,ρ moves from top to bottom along the vertical line
segment Ωea;

(2) if ρ ∈ [σ1,a, σ1,b], the minimizer z1,ρ stays fixed on the corner of the curve Ωe, i.e.,

z1,ρ ≡ i, if ρ ∈ [σ1,a, σ1,b];

(3) if ρ varies in [σ1,b,∞), the minimizer z1,ρ moves from i to 1
2 + i

√
3

2 along the unit arc, Ωeb.
Moreover

as ρ→∞, z1,ρ →
1

2
+ i

√
3

2
from left hand side of Ωeb.
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Figure 2. The curve Ωe

Remark 1.1. In [29], with X. Ren, we have studied another minimization problem

min
z∈H
−
(

(1− b)
(1

2
log(
√
y|η(z)|2

)
+ b
(1

2
log(
√
y|η(

z + 1

2
)|2
))
, z = x+ iy, b ∈ [0, 1], (1.7)

where η is the Dedekind eta function

η(z) = e
π
3 πi

∞∏
n=1

(1− e2πnzi)4. (1.8)

When b = 0, this is the minimization problem studied by Chen-Oshita [13] and Sandier-Serfaty [37].
While Chen and Oshita used analytical method to prove that the triangular lattice is the optimal,
Sander and Serfaty made use of a relation between the Dedekind eta function and the Epstein
zeta function (Melin transform), and then Theorem 1.1 to arrive at the same conclusion. When
0 < b < 1, we have showed a similar transition phenomenon from rectangle lattice to hexagonal
lattice to Theorem 1.2 in [29] for the functional in (1.7).

We also consider another minimization problem, which can be viewed as a ”conjugate” problem
to (1.5)

min
z∈H
W2,ρ(z), ρ ∈ [0,∞), where W2,ρ(z) := θ(1;

z + 1

2
) + ρθ(2; z). (1.9)

The precise relation between W1,ρ and W2,ρ can be found in Lemma 3.3. The minimizers of
(1.9) can be characterized as follows:

Theorem 1.3. The minimization problem (1.9) admits a unique minimizer z2,ρ which lies on the
curve Ωe (1.6) (up to the group G2(1.4)). There exist two thresholds σ2,a = 1.190861337 · · · , σ2,b =
24.89618074 · · · such that

(1) if ρ varies from left to right on [0, σ2,a], the minimizer z2,ρ moves from top to bottom on
the vertical line segment Ωea;

(2) if ρ ∈ [σ2,a, σ2,b], the minimizer z2,ρ stays fixed on the corner of curve (1.6), i.e. z2,ρ ≡ i;
(3) if ρ moves from left to right on [σ2,a,∞), the minimizer z2,ρ moves from left to right along

the unit curve Ωeb. Furthermore

as ρ→∞, z2,ρ →
1

2
+ i

√
3

2
from left hand side of Ωeb.

Remark 1.2. The values of σ1,a, σ1,b, σ2,a and σ2,b are given explicitly in terms of Jacobi Theta
functions. See Theorem 1.4 below.
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Remark 1.3. The minimizers of the minimization problems 1.5 and 1.9 admit a novel pattern:
they bond together in a very special way and form a nice geometric shape and move with the
parameter in a monotone way. The optimal lattices have richer structures than that of Theorem
1.1.

There are some hidden connections revealed later between the two minimization problems (1.5)
and (1.9). They are like ”a pair” as shown in Table 1 below. The following theorem gives more
qualitative behaviors of minimizers in Theorem 1.2 and Theorem 1.3.

Theorem 1.4. Let z1,ρ and z2,ρ be the minimizers of (1.5) and (1.9) respectively.

(1) Minimizers of (1.5) and (1.9) for each ρ ∈ [0,∞) are given in the following Table 1.

Table 1. Minimizers of W1,ρ(z),W2,ρ(z) for parameter ρ ∈ [0,∞)

W1,ρ(z) W1,ρ(z) W2,ρ(z) W2,ρ(z)
Domain of ρ Minimizer Domain of ρ Minimizer
ρ ∈ [ρ1, 1/ρ2] z1,ρ ≡ i ρ ∈ [ρ2, 1/ρ1] z2,ρ ≡ i
ρ ∈ (1/ρ2,∞) z1,ρ =

y2
2,1/ρ−1

y2
2,1/ρ

+1
+ i

2y2,1/ρ

y2
2,1/ρ

+1
ρ ∈ (0, ρ2) z2,ρ = iy2,ρ ∈ Ωea

ρ ∈ (0, ρ1) z1,ρ = iy1,ρ ∈ Ωea ρ ∈ (1/ρ1,∞) z2,ρ =
y2

1,1/ρ−1

y2
1,1/ρ

+1
+ i

2y1,1/ρ

y2
1,1/ρ

+1

(2) The thresholds in Theorems 1.2 and 1.3 are given by

σ1,a =
1

σ2,b
= ρ1, σ1,b =

1

σ2,a
=

1

ρ2
,

where ρ1 and ρ2 are determined explicitly by

ρ1 = −Y
′′(1)

X ′′(1)
, ρ2 = −1− B

′′(1)

A′′(1)
.

Here

X (y) : = ϑ3(y)ϑ3(
1

y
), Y(y) := 2

(
ϑ3(4y)ϑ3(

4

y
) + ϑ2(4y)ϑ2(

4

y
)
)

A(y) : =
√

2ϑ3(2y)ϑ3(
2

y
), B(y) :=

√
2ϑ2(2y)ϑ2(

2

y
)

(1.10)

and the Jacobi Theta functions are defined as

ϑ2(y) =
∑
n∈Z

e−π(n− 1
2 )2y, ϑ3(y) =

∑
n∈Z

e−πn
2y, ϑ4(y) =

∑
n∈Z

(−1)ne−πn
2y. (1.11)

(3) The y1,1/ρ and y2,1/ρ in the Table 1 are implicitly determined by

y1,1/ρ is the unique solution of
Y ′(y)

X ′(y)
+ 1/ρ = 0,

y2,1/ρ is the unique solution of 1 +
B′(y)

A′(y)
+ 1/ρ = 0.

(1.12)

Furthermore, there holds

d

dρ
y1,ρ < 0,

d

dρ
y2,ρ < 0.

The existence and uniqueness of y1,1/ρ, y2,1/ρ in the Theorems 1.2 and 1.3 are consequences of
the following theorem whose proof will be given by Theorem 6.1 and 7.1. (Here X (y),Y(y) and
A(y),B(y) are defined in (1.10).)
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Theorem 1.5. • The function y 7→ Y′(y)
X ′(y) , y > 0 has only one critical point at y = 1, and it

holds that (Y ′(y)

X ′(y)

)′
< 0, y ∈ (0, 1) and

(Y ′(y)

X ′(y)

)′
> 0, y ∈ (1,∞).

• The function y 7→ B′(y)
A′(y) , y > 0 has only one critical point at y = 1, and it holds that(B′(y)

A′(y)

)′
< 0, y ∈ (0, 1) and

(B′(y)

A′(y)

)′
> 0, y ∈ (1,∞).

Theorem 1.2 has direct applications to the Mueller-Ho functional and Mueller-Ho Conjecture
in vortices arrangements for competing systems of Bose-Einstein condensates, as we explain in the
next section.

2. Applications to Mueller-Ho conjecture

As we have mentioned in Section 1, the problem of finding optimal lattice shapes arise in many
physical models. Besides those examples we mentioned in Section 1, another example is the so-
called vortices in Bose-Einstein condensates. Vortices in Bose-Einstein condensates are also called
topological defects, correspond to a zero of the order parameter with a circulation of the phase.
When they get numerous, these vortices arrange themselves on a lattice. In fact, in rotating Bose
Einstein condensates (BEC), vortices were first observed in two component BEC’s (Matthews etc
[30]): it is observed experimentally that the shape of the lattice can be either hexagonal or square
depending on the rotational velocity of the condensate. Since then, following the pioneering work of
Mueller-Ho [31], many authors have investigated the lattice shape in two component BEC’s and for
instance Kasamatsu etc [26, 27]; related works include Keeli–Oktel [24] who numerically calculate
the elastic coefficients of the lattice, Aftalion-Mason-Wei [2] who study the system describing the
vortex/spike and derive an interaction term. In Kuokanportti etc [25], the authors investigate the
case of different masses and attractive interactions.

The ground state of a two component condensate is well described by a Gross Pitaevskii energy
depending on the wave functions of each component which are coupled by an interaction term. The
construction of the Bose-Einstein condensates with large number of vortices was deduced in Ho
[20] (one-component case) and Mueller-Ho [31] (two-component case), with the potential energy
given by

V =
1

2
g1|Ψ1|4 +

1

2
g2|Ψ2|4 + g12|Ψ1|2|Ψ2|2

where g12 represents the competing strength between the two components of Bose gas. We omit
the details of the construction of the model here. In Mueller-Ho [31] they have reduced the
minimization problems on lattices to the minimization problems for the Mueller-Ho functional

min
z∈H,(a,b)

EMH(z; a, b), α ∈ [−1, 1], where EMH(z) := θ(1; z) + αJ (z; a, b). (2.1)

Here Λ = Z ⊕ zZ denotes the lattice of one component Bose gas A, and the theta function
θ(1; z) (defined at (1.1)) represents the self-interaction part of single component of A or B, i.e., the
so-called Abrikosov energy. (See Abrikosov [1].) The functional

J (z; a, b) =
∑

(m,n)∈Z2

e−
π
y |mz−n|

2

cos(2π(ma+ nb)). (2.2)

characterizes the competing strength of two components A and B. α = g12√
g1g2

represents the

strength of competition between two competing components A and B. The vector (a, b) charac-
terizes the relative position of the these lattice shape. See Figure 1 when (a, b) = ( 1

2 ,
1
2 ).

It is interesting to compare the two-component case with the single-component case. In the
latter system, energy minimization reduces to minimizing θ(1; z) whose only local minimum is
the triangular lattice, where z = z0 = ei

π
3 and θ(1; z0) = 1.1596 (by Theorem 1.1); the square
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lattice z = i is a saddle point with θ(1; i) = 1.1803. For two-component case, the minimum
of EMH(z; a, b) depends on the relative strength α and the relative position of the lattices, as
conjectured by Mueller-Ho [31] (supported by numerical computations and experimental results):

Mueller-Ho Conjecture: For a two-component Bose gas, the most favorable lattice minimizing
θ(1; z) + αJ (z; a, b) are

(a) α < 0: the vortices of the two components coincide with each other (a = b = 0) to form a
triangular lattice (z = ei

π
3 ).

(b) 0 < α < 0.172: the vortex lattice in each component remains triangular. However one
lattice is displaced to the center of the triangle of the other a = b = 1

3 . The lattice type

(characterized by z = z0 = ei
π
3 ) remains constant within this interval.

(c) 0.172 < α < 0.373: (a, b) jumps from the center of the triangle (i.e., half of the unit cell)
to the center of the rhombic unit cell a = b = 1

2 . The angle jumps from 60o to 67.95o

at α = 0.172, and increases continuously to 90o as α increases to 0.372. As a result, the
lattice shape type is no longer fixed and the unit cell is rhombus. The modulus b

a , however,
remains fixed across this region.

(d) 0.373 < α < 0.926: the two lattices are ”mode locked” into a centered square structure
throughout the entire interval (z = i, a = b = 1

2 ).
(e) 0.926 < α < 1: the lattice type again varies continuously with interaction α. Each

component’s vortex lattice has a rectangular unit cell (angle= π
2 ) whose aspect ratio |z|

increases with α. At α = 1, the aspect ratio is
√

3.

Remark 2.1. Both Rb87 and Na23 have interaction parameters with the range (d), i.e., 0.373 <
α < 0.926.

For more on the vortex shape and Bose-Einstein condensates, including the construction of
theoretical models and numerical and experimental results, we refer to [30, 23, 22] and the references
therein. In [21] the authors considered Tkachenko modes and verified the same numerical results
as in Mueller-Ho Conjecture. It seems that the Mueller-Ho conjecture is a universal phenomenon,
as commented by Bétermin [9] that ”the same phenomenon in Mueller-Ho results is also expected
in other physical and biological models involving infinite lattices and competitive interactions”. See
also numerical computations in Bétermin-Faulhuber-Knüpfer [11].

To study the minimizer of the Muller-Ho functional EMH(z; a, b) = θ(1; z) + αJ (z; a, b) with
respect to (z; a, b), we first need to identify the critical points of EMH which satisfy

∇zθ(1; z) + α∇zJ (z; a, b) = 0, (2.3)

∇(a,b)J (z; a, b) = 0. (2.4)

To consider the global minimum of θ(1; z)+αJ (z; a, b), a necessary condition is that (a, b) must
be a minimum of J (z; a, b). Thus we first focus on critical point equation (2.4).

For the function J (z; a, b) with respect to (a, b), one sees clearly that

J (z; a+ 1, b) = J (z; a, b), J (z; a, b+ 1) = J (z; a, b) (2.5)

J (z; 1− a, 1− b) = J (z; a, b). (2.6)

The periodicity and symmetry imply that J (z; a, b) with respect to (a, b) has four universal
critical points, which are denoted by

w0 := (0, 0), w1 := (
1

2
, 0), w2 := (0,

1

2
), w3 := w1 + w2 = (

1

2
,

1

2
). (2.7)

We call ”universal” here since they are independent of the lattice structures i.e., z. Clearly, the
critical point w0 is the global maxima of J (z; a, b) with respect to (a, b). For critical points
w1, w2, w3, we have the following partial classification result (the proof will be given in Section 9):

Lemma 2.1. Let z = iy, y > 0. There holds:
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• w1, w2 are the saddle points of J (z; a, b) with respect to (a, b). Explicitly, the Hessian at
each point can be expressed by

D2J(z; a, b) |{z=iy,(a,b)=w1} = 16π2ϑ3(
1

y
)ϑ′3(

1

y
)ϑ4(y)ϑ′4(y) < 0

D2J(z; a, b) |{z=iy,(a,b)=w2} = 16π2ϑ3(y)ϑ′3(y)ϑ4(
1

y
)ϑ′4(

1

y
) < 0.

• w3 is the local minimum of J (z; a, b) with respect to (a, b). Explicitly, one has the Hessian
expression

D2J(z; a, b) |{z=iy,(a,b)=w3} = 16π2ϑ4(y)ϑ′4(y)ϑ4(
1

y
)ϑ′4(

1

y
) > 0.

For (a, b) = (0, 0),J (z; 0, 0) = θ(1; z). Combining Theorem 1.1 and using the fact that w0 is
the global maxima of J (z; a, b), we have the following proposition which confirms the (a) part of
Mueller-Ho Conjecture:

Proposition 2.1. For α ∈ [−1, 0], the minimizer of the functional EMH(z; a, b) = θ(1; z) +

αJ (z; a, b) is achieved at z0 = 1
2 + i

√
3

2 and (a, b) = (0, 0).

Besides the above 4 universal critical points, there may be other additional pair critical points.
(Note that by symmetry if (a, b) is a critical point then (1− a, 1− b) is also a critical point.) We
have

Lemma 2.2. If z = i, then (a, b) = ( 1
3 ,

1
3 ) is not a critical point of J (z; a, b);while (a, b) = ( 1

3 ,
1
3 )

(and (a, b) = 2
3 ,

2
3) is a critical point of J (z; a, b) if z = 1

2 + i
√

3
2 .

The proof of Lemma 2.2 will be given in Appendix 1.
On the critical point equation (2.4), the numerical simulation suggests the following conjecture:

Conjecture 2.1. The function J (z; a, b) with respect to the a, b has either 4 or 6 critical points
depending on modulus of the tori z. Let Ω4(resp. Ω6) be the subset of H which corresponds to tori
z having four (resp. six) critical points. There holds

a : Alterative:
H = Ω4 ∪ Ω6, Ω4 ∩ Ω6 = ∅.

b : Rectangular tori has only four critical points and the hexagonal one has six.

i ∈ {z |: <(z) = 0,=(z) > 0} ⊂ Ω4,
1

2
+ i

√
3

2
∈ Ω6.

c : Invariance:
z ∈ Ω4 ⇒ Γ(z) ∈ Ω4; z ∈ Ω6 ⇒ Γ(z) ∈ Ω6.

Here the modular group is

Γ := SL2(Z) = {
(
a b
c d

)
, ad− bc = 1, a, b, c, d ∈ Z}. (2.8)

Remark 2.2. This conjecture has some similarity to the discovery in Lin-Wang [28], in which
they showed surprisingly that the Green function on the two dimensional torus has either 3 or 5
critical points.

In summary, we we see that (a, b) = ( 1
3 ,

1
3 ) is not always a critical point of J (z; a, b) for z ∈ H,

while (a, b) = (1
2 ,

1
2 ) is always the critical point of J (z; a, b) for all z ∈ H. Moreover (a, b) = (1

2 ,
1
2 )

is a local minimum at least for z = iy, y > 0.
When (a, b) = w3 = ( 1

2 ,
1
2 ) we can simplify the Mueller-Ho functional using the following (whose

proof will be given in Section 9)

Lemma 2.3.

J (z;
1

2
,

1

2
) = 2θ(2,

z + 1

2
)− θ(1; z).
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Figure 3. Two-component Bose gas in lattices. First row from left to right: a
rectangular lattice and a square lattice. Second row from left to right: a rhombic
lattice and a hexagonal lattice.

As a consequence the Mueller-Ho functional becomes

EMH(z;
1

2
,

1

2
) = (1− α)θ(1; z) + 2αθ(2,

z + 1

2
). (2.9)

Applying Theorem 1.2 with ρ = 1−α
2α , we have the following

Theorem 2.1. For the Mueller-Ho functional EMH(z; 1
2 ,

1
2 ), there exists thresholds α1 ∼ 0.3732155067 · · · <

α2 ∼ 0.9256496973 · · · such that

(1) for α ∈ [0, α1], the minimizer is rhombic lattice z = eiθα given by

θα = arctan(
2y2, 1−α2α

y2
2, 1−α2α

− 1
),

and the angle increases from π
3 to π

2 ;
(2) for α ∈ [α1, α2], the minimizer is square lattice;
(3) for α ∈ [α2, 1], the minimizer is rectangular lattice (iy1, 1−α2α

) and the ratio of long side and

short side increases from 1 to
√

3.

Here yj, 1−α2α
, j = 1, 2 are located precisely in (1.12), and the thresholds αj , j = 1, 2 are expressed

explicitly by α1 = B′′(1)+A′′(1)
B′′(1)−A′′(1) , α2 = X ′′(1)

X ′′(1)−2Y′′(1) , see A,B,X ,Y in (1.10).

Proposition 2.1 and Theorem 2.1 give a partial answer to the (a), (c), (d) and (e) part of Mueller-
Ho Conjecture. Theorem 2.1 shows that as the competition strength between the two Bose gases
increases the lattice structures moves from hexgonal, rhombus, square to rectangular. See Figure
3.

Finally we discuss the (b) part of Mueller-Ho Conjecture. In the Mueller-Ho Conjecture, the
expected lattice structure when α is small is triangular lattice, and the relative position of the
two components A,B is characterized by (a, b) = ( 1

3 ,
1
3 ). To see this, there a clear competition
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between θ(1; z) + αJ (z; 1
2 ,

1
2 ) and θ(1; z) + αJ (z; 1

3 ,
1
3 ) when α is small. Thus the upper bound of

α preserving the triangular lattice structure is determined by the

α0 := max
α∈[0,1]

{α | θ(1;
1

2
+ i

√
3

2
) + αJ (

1

2
+ i

√
3

2
;

1

3
,

1

3
) ≤ min

z∈H

(
θ(1; z) + αJ (z;

1

2
,

1

2
)
)
}. (2.10)

To find α0, one first uses minz∈H
(
θ(1; z) + αJ (z;w3)

)
≤ θ(1; i) + αJ (i; 1

2 ,
1
2 ) to obtain a rough

bound

α0 ≤
θ(1; i)− θ(1; 1

2 + i
√

3
2 )

J ( 1
2 + i

√
3

2 ; 1
2 ,

1
2 )− J (i; 1

2 ,
1
2 )

:= 0.2419435012 · · · . (2.11)

By Theorem 2.1, one deduces that

max
α∈[0,1]

{α | θ(1;
1

2
+ i

√
3

2
) + αJ (

1

2
+ i

√
3

2
;

1

3
,

1

3
) ≤

(
θ(1; eiθα) + αJ (eiθα ;

1

2
,

1

2
)
)
}. (2.12)

In view of (2.11), the upper bound α0 satisfies the equation

θ(1;
1

2
+ i

√
3

2
) + αJ (

1

2
+ i

√
3

2
;

1

3
,

1

3
) = θ(1; eiθα) + αJ (eiθα ;

1

2
,

1

2
). (2.13)

Equation (2.13) gives the upper bound in (b) of Mueller-Ho Conjecture which is

α0 = 0.1726645 · · · , θα0 = 1.186248384 · · · . (2.14)

In summary we have a complete proof of Mueller-Ho Conjecture as long as the conjecture on
the critical points is proved.

The rest of the paper is organized as follows: In Section 3, we collect some basic invariance
properties of the functionalsW1,ρ(z) andW2,ρ(z) and discuss the intricate relations between these
two functionals. In Section 4, we prove a fundamental monotonicity property of the theta function
θ(s; z+1

2 ). The conjugate monotonicity of W1,ρ(z) and W2,ρ(z) are established in Section 5. In
Sections 6 and 7, we classify the shape of W1,ρ(z) and W2,ρ(z) on the y−axis for all ρ ∈ [0,∞)
respectively. In Section 8, we prove Theorems 1.2, 1.3 and 1.4, the method of the proof relies on
the properties established in Sections 3-7. In Section 9, we prove the properties on Mueller-Ho
functional and Theorem 2.1.

In the remaining part of the paper we use the common notation
∑
m,n :=

∑
(m,n)∈Z2 so that

the theta function becomes θ(s; z) =
∑

(m,n) e
−sπ 1

y |mz+n|
2

. We also use the notation:

π =

(
a b
c d

)
⇔ π(τ) =

aτ + b

cτ + d
. (2.15)

3. Some preliminaries

In this section we present some simple symmetries of the two theta functions θ(s; z) and θ(s; z+1
2 )

and the associated fundamental domains. As a result we establish the precise connection between
W1,ρ(z) and W2,ρ(z).

Let H denote the upper half plane and Γ denote the modular group (defined at (2.8)).
We use the following definition of fundamental domain which is slightly different from the

classical definition (see [33]):

Definition 1. ([page 108, [16]] The fundamental domain associated to group G is a connected
domain D satisfies

• For any z ∈ H, there exists π(z) ∈ G such that π(z) ∈ D;
• Suppose z1, z2 ∈ D and π(z1) = z2 for some π ∈ G, then z1 = z2 and π = ±Id.

By Definition 1, the fundamental domain to modular group Γ is

DΓ := {z ∈ H : |z| > 1, −1

2
< x <

1

2
}. (3.1)

which is open. Note that the fundamental domain can be open. (See [page 30, [5]].)
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Next we we introduce another two groups related to the functionals W1,ρ and W2,ρ. The
generators of these groups are given by

G1 : the group generated by τ 7→ −1

τ
, τ 7→ τ + 1, τ 7→ −τ , (3.2)

G2 : the group generated by τ 7→ −1

τ
, τ 7→ τ + 2, τ 7→ −τ . (3.3)

It is easy to see that the fundamental domains to group Gj , j = 1, 2 denoted by DG1
,DG2

are

DG1
:= {z ∈ H : |z| > 1, 0 < x <

1

2
} (3.4)

DG2
:= {z ∈ H : |z| > 1, 0 < x < 1}. (3.5)

Clearly we have that
G1 ⊇ G2, DG1

⊆ DG2
.

As in [33], the fundamental domain for the single theta function θ(s; z) is DG1
. As we will show

in this section the fundamental domain for the sum of two theta functionsW1,ρ,W2,ρ is DG2
, which

is larger.
The follow lemma characterizes the basic symmetries of the theta functions θ(s; z) and θ(s; z+1

2 ).
The proof is trivial so we omit it.

Lemma 3.1. • For any s > 0, any γ ∈ G1 and z ∈ H, θ(s; γ(z)) = θ(s; z).

• For any s > 0, any γ ∈ G2 and z ∈ H, θ(s; γ(z)+1
2 ) = θ(s; z+1

2 ).

A corollary of Lemma 3.1 yields

Lemma 3.2. For any ρ ∈ R, γ ∈ G2 and z ∈ H,

W1,ρ(γ(z)) =W1,ρ(z), W2,ρ(γ(z)) =W2,ρ(z).

Next, we introduce the nonlinear connection between the two functionals W1,ρ(τ) and W2,ρ(τ).
Let w ∈ G2 be w : τ 7→ τ−1

τ+1 and its the inverse be τ : w 7→ 1+w
1−w . We have

Lemma 3.3.

θ(s;
τ + 1

2
) = θ(s;w), θ(s; τ) = θ(s;

w + 1

2
). (3.6)

W1,ρ(τ) = ρ · W2,1/ρ(w), W2,ρ(τ) = ρ · W1,1/ρ(w). (3.7)

Or equivalently,
W1,ρ(w) = ρ · W2,1/ρ(τ), W2,ρ(w) = ρ · W1,1/ρ(τ). (3.8)

Proof. We check that θ(s; τ+1
2 ) = θ(s;

1+w
1−w+1

2 ) = θ(s; 1
1−w ) = θ(s;w) since the map w 7→ 1

1−w ∈ G1.

Similarly θ(s; w+1
2 ) = θ(s;

τ−1
τ+1 +1

2 ) = θ(s; τ
τ+1 ) = θ(s; τ) since the map τ 7→ τ

1+τ ∈ G1. This proves

(3.6).
(3.7) and (3.8) follows from (3.6).

�

Lemma 3.3 builds a connection between the two functionals W1,ρ(τ) and W2,ρ(τ) via a special
element in G2. As an application of Lemma 3.3, we have the following lemma which transfers the
computations on unit circles to straight lines.

Lemma 3.4. Suppose |w| = 1, w = w1 + iw2. There holds

∂

∂w1
Wp,ρ(w) = ρ

√
1− w2

1

1− w1

∂

∂τ2
Wq,1/ρ(i

√
1− w2

1

1− w1
)

∂

∂w2
Wp,ρ(w) = −ρ w1

1− w1

∂

∂τ2
Wq,1/ρ(i

√
1− w2

1

1− w1
),

where p 6= q ∈ {1, 2}.
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Proof. Let τ = τ1 + iτ2, w = w1 + iw2. Then we have

τ1 =
1− w2

1 − w2
2

(1− w1)2 + w2
2

, τ2 =
2w2

(1− w1)2 + w2
2

.

Differentiating the identities in Lemma 3.3, we get

∂

∂wj
Wp,ρ(w) = ρ

2∑
k=1

∂

∂τk
Wq,1/ρ(τ)

∂τk
∂wj

, j = 1, 2. (3.9)

On the other hand, for |w| = 1, calculations show

τ1 = 0, τ2 =

√
1− w2

1

1− w1

(3.10)

and
∂τ2
∂w1

=

√
1− w2

1

1− w1
,
∂τ2
∂w2

= − w1

1− w1
. (3.11)

From Theorem 3.2, Wp,ρ(−τ) =Wp,ρ(τ), p = 1, 2. It follows that

∂

∂τ1
Wp,ρ(iτ2) = 0, ∀τ2 ∈ R, p = 1, 2. (3.12)

Plugging (3.10), (3.11) and (3.12) into (3.9), one gets the result.
�

4. Monotonicity of θ(s; z+1
2 )

The main purpose of this section is to establish the monotonicity of the functional θ(s; z+1
2 ) on

its fundamental domain DG2 (defined at (3.3)), which is the following

Theorem 4.1. • For any s > 0, there holds

∂

∂x
θ(s;

z + 1

2
) > 0, ∀ z ∈ DG2

.

• Or equivalently, via the map z 7→ z+1
2 , for any s > 0,

∂

∂x
θ(s; z) < 0, ∀ z ∈ ΩC1 .

Here

ΩC1 := {z | 0 < x <
1

2
, y >

√
x− x2}.

Remark 4.1. In Lemma 1 of [33] Montgomery proved that

∂

∂x
θ(s; z) < 0, ∀ z ∈ ΩC0 := {z ∈ H : y >

1

2
, 0 < x <

1

2
} (4.1)

Theorem 4.1 improves this result to a larger domain ΩC1 as ΩC0 ⊂ ΩC1 . Furthermore, ΩC1 contains
a corner at z = 0, which makes the proof much more involved. We have to divide ΩC1 into four
different cases to overcome this difficulty.

We state two corollaries related to the functionals Wj,ρ(z), j = 1, 2.

Corollary 4.1. For any s > 0,
∂

∂x
θ(s; z) > 0, ∀z ∈ ΩC2 .

Here

ΩC2 := {z | 1

2
< x < 1, y >

√
x− x2}.
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Proof. Since z 7→ 1− z ∈ G1, by Lemma 3.1, we have θ(s; 1− z) = θ(s; z). Thus

∂

∂x
θ(s; 1− z) = − ∂

∂x
θ(s; z). (4.2)

The result follows by (4.2) and Theorem 4.1.
�

By Theorem 4.1 and Corollary 4.1 we have

Corollary 4.2. For any ρ > 0,

∂

∂x
Wj,ρ(z) > 0, ∀z ∈ RL, j = 1, 2.

Here

RL := ΩC2 ∩ DG2
= {z | 1

2
< x < 1, |z| > 1}.

In the remaining part of this section, we prove Theorem 4.1. To prove Theorem 4.1, we use
some delicate analysis of the Jacobi theta function and Poisson summation formula.

We first recall the following well-known Jacob triple product formula:

∞∏
n=1

(1− x2m)(1 + x2m−1y2)(1 +
x2m−1

y2
) =

∞∑
n=−∞

xn
2

y2n
(4.3)

for complex numbers x, y with |x| < 1, y 6= 0.
The Jacob theta function is defined as

ϑJ(z; τ) :=

∞∑
n=−∞

eiπn
2τ+2πinz,

and the classical one-dimensional theta function is given by

ϑ(X;Y ) := ϑJ(Y ; iX) =

∞∑
n=−∞

e−πn
2Xe2πiY . (4.4)

Hence by the Jacob triple product formula (4.3), we have

ϑ(X;Y ) =

∞∏
n=1

(1− e−2πnX)(1 + e−2(2n−1)πX + 2e−(2n−1)πX cos(2πY )). (4.5)

The following two Lemmas improve the bounds in Montgomery [33]. We provide the proof of
Lemma 4.1 and omit the proof of Lemma 4.2 which is similar.

Lemma 4.1. Assume X > 1
5 . If sin(2πY ) > 0, then

−ϑ(X) sin(2πY ) ≤ ∂

∂Y
ϑ(X;Y ) ≤ −ϑ(X) sin(2πY ).

If sin(2πY ) < 0, then

−ϑ(X) sin(2πY ) ≤ ∂

∂Y
ϑ(X;Y ) ≤ −ϑ(X) sin(2πY ).

Here

ϑ(X) := 4πe−πX(1− µ(X)), ϑ(X) := 4πe−πX(1 + µ(X)),

and

µ(X) :=

∞∑
n=2

n2e−π(n2−1)X .
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Proof. We use the same method as in Lemma 1 of [33]. Taking logarithmic on both sides of (4.5)
and differentiating ∂

∂Y , we have

−
∂
∂Y ϑ(X;Y )

sin(2πY )
= 4π

∞∑
n=1

e−(2n−1)πX ϑ(X;Y )

1 + e−2(2n−1)πX + 2e−(2n−1)πX cos(2πY )

= 4π

∞∑
n=1

e−(2n−1)πX
∞∏

m6=n,m=1

(1− e−2πmX)(1 + e−2(2m−1)πX + 2e−(2m−1)πX cos(2πY )).

(4.6)

One sees from (4.6) that the function −
∂
∂Y ϑ(X;Y )

sin(2πY ) has a period 1, is decreasing on [0, 1
2 ] and is an

even function for Y .
Thus

lim
Y→ 1

2

−
∂
∂Y ϑ(X;Y )

sin(2πY )
≤ −

∂
∂Y ϑ(X;Y )

sin(2πY )
≤ lim
Y→0

−
∂
∂Y ϑ(X;Y )

sin(2πY )
. (4.7)

By L’Hospital rule we have

1

2π

∂2

∂Y 2
ϑ(X;Y ) |Y= 1

2
≤ −

∂
∂Y ϑ(X;Y )

sin(2πY )
≤ − 1

2π

∂2

∂Y 2
ϑ(X;Y ) |Y=0 (4.8)

From (4.4), we have that

∂2

∂Y 2
ϑ(X;Y ) |Y=0 = 4πe−πX(1 +

∞∑
n=2

n2e−π(n2−1)X)

1

2π

∂2

∂Y 2
ϑ(X;Y ) |Y= 1

2
= 4π

∞∑
n=1

(−1)n−1n2e−n
2πX ≥ 4πe−πX(1−

∞∑
n=2

n2e−π(n2−1)X).

(4.9)

Combining (4.7), (4.8) and (4.9), we obtain the proof of the Lemma.
�

Lemma 4.2. Assume X < π
2 . If sin(2πY ) > 0, then

−ϑ(X) sin(2πY ) ≤ ∂

∂Y
ϑ(X;Y ) ≤ −ϑ(X) sin(2πY ).

If sin(2πY ) < 0, then

−ϑ(X) sin(2πY ) ≤ ∂

∂Y
ϑ(X;Y ) ≤ −ϑ(X) sin(2πY ).

Here

ϑ(X) := X−
3
2 ; ϑ(X) := πe−

π
4XX−

3
2 .

In view of (4.4), by Poisson summation formula, one has

ϑ(X;Y ) = X−
1
2

∑
n∈Z

e−
π(n−Y )2

X . (4.10)

Thus the two-dimensional theta function can be written in terms of one-dimensional theta
function as follows:

θ(s; z) =
∑

(m,n)∈Z2

e−sπ
1
y |nz+m|

2

=
∑
n∈Z

e−sπyn
2 ∑
m∈Z

e−
sπ(nx+m)2

y

=

√
y

s

∑
n∈Z

e−sπyn
2

ϑ(
y

s
;−nx) =

√
y

s

∑
n∈Z

e−sπyn
2

ϑ(
y

s
;nx)

= 2

√
y

s

∞∑
n=1

e−sπyn
2

ϑ(
y

s
;nx).

(4.11)
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Now we are ready to prove Theorem 4.1.

Proof. By Melin transform, (see [33]), θ( 1
s ; z) = sθ(s; z). Thus we only need to consider the case

s ≥ 1.
From (4.11), we have

− ∂

∂x
θ(s; z) = −2

√
y

s

∞∑
n=1

ne−πsyn
2 ∂

∂Y
ϑ(
y

s
;Y )|Y=nx

= 2

√
y

s

(
−
∑
n≤ 1

2x

ne−πsyn
2 ∂

∂Y
ϑ(
y

s
;Y )|Y=nx −

∑
n> 1

2x

ne−πsyn
2 ∂

∂Y
ϑ(
y

s
;Y )|Y=nx

)

= 2

√
y

s

(
Eaα,x(z) + Ebα,x(z)

)
,

(4.12)
where

Eas,x(z) := −
∑
n≤ 1

2x

ne−πsyn
2 ∂

∂Y
ϑ(
y

s
;Y )|Y=nx, Ebs,x(z) := −

∑
n> 1

2x

ne−πsyn
2 ∂

∂Y
ϑ(
y

s
;Y )|Y=nx.

(4.13)
For Eas,x(z), by Lemma 4.1, we have that

Eas,x(z) ≥
∑
n≤ 1

2x

ne−πsyn
2

ϑ(
y

s
) sin(2πnx) ≥ e−πsyϑ(

y

s
) sin(2πx).

(4.14)

Notice that all the terms in the summation of (4.14) are nonnegative.
Let n0 be the smallest integer such that n > 1

2x . By Lemma 4.1,

|Ebs,x(z)| ≤
∑
n> 1

2x

ne−πsyn
2

ϑ(
y

s
)| sin(2πnx)| ≤

∑
n> 1

2x

n2e−πsyn
2

ϑ(
y

s
)| sin(2πx)|

= n2
0e
−πsyn2

0ϑ(
y

s
) sin(2πx) ·

(
1 + δ(x)

)
,with δ(x) :=

∞∑
k=1

(1 +
k

n0
)2e−πsy(2kn0+k2).

(4.15)

To estimate δ(x), note that yn0 >
√

1−x
2
√
x

,

δ(x) ≤
∞∑
k=1

(1 +
2k

n0
+
k2

n2
0

)e−2πsykn0 ≤
∞∑
k=1

(1 +
2k

n0
+
k2

n2
0

)e
−π
√

1−x√
x
k

=
e−q(x)

1− e−q(x)
+

2

n0

e−q(x)

(1− e−q(x))2
+

1

n2
0

e−q(x)(1 + e−q(x))

(1− e−q(x))2

≤ e−q(x)

1− e−q(x)
+ 4x

e−q(x)

(1− e−q(x))2
+ 4x2 e

−q(x)(1 + e−q(x))

(1− e−q(x))2

(4.16)

with q(x) := π
√

1−x√
x

. Denote that

δq(x) :=
e−q(x)

1− e−q(x)
+ 4x

e−q(x)

(1− e−q(x))2
+ 4x2 e

−q(x)(1 + e−q(x))

(1− e−q(x))2
.

It is easy to see that δq(x) is monotonically increasing on [0, 1
2 ] and hence δ(x) ≤ δq(

1
2 ) =

0.188822585 · · · < 1
5 . Then by (4.15) and (4.16), one has

|Ebs,x(z)| ≤ 6

5
n2

0e
−πsyn2

0ϑ(
y

s
) sin(2πx). (4.17)

Combining (4.12), (4.14) with (4.17), one gets

− ∂

∂x
θ(s; z) ≥ 2

√
y

s
sin(2πx)e−πsyϑ(

y

s
)
(ϑ(ys )

ϑ(ys )
− 6

5
n2

0e
−πsy(n2

0−1)
)
, (4.18)
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with n0 = [ 1
2x ] + 1.

Let

Es,x(z) :=
ϑ(ys )

ϑ(ys )
− 6

5
n2

0e
−πsy(n2

0−1). (4.19)

By (4.18) it suffices to prove that Es,x(z) > 0.
ΩC1 has a corner z = 0 which induces the difficulty to get the lower bound estimate for Es,x(z).

Thus we divide the proof into four cases.

Case a: y
s ≤

1
2 , x ∈ (0, 1

3 ]. In this case, s
y ≥ 2 and

√
1−x(1−4x2)

x
3
2

− 1√
x−x2

> 0. By Lemma 4.2,

Es,x(z) ≥ (
πs

y
− 2)e−

πs
4y − 6

5
n2

0e
−πsy(n2

0−1)

≥ (2π − 2)e
− πs

4
√
x−x2 − 3

10x2
e−πs

√
x−x2( 1

4x2−1)

=
3

10x2
e−πs

√
x−x2( 1

4x2−1)
(20π − 20

3
x2e

πs
4 (
√

1−x(1−4x2)

x
3
2

− 1√
x−x2

)
− 1
)

≥ 3

10x2
e−πs

√
x−x2( 1

4x2−1)
(20π − 20

3
x2e

π
4 (
√

1−x(1−4x2)

x
3
2

− 1√
x−x2

)
− 1
)

> 0

(4.20)

where the last inequality follows from elementary calculus because x ∈ (0, 1
3 ).

Case b: y
s ≤

1
2 , x ∈ [ 1

3 ,
1
2 ]. In this case, n0 = [ 1

2x ] + 1 ≥ 1
2x + 1

2 and we have

Es,x(z) ≥ (
πs

y
− 2)e−

πs
4y − 6

5
n2

0e
−πsy(n2

0−1) ≥ (2π − 2)e−
πs
4y − 6

5
(

1

2x
+

1

2
)2e−πsy(( 1

2x+ 1
2 )2−1)

=
3(1 + x)2

10x2
e−πsy(( 1

2x+ 1
2 )2−1)

( (20π − 20)x2

9(1 + x)2
eπs
(
y

(1+x)2−4x2

4x2 − 1
4y

)
− 1
)

≥ 3(1 + x)2

10x2
e−πsy(( 1

2x+ 1
2 )2−1)

( (20π − 20)x2

9(1 + x)2
e
πs
(√

x−x2 (1+x)2−4x2

4x2 − 1

4
√
x−x2

)
− 1
)

≥ 3(1 + x)2

10x2
e−πsy(( 1

2x+ 1
2 )2−1)

( (20π − 20)x2

9(1 + x)2
e
π
(√

x−x2 (1+x)2−4x2

4x2 − 1

4
√
x−x2

)
− 1
)

> 0

where we have used the following elementary inequalities:√
x− x2

(1 + x)2 − 4x2

4x2
− 1

4
√
x− x2

> 0, x ∈ [0,
1

2
],

(20π − 20)x2

9(1 + x)2
e
π
(√

x−x2 (1+x)2−4x2

4x2 − 1

4
√
x−x2

)
− 1 > 0, x ∈ [0,

1

2
].

(4.21)

Case c: y
s ≥

1
2 , x ∈ [0, 2

5 ]. In this case, ys ≥ s2

2 ≥
1
2 . By Lemma 4.1,

Es,x(z) ≥
1− µ(ys )

1 + µ(ys )
− 6

5
n2

0e
−πsy(n2

0−1) ≥
1− µ( 1

2 )

1 + µ( 1
2 )
− 3

10x2
e−

π(1−4x2)

8x2

≥
(1− µ( 1

2 )

1 + µ( 1
2 )
− 3

10x2
e−

π(1−4x2)

8x2

)
|x= 2

5
= 0.1556238052 > 0.
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Case d: y
s ≥

1
2 , x ∈ [ 1

3 ,
1
2 ]. In this case, n0 = [ 1

2x ] + 1 ≥ 1
2x + 1

2 and y ≥ s2

2 ≥
1
2 . By Lemma 4.1,

Es,x(z) ≥
1− µ(ys )

1 + µ(ys )
− 6

5
n2

0e
−πsy(n2

0−1) ≥
1− µ( 1

2 )

1 + µ( 1
2 )
− 3(1 + x)2

10x2
e−

π
2

(
( 1+x

2x )2−1
)

≥
(1− µ( 1

2 )

1 + µ( 1
2 )
− 3(1 + x)2

10x2
e−

π
2

(
( 1+x

2x )2−1
))
|x= 1

2
= 0.7866071958 · · · > 0.

Combining cases (a)-(d), (4.18) and (4.19), the proof of Theorem 4.1 is completed.
�

5. Monotonicity of W1,ρ(z) and W2,ρ(z)

Let the closure of the left-half fundamental domain corresponding to G2 be

R2 = {z ∈ H : 0 ≤ x ≤ 1

2
, |z| ≥ 1}.

In this section, we aim to establish the following property of the pairWj,ρ(z), j = 1, 2: there exists

ρ∗ such that for ∀z ∈ R2, ∂
∂xW1,ρ(z) ≥ 0 when 0 ≤ ρ ≤ ρ∗, and ∂

∂xW2,ρ(z) ≥ 0 when 0 ≤ ρ ≤ 1
ρ∗

.

(In fact we will choose ρ∗ = 1
20 .) This property plays an important role in finding the minimizers

and will be proved in Propositions 5.1 and 5.2.
We begin with

Proposition 5.1. For 0 ≤ ρ ≤ ρ∗ := 1/20, there holds

∂

∂x
W1,ρ(z) ≥ 0

for ∀z ∈ R2. The equality holds only possible when x = 0 or 1
2 .

Proof. From (4.11), we obtain that

∂

∂x
W1,ρ(z) =

∂

∂x

(
(
y

4

∑
n

e−πyn
2

ϑ(
y

4
;n
x+ 1

2
) + ρ

√
y
∑
n

e−πyn
2

ϑ(y;nx)
)

=

√
y

2

∞∑
n=1

ne−πyn
2 ∂

∂Y
ϑ(
y

4
;Y )|Y=n x+1

2
+ 2ρ

√
y

∞∑
n=1

ne−πyn
2 ∂

∂Y
ϑ(y;Y )|Y=nx

)
=

√
y

2
e−πy

∂

∂Y
ϑ(
y

4
;Y )|Y= x+1

2
+
√
ye−4πy ∂

∂Y
ϑ(
y

4
;Y )|Y=x+1

+ 2ρ
√
ye−πy

∂

∂Y
ϑ(y;Y )|Y=x + 4ρ

√
ye−4πy ∂

∂Y
ϑ(y;Y )|Y=2x

+

√
y

2

∞∑
n=3

ne−πyn
2 ∂

∂Y
ϑ(
y

4
;Y )|Y=n x+1

2
+ 2ρ

√
y

∞∑
n=3

ne−πyn
2 ∂

∂Y
ϑ(y;Y )|Y=nx

Wa
1,x(z) +Wb

1,x(z) +Wc
1,x(z)

(5.1)

where Wa
1,x(z),Wb

1,x(z) and Wc
1,x(z) are defined at the last equality.

By Lemma 4.1, we see that

Wa
1,x(z) +Wb

1,x(z) ≥
√
y

2
e−πyϑ(

y

4
) sin(πx)−√ye−4πyϑ(

y

4
) sin(2πx)

− 2ρ
√
ye−πyϑ(y) sin(2πx)− 4ρ

√
ye−4πyϑ(y) sin(4πx).

(5.2)

Since | sin(nx)| ≤ n| sin(x)| for any x ∈ R2, again by Lemma 4.1, we have

Wc
1,x(z) ≥ −

√
y

4

∞∑
n=3

n2e−πyn
2

ϑ(
y

4
) sin(2πx)− 2ρ

√
y

∞∑
n=3

n2e−πyn
2

ϑ(y) sin(2πx). (5.3)
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Plugging (5.2) and (5.3) in (5.1), we get

∂

∂x
W1,ρ(z) ≥

√
y

2
e−πyϑ(

y

4
) sinπx−√ye−4πyϑ(

y

4
) sin(2πx)

(
1 +

1

4

∞∑
n=3

n2e−πy(n2−4)
)

− 2ρ
√
ye−πyϑ(y) sin(2πx)

(
1 +

∞∑
n=2

n2e−πy(n2−1)
)

=
√
ye−πy sin(πx)

(1

2
ϑ(
y

4
)− 2e−3πyϑ(

y

4
) cos(πx)(1 + σ1)− 4ρϑ(y) cos(πx)(1 + σ2)

)
≥ √ye−πy sin(πx)

(1

2
ϑ(
y

4
)− 2e−3πyϑ(

y

4
)(1 + σ1)− 4ρϑ(y)(1 + σ2)

)
,

(5.4)
where

σ1(y) :=
1

4

∞∑
n=3

n2e−πy(n2−4), σ2(y) :=

∞∑
n=2

n2e−πy(n2−1),

and σ1(y), σ1(y) are small. (In fact σ1(
√

3
2 ) ≈ 2.781 · 10−6, σ2(

√
3

2 ) ≈ 1.14105 · 10−3.)
By the lower and upper bound estimates in Lemma 4.1, from (5.4), we see that

∂

∂x
W1,ρ(z) ≥

√
ye−πy sin(πx)

(
2π(1− µ(

y

4
))e−

πy
4 − 8πe−3πy(1 + µ(

y

4
))e−

πy
4 (1 + σ1)

− 16ρπ(1 + µ(y))e−πy(1 + σ2)
)

= 4π
√
ye−

5πy
4 sin(πx)

(1

2
(1− µ(

y

4
))− 2(1 + σ1)e−3πy(1 + µ(

y

4
))

− 4ρ(1 + σ2)e−
3πy

4 (1 + µ(y))
)

= 4π
√
ye−

5πy
4 sin(πx)ϑW1,ρ(y)

(5.5)

where ϑW1,ρ
(y) is defined at the last equality.

It suffices to prove that
ϑW1,ρ

(y) > 0.

First it is easy to see that
∂

∂ρ
ϑW1,ρ

(y) > 0, y > 0. (5.6)

Since the functions µ(y), σ1, σ2 are decreasing on y > 0, it follows that

∂

∂y
ϑW1,ρ(y) > 0, y > 0. (5.7)

A direct calculation gives
ϑW1,ρ(y)|

y=
√

3
2 ,ρ= 1

20

= 0.1933 · · · > 0

which implies

ϑW1,ρ > 0, for y ≥
√

3

2
, ρ ≤ 1

20
by the monotonicity properties (5.6) and (5.7). ∂

∂xW1,ρ(y) vanishes only possible when x = 0 or 1
2

by (5.5). The proof is completed.
�

We then have a similar monotonicity for W2,ρ(z).

Proposition 5.2. For ρ ≤ 1
ρ∗

= 20, there holds

∂

∂x
W2,ρ(z) ≥ 0

for ∀z ∈ R2. The equality holds only possible when x = 0 or 1
2 .
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Proof. The proof is similar to Proposition 5.1. Using (4.11), we see that

∂

∂x
W2,ρΓ

(z) =
∂

∂x

(√y

2

∑
n

e−
1
2πyn

2

ϑ(
y

2
;n
x+ 1

2
) + ρ

√
y

2

∑
n

e−2πyn2

ϑ(
y

2
;nx)

)
=

√
y

2

∞∑
n=1

ne−
1
2πyn

2 ∂

∂Y
ϑ(
y

2
;Y )|Y=n x+1

2
+ 2ρ

√
y

2

∞∑
n=1

ne−2πyn2 ∂

∂Y
ϑ(
y

2
;Y )|Y=nx

=

√
y

2
e−

1
2πy

∂

∂Y
ϑ(
y

2
;Y )|Y= x+1

2
+ 2

√
y

2
e−2πy ∂

∂Y
ϑ(
y

2
;Y )|Y=x+1

+ 2ρ

√
y

2
e−2πy ∂

∂Y
ϑ(
y

2
;Y )|Y=x

+

√
y

2

∞∑
n=3

ne−
1
2πyn

2 ∂

∂Y
ϑ(
y

2
;Y )|Y=n x+1

2
+ 2ρ

√
y

2

∞∑
n=2

ne−2πyn2 ∂

∂Y
ϑ(
y

2
;Y )|Y=nx

=Wa
2,x(z) +Wb

2,x(z) +Wc
2,x(z)

(5.8)
where Wa

2,x(z),Wb
2,x(z) and Wc

2,x(z) are defined at the last equality.
By Lemma 4.1, we also have

Wa
2,x(z) +Wb

2,x(z) ≥
√
y

2
e−

1
2πyϑ(

y

2
) sin(πx)− (2 + 2ρ)

√
y

2
e−2πyϑ(

y

2
) sin(2πx).

Since | sin(nx)| ≤ n| sin(x)| for any x ∈ R2, again by Lemma 4.1, we see that

Wc
2,x(z) ≥ −1

2

√
y

2

∞∑
n=3

n2e−
1
2πyn

2

ϑ(
y

2
) sin(2πx)− ρ

√
y

2

∞∑
n=2

n2e−2πyn2

ϑ(
y

2
) sin(2πx).

Plugging the above inequality into (5.8), we get that

∂

∂x
W2,ρ(z) ≥

√
y

2
e−

1
2πyϑ(

y

2
) sin(πx)− (2 + 2ρ+ σ3(y) + ρσ4(y))

√
y

2
e−2πyϑ(

y

2
) sin(2πx)

=

√
y

2
e−

1
2πy sin(πx)

(
ϑ(
y

2
)− (4 + 4ρ+ 2σ3(y) + 2ρσ4(y)) cos(πx)e−

3
2πyϑ(

y

2
)
)
,

(5.9)

where

σ3(y) :=
1

2

∞∑
n=3

n2e−
1
2πy(n2−4), σ4(y) :=

∞∑
n=2

n2e−2πy(n2−1).

σ3(y), σ4(y) are functions with small size. (In fact σ3(
√

3
2 ) ≈ 5.00388 · 10−3, σ4(

√
3

2 ) ≈ 3.255011 ·
10−7.)

By the lower and upper bound estimates in Lemma 4.1, from (5.9) one deduces that

∂

∂x
W2,ρ(z) ≥

√
y

2
e−

1
2πy sin(πx)

(
4π(1− µ(

y

2
))e−

πy
2

− 4π(4 + 4ρ+ 2σ3(y) + 2ρσ4(y)) cos(πx)e−2πy(1 + µ(
y

2
))
)

≥ 4π

√
y

2
e−πy sin(πx)

(
(1− µ(

y

2
))

− (4 + 4ρ+ 2σ3(y) + 2ρσ4(y)) cos(πx)e−
3
2πy(1 + µ(

y

2
))
)
.

Let

ϑW2,ρ(z) : = (1− µ(
y

2
))− (4 + 4ρ+ 2σ3(y) + 2ρσ4(y)) cos(πx)e−

3
2πy(1 + µ(

y

2
)).
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Then

∂

∂x
W2,ρ(z) ≥ 4π

√
y

2
e−πy sin(πx) · ϑW2,ρ

(y) (5.10)

It suffices to prove that

ϑW2,ρ
(z) > 0, for z ∈ R2, ρ ≤

1

ρ∗
= 20.

Now it is easy to see that

∂

∂ρ
ϑW2,ρ

(y) < 0; y > 0, and
∂

∂x
ϑW2,ρ

(z) > 0;x ∈ [0,
1

2
], y > 0. (5.11)

Observe that the functions µ(y), σ3, σ4 are decreasing on y > 0. It follows that

∂

∂y
ϑW2,ρ(z) > 0, y > 0. (5.12)

To complete the proof, we prove that ϑW2,ρ
(z) is positive on the following three unbounded

rectangular domains:

Ra = {z | x ∈ [0,
1

4
], y ≥

√
15

4
}; Rb = {z | x ∈ [

1

4
,

3

8
], y ≥

√
55

8
}; Rc = {z | x ∈ [

3

8
,

1

2
], y ≥

√
3

2
}.

It is clearly that

RΓ ⊂ Ra ∪Rb ∪Rc. (5.13)

A direct calculation gives

ϑW2,ρ
(z)|

x=0,y=
√

15
4 ,ρ=20

= 0.0450964128 · · · > 0

ϑW2,ρ
(z)|

x= 1
4 ,y=

√
55
8 ,ρ=20

= 0.1583739562 · · · > 0

ϑW2,ρ
(z)|

x= 3
8 ,y=

√
3

2 ,ρ=20
= 0.3525036217 · · · > 0.

This yields

ϑW2,ρ(z) > 0, for z ∈ Ra ∪Rb ∪Rc

by the monotonicity properties (5.11) and (5.12). Therefore by (5.13)

ϑW2,ρ
(z) > 0, for z ∈ R2.

By (5.10) ∂
∂xW2,ρ∗(z) vanishes only at x = 0 or 1

2 . This completes the proof.
�

6. The behavior of W1,ρ(z) on the y−axis

In this section, we study the property of the functional W1,ρ on the y−axis. We will prove that
on the y−axis, depending on ρ, W1,ρ(z) has either 1 or 3 critical points. This gives the precise
characterization of the minimizers of W1,ρ(z) on the y−axis. The proof relies crucially on a novel
property of Jacob theta function proved in Theorem 6.1 below.

Proposition 6.1. There exists a threshold ρ1 which is the unique solution of ∂2

∂y2W1,ρ(yi) |y=1= 0,

(in fact, ρ1 = − Y
′′(1)
X ′′(1) ∼ 0.04016680351 · · · ), such that

1. if ρ ∈ [ρ1,+∞), the function y → W1,ρ(yi), y > 0 admits only one critical point at y = 1, and
∂
∂yW1,ρ(yi) < 0 if y ∈ (0, 1) and ∂

∂yW1,ρ(yi) > 0 if y ∈ (1,∞);
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2. if ρ ∈ [0, ρ1), the function y → W1,ρ(yi), y > 0 admits only three critical points at y1,ρ, 1 and
1
y1,ρ

, where y1,ρ ∈ (1,
√

3]. Moreover

∂

∂y
W1,ρ(yi) < 0 if y ∈ (0,

1

y1,ρ
),

∂

∂y
W1,ρ(yi) > 0 if y ∈ (

1

y1,ρ
, 1),

∂

∂y
W1,ρ(yi) < 0 if y ∈ (1, y1,ρ),

∂

∂y
W1,ρ(yi) > 0 if y ∈ (y1,ρ,∞).

The critical point y1,ρ is the unique solution of ∂
∂yW1,ρ(yi) = 0, y ∈ (1,

√
3].

Furthermore if ρ ∈ [0, ρ1], then
∂y1,ρ

∂ρ
< 0. (6.1)

To prove Proposition 6.1, we need to use some properties of the Jacobi theta functions defined
at (1.10)-(1.11). They satisfy the transformation property

ϑ3(
1

y
) =
√
yϑ3(y), ϑ2(

1

y
) =
√
yϑ4(y)

ϑ4(
1

y
) =
√
yϑ2(y), ϑ4(y) = ϑ3(4y)− ϑ2(4y).

(6.2)

It is easy to see that for z = yi

θ(s; yi) =
∑
m

∑
n

e−s
π
y (n2+m2y2), θ(s;

yi+ 1

2
) =

∑
m

∑
n

e−s
π
y ((m2 +n)2+m2

4 y2). (6.3)

We first express θ(s; yi), θ(s; yi+1
2 ) as products of Jacobi theta functions, which is a starting

point of our analysis.

Lemma 6.1. It holds that

θ(s; yi) = ϑ3(sy)ϑ3(
y

s
), θ(s;

yi+ 1

2
) = ϑ3(sy)ϑ3(

y

s
) + ϑ2(sy)ϑ2(

s

y
).

Proof. The first one is straightforward:

θ(s; yi) =
∑
n

e−s
π
y n

2 ∑
m

e−sπym
2

= ϑ3(sy)ϑ3(
s

y
).

For the second one,

θ(s;
yi+ 1

2
) =

∑
m

∑
n

e−s
π
y ((m2 +n)2+m2

4 y2) =
∑

p≡q( mod 2)

e−
sπ
4 ( 1

y p
2+yq2)

=
∑

p=2m′,q=2n′

e−
sπ
4 ( 1

y p
2+yq2) +

∑
p=2m′+1,q=2n′+1

e−
sπ
4 ( 1

y p
2+yq2)

=
∑
m′

e−sπ
1
ym
′2 ∑

n′

e−sπyn
′2

+
∑
m′

e−
sπ
4

1
y (2m′+1)2 ∑

n′

e−
sπ
4 y(2n′+1)2

= ϑ3(sy)ϑ3(
s

y
) + ϑ2(sy)ϑ2(

s

y
).

�

The following Lemma follows from Lemma 3.1. We single it out for the convenience of our
analysis here.
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Lemma 6.2. For any s > 0, θ(s; yi) and θ(s; yi+1
2 ) both satisfy the functional equation

H(
1

y
) = H(y). (6.4)

Consequently, H′( 1
y ) = −y2H′(y). In particular, H′(1) = 0, that is, y = 1 is always a critical point

of θ(s; yi), θ(s; yi+1
2 ).

For s = 1, by Lemma 6.1 and transformation (6.2), we obtain that

Lemma 6.3.

θ(1; yi) =
√
yϑ2

3(y), θ(2;
yi+ 1

2
) =

√
y

2

(
ϑ3(4y)ϑ3(

y

4
) + ϑ2(4y)ϑ4(

y

4
)
)
. (6.5)

To prove Proposition 6.1, we first prove a monotonicity property of θ(1; yi) and θ(2; yi+1
2 ) in

Lemma 6.4, which can be viewed as the particular case of Proposition 6.1. Then we establish the
key Theorem 6.1, in which a novel property about the quotient of Jacobi theta functions is proved.

The following Lemma is known in [10, 33].

Lemma 6.4. • The function y → θ(s; yi), y > 0, has only one critical point at y = 1.
Furthermore

∂

∂y
θ(s; yi) < 0 for y ∈ (0, 1);

∂

∂y
θ(s; yi) > 0 for y ∈ (1,∞).

• For any s > 0, the function y → θ(s; yi+1
2 ), y > 0, has three critical points at

√
3

3 , 1 and√
3.

We now state Theorem 6.1 whose proof is much involved. We use a combination of functional
equations, error terms analysis and several new observations. Let

X (y) := ϑ3(y)ϑ3(
1

y
) =
√
yϑ2

3(y),Y(y) := 2
(
ϑ3(4y)ϑ3(

4

y
) + ϑ2(4y)ϑ2(

4

y
)
)

=
√
y
(
ϑ3(4y)ϑ3(

y

4
) + ϑ2(4y)ϑ4(

y

4
)
)
.

Theorem 6.1. The function y 7→ Y′(y)
X ′(y) , y > 0 has only one critical point at y = 1. Furthermore(

Y′(y)
X ′(y)

)′
< 0 for y ∈ (0, 1) and

(
Y′(y)
X ′(y)

)′
> 0 for y ∈ (1,∞).

Proof. Denote Z(y) := Y′(y)
X ′(y) . By Lemma 6.4, the function Z(y) is well-defined. By Lemma 6.2,

we also have

X ′(1

y
) = −y2X ′(y), Y ′(1

y
) = −y2Y ′(y). (6.6)

Hence

Z(
1

y
) = Z(y),

and

Z ′(1

y
) = −y2Z ′(y). (6.7)

Consequently, Z ′(1) = 0, i.e., y = 1 is the critical point of Z(y).
By (6.7), it suffices to prove that

Z ′(y) > 0, for y ∈ (1,∞). (6.8)
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By the explicit expression of Jacobi theta functions (1.11) and (6.2), we start with

X (y) =
√
y(1 + 2

∞∑
n=1

e−πn
2y)2

=
(√

y + 4
√
ye−πy + 4

√
ye−2πy + 4

√
ye−4πy

)
+
(

4
√
y

∞∑
n=3

e−πn
2y + 4

√
y
( ∞∑
n=1

e−πn
2y
)2

+ 8
√
y

∞∑
n=1

e−π(n2+1)y
)

: = Xa(y) + Xe(y)

where Xa(y) and Xe(y) are defined at the last equality. Xa is the major part and Xe is the error
part. In fact, we have that for some constant C > 0

‖Xa(y)‖C2 ≤ C√ye−5πy, for y > 1. (6.9)

For Y(y), again by (1.11) and (6.2), one first has

√
yϑ3(4y)ϑ3(

y

4
) =
√
y(1 + 2

∞∑
n=1

e−4πn2y)(1 + 2

∞∑
n=1

e−
1
4πn

2y)

=
√
y + 2

√
ye−

1
4πy + 2

√
ye−πy + 2

√
ye−

9
4πy + 4

√
ye−4πy

+ 2
√
y

∞∑
n=2

e−4πn2y + 2
√
y

∞∑
n=5

e−
1
4πn

2y + 4
√
y

∞∑
n=1

e−4πn2y
∞∑
n=1

e−
1
4πn

2y

We regroup the terms as

√
yϑ2(4y)ϑ4(

y

4
) =
√
ϑ2(4y)

(
ϑ3(y)− ϑ2(y)

)
=
√
yϑ2(4y)ϑ3(y)−√yϑ2(4y)ϑ2(y)

= 2
√
y

∞∑
n=1

e−π(2n−1)2y + 4
√
y

∞∑
n=1

e−π(2n−1)2y
∞∑
n=1

e−πn
2y

− 4
√
ye−

5
4πy(1 +

∞∑
n=2

e−π((n− 1
2 )2− 1

4 )y)(1 +

∞∑
n=2

e−π((2n−1)2−1)y)

= 2
√
ye−πy + 4

√
ye−2πy − 4

√
ye−

5
4πy − 4

√
ye−

13
4 πy

+ 4
√
y
( ∞∑
n=2

e−π((2n−1)2+1)y +

∞∑
n=2

e−π(n2+1)y +

∞∑
n=2

e−π(2n−1)2y
∞∑
n=2

e−πn
2y
)

− 4
√
ye−

5
4πy
( ∞∑
n=3

e−π((n− 1
2 )2− 1

4 )y +

∞∑
n=2

e−π((2n−1)2−1)y

+

∞∑
n=2

e−π((n− 1
2 )2− 1

4 )y ·
∞∑
n=2

e−π((2n−1)2−1)y
)
.

Now let the approximate part of Y(y) be

Ya(y) :=
√
y + 2

√
ye−

1
4πy + 4

√
ye−πy + 2

√
ye−

9
4πy + 4

√
ye−2πy + 4

√
ye−4πy − 4

√
ye−

5
4πy − 4

√
ye−

13
4 πy
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and the error part by

Ye(y) :=2
√
y

∞∑
n=2

e−4πn2y + 2
√
y

∞∑
n=5

e−
1
4πn

2y + 4
√
y

∞∑
n=1

e−4πn2y
∞∑
n=1

e−
1
4πn

2y

+ 4
√
y
( ∞∑
n=2

e−π((2n−1)2+1)y +

∞∑
n=2

e−π(n2+1)y +

∞∑
n=2

e−π(2n−1)2y
∞∑
n=2

e−πn
2y
)

− 4
√
ye−

5
4πy
( ∞∑
n=3

e−π((n− 1
2 )2− 1

4 )y +

∞∑
n=2

e−π((2n−1)2−1)y +

∞∑
n=2

e−π((n− 1
2 )2− 1

4 )y ·
∞∑
n=2

e−π((2n−1)2−1)y
)
.

Then

Y(y) = Ya(y) + Ye(y) (6.10)

and we have following estimate for Ye(y):

‖Ye(y)‖C2 ≤ C√ye− 17
4 πy.

To prove (6.8), we divide the proof into two regions of y: the large y case y ∈ [1.1,∞) and the
small y case y ∈ (1, 1.1).

Case (a): y ∈ [1.1,∞). In this case we have

Z ′(y) =
Y ′′(y)X ′(y)−X ′′(y)Y ′(y)

(X ′(y))2
.

By Lemma 6.4, to prove Case (a) it suffices to prove that

Y ′′(y)X ′(y)−X ′′(y)Y ′(y) > 0 if y ∈ (1.1,∞).

By (6.9) and (6.10), there holds

Y ′′X ′ − Y ′′X ′ =
(
Y ′′aX ′a −X ′′a Y ′a

)
+
(
Y ′′e X ′ − Y ′eX ′′ + Y ′′aX ′e −X ′′e Y ′a

)
where

(
Y ′′aX ′a − X ′′a Y ′a

)
and

(
Y ′′eX ′ − Y ′eX ′′ + Y ′′aX ′e − X ′′e Y ′a

)
are the approximate part and the

error part of Y ′′X ′ − Y ′′X ′ respectively. We shall use the approximate part to control the error
part.

To obtain the lower bound of
(
Y ′′aX ′a−X ′′a Y ′a

)
, after subtracting some proper factors, one finds

y → 16y

π
e

1
4πy
(
Y ′′aX ′a −X ′′a Y ′a

)
(y) (6.11)

is monotonically increasing.

For the error part
(
Y ′′e X ′ − Y ′eX ′′ + Y ′′aX ′e −X ′′e Y ′a

)
, one has the estimate

|
(
Y ′′eX ′ − Y ′eX ′′ + Y ′′aX ′e −X ′′e Y ′a

)
(y)| ≤ C√ye− 17

4 πy, (6.12)

which decays to zero very fast.
Combining (6.11) with (6.12), one deduces that

Y ′′X ′ −X ′′Y ′ > if y ∈ [1.1,∞). (6.13)

The detailed proof of (6.11), (6.12) and (6.13) will be provided in the Appendix 2.
This proves that

Z ′(y) > 0 if y ∈ [1.1,∞). (6.14)

Case (b): y ∈ (1, 1.1). In this case 0 < 1− y < 0.1. To prove

Z ′(y) =
(Y ′(y)

X ′(y)

)′
> 0, on y ∈ (1, 1.1), (6.15)
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it suffices to prove that (Y ′′(y)

X ′′(y)

)′
> 0, on y ∈ (1, 1.1),

given that
X ′(1) = Y ′(1) = 0 (6.16)

which follows from (6.6). In fact, there exists y1 ∈ (1, y) such that(Y ′(y)

X ′(y)

)′
=
Y ′′(y)X ′(y)− Y ′(y)X ′′(y)

X ′2(y)
=
X ′′(y)

X ′(y)

(Y ′′(y)

X ′′(y)
− Y

′(y)

X ′(y)

)
=

X ′′(y)

X ′(y)−X ′(1)

(Y ′′(y)

X ′′(y)
− Y

′(y)− Y ′(1)

X ′(y)−X ′(1)

)
=

X ′′(y)

X ′′(y2)(y − 1)

(Y ′′(y)

X ′′(y)
− Y

′′(y1)

X ′′(y1)

) (6.17)

using (6.16).
We also have that

X ′′(y) > 0, if y ∈ (1,∞) (6.18)

by the same decomposition method as used above. We omit the details here. (Actually, we only
need (6.18) holds for small interval such as (1, 1.2]).

Moreover,
(
Y′′(y)
X ′′(y)

)′
> 0 implies

Y ′′(y)

X ′′(y)
− Y

′′(y1)

X ′′(y1)
> 0. (6.19)

Then the claim follows from (6.19), (6.18) and (6.17).
For the derivative of the quotient of second order derivatives, one has(Y ′′(y)

X ′′(y)

)′
=
Y ′′′(y)X ′′(y)− Y ′′(y)X ′′′(y)

X ′′2(y)
.

Define
fXY(y) := Y ′′′(y)X ′′(y)− Y ′′(y)X ′′′(y).

Equivalently, to show (6.15) one needs to show that

fXY(y) > 0 for y ∈ (1, 1.1). (6.20)

Differrentiating(6.6), the functions X (y) and Y(y) both satisfy the following functional equations

H′′(1

y
) = 2y3H′(y) + y4H′′(y)

H′′′(1

y
) = −6y4H′(y)− 6y5H′′(y)− y6H′′′(y).

(6.21)

Plugging y = 1 in (6.21) and using (6.16), one deduces

X ′′′(1) = −3X ′′(1), Y ′′′(1) = −3Y ′′(1). (6.22)

From (6.22), one has
fXY(1) = 0. (6.23)

Then to prove (6.20), by (6.23), it suffices to prove that

f ′XY(y) > 0 for y ∈ (1, 1.1). (6.24)

Proceed by (6.9) and (6.10)

f ′XY = Y ′′′′X ′′ − Y ′′X ′′′′

=
(
Y ′′′′a X ′′a − Y ′′aX ′′′′a

)
+
(
X ′′e Y ′′′′ + Y ′′′′e X ′′a −X ′′′′e Y ′′ − Y ′′eX ′′′′a

)
.

(6.25)
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We use
(
Y ′′′′a X ′′a − Y ′′aX ′′′′a

)
and

(
X ′′e Y ′′′′ + Y ′′′′e X ′′a − X ′′′′e Y ′′ − Y ′′eX ′′′′a

)
as the approximate and

error parts of f ′XY respectively.
For the approximate part, after subtracting some proper factor, one finds

y → 512y4

π
e

1
4πy
(
Y ′′′′a X ′′a − Y ′′aX ′′′′a

)
(y) (6.26)

is monotonically decreasing on (1, 1.2).
For the error part, one has the following estimate

|
(
X ′′e Y ′′′′ + Y ′′′′e X ′′a −X ′′′′e Y ′′ − Y ′′eX ′′′′a

)
(y)| ≤ Cye−5πy, (6.27)

which has fast decay.
Combining (6.26), (6.27) and (6.25), we can prove that

f ′XY(y) > 0 if y ∈ (1, 1.11]. (6.28)

The detailed proof of (6.26), (6.27) and (6.28) will be given in the Appendix 2.
This completes the proof.

�

Finally we give the proof of Proposition 6.1.

Proof. By Lemma 6.2, y = 1 is a critical point of W1,ρ(yi). Furthermore

∂

∂y
W1,ρ(

1

y
i) = −y2 ∂

∂y
W1,ρ(yi)(y). (6.29)

By Lemma 6.4, we have

X ′(y) > 0 if y ∈ (1,∞) and Y ′(
√

3) = 0. (6.30)

Hence we obtain that
∂

∂y
W1,ρ(yi) > 0 if y ∈ (

√
3,∞). (6.31)

To study the monotonicity of W1,ρ(yi) on the interval (1,
√

3), we rewrite ∂
∂yW1,ρ(yi) as

∂

∂y
W1,ρ(yi) =

∂

∂y

(
θ(2;

yi+ 1

2
) + ρθ(1; yi)

)
= Y ′(y) + ρX ′(y)

= X ′(y) ·
(Y ′(y)

X ′(y)
+ ρ
)
.

(6.32)

By (6.30), the zeroes of ∂
∂yW1,ρ(yi) on (1,

√
3) satisfy the following functional equation

Y ′(y)

X ′(y)
+ ρ = 0, y ∈ (1,

√
3). (6.33)

Furthermore, by Theorem 6.1, we see that

Y ′(y)

X ′(y)
+ ρ is strictly decreasing on (1,

√
3). (6.34)

(6.34) and (6.33) imply that ∂
∂yW1,ρ(yi) admits at most one zero point on (1,

√
3). This fact

combined with (6.31) yields that ∂
∂yW1,ρ(yi) admits either one or three critical points on (0,∞).

Since X ′(1) = Y ′(1) = 0, Y
′(1)
X ′(1) = Y′′(1)

X ′′(1) .

At the other end point
√

3, since Y ′(
√

3) = 0 (see (6.30)), we have that

Y ′(
√

3)

X ′(
√

3)
+ ρ = 0 + ρ > 0, ρ > 0.
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By (6.34), we see that the equation (6.33) has a zero point if and only if

Y ′′(1)

X ′′(1)
+ ρ < 0. (6.35)

The condition in (6.35) is

ρ < ρ1 := −Y
′′(1)

X ′′(1)
. (6.36)

Combining (6.35),(6.36) with (6.31), one has

∂

∂y
W1,ρ(yi) > 0 on (1,∞) provided ρ ≥ ρ1.

This and (6.29) give the proof of part 1 of Proposition 6.1. (For the case ρ = 0, y1,ρ =
√

3 by
(6.30).)

In the case when ρ ∈ (0, ρ1), there exists unique root of (6.33) as y1,ρ ∈ (1,
√

3). By duality

(6.29), there exists another root 1
y1,ρ
∈ (
√

3
3 , 1). So part 2 of Proposition 6.1 follows from (6.29)

and (6.34).
Finally (6.1) follows from (6.34).
This completes the proof.

�

7. The behavior of W2,ρ(z) on the y−axis

Let W2,ρ(z) := θ(1; z+1
2 ) + ρθ(2; z) be the conjugate of W1,ρ(z). In this section we prove similar

properties of Section 6 forW2,ρ. As in Section 6, W2,ρ(yi) admits either 1 or 3 three critical points
depending on different vales of ρ. These are stated in Proposition 7.1. The proof relies critically
on a novel property of the classical theta functions proved in Theorem 7.1.

Proposition 7.1. There exists a threshold ρ2 which is the unique solution of

∂2

∂y2
W2,ρ(yi) |y=1= 0

(in fact ρ2 = −1− B
′′(1)
A′′(1) , numerically, ρ2 = 1.190861337 · · · ) such that

1. when ρ ∈ [0, ρ2), the function y → W2,ρ(yi), y > 0 admits only three critical points at y2,ρ, 1

and 1
y2,ρ

, where y2,ρ ∈ (1,
√

3]. Furthermore we have ∂
∂yW2,ρ(yi) < 0 if y ∈ (0, 1

y2,ρ
), ∂

∂yW2,ρ(yi) >

0 if y ∈ ( 1
y2,ρ

, 1), ∂
∂yW2,ρ(yi) < 0 if y ∈ (1, y2,ρ), and ∂

∂yW2,ρ(yi) > 0 if y ∈ (y2,ρ,∞)

The critical point y2,ρ is the unique solution of ∂
∂yW2,ρ(yi) = 0, y ∈ (1,

√
3].

Moreover, if ρ ∈ (0, ρ2), then
∂y2,ρ

∂ρ
< 0. (7.1)

2. when ρ ∈ [ρ2,+∞), the function y → W2,ρ(yi), y > 0 admits only one critical point at 1, and

we have ∂
∂yW2,ρ(yi) < 0 if y ∈ (0, 1), ∂

∂yW2,ρ(yi) > 0 if y ∈ (1,∞).

As in Section 6, by Lemma 6.1 and transformation (6.2), we have that

Lemma 7.1.

θ(2; yi) =

√
y

2
ϑ3(2y)ϑ3(

y

2
), θ(1;

yi+ 1

2
) =

√
y

2

(
ϑ3(2y)ϑ3(

y

2
) + ϑ2(2y)ϑ4(

y

2
)
)
.

Recall by (1.11) and (6.2),

A(y) :=
√

2ϑ3(2y)ϑ3(
2

y
) =
√
yϑ3(2y)ϑ3(

y

2
), B(y) :=

√
2ϑ2(2y)ϑ2(

2

y
) =
√
yϑ2(2y)ϑ4(

y

2
).

Next we state Theorem 7.1, which provides the key argument to prove Proposition 7.1.
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Theorem 7.1. The function y 7→ B′(y)
A′(y) , y > 0 has only one critical point at y = 1, and furthermore(

B′(y)
A′(y)

)′
< 0, y ∈ (0, 1) and

(
B′(y)
A′(y)

)′
> 0, y ∈ (1,∞).

Proof. By Lemma 6.2,

A′(1

y
) = −y2A′(y), B′(1

y
) = −y2B′(y). (7.2)

Let

C(y) :=
B′(y)

A′(y)
.

Then

C(1

y
) = C(y).

Hence

C′(1

y
) = −y2C′(y). (7.3)

In particular, C′(1) = 0, i.e., y = 1 is the critical point of C(y). This, combining with Lemma 6.4,
shows that the C(y) by the quotient form is well defined.

By (7.3), it suffices to prove that

C′(y) > 0 y ∈ (1,∞).

To prove this, we need to divide it into two parts of y: the small case y ∈ [k,∞) and the large
case y ∈ (1, k), where the parameter k is sightly bigger than 1 and will be determined later. (In
fact k = 1.05.)

Case (a): y ∈ [k,∞) One has

C′(y) =
B′′(y)A′(y)−A′′(y)B′(y)

(A′(y))2
.

Then we need to estimate the lower bound of B′′(y)A′(y)−A′′(y)B′(y).
By (1.11),

A(y) =
√
y
(
1 + 2

∞∑
n=1

e−2πn2y
)(

1 + 2

∞∑
n=1

e−
π
2 n

2y
)

=
(√

y + 2
√
ye−

πy
2 + 4

√
ye−2πy + 4

√
ye−

5
2πy + 4

√
ye−4πy + 2

√
ye−

9
2πy + 2

√
y
( ∞∑
n=2

e−2πn2y +

∞∑
n=4

e−
π
2 n

2y
))

+
(

4
√
ye−

5
2πy
( ∞∑
n=2

e−
1
2π(n2−1)y +

∞∑
n=2

e−2π(n2−1)y +

∞∑
n=2

e−
1
2π(n2−1)y ·

∞∑
n=2

e−2π(n2−1)y
))

: = Aa(y) +Ae(y)

(7.4)
where Aa(y) and Ae(y) are defined at the last equality. Ae(y) is the error part which will be
proved to satisfy

‖Ae‖C2 ≤ C√ye− 13
2 πy.
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For B(y), by (1.11), we rewrite as

B(y) =
√
yϑ2(2y)

(
ϑ3(2y)− ϑ2(2y)

)
= 2
√
y

∞∑
n=1

e−2πy(n− 1
2 )2

+ 4
√
y

∞∑
n=1

e−2πy(n− 1
2 )2

∞∑
n=1

e−2πn2y − 4
√
y
( ∞∑
n=1

e−2πy(n− 1
2 )2
)2

=
(

2
√
ye−

1
2πy + 4

√
ye−

5
2πy + 2

√
ye−

9
2πy − 4

√
ye−πy

)
+
(

2
√
y

∞∑
n=3

e−
1
2 (2n−1)2πy + 4

√
ye−

5
2πy
( ∞∑
n=2

e−
1
2 ((2n−1)2−1)πy +

∞∑
n=2

e−2(n2−1)πy

+

∞∑
n=2

e−
1
2 ((2n−1)2−1)πy

∞∑
n=2

e−2(n2−1)πy
)
− 8
√
y

∞∑
n=2

e−
1
2 (2n−1)2πy

− 4
√
y(

∞∑
n=2

e−
1
2 (2n−1)2πy)2

)
: = Ba(y) + Be(y)

where Ba(y) and Be(y) are defined at the last equality. That is, we have

B(y) = Ba(y) + Be(y), (7.5)

where Ba(y),Be(y) is the approximate part and the error part of B(y) respectively.
We have the following estimate

‖Be‖C2 ≤ C√ye− 13
2 πy, y ≥ 1.

To prove that
C′(y) > 0 if y ∈ (k,∞), (7.6)

it suffices to prove that

B′′(y)A′(y)−A′′(y)B′(y) > 0 if y ∈ (k,∞).

By (7.4), there holds

B′′A′ −A′′B′ =
(
B′′aA′a −A′′aB′a

)
+
(
B′′eA′ − B′eA′′ + B′′aA′e −A′′eB′a

)
.

Here
(
B′′aA′a−A′′aB′a

)
and

(
B′′eA′−B′eA′′+B′′aA′e−A′′eB′a

)
are the approximate and error part of

B′′A′ −A′′B′ respectively.
To estimate the approximate part, we use the monotonicity of a weighted function, i.e.

y → 4y

π
e

1
2πy
(
B′′aA′a −A′′aB′a

)
(y) (7.7)

is strictly increasing.
For the error term, we have the following control

|
(
B′′eA′ − B′eA′′ + B′′aA′e −A′′eB′a

)
(y)| ≤ C√ye− 13

2 πy, y ≥ 1 (7.8)

which decays fast.
Combining (7.7) and (7.8), one deduces that(

B′′A′ −A′′B′
)

(y) > if y ∈ [1.05,∞). (7.9)

This proves that
C′(y) > 0 if y ∈ [1.05,∞). (7.10)

The detailed proofs of (7.7), (7.8) and (7.9) will be given in the Appendix 2.

Case (b): y ∈ (1, k)
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To prove (B′(y)

A′(y)

)′
> 0, on y ∈ (1, k), (7.11)

by (6.17), it suffices to prove that (B′′(y)

A′′(y)

)′
> 0, on y ∈ (1, k),

given that

A′(1) = B′(1) = 0 (7.12)

which follows from (7.2). Here as in (6.18), we need A′′(y) > 0 in small interval such as (1, 1.2]
(we omit the details here).

To proceed, we notice that(B′′(y)

A′′(y)

)′
=
B′′′(y)A′′(y)− B′′(y)A′′′(y)

A′′2(y)
. (7.13)

Define

fAB(y) := B′′′(y)A′′(y)− B′′(y)A′′′(y).

Same as (6.23), we see that

fAB(1) = 0. (7.14)

Then to prove (7.11), it suffices to prove that

f ′AB(y) > 0 for y ∈ (1, k). (7.15)

Now by (7.4) and (7.5) we can write as

f ′AB = B′′′′A′′ − B′′A′′′′

=
(
B′′′′a A′′a − B′′aA′′′′a

)
+
(
B′′′′e A′′ − B′′eA′′′′ + B′′′′a A′′e −A′′′′e B′′a

)
.

(7.16)

The main part is
(
B′′′′a A′′a − B′′aA′′′′a

)
which is is not monotonically decreasing or increasing.

Instead, a weighted

y → 32y4

π
e

1
2πy
(
B′′′′a A′′a − B′′aA′′′′a

)
(y) (7.17)

is strictly decreasing on (1,∞).
For the error part in (7.16), one deduces the following upper bound estimate,

|
(
B′′′′e A′′ − B′′eA′′′′ + B′′′′a A′′e −A′′′′e B′′a

)
(y)| ≤ C√ye− 13

2 πy, y ≥ 1 (7.18)

which decays very fast.
Combining (7.17), (7.18) and (7.16), we can show that

f ′AB(y) > 0 if y ∈ (1, 1.12]. (7.19)

The detailed proof of (7.17), (7.18) and (7.19) is tedious and will be given in the Appendix 2.
This completes the proof.

�

Finally we give the proof of Proposition 7.1.

Proof. By Lemma 6.2, the functional W2,ρ(yi) satisfies the functional equations

H′(1

y
) = −y2H′(y). (7.20)

Hence H′(1) = 0, i.e., y = 1 is a critical point of W2,ρ(yi).
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By (7.20), we just need to consider the functionalW2,ρ(yi) on (1,∞). For this, one uses Theorem

7.1 by rewriting ∂
∂yW2,ρ(yi) as

√
2
∂

∂y
W2,ρ(yi) =

∂

∂y

(√
2θ(1;

yi+ 1

2
) + ρ

√
2θ(2; yi)

)
= A′(y) + B′(y) + ρA′(y)

= A′(y) ·
(

1 +
B′(y)

A′(y)
+ ρ
)
.

(7.21)

By Lemma 6.4, we see that

A′(y) > 0 y ∈ (1,∞) and 1 +
B′(
√

3)

A′(
√

3)
= 0. (7.22)

By Theorem 7.1, there holds

d

dy

(
1 +
B′(y)

A′(y)
+ ρ
)
> 0, y ∈ (1,∞). (7.23)

From (7.23), in view of (7.21) and (7.22), we infer that

∂

∂y
W2,ρ(yi) admits at most one zero point on (1,∞).

By (7.22), we see that
∂

∂y
W2,ρ(yi) > 0 if y ∈ (

√
3,∞). (7.24)

Then one further concludes that the admissible zero point of ∂
∂yW2,ρ(yi) must lie on (1,

√
3] (if

exists).

Next we consider the function 1 + B′(y)
A′(y) + ρ for ρ > 0 ∈ (1,

√
3). At the end point

√
3, we have

that (
1 +
B′(y)

A′(y)
+ ρ
)
|y=
√

3= 0 + ρ = ρ > 0 (7.25)

because of (7.22).
Since A′(1) = B′(1), at the other end point 1, one evaluates(

1 +
B′(y)

A′(y)
+ ρ
)
|y=1 = 1 + ρ+ lim

y→1

B′(y)

A′(y)
= 1 + ρ+ lim

y→1

B′′(y)

A′′(y)

= 1 + ρ+
B′′(1)

A′′(1)

(7.26)

by L’Hospital’s rule.
In view of (7.25) and (7.26), one deduces from (7.23) that(

1 +
B′(y)

A′(y)
+ ρ
)

admits one zero point on (1,
√

3)

⇔ 1 + ρ+
B′′(1)

A′′(1)
< 0

(7.27)

which implies that

ρ < ρ2 := −1− B
′′(1)

A′′(1)
.

It follows that by (7.21) and (7.27), for ρ ≥ ρ2, ∂
∂yW2,ρ(yi) admits no zero point on (1,∞) Therefore

the part 2 of Proposition 7.1 follows from (7.20).

For ρ ∈ (0, ρ2), we denote the zero root of
(

1 + B′(y)
A′(y) + ρ

)
(and hence also of ∂

∂yW2,ρ(yi)) as

y2,ρ. Then by (7.27) y2,ρ ∈ (1,
√

3). Thus by (7.20) there is another zero point 1
y2,ρ
∈ (
√

3
3 , 1) of

∂
∂yW2,ρ(yi). By (7.24), (7.20), (7.23) and (7.21), the part 1 of Proposition 7.1 is proved.
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Finally from (7.23), we have that
d

dρ
y2,ρ < 0.

This proves (7.1). (For ρ = 0, one has y2,ρ =
√

3 by (7.22)). The proof is thus completed.
�

8. Proofs of Theorems 1.2 1.3 and 1.4

In this section, we are ready to finish the proof of the main results of Theorems 1.2 1.3 and 1.4.
To make the presentation clear, we introduce the following notations to denote various geometric
sets:

H : = {z | y > 0},
Ωa : = {z | |z| ≥ 1, 0 ≤ x < 1},

Ωb : = {z | |z| ≥ 1, 0 ≤ x ≤ 1

2
} ∪ {z | |z| = 1,

1

2
≤ x < 1},

Ωc : = {z | |z| ≥ 1, 0 ≤ x ≤ 1

2
},

Ωd : = {z | |z| = 1, 0 ≤ x ≤ 1

2
} ∪ {z | x = 0, 1 ≤ y <∞},

Ωe : = {z | |z| = 1, 0 ≤ x ≤ 1

2
} ∪ {z | x = 0, 1 ≤ y ≤

√
3},

Ωea : = {z | x = 0, 1 ≤ y ≤
√

3},

Ωeb : = {z | |z| = 1, 0 ≤ x < 1

2
}.

We divide the proof into the following steps:

Step 1: Reducing minimization problem from H to → Ωa.

This is a consequence of Theorem 3.2 and the properties of the fundamental group (3.3) and
fundamental domain (3.5):

min
z∈H
W1,ρ(z) ≡ min

z∈Ωa
W1,ρ(z), min

z∈H
W2,ρ(z) ≡ min

z∈Ωa
W2,ρ(z). (8.1)

Step 2: Reducing minimization problem from Ωa to Ωb.

This follows from Corollary 4.2:

min
z∈Ωa

W1,ρ(z) ≡ min
z∈Ωb

W1,ρ(z), min
z∈Ωa

W2,ρ(z) ≡ min
z∈Ωb

W2,ρ(z).

Step 3: Reducing minimization problem from Ωb to Ωc.

We first show that

min
z∈{z||z|=1, 12≤x<1}

Wj,ρ(z) ≡ W1,ρ(
1

2
+ i

√
3

2
), j = 1, 2. (8.2)

One can further conclude that the minimizer 1
2 + i

√
3

2 is unique by the monotonicity shown below.
In fact, by Propositions 6.1 and 7.1, we see that

∂

∂y
Wj,ρ(yi) > 0, y ∈ [

√
3,∞), j = 1, 2. (8.3)

By the special map z 7→ w := z−1
z+1 , the set {yi, y ∈ [

√
3,∞)} is mapped bijectively to {|z| =

1, 1
2 ≤ <(z) < 1}. By Lemma 3.4 and (8.3) we see that bothW1,ρ(z) andW2,ρ(z) are monotonically

decreasing along the set {|z| = 1, 1
2 ≤ x < 1}. This proves (8.2).
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By (8.2), we conclude that

min
z∈Ωb

W1,ρ(z) ≡ min
z∈Ωc

W1,ρ(z), min
z∈Ωb

W2,ρ(z) ≡ min
z∈Ωc

W2,ρ(z).

Step 4: Reducing minimization problem from Ωc to Ωd.

In this case, let ρ∗ = 1
20 be as in Propositions 5.1. For ρ ∈ [0, ρ∗], Proposition 5.1 implies that

min
z∈Ωc

W1,ρ(z) ≡ min
z∈Ωd

W1,ρ(z), ρ ∈ [0, ρ∗].

For ρ ∈ (ρ∗,∞), using Lemma 3.3, Lemma 5.2, and (8.2), we get that

min
z∈Ωc

W1,ρ(z) ≡ ρ min
w∈Ωc

W2,1/ρ(w), 1/ρ ∈ (0, 1/ρ∗)

≡ ρ min
w∈Ωd

W2,1/ρ(w), 1/ρ ∈ (0, 1/ρ∗)

≡ min
z∈Ωd

W1,ρ(z), ρ ∈ (ρ∗,∞).

Therefore, we obtain that

min
z∈Ωc

W1,ρ(z) ≡ min
z∈Ωd

W1,ρ(z), ρ ∈ [0,∞). (8.4)

By Theorem 3.3, (8.2) and (8.4), we have that

min
z∈Ωc,ρ∈[0,∞)

W2,ρ(z), ≡ ρ min
w∈Ωc,1/ρ∈[0,∞)

W1,1/ρ(w),

≡ ρ min
w∈Ωd,1/ρ∈[0,∞)

W1,1/ρ(w),

≡ min
z∈Ωd,ρ∈[0,∞)

W2,ρ(z).

(8.5)

Step 5: Reducing minimization problem from Ωd to Ωe.

The follows from (8.3).
In summary, from Steps 1-5, we conclude that

min
z∈H
W1,ρ(z) ≡ min

z∈Ωe
W1,ρ(z), min

z∈H
W2,ρ(z) ≡ min

z∈Ωe
W2,ρ(z). (8.6)

From (8.6), we just need to find the minimizer in a much smaller curve Ωe. But this gives no
information about uniqueness or multiplicity of the minimizers. In fact, one can further rule out
the possible minimizers of minz∈ΩaW1,ρ(z), minz∈ΩaW2,ρ(z) in a large set. Namely, for z ∈ Ωa\Ωe,
there is no any possible minimizer for minz∈ΩaW1,ρ(z), minz∈ΩaW2,ρ(z). The possible multiplicity
of minimizer is admitted only in Step 1, see (8.1). But up the group transformation G2, the possible
minimizer in (8.1) is unique. Therefore, one can conclude the reduction in (8.6) is unique up to the
group transformation G2. In the next step we will show that minz∈ΩeW1,ρ(z), minz∈ΩeW2,ρ(z)
exists , is unique and can be located precisely.

Let w be the map w(z) = z−1
z+1 whose inverse is z(w) = 1+w

1−w . Under this map we have z = yi ∈
Ωea 7→ w = y2−1

y2+1 + i 2y
y2+1 ∈ Ωeb, w = u+ iv ∈ Ωeb 7→ z = i

√
1−u2

1−u ∈ Ωea.

We note that
ρ1 < 1/ρ2 < ρ2 < 1/ρ1.

See in Propositions 6.1 and 7.1.
Now we consider the minimizer of W1,ρ(z) on Ωe. We divide into three cases.

Case 1. ρ ∈ [ρ1, 1/ρ2].

In this case, ρ ≥ ρ1, 1/ρ ≥ ρ2. Then by Propositions 6.1 and 7.1, both W1,ρ(z) and W2,ρ(z)
are monotonically increasing on Ωea along positive y axis direction. Then it follows that W1,ρ(z)
is monotonically increasing on Ωeb clockwise. Therefore, the minimizer of of W1,ρ(z) on Ωe is
uniquely achieved at y = i.

Case 2. ρ ∈ (0, ρ1).
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In this case, 1/ρ > 1/ρ1 > ρ2. Then by Proposition 7.1, W2,1/ρ(z) is monotonically increasing
on Ωea along positive y axis direction. It follows from Lemma 3.4 or Theorem 3.3 that W1,ρ(z) is
monotone increasing on Ωeb clockwise. On the other hand, by Proposition 6.1, W1,ρ(z) admits a

unique minimizer at y = iy1,ρ ∈ i(1,
√

3) on Ωea. We conclude thatW1,ρ(z) has a unique minimizer

at z1,ρ = iy1,ρ ∈ (1,
√

3) on Ωe.

Case 3. ρ ∈ (1/ρ2,∞).

In this case, since 1/ρ < ρ2, by Proposition 7.1,W2,1/ρ(z) has a unique minimizer at y = y2,1/ρ ∈
(1,
√

3) on Ωea. Then by Theorem 3.3 or Lemmas 3.4, W1,ρ(·) has a unique minimizer

z1,ρ =
y2

2,1/ρ − 1

y2
2,1/ρ + 1

+ i
2y2,1/ρ

y2
2,1/ρ + 1

∈ inner points of Ωeb. (8.7)

On the other side, one has ρ > 1/ρ2 > ρ1. Then by Proposition 6.1,W1,ρ(z) is monotone increasing
on Ωea along the positive y axis direction. Therefore, (8.7) gives the minimizer of W1,ρ(z) on Ωe.

This proves Theorems 1.2 and 1.4. Theorem 1.3 follows from Theorem 1.2 and Lemma 3.3.

9. Proof of Mueller-Ho functional and Mueller-Ho conjecture

Proof of Lemma 2.1. Since the computation is elementary, we omit the details here.
Proof of Lemma 2.3.

J (z;
1

2
,

1

2
) =

∑
m,n

e−
π
y |mz−n|

2

cos((m+ n)π)

=
∑
m,n

e−
π
y |mz−n|

2(
1 + cos((m+ n)π)

)
−
∑
m,n

e−
π
y |mz−n|

2

=
∑
m,n

e−
π
y |mz−n|

2

2 cos2(
(m+ n)π

2
)− θ(1; z) =

∑
m+n=2k,k∈Z

2e−
π
y |mz+n|

2

− θ(1; z)

= 2
∑
m,k

e−
π
y |m(z+1)−2k|2 − θ(1; z) = 2

∑
m,k

e
− 2π

=( z+1
2

)
|m z+1

2 −k|
2

− θ(1; z)

= 2θ(2;
z + 1

2
)− θ(1; z).

Proof of Theorem 2.1. This follows by Theorems 1.2, 1.3 and 1.4, by the relation ρ = 1−α
2α .

10. Appendix 1: Proof of Lemma 2.2

Recall that

J (z; a, b) =
∑

(m,n)∈Z2

e−
π
y |mz−n|

2

cos(2π(ma+ nb)). (10.1)

In this appendix we show that when the lattice is square type, then ( 1
3 ,

1
3 ) is not a critical point

while when the lattice is hexagonal (or triangular) it is a critical point.
First we show that

Lemma 10.1.

∂

∂a
J (z; a, b)|z=i,(a,b)=( 1

3 ,
1
3 ) =

∂

∂b
J (z; a, b)|z=i,(a,b)=( 1

3 ,
1
3 ) < 0. (10.2)

This implies that J (z; a, b) is not always critical point for any lattice shape.
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Proof.

∂

∂a
J (z; a, b)|z=i,(a,b)=( 1

3 ,
1
3 ) = −2π

∑
m,n

me−π(m2+n2) sin(
2π(m+ n)

3
)

∂

∂a
J (z; a, b)|z=i,(a,b)=( 1

3 ,
1
3 ) = −2π

∑
m,n

ne−π(m2+n2) sin(
2π(m+ n)

3
).

(10.3)

It is clear that
∂

∂a
J (a, b; z)|z=i,(a,b)=( 1

3 ,
1
3 ) =

∂

∂b
J (a, b; z)|z=i,(a,b)=( 1

3 ,
1
3 ).

Let

A :=
∑
m,n

e−π(m2+n2) sin(
2π(m+ n)

3
)m.

Equivalently, we show that

A > 0.

Grouping by m+ n = 3k + j, j = 0, 1, 2, we have

A

sin(π3 )
=

∑
m+n≡1( mod 3)

me−π(m2+n2) −
∑

m+n≡2( mod 3)

me−π(m2+n2). (10.4)

For the first part in (10.4), splitting the summation by m > 0 or m < 0, we have (dropping the
mod 3) ∑

m+n≡1

e−π(m2+n2)m =
∑

m>0,m+n≡1

me−π(m2+n2) −
∑

m>0,m+n≡2

me−π(m2+n2)
(10.5)

For the second part in (10.4), similarly, one has∑
m+n≡2

e−π(m2+n2)m =
∑

m>0,m+n≡2

me−π(m2+n2) −
∑

m>0,m+n≡1

me−π(m2+n2). (10.6)

By (10.5) and (10.6), we have∑
m+n≡2

me−π(m2+n2) = −
∑

m+n≡1

me−π(m2+n2)

and by (10.4)

A

2 sin(π3 )
=

∑
m>0,m+n≡1

me−π(m2+n2) −
∑

m>0,m+n≡2

me−π(m2+n2). (10.7)

Notice that e−π is one term in the first summation in (10.7), it suffices to prove that∑
m>0,m+n≡2

me−π(m2+n2) < e−π.

Now we have ∑
m>0,m+n≡2

e−π(m2+n2)m =

∞∑
m=1

∑
k∈N

me−π(m2+(3k+2)2)

=

∞∑
m=1

me−πm
2 ∑
k∈N

e−π(3k+2)2

< (e−π + 4e−4π)(e−π + 2e−4π) < e−π.

This completes the proof. �

Next we show that (a, b) = (1
3 ,

1
3 ) is a critical point when z = 1

2 + i
√

3
2 .
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Proof. We first claim that∑
(m,n)∈Z2

e−x(m2+n2−mn)m sin(
2π(m+ n)

3
) = 0, for ∀x > 0. (10.8)

To prove (10.8), it suffices to prove that∑
n

e−x(m2+n2−mn) sin(
2π(m+ n)

3
) = 0, for ∀x > 0. (10.9)

In fact, ∑
n

e−x(m2+n2−mn) sin(
2π(m+ n)

3
)

=− e− 3
4xm

2 ∑
n

e−
x
4 (2n−m)2

sin
π(2n−m)

3

=0.

(10.10)

In the last equality, one uses 2n−m,n ∈ Z and takes all the even or odd integers when m is even
or odd.

By simple calculation, now the second part of Lemma 2.2 is equivalent to∑
m,n

e−
π
2y

(
(m−n)2y2+(m+n)2

)
m sin

2π(m+ n)

3
= 0, if y =

√
3 (10.11)

which is of consequence of (10.8). This completes the proof.
�

11. Appendix 2: The rest of proof in Theorem 6.1 and Theorem 7.1

In this appendix, we finish the technical proofs of Theorems 6.1 and 7.1.
Throughout this appendix we frequently use the following Lemma whose proof is straightforward

calculus and is omitted:

Lemma 11.1. Let f(y)(j) denote dj

dyj f(y). For , j = 1, 2, 3 · · · , there holds

• For a > 0, b > 0,(
ybe−ay

)′
< 0, if y >

b

a
;
(
ybe−ay

)′′
> 0, if y >

b+
√
b

a
.

• For a > 0,

(−1)j
(√

ye−ay
)(j)

> 0, if y > fj(a).

Here

f1(a) =
1

2a
, f2(a) =

1 +
√

2

2a
, f3(a) =

1

a
, f4(a) =

1

2a
.

• For y ≥ 1 and an > 0

|
( ∞∑
n=k

√
ye−any

)(j)

| ≤ (1 + σj,k)
√
y(ak)je−aky, σj,k =

∞∑
n=k+1

(
an
ak

)je−(an−ak).

The structure of this appendix is organized as follows. (6.11)⇔ Lemma 11.2; (6.12)⇔ Lemma
11.3; (6.13)⇔ Lemma 11.4; (6.26)⇔ Lemma 11.5; (6.27)⇔ Lemma 11.6; (6.25)⇔ Lemma 11.7;
(7.7)⇔ Lemma 11.8; (7.8)⇔ Lemma 11.9; (7.9)⇔ Lemma 11.10; (7.17)⇔ Lemma 11.11; (7.18)⇔
Lemma 11.12; (7.19)⇔ Lemma 11.13.
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11.1. The rest of proof in Theorem 6.1.

Lemma 11.2. y 7→ 16y
π e

1
4πy
(
Y ′′aX ′a −X ′′a Y ′a

)
(y), y ∈ [1,∞) is monotonically increasing.

Proof. Calculating and grouping the terms, we get

16y

π
e

1
4πy
(
Y ′′aX ′a −X ′′a Y ′a

)
(y)

=
(
πy − 2496e−7πyπ2y2 − 144e−7πy − 700e−6πyπy − 1440e−5πyπ2y2 − 288e−5πy − 2176e−4πyπy

− 840e−3πyπ2y2 − 108e−3πy − 243e−2πyπy − 110e−πyπy − 6
)

+
(

696e−7πyπy + 2016e−6πyπ2y2 + 168e−6πy + 1008e−5πyπy + 2208e−4πyπ2y2 + 768e−4πy

+ 234e−3πyπy + 192e−2πyπ2y2 + 162e−2πy + 24e−πyπ2y2 + 132e−πy
)

(11.12)

Denote the terms in first and second brackets of 16y
π e

1
4πy
(
Y ′′aX ′a − X ′′a Y ′a

)
(y) by P+

XY and P−XY
respectively. One has 16y

π e
1
4πy
(
Y ′′aX ′a − X ′′a Y ′a

)
(y) = P+

XY(y) + P−XY(y) by (11.12). It remains to

prove that
(
P+
XY + P−XY

)′
> 0, y ∈ [1,∞).

It is clear that the leading order term is πy, this gives that
(
P+
XY +P−XY

)′
> 0 when y is large.

By Lemma 11.1, one has(
P+
XY

)′
> π,

(
P−XY

)′
< 0,

(
P+
XY

)′′
< 0,

(
P−XY

)′′
> 0 if y ≥ 1. (11.13)

Direct calculation shows that
(
P−XY

)′
|y=2.2= −3.012967072 · · · . Then by (11.13)(

P+
XY + P−XY

)′
(y) > π − 3.012967072 · · · > 0, if y ≥ 2.2. (11.14)

Next we prove that (
P+
XY + P−XY

)′
(y) > 0, for y ∈ [1, 2.2]. (11.15)

To prove this, we regroup the terms by

P+
XY(y) + P−XY(y)

=(πy − 6) + e−πy(−110πy + 24π2y2 + 132) + e−2πy(−243πy + 192π2y2 + 162)

+ e−3πy(−840π2y2 − 108 + 234πy) + e−4πy(−2176πy + 2208π2y2 + 768)

+ e−5πy(−1440π2y2 − 288 + 1008πy) + e−6πy(−700πy + 2016π2y2 + 168)

+ e−7πy(−2496π2y2 − 144 + 696πy).

(11.16)

To prove this, one divides the interval [1, 2.2] into, say, ten subintervals, [1, 2.2) = ∪9
i=0[ai, ai+1).

In each intervals, by careful calculations, we can show that the function is positive on each interval.
�

Lemma 11.3. The estimates hold: |
(
Y ′′eX ′ − Y ′eX ′′ + Y ′′aX ′e − X ′′e Y ′a

)
(y)| ≤ (44π2 + 18π +

36πy)e−
17
4 πy.

Remark 11.1. The coefficient of the bound is not sharp, but the exponential term captures the
main feature.

Proof. By Lemma 11.1, one infers that

|Y ′e(y)| ≤ 18π
√
ye−

17
4 πy, |Y ′′e (y)| ≤ 290π2

4

√
ye−

17
4 πy, |X ′e(y)| ≤ 41π

√
ye−5πy, |X ′′e (y)| ≤ 201π2√ye−5πy
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For X ′,X ′′,Y ′a,Y ′′a , by their expressions, one has

|X ′(y)| ≤ 3

5
√
y
, |X ′′(y)| ≤ (

1

4y3/2
+ 2
√
y), |Y ′a(y)| ≤ (

1
√
y

+ 2
√
y), |Y ′a(y)| ≤ (

1

4y3/2
+ 2
√
y).

Thus, one can get the result.
�

Lemma 11.4. There holds
(
Y ′′X ′ − Y ′′X ′

)
(y) > 0, y ∈ [1.1,∞).

Proof. It remains to prove that 16y
π e

1
4πy
(
Y ′′X ′ − Y ′′X ′

)
(y) > 0, y ∈ [1.1,∞).

By Lemmas 11.2 and 11.3,

16y

π
e

1
4πy
(
Y ′′X ′ − Y ′′X ′

)
(y)

=
16y

π
e

1
4πy
(
Y ′′aX ′a −X ′′a Y ′a

)
(y) +

16y

π
e

1
4πy
(
Y ′′eX ′ − Y ′eX ′′ + Y ′′aX ′e −X ′′e Y ′a

)
(y)

≥16y

π
e

1
4πy
(
Y ′′aX ′a −X ′′a Y ′a

)
(y)− 16y

π
(44π2 + 18π + 36πy)e−4πy

≥
(16y

π
e

1
4πy
(
Y ′′aX ′a −X ′′a Y ′a

)
(y)− 16y(44π + 18 + 36y)e−4πy

)
|y=1.1= 0.001671778 · · · , y ∈ [1.1,∞)

>0, y ∈ [1.1,∞).

In the second last step, one uses the fact that y 7→ −16y(44π + 18 + 36y)e−4πy, y > 1 is strictly
increasing.

�

Lemma 11.5. y → 512y4

π e
1
4πy
(
Y ′′′′a X ′′a − Y ′′aX ′′′′a

)
(y) is monotonically decreasing on (1, 1.2).

Proof. By direct calculations, one regroups the terms by

512y4

π
e

1
4πy
(
Y ′′′′a X ′′a − Y ′′′′a X ′′′′a

)
(y)

=− π3y3 + 8π2y2 + 84πy − 144

+ e−πy
(
− 240π5y5 − 9240πy − 6320π2y2 + 1392π4y4 + 350π3y3 + 3168

)
+ e−2πy

(
− 11232π5y5 − 14877π3y3 − 20412πy − 32856π2y2 + 36096π4y4 + 3888

)
+ e−3πy

(
− 348240π4y4 − 2592 + 178854π3y3 + 209040π5y5 + 19656πy + 91536π2y2

)
+ e−4πy

(
− 804576π5y5 − 121856π3y3 − 472576π2y2 − 182784πy + 1465533π4y4 + 18432

)
+ e−5πy

(
− 140064π64y4 − 6912 + 160272π3y3 + 685440π5y5 + 84672πy + 284544π2y2

)
+ e−6πy

(
− 570500π3y3 − 3628800π5y5 − 58800πy − 301280π2y2 + 3100608π4y4 + 4032

)
+ e−7πy

(
− 5236608π4y4 − 3456 + 862344π3y3 + 7527936π5y5 + 361152π2y2 + 58464πy

)
.

(11.17)
The rest is careful calculations by taking derivatives.

�

Lemma 11.6. There has |
(
Y ′′′′e X ′′−Y ′′e X ′′′′+Y ′′′′a X ′′e −X ′′′′e Y ′′a

)
(y)| ≤ 16( 17

4 π)4√ye− 17
4 πy, y ≥ 1.

Remark 11.2. The coefficient of the bound is rather rough but is enough to get our result. The
exponential power captures the main feature.
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Proof. By Lemma 11.1, one infers that

|Y ′′e (y)| ≤ 4(
17

4
π)2(1 + σYe,2)

√
ye−

17
4 πy, |Y ′′′′e (y)| ≤ 4(

17

4
π)4(1 + σYe,4)

√
ye−

17
4 πy (11.18)

and

|X ′′e (y)| ≤ 8(5π)2(1 + σXe,2)
√
ye−5πy, |X ′′′′e (y)| ≤ 8(5π)4(1 + σXe,4)

√
ye−5πy. (11.19)

Here σXe,j , σYe,j , j = 2, 4 are small and can be bounded by 1
4 . For X ′′,X ′′′′,Y ′′a and Y ′′′′a , by their

explicit expressions, one has

|X ′′′′(y)| ≤ 10, |X ′′(y)| ≤ 1.2, |Y ′′′′a (y)| ≤ 1

10
, |Y ′′′′a (y)| ≤ 1, y ≥ 1. (11.20)

Combining (11.18), (11.19) with (11.20), one gets the estimate.
�

Lemma 11.7. There holds
(
Y ′′′′X ′′ − Y ′′X ′′′′

)
(y) > 0, y ∈ [1, 1.11].

Proof. It suffices to prove that
512y4

π e
1
4πy
(
Y ′′′′X ′′ − Y ′′X ′′′′

)
(y) > 0, y ∈ [1, 1.11]. By the decomposition and Lemmas 11.5

and 11.6, we obtain that

512y4

π
e

1
4πy
(
Y ′′′′X ′′ − Y ′′X ′′′′

)
(y)

=
512y4

π
e

1
4πy
(
Y ′′′′a X ′′a − Y ′′aX ′′′′a

)
(y) +

512y4

π
e

1
4πy
(
Y ′′′′e X ′′ − Y ′′eX ′′′′ + Y ′′′′a X ′′e −X ′′′′e Y ′′a

)
(y)

≥512y4

π
e

1
4πy
(
Y ′′′′a X ′′a − Y ′′aX ′′′′a

)
(y)− 72

5
· 174π3y9/2e−4πy

≥512y4

π
e

1
4πy
(
Y ′′′′a X ′′a − Y ′′aX ′′′′a

)
(y) |y=1.11 −

72

5
· 174π3y9/2e−4πy |y=1, y ∈ [1, 1.11]

=158.4646175 · · · − 130.0476135 · · ·
>0.

(11.21)
�

11.2. The rest of proof in Theorem 7.1.

Lemma 11.8. The function y → 4y
π e

1
2πy
(
B′′aA′a −A′′aB′a

)
(y), y > 1 is monotone increasing.

Proof. By direct calculations, one regroups the terms by

4y

π
e

1
2πy
(
B′′aA′a −A′′aB′a

)
(y)

=
(
πy − 3− 288e−8πyπ2y2 − 12e−8πy − 144e−

9
2πy − 72e−3πy − 48e−

5
2πy − 84e−5πy − 12πe−πyy

− 8πe−
1
2πyy − 768π2e−

9
2πyy2 − 128π2e−

5
2πyy2 − 240y2e−3πyπ2 − 504e−5πyπ2y2 − 52e−6πyπy

− 99e−4πyπy − 10e−2πyπy
)

+
(

68e−8πyπy + 240e−6πyπ2y2 + 12e−
1
2πy + 12e−6πy + 33e−4πy + 6e−2πy + 12e−πy + 96πe−

5
2πyy

+ 480πe−
9
2πyy + 8π2e−πyy2 + 168ye−3πyπ + 64e−4πyπ2y2 + 48e−2πyπ2y2 + 308e−5πyπy

)
(11.22)

Denote the terms in the first and second bracket of (11.22) by P+
AB and P−AB. Then

4y

π
e

1
2πy
(
B′′aA′a −A′′aB′a

)
(y) = P+

AB(y) + P−AB(y). (11.23)

It remains to prove that P+
AB(y) + P−AB(y) > 0, y > 1.
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By Lemma 11.1,

(
P+
AB(y)

)′
(y) > π,

(
P+
AB(y)

)′′
(y) < 0,

(
P−AB(y)

)′
(y) < 0,

(
P−AB(y)

)′′
(y) > 0 (11.24)

Since
(
P−AB(y)

)′
(y) |y=1.82= −3.051954266 · · · , one has

P+
AB(y) + P−AB(y) ≥π − 3.051954266 · · · , y ∈ [1.82,∞) > 0. (11.25)

It remains to prove that P+
AB(y) + P−AB(y) > 0 on the bounded interval (1, 1.82]. To this end,

we divide the interval (1, 1.82] into 10 smaller subintervals, and compute the derivatives on each
interval to arrive the result.

�

Lemma 11.9. There holds: |
(
B′′eA′ − B′eA′′ + B′′aA′e −A′′eB′a

)
(y)| ≤ 8( 13

8 π)2√ye− 13
2 πy, y ≥ 1.

By Lemma 11.1, one has for j = 1, 2, · · ·

|A(j)
e (y)| ≤ 4(1 + σAe,j)(

13

2
π)j
√
ye−

13
2 πy, |B(j)

e (y)| ≤ 4(1 + σBe,j)(
13

2
π)j
√
ye−

13
2 πy. (11.26)

Here the σAe,j , σBe,j are small and can be bounded by 1
2 . For A′,A′,B′a,B′′a , by their explicit

expressions, one deduces that

|A′(y)| ≤ 0.3, |A′′(y)| ≤ 1

2
, |B′a(y)| ≤ 1

5
, |B′′a(y)| ≤ 1

5
. (11.27)

Combining (11.26) and (11.27), one gets the estimate.

Lemma 11.10. There holds
(
B′′A′ −A′′B′

)
(y) > 0 if y ∈ [1.05,∞).

Proof. Equivalently, it suffice to prove that 4y
π e

1
2πy
(
B′′A′ − A′′B′

)
(y) > 0 if y ∈ [1.05,∞). By

Lemmas 11.8 and 11.9, we deduce that

4y

π
e

1
2πy
(
B′′A′ −A′′B′

)
(y)

=
4y

π
e

1
2πy
(
B′′aA′a −A′′aB′a

)
(y) +

4y

π
e

1
2πy
(
B′′eA′ − B′eA′′ + B′′aA′e −A′′eB′a

)
(y)

≥4y

π
e

1
2πy
(
B′′aA′a −A′′aB′a

)
(y)− 1352πy3/2e−6πy

≥
(4y

π
e

1
2πy
(
B′′aA′a −A′′aB′a

)
(y)− 1352πy3/2e−6πy

)
|y=1.05= 0.001189906301 · · ·

>0.

(11.28)

Here we use the fact that y 7→ −y3/2e−6πy, y > 1 is strictly increasing in the second last inequality.
�

Lemma 11.11. y → 32y4

π e
1
2πy
(
B′′′′a A′′a − B′′aA′′′′a

)
(y) is strictly decreasing on (1, 1.12).
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Proof. By Direct calculations, one regroups the terms by

32y4

π
e

1
2πy
(
B′′′′a A′′a − B′′′′a A′′′′a

)
(y)

=− π3y3 + 4π2y2 + 21πy − 18

+ e−
1
2πy(32π3y3 + 72− 64π2y2 − 168πy)

+ e−πy(176π4y4 + 72− 48π5y5 − 252πy − 304π2y2 − 132π3y3)

+ e−2πy(2784π4y4 + 36− 960π5y5 − 2150π3y3 − 1160π2y2 − 210πy)

+ e−
5
2πy(6144π5y5 + 4224π3y3 + 2016πy + 4864π2y2 − 11264π4y4 − 288)

+ e−3πy(8568π3y3 + 16800π5y5 + 9504π2y2 + 3528πy − 28320π4y4 − 432)

+ e−4πy(2007π3y3 + 28800π5y5 + 8708π2y2 + 3213πy − 32320π4y4 − 306)

+ e−5πy(99792π5y5 + 18172π3y3 + 23632π2y2 + 6468πy − 140112π4y4 − 504)

+ e−6πy(49660π3y3 + 336960π5y5 + 27920π2y2 + 5460πy − 295200π4y4 − 360).

(11.29)

Using the explicit expression in (11.29) and dividing the interval (1, 1.12) into 10 smaller intervals
and calculating the derivatives on each interval, we obtain the result.

�

Lemma 11.12. The error estimate holds:

|
(
B′′′′e A′′ − B′′eA′′′′ + B′′′′a A′′e −A′′′′e B′′a

)
(y)| ≤ 8(

13

2
π)4√ye− 13

2 πy. (11.30)

Remark 11.3. The coefficient of the bound is rather rough but is enough to get our result. The
exponential power captures the main feature.

Proof. Using the explicit expressions of A and Ba, after tedious estimates, we arrive at

|A′′′′(y)| ≤ 8, |B′′′′a (y)| ≤ 5. (11.31)

This, combining with (11.26) and (11.27), gives the estimate.
�

Lemma 11.13. There holds(
B′′′′A′′ − B′′A′′′′

)
(y) > 0, y ∈ [1, 1.12]. (11.32)

Proof. It is equivalent to proving that 32y4

π e
1
2πy
(
B′′′′A′′−B′′A′′′′

)
(y) > 0, y ∈ [1, 1.12]. By Lemmas

11.11 and 11.12, we have that

32y4

π
e

1
2πy
(
B′′′′A′′ − B′′A′′′′

)
(y)

=
32y4

π
e

1
2πy
(
B′′′′a A′′a − B′′aA′′′′a

)
(y) +

32y4

π
e

1
2πy
(
A′′2B′′′′ + B′′′′2 A′′a −A′′′′2 B′′ − B′′2A′′′′a

)
(y)

≥32y4

π
e

1
2πy
(
B′′′′a A′′a − B′′aA′′′′a

)
(y)− 264π3y9/2e−6πy

≥32y4

π
e

1
2πy
(
B′′′′a A′′a − B′′aA′′′′a

)
(y) |y=1.12 −264π3y9/2e−6πy |y=1

=49.93918473 · · · − 0.09227517899 · · ·
>0.

(11.33)

�
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