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Abstract

The note is aimed at giving a complete characterization of the following equa-
tion in p:

p
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )
=
(Γ(n+2s

4 )

Γ(n−2s4 )

)2
.

The method is based on some key transformation and the properties of the
Gamma function. Applications to fractional nonlinear Lane-Emden equations
will be given.

1 Introduction and main results

In this note we consider the following equation for p

p
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )
=
(Γ(n+2s

4 )

Γ(n−2s4 )

)2
, (1.1)

where p > n
n−2s and (s, n) satisfies

0 < s <
n

2
, n ∈ N+. (1.2)

Equation (1.1) appears frequently in the study of fractional Lane-Emden equation (see [2, 5]), the frac-
tional Yamabe equation with singularities (see [4, 7]) and also some high-order equations (see [3, 8], where
s = 2). For example, consider the singular solutions for the fractional supercritical Lane-Emden equation,

(−∆)su = |u|p−1u, p >
n

n− 2s
. (1.3)

By Lemma 1.1 of [5], the singular radial solution of (1.3) us is given by

us(x) = A|x|−
2s

p−1 , where Ap−1 =
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )
. (1.4)

By Herbst’s generalized Hardy’s inequality ([9])∫
Rn

∫
Rn

(φ(x)− φ(y))2

|x− y|n+2s
dxdy ≥

Γ(n+2s
4 )2

Γ(n−2s4 )2

∫
Rn

|x|−2sφ2dx,
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us is stable if and only if the following inequality holds

p
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )
≤
(Γ(n+2s

4 )

Γ(n−2s4 )

)2
, (1.5)

while it is unstable if

p
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )
>
(Γ(n+2s

4 )

Γ(n−2s4 )

)2
. (1.6)

In [5], it is proved that for 1 < s < 2, if p > 1, p 6= n+2s
n−2s and p satisfies (1.6) then all stable and finite

Morse index solutions to (1.3) must be trivial. An open question is the classification of the range of p for
which (1.5) or (1.6) holds. In this paper we shall give an affirmative answer to this question.

Our first result concerns the classification of the roots of (1.1).

Theorem 1.1. Assume that n > 2s, s > 0, p > n
n−2s . There exists n0(s) ∈ N+ such that

(1) if n ≤ n0(s), then (1.1) only has one real root p and

p =
n+ 2s− 2 + 2an,s

√
n

n− 2s− 2 + 2an,s
√
n
,

where an,s satisfies 1√
n
< an,s <

1
2
n−2s√
n

+ 1√
n

and is the unique positive root of the function fn,s(a)

defined in (2.3) of Section 2.

(2) if n > n0(s), then (1.1) has exactly two real roots p1 and p2, where

p1 :=
n+ 2s− 2 + 2an,s

√
n

n− 2s− 2 + 2an,s
√
n
, p2 :=

n+ 2s− 2− 2an,s
√
n

n− 2s− 2− 2an,s
√
n
.

Moreover, there holds
n

n− 2s
< p1 <

n+ 2s

n− 2s
< p2 < +∞. (1.7)

Remark 1.1. The integer n0(s) is the largest integer such that

n− 2s− 2− 2an,s
√
n ≤ 0. (1.8)

Hence when n > n0(s), n− 2s− 2− 2an,s
√
n > 0 and thus p2 is well-defined.

As for the inequalities (1.5)-(1.6), we have the following necessary and sufficient conditions.

Theorem 1.2. Assume that n > 2s, s > 0, p > n
n−2s . Then there exists n0(s) ∈ N+ such that for the

inequality (1.6), we have

(1) if n ≤ n0(s), then the inequality (1.6) holds if and only if

p > p1 :=
n+ 2s− 2 + 2an,s

√
n

n− 2s− 2 + 2an,s
√
n

;

(2) if n > n0(s), then the inequality (1.6) holds if and only if

p1 :=
n+ 2s− 2 + 2an,s

√
n

n− 2s− 2 + 2an,s
√
n
< p < p2 :=

n+ 2s− 2− 2an,s
√
n

n− 2s− 2− 2an,s
√
n
,

where
n

n− 2s
< p1 <

n+ 2s

n− 2s
<
n+ 2s− 4

n− 2s− 4
< p2 < +∞.
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Remark 1.2. The root p1 appears in the Lane-Emden equation with singularities and also fractional Yamabe
equation with singularities, while the root p2 is essential in the study of stability of solutions to the fractional
Lane-Emden equation. In the literature, when s = 1, the root p2 is usually called Joseph-Lundgren expo-
nent (See Joseph and Lundgren [10] and Farina [6]). When s = 1, the root p1 plays an important role in
constructing singular solutions for Lane-Emden equation with subcritical exponent (Chen-Lin [1]).

The following corollary gives a complete classification on the stability of the singular radial solutions to
(1.3).

Corollary 1.1. Assume that n > 2s, s > 0, p > n
n−2s . Let us be given by (1.4). Then there exists n0(s) ∈ N+

such that

(1) if n ≤ n0(n, s), then us is stable if and only if p ≥ p1;

(2) if n > n0(n, s), then us is stable if and only if

p ≥ p2 :=
n+ 2s− 2− 2an,s

√
n

n− 2s− 2− 2an,s
√
n
.

In all the results above, we have the two numbers n0(s) and an,s which are to be implicitly determined.
By (1.8), n0(s) is the largest integer satisfying the following inequality

n ≤
(
an,s +

√
a2n,s + 2s+ 2

)2
. (1.9)

The range of an,s is important in applications. The bound 1√
n
< an,s <

1
2
n−2s√
n

+ 1√
n

is too rough. Next,

we give more refined and quantitative estimates on an,s. These results show that an,s is very close to the
constant 1 when n is large.

Theorem 1.3. Assume that n > 2s, s > 0.

(1) For any ε1 > 0, there exists n1(s, ε1) such that an,s < 1 + ε1 whenever n > n1(s, ε1) := max{(1 + ε1 +√
max{(1 + ε1)2 + 2s− 2, 0})2, n1(s, ε1)}, where n1(s, ε1) is the largest real root of(

(−ε21 − 2ε1)n4 +
[
− 27 + (18s+ 48)(1 + ε1)2

]
n3

+
[
(−36s2 − 96s− 144)(1 + ε1)2 − 24s2 − 30s+ 88

]
n2

+
[
(24s3 + 192s2 + 288s+ 192)(1 + ε1)2 + 60s2 + 64s− 144

]
n

+ 48s4 + 216s3 + 352s2 + 288s+ 192
)

= 0.

(2) For any ε2 > 0, there exists n2(s, ε2) such that an,s > 1− ε2 whenever n > n2(s, ε2) := max{(1− ε2 +√
max{(1− ε2)2 + 2s− 2, 0})2, n2(s, ε2)}, where n2(s, ε2) is the square of the largest real root of the

following equation (about variable t)(
(ε22 + 2ε2)t6 − 2(1− ε2)3t5 +

[
18(1− ε2)2 − 18s− 39

]
t4

+
[
− 4(1− ε2)3s− 6(1− ε2)

]
t3

+
[
(12s2 + 36s)(1− ε2)2 + 36s2 + 144s+ 158

]
t2

− 12(1− ε2)st− 24s3 − 132s2 − 260s− 192
)

= 0.

(3) limn→+∞ an,s = 1 for any fixed s > 0.

Remark 1.3. Theorem 1.3 gives precise thresholds for an,s. In fact, for a fixed range of s, say s ∈ (2, 3),
we have 0.7 < an,s < 1.5 as long as n ≥ 44. Moreover, from the Table 1, we have a quantitative estimate of
the constants n1(s, ε1) and n2(s, ε2) (See Theorem 1.3).
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Table 1: The location of an,s. For simplicity, we set an,s := A.
s & A A < 1.5 A > 0.6 A < 1.2 A > 0.8 A < 1.1 A > 0.9
s ∈ (0, 1] n ≥ 28 n ≥ 20 n ≥ 46 n ≥ 37 n ≥ 79 n ≥ 71
s ∈ (1, 2] n ≥ 36 n ≥ 26 n ≥ 63 n ≥ 51 n ≥ 110 n ≥ 100
s ∈ (2, 3] n ≥ 44 n ≥ 33 n ≥ 79 n ≥ 65 n ≥ 141 n ≥ 128
s ∈ (3, 4] n ≥ 52 n ≥ 39 n ≥ 96 n ≥ 79 n ≥ 172 n ≥ 157
s ∈ (4, 5] n ≥ 59 n ≥ 46 n ≥ 112 n ≥ 93 n ≥ 204 n ≥ 186
... ... ... ... ... ... ...

Remark 1.4. Using the estimates for an,s we can have some estimates on the critical dimension n0(s).
More precisely, for any ε1 > 0 we have

n0(s) ≤ max{n1(s, ε1), (1 + ε1 +
√

(1 + ε1)2 + 2s+ 2)2}. (1.10)

If we select that ε1 = 1, we get the Table 2 below.

Table 2: The estimate of n0(s) for various s.
s, n1(s, ε1), n0(n, s), n0(s) n1(s, ε1) < n0(n, s) ≤ n0(s) ≤

s ∈ (0, 1] 22 24 24
s ∈ (1, 2] 28 27 27
s ∈ (2, 3] 33 30 33
s ∈ (3, 4] 39 33 39
s ∈ (4, 5] 44 36 44
... ... ... ...
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Remark 1.5. Although the explicit formula of an,s may be very complicated for general s > 0, we have seen
by Theorem 1.3-(3) that an,s lies around the constant 1. Therefore, the roots p1, p2 obtained in Theorem 1.1
and 1.2 have the following asymptotic formulas:

p1 :=
n+ 2s− 2 + 2an,s

√
n

n− 2s− 2 + 2an,s
√
n
≈ n+ 2s− 2 +

√
n

n− 2s− 2 +
√
n
,

p2 :=
n+ 2s− 2− 2an,s

√
n

n− 2s− 2− 2an,s
√
n
≈ n+ 2s− 2−

√
n

n− 2s− 2−
√
n
.

On the other hand, to get more precise estimates on the roots p1, p2, we just need to select suitable ε1, ε2 in
Theorem 1.3.

Remark 1.6. Recall that when s = 1, the Joseph-Lundgren exponent is given by the following formula (see
Joseph and Lundgren [10], see also Farina [6] ):

pJL(n, s = 1) :=

{
∞ if n ≤ 10,

(n−2)2−4n+8
√
n−1

(n−2)(n−10) if n ≥ 11.

For the bi-harmonic case, i.e., s = 2, Joseph-Lundgren exponent is given by (see Gazzola and Grunau [8],
see also Davila, Dupaigne, Wang and Wei [3]):

pJL(n, s = 2) =

 ∞ if n ≤ 12,

n+2−
√
n2+4−n

√
n2−8n+32

n−6−
√
n2+4−n

√
n2−8n+32

if n ≥ 13.

In our setting, we obtain the universal Joseph-Lundgren exponent for any s > 0, that is,

pJL(n, s) = p2 :=
n+ 2s− 2− 2an,s

√
n

n− 2s− 2− 2an,s
√
n
.

In particular, when s = 1,

pJL(n, s = 1) :=

{
∞ if n ≤ 10,

n−2an,1
√
n

n−4−2an,1
√
n

if n ≥ 11,
(1.11)

where

an,1 =

√
n− 1

n
.

In this case (i.e., s = 1), the root p1 was obtained in Chen-Lin [1] for Lane-Emden equation with subcritical
exponent, where

p1 =
n+ 2an,1

√
n

n− 4 + 2an,1
√
n

=
n+ 2

√
n− 1

n− 4 + 2
√
n− 1

.

See Remark 1.2.
When s = 2,

pJL(n, s = 2) =

{
∞ if n ≤ 12,

n+2−2an,2
√
n

n−6−2an,2
√
n

if n ≥ 13,
(1.12)

where

an,2 =

√
2(n− 1)(n2 − 2n− 2)

n(n2 + 4 + n
√

(n− 4)2 + 4)
.

Here we notice that
lim

n→+∞
an,1 = lim

n→+∞
an,2 = 1.

Remark 1.7. We may also consider equation (1.1) when n is any positive number satisfying n > 2s. In fact
from the proof below we have used n as a continuous real variable. Theorems 1.1-1.2 hold for general real
number n > 2s.

5



2 Key transformations and analysis

At the first glance, equation (1.1) looks complicated. In this section we introduce a key transformation which
puts it in more symmetric form.

First we let

k :=
2s

p− 1
.

Since Γ(s+ 1) = sΓ(s), (1.1) becomes

Γ(n−k2 )Γ(s+ k
2 + 1)

Γ(k2 + 1)Γ(n−k−2s2 )
=
(Γ(n+2s

4 )

Γ(n−2s4 )

)2
. (2.1)

Here we notice that, the sum of the variables of the Gamma function in both the numerator and the denom-
inator on the left hand side of the above equation (2.1) is equal ton+2s

2 + 1 and n−2s
2 + 1, respectively. To

make sure that all the variables in the Gamma function in (2.1) have the term 1
4n+ 1

2s or the term 1
4n−

1
2s,

we introduce a new parameter a ∈ R satisfying

k :=
n− (2s+ 2)

2
+ a
√
n. (2.2)

For the reason why the term
√
n appears, see Remark 3.1. This is a key point. Now (2.1) reads as

Γ( 1
4n+ 1

2s+ 1
2 + 1

2a
√
n)Γ( 1

4n+ 1
2s+ 1

2 −
1
2a
√
n)

Γ( 1
4n−

1
2s+ 1

2 + 1
2a
√
n)Γ( 1

4n−
1
2s+ 1

2 −
1
2a
√
n)

=
(Γ( 1

4n+ 1
2s)

Γ( 1
4n−

1
2s)

)2
.

Now we focus on the new variable a ∈ R. Taking the logarithm on both sides above we see that (2.1) becomes

ln Γ(
1

4
n+

1

2
s+

1

2
+

1

2
a
√
n)− ln Γ(

1

4
n+

1

2
s)︸ ︷︷ ︸

+ ln Γ(
1

4
n+

1

2
s+

1

2
− 1

2
a
√
n)− ln Γ(

1

4
n+

1

2
s))︸ ︷︷ ︸

−
(

ln Γ(
1

4
n− 1

2
s+

1

2
+

1

2
a
√
n)− ln Γ(

1

4
n− 1

2
s
)

︸ ︷︷ ︸
−
(

ln Γ(
1

4
n− 1

2
s+

1

2
− 1

2
a
√
n)− ln Γ(

1

4
n− 1

2
s)
)

︸ ︷︷ ︸ = 0.

Correspondingly, we denote the left hand side (LHS, for short) of the above equation by the following

LHS :=g1(n, s, a) + g2(n, s, a)− g3(n, s, a)− g4(n, s, a) = 0;

LHS := g1(n, s, a) + g2(n, s, a)︸ ︷︷ ︸− (g3(n, s, a) + g4(n, s, a))︸ ︷︷ ︸ = 0;

LHS :=f1(n, s, a)− f2(n, s, a) = 0

which can be written as
fn,s(a) := f1(n, s, a)− f2(n, s, a) = 0. (2.3)

We note that, to make sure that all the expressions in the Gamma function above are meaningful, we
need that −2 < k < n− 2s, equivalently,

−1

2

n− 2s√
n
− 1√

n
< a <

1

2

n− 2s√
n

+
1√
n
. (2.4)

Using the above notations, we first observe that fn,s is an even function.

Lemma 2.1.
fn,s(−a) = fn,s(a).

6



Proof. It can be checked directly.

By evenness we can only discuss the function fn,s(a) for positive variable a ∈ [0, 12
n−2s√
n

+ 1√
n

) only.

To obtain further properties of fn,s(a), we introduce the following function

Ψ(x) =
d

dx

(
ln(Γ(x))

)
=

Γ′(x)

Γ(x)
.

It is known that

Ψ(m)(x) = (−1)m+1m!

∞∑
i=0

1

(x+ i)m+1
, m = 1, 2, ...

For x > 1, we note that

1

mxm
=

∫ +∞

0

1

(x+ y)m+1
dy ≤

∞∑
i=0

1

(x+ i)m+1

≤
∫ +∞

0

1

(x+ y − 1)m+1
dy =

1

m(x− 1)m
.

Therefore, by letting m = 2k and m = 2k+ 1 respectively, we have the following estimates on the derivatives
of Ψ(x): {

− (2k−1)!
(x−1)2k ≤ Ψ(2k)(x) ≤ − (2k−1)!

x2k , m = 2k,
(2k)!
x2k+1 ≤ Ψ(2k+1)(x) ≤ (2k)!

(x−1)2k+1 , m = 2k + 1.
(2.5)

Lemma 2.2. If n > 2s, s > 0, then fn,s(0) > 0.

Proof. Consider the function ln Γ( 1
2n+ 1

4s+ x)− ln Γ( 1
2n−

1
4s+ x) for x ≥ 0. Since s > 0, we have

d

dx

(
ln Γ(

1

2
n+

1

4
s+ x)− ln Γ(

1

2
n− 1

4
s+ x)

)
= Ψ(

1

2
n+

1

4
s+ x)−Ψ(

1

2
n− 1

4
s+ x) > 0.

Hence we obtain that

fn,s(0) =2
(

ln Γ(
1

2
n+

1

4
s+

1

2
)− ln Γ(

1

2
n+

1

4
s)
)
−

2
(

ln Γ(
1

2
n− 1

4
s+

1

2
)− ln Γ(

1

2
n− 1

4
s)
)

=2
(

ln Γ(
1

2
n+

1

4
s+ x)− ln Γ(

1

2
n− 1

4
s+ x)

)
|x= 1

2

− 2
(

ln Γ(
1

2
n+

1

4
s+ x)− ln Γ(

1

2
n− 1

4
s+ x)

)
|x=0

>0.

We further prove that

Lemma 2.3. If n > 2s and s > 0, then fn,s(
1√
n

) > 0.

Proof. By definition we have that

fn,s(
1√
n

) = ln Γ(
1

4
n+

1

2
s+ 1)− ln Γ(

1

4
n+

1

2
s)

−
(

ln Γ(
1

4
n− 1

2
s+ 1)− ln Γ(

1

4
n− 1

2
s)
)
.

We divide into two different cases.
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Case 1: s ≥ 1. Then we have

fn,s(
1√
n

) = ln Γ(
1

4
n+

1

2
s+ 1)− ln Γ(

1

4
n+

1

2
s)

−
(

ln Γ(
1

4
n− 1

2
s+ 1)− ln Γ(

1

4
n− 1

2
s)
)

= Ψ(
1

4
n+

1

2
s+ θ1)−Ψ(

1

4
n− 1

2
s+ θ2),

where θ1, θ2 ∈ (0, 1) by the mean value theorem. Since ( 1
4n + 1

2s + θ1) − ( 1
4n −

1
2s + θ2) = s + θ1 − θ2 > 0,

and x > 0, Ψ′(x) > 0, we obtain the conclusion.

Case 2: 0 < s < 1. Then we have

fn,s(
1√
n

) = ln Γ(
1

4
n+

1

2
s+ 1)− ln Γ(

1

4
n− 1

2
s+ 1)

−
(

ln Γ(
1

4
n+

1

2
s)− ln Γ(

1

4
n− 1

2
s)
)

= s
(

Ψ(
1

4
n+

α1

2
s+ 1)−Ψ(

1

4
n+

α2

2
s)
)
,

where α1, α2 ∈ (−1, 1) by mean value theorem. Since ( 1
4n+ α1

2 s+ 1)− ( 1
4n+ α2

2 s) = 1 + α1−α2

2 s > 1− s > 0
and x > 0, Ψ′(x) > 0, we get the conclusion.

Lemma 2.4. Let a ≥ 0. Then we have f
′

n,s(0) = 0 and f
′

n,s(a) < 0 if a > 0.

Proof. By direct computation we have that

f
′

n,s(a) =
1

2

√
n
((

Ψ(
1

4
n+

1

2
s+

1

2
a
√
n)−Ψ(

1

4
n− 1

2
s+

1

2
a
√
n)
)

−
(
Ψ(

1

4
n+

1

2
s− 1

2
a
√
n)−Ψ(

1

4
n− 1

2
s− 1

2
a
√
n)
))
.

Since fn,s(a) is an even function, it follows that f
′

n,s(0) = 0.

For a > 0, let us consider the function Ψ( 1
4n+ x) + Ψ( 1

4n− x) for 1
4n > x > 0. By (2.5) we infer that

d

dx

(
Ψ(

1

4
n+ x) + Ψ(

1

4
n− x)

)
= Ψ′(

1

4
n+ x)−Ψ′(

1

4
n− x) < 0, for x > 0.

As a consequence we deduce that

d

da
fn,s(a) =

1

2

√
n
((

Ψ(
1

4
n+ x) + Ψ(

1

4
n− x)

)
|x= 1

2 s+a
√
n

−
(
Ψ(

1

4
n+ x) + Ψ(

1

4
n− x)

)
|x= 1

2 s−a
√
n

)
< 0.

Lemma 2.5. If n > 2s, then
fn,s(a) |a= 1

2
n−2s√

n
+ 1√

n
= −∞.

Proof. If a = 1
2
n−2s√
n

+ 1√
n

, by a direct calculation, we have that 1
4n−

1
2s+ 1

2 −
1
2a
√
n = 0. Thus ln Γ( 1

4n−
1
2s+ 1

2 −
1
2a
√
n) = +∞. Note that

ln Γ(
1

4
n− 1

2
s+

1

2
+

1

2
a
√
n) = ln Γ(

1

2
(n− 2s) + 1),

ln Γ(
1

4
n+

1

2
s+

1

2
− 1

2
a
√
n) = ln Γ(s),

ln Γ(
1

4
n+

1

2
s+

1

2
+

1

2
a
√
n) = ln Γ(

1

2
n+ 1).

Therefore, f(n, s, a) |a= 1
2

n−2s√
n

+ 1√
n

= −∞.
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Lemmata 2.1-2.5 yield the following result.

Theorem 2.1. Assume that n > 2s, s > 0 and a satisfies (2.4).

(1) The equation fn,s(a) = 0 admits precisely two real roots which are opposite numbers, we denote them
as ±an,s. Moreover, 1√

n
< an,s <

1
2
n−2s√
n

+ 1√
n

.

(2) The inequality fn,s(a) > 0 holds if and only if −an,s < a < an,s.

Now we return to the variable k. Recalling that k = n−(2s+2)
2 + a

√
n, by Theorem 2.1 we immediately

have

Theorem 2.2. Assume that n > 2s, s > 0 and a satisfies (2.4).

(1) The equation (2.1) of variable k has and only has two real roots, we denote as k1, k2. Moreover,

k1 :=
n− (2s+ 2)

2
− an,s

√
n, k2 :=

n− (2s+ 2)

2
+ an,s

√
n,

where 1√
n
< an,s <

1
2
n−2s√
n

+ 1√
n

.

(2) The inequality (1.6) holds if and only if k1 < k < k2.

Now we turn to the original equation (1.1) and the corresponding inequality (1.6).

Proofs of Theorems 1.1-1.2. Applying Theorem 2.2 above, we get k1, k2, where k1 = n−(2s+2)
2 − an,s

√
n,

k2 = n−(2s+2)
2 + an,s

√
n. The only difference between Theorem 1.1-1.2 with Theorem 2.2 is that in Theorem

1.1-1.2 k > 0. Since p > 1 in Theorem 1.1-1.2, recalling that 2s
p−1 = k, we have k > 0. However in Theorem

2.2, the region of k, that is −2 < k < n−2s, is natural from the fact that the Gamma function is positive. It
can be easily checked that −2 < k1 < n− 2s, n−2s

2 < k < n− 2s since 1√
n
< an,s <

1
2
n−2s√
n

+ 1√
n

. Therefore

the solution k1 may be non-positive. So we need to divide into several cases, the borderline determined by
the following equation

k1 :=
n− (2s+ 2)

2
− an,s

√
n = 0.

Solving this, we have either

√
n = an,s −

√
a2n,s + 2s+ 2 or

√
n = an,s +

√
a2n,s + 2s+ 2.

Since an,s −
√
a2n,s + 2s+ 2 < 0, we have that k1 > 0 if and only if n > (an,s +

√
a2n,s + 2s+ 2)2. The rest

of the proofs follow from Theorem 2.2. 2

3 The location of an,s and further discussion

In the section we focus on the constant an,s, which is crucial in our discussion above, i.e., the critical dimension
n0(s) and the roots of p1 and p2 of (1.1). In the following, we shall give both lower and upper bounds of the
function fn,s(a). Using these bounds, we can have better estimates for an,s which yields that

lim
n→+∞

an,s = 1 for any fixed s > 0.
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Lemma 3.1. For n > 2s+4, n > (a+
√

max{a2 + 2s− 2, 0})2, we have the following upper bound for fn,s(a)

fn,s(a)

≤ s
( 1

1
4n−

s
2 − 1

−
1
4 + 1

4a
2n

( 1
4n+ s

2 )2
+

1

( 1
4n−

s
2 − 1)3

( 1
2a
√
n+ 1

2 )3

3

)
=

4s

3(n− 2s− 4)3(n+ 2s)2

{
(−3a2 + 3)n4 + 2a3n

7
2 +

[
− 27 + (18s+ 42)a2

]
n3

+ (8a3s+ 6a)n
5
2 +

[
(−36s2 − 120s− 144)a2 − 24s2 − 30s+ 86

]
n2

+ (8a3s2 + 24as)n
3
2 +

[
(24s3 + 168s2 + 288s+ 192)a2 + 60s2 + 56s− 144

]
n

+ 24as2n
1
2 + 48s4 + 216s3 + 344s2 + 288s+ 192

}
(3.1)

and the following lower bound

fn,s(a)

≥ s
( 1

1
4n+ s

2

−
1
4 + 1

4a
2n

( 1
4n−

s
2 − 1)2

− 1

( 1
4n−

s
2 − 1)3

( 1
2a
√
n− 1

2 )3

3

)
=

4s

3(n+ 2s)(n− 2s− 4)3

(
(−3a2 + 3)n3 − 2a3n

5
2 + (18a2 − 18s− 39)n2

+ (−4a3s− 6a)n
3
2 +

[
(12s2 + 36s)a2 + 36s2 + 144s+ 158

]
n

− 12asn
1
2 − 24s3 − 132s2 − 260s− 192

)
.

(3.2)

Remark 3.1. Here we obtain better estimates through the transform k = n−(2s+2)
2 +a

√
n. The term n−(2s+2)

2
seems natural which guarantees that all the variables in the Gamma function of the equation (1.1) have the
part 1

4n+ 1
2s or 1

4n−
1
2s.

Proof. If n > (a +
√

max{a2 + 2s− 2, 0})2 then all the expression in the Gamma function of the function
fn,s(a) are positive.

We take the Taylor’s expansion of the function gj(n, s, a):

g1(n, s, a) =Ψ(
1

4
n+

1

2
s)(

1

2
+

1

2
a
√
n) + Ψ′(

1

4
n+

1

2
s)

( 1
2 + 1

2a
√
n)2

2!

+ Ψ′′(
1

4
n+

θ11
2
s)

( 1
2 + 1

2a
√
n)3

3!
;

g2(n, s, a) =Ψ(
1

4
n+

1

2
s)(

1

2
− 1

2
a
√
n) + Ψ′(

1

4
n+

1

2
s)

( 1
2 −

1
2a
√
n)2

2!

+ Ψ′′(
1

4
n+

θ12
2
s)

( 1
2 −

1
2a
√
n)3

3!
;

g3(n, s, a) =Ψ(
1

4
n− 1

2
s)(

1

2
+

1

2
a
√
n) + Ψ′(

1

4
n− 1

2
s)

( 1
2 + 1

2a
√
n)2

2!

+ Ψ′′(
1

4
n− θ21

2
s)

( 1
2 + 1

2a
√
n)3

3!
;

g4(n, s, a) =Ψ(
1

4
n− 1

2
s)(

1

2
− 1

2
a
√
n) + Ψ′(

1

4
n− 1

2
s)

( 1
2 −

1
2a
√
n)2

2!

+ Ψ′′(
1

4
n− θ22

2
s)

( 1
2 −

1
2a
√
n)3

3!
.
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Adding these up and applying the mean value theorem, we have

fn,s(a) = g1(n, s, a) + g2(n, s, a)− g3(n, s, a)− g4(n, s, a)

= Ψ(
1

4
n+

1

2
s)−Ψ(

1

4
n− 1

2
s)

+
(

Ψ′(
1

4
n+

1

2
s)−Ψ′(

1

4
n− 1

2
s)
)

(
1

4
+

1

4
a2n)

+
(

Ψ′′(
1

4
n+

θ11
2
s)−Ψ′′(

1

4
n− θ21

2
s)
) ( 1

2 + 1
2a
√
n)3

3!

+
(

Ψ′′(
1

4
n+

θ12
2
s)−Ψ′′(

1

4
n− θ22

2
s)
) ( 1

2 −
1
2a
√
n)3

3!

= s
(

Ψ′(
1

4
n+

α1

2
s) + Ψ′′(

1

4
n+

α2

2
s)(

1

4
+

1

4
a2n)

+
θ11 + θ21

2
Ψ′′′(

1

4
n+

α3

2
s)

( 1
2 + 1

2a
√
n)3

3!

+
θ21 + θ22

2
Ψ′′′(

1

4
n+

α4

2
s)

( 1
2 −

1
2a
√
n)3

3!

)
,

where θij ∈ (0, 1), αk ∈ (−1, 1). Now in view of the derivative estimates of Ψ(x) in (2.5), we get the upper
and lower bounds of fn,s(a). Notice that

fn,s(a) ≤ c1(n, s, a)
(

(−3a2 + 3)n4 + lower-order-term
)
,

f(n, s, a) ≥ c2(n, s, a)
(

(−3a2 + 3)n3 + lower-order-term
)
.

Let n = t2. Then all the lower order terms are lower order polynomials, that is,

fn,s(a) |n=t2≤ c1(n, s, a)
(

(−3a2 + 3)t8 + lower-order-term
)
,

fn,s(a) |n=t2≥ c2(n, s, a)
(

(−3a2 + 3)t6 + lower-order-term
)
.

Let a2 > 1, then there exists t1 = t1(a) > 0, such that for any t > t1, there holds (−3a2 + 3)t8 +
(lower-order-term) < 0. Hence for any a > 1, there exists t1 = t1(a) > 0 such that fn,s(a) < 0 when
n > t21. By Lemma 2.2, we see fn,s(0) > 0. Thus, there is a point a0 ∈ (0, a) such that fn,s(a0) = 0.
Furthermore, since fn,s(a) is non-increasing, then a0 is the only real root on interval [0,+∞).

On the other hand, for any a > 0 such that a2 < 1, then there exists t2 > 0, such that for any t > t2,
there holds (−3a2 + 3)n3 + l.o.t > 0. Therefore, for ε1, ε2 > 0, there exist t1 = t1(ε1), t2 = t1(ε2) > 0, such
that when n > max{t21, t22}, there holds

fn,s(1 + ε1) |n=t2≤ c1(n, s, ε1)
(
− 3(ε21 + 2ε1)t8 + lower-order-term

)
< 0,

fn,s(1− ε2) |n=t2≥ c2(n, s, ε2)
(

3ε2(2− ε2)t6 + lower-order-term
)
> 0.

Thus, there is an a ∈ (1− ε2, 1 + ε1) such that fn,s(a) = 0 for n > max{t21, t22}. Besides, since ε is arbitrary
small, we get that a→ 1 as n→ +∞.

By the inverse transformation of k = 2s
p−1 and k = n−(2s+2)

2 + a
√
n, a direct consequence of the above

lemma is the following corollary, which complements Theorem 1.1.

Corollary 3.1. For any ε1, ε2 > 0, there exist a ∈ (1 − ε2, 1 + ε1) and n0 = n0(ε1, ε2), for n ≥ n0, the
equation (1.1) has and only has two real roots p1 and p2:

p1 :=
n+ 2s− 2 + 2a

√
n

n− 2s− 2 + 2a
√
n
, p2 :=

n+ 2s− 2− 2a
√
n

n− 2s− 2− 2a
√
n

and a = an,s → 1 as n→ +∞.
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Remark 3.2. Generally speaking, when ε1, ε2 → 0+, n0 will be larger and larger; however, when ε1, ε2 are
far away from 0, n0 will be smaller. That is, to make sure the existence of such roots, we need to choose the
parameters ε1, ε2 suitably away from 0. On the other hand, to get more accurate estimates on the roots, we
need to select ε1, ε2 → 0+ properly, which requires that n must be large.

Now we turn to the inequality (1.6). By the transformation above, the inequality (1.6) is equivalent to
fn,s(a) > 0. Then we have the following

Corollary 3.2. Assume the inequality (1.6) holds. Then for any ε1, ε2 > 0, there exists an a = an,s ∈
(1− ε2, 1 + ε1) and n0 = n0(ε1, ε2), such that for all n ≥ n0, we have the following

n+ 2s− 2 + 2a
√
n

n− 2s− 2 + 2a
√
n
< p <

n+ 2s− 2− 2a
√
n

n− 2s− 2− 2a
√
n

and a = an,s → 1 as n→ +∞.

Remark 3.3. Generally speaking, when ε1, ε2 → +0, n0 becomes larger while n0 becomes smaller when ε1, ε2
are far away from 0. Therefore, to find the optimal bound, we need to choose both parameters in an optimal
way.

To obtain the optimal n0(ε1, ε2) and also optimal upper and lower bound about p in (1.6), we need to
generalize Lemma 3.1. As before, we take the Taylor’s expansion of the functions gi(n, s, a) to m order.

g1(n, s, a) =

m∑
j=0

Ψ(j)(
1

4
n+

1

2
s)

( 1
2 + 1

2a
√
n)j+1

(j + 1)!

+ Ψ(m+1)(
1

4
n+

θ11
2
s)

( 1
2 + 1

2a
√
n)m+2

(m+ 2)!
;

g2(n, s, a) =

m∑
j=0

Ψ(j)(
1

4
n+

1

2
s)

( 1
2 −

1
2a
√
n)j+1

(j + 1)!

+ Ψ(m+1)(
1

4
n+

θ12
2
s)

( 1
2 −

1
2a
√
n)m+2

(m+ 2)!
;

g3(n, s, a) =

m∑
j=0

Ψ(j)(
1

4
n− 1

2
s)

( 1
2 + 1

2a
√
n)j+1

(j + 1)!

+ Ψ(m+1)(
1

4
n− θ21

2
s)

( 1
2 + 1

2a
√
n)m+2

(m+ 2)!
;

g4(n, s, a) =

m∑
j=0

Ψ(j)(
1

4
n− 1

2
s)

( 1
2 −

1
2a
√
n)j+1

(j + 1)!

+ Ψ(m+1)(
1

4
n− θ22

2
s)

( 1
2 −

1
2a
√
n)m+2

(m+ 2)!
.
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Here Ψ(0) = Ψ. Adding these up, we have that

f(n, s, a)

= g1(n, s, a) + g2(n, s, a)− g3(n, s, a)− g4(n, s, a)

=

m∑
j=0

(
Ψ(j)(

1

4
n+

1

2
s)−Ψ(j)(

1

4
n− 1

2
s)
) ( 1

2 + 1
2a
√
n)j+1 + ( 1

2 −
1
2a
√
n)j+1

(j + 1)!

+
(

Ψ(m+1)(
1

4
n+

θ11
2
s)−Ψ(m+1)(

1

4
n− θ21

2
s)
) ( 1

2 + 1
2a
√
n)m+2

(m+ 2)!

+
(

Ψ(m+1)(
1

4
n+

θ12
2
s)−Ψ(m+1)(

1

4
n− θ22

2
s)
) ( 1

2 −
1
2a
√
n)m+2

(m+ 2)!

= s
( m∑
j=0

Ψ(j+1)(
1

4
n+

αj
2
s)

( 1
2 + 1

2a
√
n)j+1 + ( 1

2 −
1
2a
√
n)j+1

(j + 1)!

)
+
θ11 + θ21

2
Ψ(m+2)(

1

4
n+

αm+1

2
s)

( 1
2 + 1

2a
√
n)m+2

(m+ 2)!

+
θ12 + θ22

2
Ψ(m+2)(

1

4
n+

αm+2

2
s)

( 1
2 −

1
2a
√
n)m+2

(m+ 2)!

)
,

(3.3)

where θij ∈ (0, 1), αk ∈ (−1, 1). When m = 2, we have the following

Lemma 3.2. Assume that n > 2s+ 4, n > (a+
√

max{a2 + 2s− 2, 0})2. Then we have

fn,s(a) ≤ s
( 1

1
4n−

s
2 − 1

−
1
4 + 1

4a
2n

( 1
4n+ s

2 )2
+

2!

( 1
4n−

s
2 − 1)3

(
1

24
+

1

8
a2n)

)
=

4s

3(n− 2s− 4)3(n+ 2s)2

(
(−3a2 + 3)n4 +

[
− 27 + (18s+ 48)a2

]
n3

+
[
(−36s2 − 96s− 144)a2 − 24s2 − 30s+ 88

]
n2

+
[
(24s3 + 192s2 + 288s+ 192)a2 + 60s2 + 64s− 144

]
n

+ 48s4 + 216s3 + 352s2 + 288s+ 192
)
,

and

fn,s(a) ≥ s
( 1

1
4n+ s

2

−
1
4 + 1

4a
2n

( 1
4n−

s
2 − 1)2

+
2!

( 1
4n+ s

2 )3
(

1

24
+

1

8
a2n)

− 3!

( 1
4n−

s
2 − 1)4

(
1

192
+

1

192
a4n2 +

1

32
a2n)

)
=

4s

3(t2 + 2s)3(t2 − 2s− 4)4

(
(−3a2 + 3)n6 +

[
− 6a4 + (−6s+ 36)a2

− 12s− 51
]
n5 +

[
− 36sa4 + (24s2 − 276)a2 − 12s2 + 90s+ 316

]
n4

+
[
− 72s2a4 + (48s3 + 288s2 + 648s+ 1152)a2 + 96s3 + 408s2+

64s− 886
]
n3

+
[
− 48s3a4 + (−48s4 − 768s3 − 3312s2 − 4608s− 3072)a2 − 48s4

− 720s3 − 2208s2 − 1476s+ 1152
]
n2 +

[
(−96s5 − 192s4 + 864s3

+ 4608s2 + 6144s+ 3072)a2 − 192s5 − 816s4 − 512s3

+ 1656s2 + 1536s− 1024
]
n+ 192s6 + 1440s5 + 4288s4

+ 6224s3 + 4608s2 + 2048s+ 1024
)
.

Remark 3.4. Combining with the Taylor’s expansion of function fn,s(a) in (3.3) and the derivative estimates
of Ψ in (2.5), we can obtain the formula with higher order expansions. By this way, we can reduce the bounds
n1(s, ε1) and n2(s, ε2).
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Proof of Theorems 1.3. This is a straightforward consequence of Lemma 3.1 and Lemma 3.2. 2

4 Example: an application to s ∈ (2, 3).

Let p, n, s satisfy (1.6). From Lemma 3.1, we get that

Lemma 4.1. Assume that (1.6) holds. Then if n ≥ 59, we get that 0.7 < a < 1.5 and hence we obtain the
following estimate for the second stability exponent

n+ 2s− 2 + 3
√
n

n− 2s− 2 + 3
√
n
< p2 <

n+ 2s− 2− 3
√
n

n− 2s− 2− 3
√
n
. (4.1)

However, if we apply Lemma 3.2 with higher order Taylor’s expansion, we may improve the bound 59
and still get (4.1). Precisely, we have

Lemma 4.2. Assume that (1.6) holds. Then if n ≥ 44, we get that 0.7 < a < 1.5 and that

n+ 2s− 2 + 3
√
n

n− 2s− 2 + 3
√
n
< p2 <

n+ 2s− 2− 3
√
n

n− 2s− 2− 3
√
n
.

These estimates are important in deriving monotonicity formula and classifying stable solutions for the
Lane-Emden equation (1.3) in the range s ∈ (2, 3). See [11].
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