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ABSTRACT. Perhaps the most classical diffusion model for chemotaxis is the Keller-Segel system
ut = Au— V- (uVv) in R% x (0, 00),

_ 1 1
v=(—Ag2) tu:= 2 e log [P u(z,t)dz, (%)

u(-,0) =ug >0 in R2.

We consider the critical mass case f]RZ up(xz) der = 8w which corresponds to the exact threshold
between finite-time blow-up and self-similar diffusion towards zero. We find a radial function ug
with mass 87 such that for any initial condition ug sufficiently close to uf the solution u(z,t) of (x)
is globally defined and blows-up in infinite time. As t — 4oc0 it has the approximate profile
1 z—&(t) ) 8
u(z,t) ~ —=U , Uly) = —r—,
@550 (55 W= T wee
where \(t) ¥ —5—, £(t) — ¢ for some ¢ > 0 and ¢ € R2. This result answers affirmatively the

Viogt’
nonradial stability conjecture raised in [26].

1. INTRODUCTION

This paper deals with the classical Keller-Segel problem in R?,
ug =Au — V- (uVv) in R? x (0, 00),

v =(—Ap2) tu:

= — t d .
7 ., 108 g vl (1.1)

u(-,0) =uy in R?,

which is a well-known model for the dynamics of a population density u(x,t) evolving by diffusion
with a chemotactic drift. We consider positive solutions which are well defined, unique and smooth
up to a maximal time 0 < T' < 4o00. This problem formally preserves mass, in the sense that

/ u(z,t)dr = / uo(x)dr =: M forall te (0,7T).
R2 R2

An interesting feature of (1.1) is the connection between the second moment of the solution and its
mass which is precisely given by
2
4 |z|? u(z,t) de = 4M — %,
dt R2 2w
provided that the second moments are finite. If M > 8w, the negative rate of production of the
second moment and the positivity of the solution implies finite blow-up time. If M < 87 the solution
lives at all times and diffuses to zero with a self similar profile according to [5]. When M = 8 the
solution is globally defined in time. If the initial second moment is finite, it is preserved in time, and
there is infinite time blow-up for the solution, as was shown in [4].
Globally defined in time solutions of (1.1) are of course its positive finite mass steady states, which
consist of the family

_i x—& _ 8
U,\@(m)—vU( ;) ) U(y)—7(1+|y|2)2, A>0, £ €R? (1.2)

We observe that all these steady states have the exact mass 87 and infinite second moment
/ Ur¢(x)dz = 8, / |22 Une(z) dr = +o0.
R2 R2
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As a consequence, if a solution of (1.1) is attracted by the family (Uj ¢), its mass must be larger than
87 and if the initial second moment is finite, then blow-up occurs in a singular limit corresponding
to A — 0+.

In the critical mass M = 8w case, the infinite-time blow-up in (1.1) when the second moment is
finite, takes place in the form of a bubble in the form (1.2) with A = A(t) — 0 according to [2, 4].
Formal rates and precise profiles were derived in [12, 8] to be

At) ~— ast— +oo.

A radial solution with this rate was built by Ghoul and Masmoudi in [26] and its stability within the
radial class was established. The framework of the construction in [26] was actually fully nonradial,
but for stability a spectral gap inequality only known in the radial case was used. Numerical evidence
for this inequality was obtained in [7], and stability for general nonradial perturbation was conjectured
n [26]. A related spectral estimate, useful in the analysis of finite time blow-up was found in [15].

In this paper we construct an infinite-time blow-up solution with a different method to that in [26],
which in particular leads to a proof of the stability assertion among non-radial functions. The following
is our main result.

Theorem 1.1. There exists a nonnegative, radially symmetric function ul(x) with critical mass
Jg2 ug(x) de = 87 and finite second moment [, ||? uf(x) de < +oo such that for every uy(z) suffi-
ciently close (in suitable sense) to ufy with [g, uy do = 8w, we have that the solution u(x,t) of system
(1.1) with initial condition u(x,0) = uy(z) has the form

1 x —E&(t) 8
1) = U 1+0(1), Uly)=—— 1.3
u(e.t) = 5ot (g ) (e, Ul = g (13)
uniformly on bounded sets of R?, and
¢
At) = — (1 1 t t
(t) \/@(JFO()), §(t) = q ast— +oo,
for some number ¢ > 0 and some q € R2.
Sufficiently close for the perturbation uj(z) = uj(x) + ¢(x) in this result is measured in the

C'-weighted norm for some o > 1
Il = 11+ |- 1)@l Lo @2y + (1 + ] - [PF7) V() || Lo r2) < +00.

The perturbation ¢ must have zero mass too.

“Uniformly on bounded sets” of R? in (1.3) means that for any bounded K C R?
—£(t)\ L 1 —&(t

SO) M ate0 - gt (5| o

A sup 2e7U( NO) NGO

The expansion of u(z,t) can be made more precise though, and this is explained along the proof of
theorem.

The scaling parameter is rather simple to find at main order from the approximate conservation of
second moment, see Section 2. The center £(¢) actually obeys a relatively simple system of nonlocal
ODEs.

We devote the rest of this paper to the proof of Theorem 1.1. Our approach borrows elements of
constructions in the works [16, 21, 18, 17] based on the so-called inner-outer gluing scheme, where a
system is derived for an inner equation defined near the blow-up point and expressed in the variable
of the blowing-up bubble, and an outer problem that sees the whole picture in the original scale. The
result of Theorem 1.1 has already been announced in [20] in connection with [16, 21, 18].

There is a vast literature on chemotaxis in biology and in mathematics. The Patlak-Keller-Segel
model [44, 35] is used in mathematical biology to describe the motion of mono-cellular organisms,
like Dictyostelium Discoideum, which move randomly but experience a drift in presence of a chemo-
attractant. Under certain circumstances, these cells are able to emit the chemo-attractant themselves.
Through the chemical signal, they coordinate their motion and eventually aggregate. Such a self-
organization scenario is at the basis of many models of chemotaxis and is considered as a fundamental
mechanism in biology. Of course, the aggregation induced by the drift competes with the noise
associated with the random motion so that aggregation occurs only if the chemical signal is strong
enough. A classical survey of the mathematical problems in chemotaxis models can be found in [31,
32]. After a proper adimensionalization, it turns out that all coefficients in the Patlak-Keller-Segel
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model studied in this paper can be taken equal to 1 and that the only free parameter left is the total
mass. For further considerations on chemotaxis, we shall refer to [30] for biological models and to [11]
for physics backgrounds.

In many situations of interest, cells are moving on a substrate. The two-dimensional case is
therefore of special interest in biology, but also turns out to be particularly interesting from the
mathematical point of view as well, because of scaling properties, at least in the simplest versions of
the Keller-Segel model. Boundary conditions induce various additional difficulties. In the idealized
situation of the Euclidean plane R2, it is known since the early work of W. Jiger and S. Luckhaus
in [33] that solutions globally exist if the mass M is small and blow-up in finite time if M is large.
The blow-up in a bounded domain is studied in [33, 1, 39, 40, 46]. The precise threshold for blow-up,
M = 8r, has been determined in [23, 5], with sufficient conditions for global existence if M < 8 in [5]
(also see [22] in the radial case). The key estimate is the boundedness of the free energy, which relies
on the logarithmic Hardy-Littlewood-Sobolev inequality established in optimal form in [9]. We refer
to [3] for a review of related results. If M < 8, diffusion dominates: intermediate asymptotic profiles
and exact rates of convergence have been determined in [7]. Also see [41, 25]. In the supercritical case
M > 8, various formal expansions are known for many years, starting with [27, 28, 49] which were
later justified in [45, 38], in the radial case, and in [14], in the non-radially symmetric regime. This
latter result is based on the analysis of the spectrum of a linearized operator done in [15], based on
the earlier work [19], and relies on a scalar product already considered in [45] and similar to the one
used in [6, 7] in the subcritical mass regime. An interesting subproduct of the blow-up mechanism
in [45, 29] is that the blow-up takes the form of a concentration in the form of a Dirac distribution
with mass exactly 87 at blow-up time, as was expected from [29, 24], but it is still an open question
to decide whether this is, locally in space, the only mechanism of blow-up.

The critical mass case M = 8 is more delicate. If the second moment is infinite, there is a variety
of behaviors as observed for instance in [36, 37, 43]. For solutions with finite second moment, blow-up
is expected to occur as t — +o00: see [34] for grow-up rates in R?, and [48] for the higher-dimensional
radial case. The existence in R? of a global radial solution and first results of large time asymptotics
were established in [2] using cumulated mass functions. In [4], the infinite time blow-up was proved
without symmetry assumptions using the free energy and an assumption of boundedness of the second
moment. Also see [42, 43] for an existence result under weaker assumptions, and further estimates
on the solutions. Asymptotic stability of the family of steady states determined by (1.2) under the
mass constraint M = 87 has been determined in [10]. The blow-up rate A(t) and the shape of the
limiting profile U were identified in formal asymptotic expansions in [50, 51, 47, 12, 13] and also in [8,
Chapter 8]. As already mentioned, a radial solution with rate A(t) ~ (logt)~'/? was built and its
stability within the radial class was established in [26].

2. FORMAL DERIVATION OF THE BEHAVIOR OF THE PARAMETERS

We consider here a first approximation to a solution u(z,t) of (1.1), globally defined in time, such
that on bounded sets in =z,

L fe—€)
A<t>2U< )

for certain functions 0 < A(t) — 0 and £(t) — g € R?, where we recall that

8
YW T

We know that (2.1) can only happen in the critical mass, finite second moment case:

/ u(x,t)dx = 8m, / |z[2u(z, t)dr < +oo,
R? R2

which according to the results in [4, 26, 12] is consistent with a behavior of the form (2.1). Since
the second moment of U is infinite, we do not expect the approximation (2.1) be uniform in R? but
sufficiently far, a faster decay in = should take place as we shall see next. We will find an approximate
asymptotic expression for the scaling parameter A(¢) that matches with this behavior.

u(z,t) = > (I14+0(1)) ast— 400 (2.1)

Let us introduce the function Ty := (=A)~1U. We directly compute

Lo(y) = log A+ 2
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and hence I'y solves the Liouville equation
—ATy = e =U inR%

Then VIy(y) = —li% for all large y, and hence we get, away from x = &,

Y (@V(-A) )~ AV LS
(uV(~A) ) i
Therefore, defining
E(u) == Au— V- (uV(=A) 1) (2.2)

and writing in polar coordinates
u(r,0,t) = u(z,t), x=E(t)+re?,

we find €(u) ~ 0%u + g&,u. Hence, assuming that §(t) — 0 sufficiently fast, equation (1.1) approxi-
mately reads

5
Oy = afu + —0ru,
r

which can be idealized as a homogeneous heat equation in R® for radially symmetric functions. It is
therefore reasonable to believe that beyond the self-similar region > v/t the behavior changes into a
function of r/+/t with fast decay at +oo that yields finiteness of the second moment. To obtain a first
global approximation, we simply cut-off the bubble (2.1) beyond the self-similar zone. We introduce
a further parameter «(t) and set

ale,t) = %U(””Kf)x(x,t), (2.3)
where
xwt) = () (2.0

with xo a smooth radial cut-off function such that

1 if 2] <1,
= - 2.5
Xo(?) {0 if 2] > 2. (255)

We introduce the parameter «(t) because the total mass of the actual solution should equal 87 for
all t. But

% R2U(mgg)x(x,t)dxz&r—l—lfiwl')f—&-O(i\:), (2.6)

as t — oo, where
(oo}
T = / (Ro(s) — 1)s™3ds < 0, (2.7)
0
and xo(x) = Xo(|z|). To achieve [, u(x,t) dr = 87 we set o = & where
)\2 )\4
a(t) =1-202- +0(%;).
a(t) - tO0( %
Next we will obtain an approximate value of the scaling parameter A(t) that is consistent with the

existence of a solution u(z,t) = u(x,t) where @ is the function in (2.3) with « = @. Let us consider
the “error operator”

S(u) = —ue + E(u), (2.8)
where £(u) is defined in (2.2). We have the following well-known identities, valid for an arbitrary

function w(z) of class C?(R?) with finite mass and D?w(x) = O(|z|~%77) for large |z|. We have

2
/ |2]2E(w) da = 4M — %, M = w(z)dx (2.9)
R2 2 R2
and

/ x€(w) dx = 0, E(w)dx = 0. (2.10)
R2

R2
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Let us recall the simple proof of (2.9). Integrating by parts on finite balls with large radii and using
the behavior of the boundary terms we get the identities

|z|? Aw dx = 4M,
RQ

/ |22V - (wV(=A) Hw) dz = 72/ r-wV(—A)lwdr
R2

/RZ/R? (x |2>dxdy
7rjézjézumx>w<y>‘é?;ij;‘y>dxdy

M
= — 2.11
o (2.11)
and then (2.9) follows. The proof of (2.10) is even simpler. For a solution u(x,t) of (1.1) we then get
M2
— =4M - —, M= .
o (x t)|x2de = 5 . u(z, t)dx

In particular, if u(z, t) is sufficiently close to @(x,t) and since [, u(x,t)dz = 8, we get the
approximate validity of the identity

%/RQ a(z,t)|z|*dr = 0.

al(t) = /Rz )\2U< iy 6) X0 <$\;££> |z|?dz = constant.

We readily check that for some constant x
NG

A 3d \/E
I(t) = 16w \2 LA 1) = 167A% log ~— 1 — 0.
(t) = 16w /0 (1+p2)2+li+0() 6mA° log iy +Kr+0(1) asA—0

Then we conclude that A\(¢) approximately satisfies

This means

Mlogt = ¢ = constant

and hence we get at main order
c

M) =

We also notice that the center of mass is preserved for a true solution, thanks to (2.10):

7|, zu(z,t)dx = 0.
Since the center of mass of @(x,t) is exactly £(t) we then get that approximately

&(t) = constant = q.

3. THE APPROXIMATIONS 1y AND u;

From now on we to consider the Keller-Segel system starting at a large to:

=Au —V - (uVv) in R? x (g, 00),

1 1
=(— -1 = — _—
=(—Ag2) u: 5 /R2 log Tl u(z,t) dz, (3.1)
u(- o) =up in R?,

which is equivalent to (1.1). We do this so that some expansions for ¢ large take a simpler form.

In this section we will define a basic approximation to a solution of the Keller-Segel system (3.1).
Let us consider parameter functions

0<A(t)—=0, &t)—q, o) =1 ast— +oo

that we will later specify. Let us consider the functions

U@:Hﬁ#? To(y) = log U(y)
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and define the approximate solution ug(z,t) as

uo(x,1) = AZU( 3 E)X(%t)a (3.2)

vo(w,t) = (—Ag) tug = 2 oo log o — 7|

Uo ('fa t) djv
where x is the cut-off function (5.3). We consider the error operator
S(u) = =0y + E(u),
where
E(U) :A_LU—V_L (UVI'U), v = (_A.L)—lu

and next measure the error of approximation S(ug).

We have
~Ouol, 1) = 5T no(2) + 55 Zoxo(2) + 15 Yyl (y) xo(2)
U WE Vaxo) + 355U Vaxolz) - 2, (3.3)
z = r—¢
\/f
where
Zoy) =20 () + - V,00), y="3" (3.4)
We also have
5(11,0) = AIUO — VI . (UOVIU())
= V000 VW) + S350 0000 ) — 57U 0)V-x0(:) - Varo
+ 20 [ (2o~ DU2(0) ~ V,00) - (Vyo — V,T0)]
Let us decompose
vo(y) = al'o(y) + R(y). (3-5)
For the term R in (3.5) we directly estimate
XLy >,
VyR = vl z 3.6
IV, R ()| < { < (3.6)
Then
£(w) = 5377V 0() - VU ) + S 35800200 (0) = 12U (0 -x0(:) Voo
+ XD (0 1)02(y) — (0~ D)V,U0) - T,T0() + alxolz) ~ DU()
- V,U(y) - V,RE)|.
and thus
(1) = U xa(e) + a5 Zoxols) + 5+ T,00) xal2)
+ /\zoi/iU(y)é - Vaxo(z) + mU(y)VzXO(Z) "z
+ V() VU0 + § 355000 0) - U000 - Vo
A0y w9, o)
+ XD [0 002(y) - V,00) - VRE)]) (3.7
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For a function v(¢) defined for ¢ € R? consider the operator

B6v(€) = Au(€) + 45  Verlo) (3.5)

The reason for the notation is that for radial functions v = v(r), r = |{|, we have
9 5)
Agv = 07v + —0,v,
T

which corresponds to Laplace’s operator in RS on radial functions.
Let @5 (¢,t) be the (radial) solution to

to

at@)\ :A6¢>\+E(<at) in Rz X (5700)7
to (3.9)
Pr(n5) =0 in R?,
given by Duhamel’s formula, where F((,t) is the radial function
= A Sy (YL ps ;
Bt = 5575 )00(55) + 33U (5) Voxole) -2 + B ), (3.10)
and
- ] 2 1
E((,t;A) = sz)(o(z) -V U(y) + EAZXO(Z)U(y)
1
- WU(y)szO(Z) -VyLo(y), (3.11)
Withz:%,y:%.
We then define
ez, t) = galz — &(1),1). (3.12)

The reason to define ¢y for t > %’ is that it gives better properties for the first approximation of
A constructed in Section 7. Since A(t) is defined naturally for ¢ > ¢, we will need to define A(t) for
%‘) < t < tg in an appropriate way (see Proposition 5.1 and Section 7). We will write A = Ao + A;
where both of these functions are constructed so that they are defined for ¢ > %0 The construction

€0

of Ay is given in Proposition 5.1. In particular Ao(t) = @(1 +o0(1)) as t = oo. Note that ¢, (-, )

is not zero.

We define the approximate solution
up = ug + ©x (3.13)
which depends on the parameter functions a(t), £(t), A(t). Correspondingly, we write
v = (=AL) Hu).
We will establish in the next sections that a suitable choice of these functions makes it possible to
find an actual solution of (3.1) as a lower order perturbation of u;.
4. THE FIRST ERROR OF APPROXIMATION

We will assume the following conditions on A, «a, &

O+ g0 < s
o)< o (41)
@)~ 11 < foe 16001 < )

where % <7y <2
We compute

S(u1) = S(uo + pr) = S(ug) — Fsox + Luy[oa] = V- (0aVhy).
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where
Luolp] = Ap =V - (pVrg) = V - (ug V),
Ur = (—A)"ron, vo = (—A) ug.
Then
16 /\ o . « .
S(u1) = —FU(Q)X + (o — 1)FZ0X + ﬁf -V U(y) x + )\T\/EU(Q)f -VXo
(a—1) 1 xr—¢& 2a-1)
% 2 UV .xo \/i + \371/2 V.Xo VyU
(a—1) 1 a? -1 !
+ ; AXOFU - )\3\/{% UVZX(] . VyFO - AT\/-EUVZXO : VyR
ala—1 o?v(1 — @
_ o - )xvy (UV,To) + x(A4 X2 TnyU VR
-4
+Vpr-§— ;Brgo)\ — V- (eaVg) = V- (uoVpr) — V- (oA V1)), (4.2)

where R is defined in the decomposition (3.5).
Lemma 4.1. Let ¢y be defined by (3.12)-(3.9) with X\ satisfying (4.1). Then

1 4/\2+|;_5|2 lz — ¢ < Vi
ox(@, )] + (lz =&+ N)[Veor(z,t)| < C—; e (4.3)
| /\( )| (| tlogt %e“ 4§| |x—§| > \/2?
We also have
C T —
V(. 1) 28 g < Vi (4.4)

<
= tlogt (A + |z —&)*’

Proof. In terms of the function ¢, defined in (3.9), with r = |z — £] we claim that

1
s 1 </t
orin )| < oL L TSV
tlogt %efﬂ r > /L.

For the proof of this we use barriers. Consider
1 1
)= ——————
Nt = gt e 12
and note that
)\74

S .
“Glogt(l+r/ N = Vi

Oun — (Ore+ 20, )i >

for some ¢ > 0, 6 > 0.
Let x5.7(r,t) = )20(5:/{) where xo € C*(R) is such that xo(s) =1 for s < 1 and xo(s) = 0 for
s > 2. Consider

T . 2
——e
t2logt

4t

¢(T, t) = ¢1 (7‘, t)X(S\/{(T) t)
The function E (3.11) can be estimated by

B0 < 5zt (55)

where hj(z) is a smooth function with compact support. Then E (3.10) has the estimate

. AN 1 ¢
B(CO1< Oy + szt ()

where ha(2) is a smooth function with compact support.
Then for C; sufficiently large

0~ (00 + 20,)0 > el B(r, 1),

where ¢ > 0.
By the comparison principle,
I@A(ra t)' < Ciﬁ(ﬁ t)’
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for some uniform constant C'. After a suitable scaling, from standard parabolic estimates we also get
(A + T)‘V£¢/\(T7 t)| < C¢(7‘a t)
With these two inequalities we obtain (4.3).

x

To prove (4.4) we change variables y = %5 in the equation (3.9) and define
- 1 /r
2 =350 (51)
We get the equation, after interpreting p = |y, y € RS

M0, = Ared + AA20x + - V@) + ME(\y, t),

where FE is defined in (3.10). Differentiating with respect to y and using the bound we already have
for V¢, from (4.4), and using standard parabolic estimates, we get

C 1
D2pa(y,t)] € —— s < /tlogt.
| y(p)\(ya )| = thgt (1 + |y|)4a ‘y| = 0g

Using that V@, (0,t) = 0 we deduce that

. C |yl ey
)] < _— < +/tlogt
‘Vy()o)\(:% )| = tlogt (1 ¥ |y|)4a ‘y| = ogt,

which readily gives (4.4).

Il
Lemma 4.2. Assuming (4.1) we have
1 log(2+ [y]) z—§
4 < = 4.
and
S(D|(1—x) € O e (46)
“ =M logte ’ '

for some c € (0,1).

Proof. Let us analyze the terms involving p,. We estimate, using Lemma 4.1,

2 1 1
<C——— < +/tlogt.
U@AE + )| < Cpo s ol < Vilogt

Similarly, by (3.5)
4 ~ 4 - - .
- T<p,\—Vg0,\-Vvoz—; -Px — Vour - VIg— (a—=1)V@y - Vg —Voy - VR
— 4= o,z 1)V - VTo — Vs - VR 47
=i(mm )09 @ - DVp VI - Va VR ()
By (4.4)
1 C 1
4 r _Z < - - < +\/tl .
‘/\ (7‘2+/\2 r)ar(p)“_tlogt(1+|y|)6’ vl < Vot

The other terms in (4.7) are estimated similarly, using the hypotheses on « and the estimate on R
(3.6), and we get

1
< ¢ 1 ly| < \/tlogt.

= tlogt (1+ |y|)8’

4, .
‘_r »ox — Vo - Vg
The terms involving ¥ = (—A)~!py are estimated using the formula
1 T
Orth(r,t) = f/ oa(s,t)sds.
™ Jo

In A*S(u1) we have also the term —&\2U (y)x, which thanks to (4.1) can be estimated as

C\? 1 C 1
<

)4x(y> t)

NaU ‘ -— t).
VUi < pp s o ()

< _ - -
~ tlogt (1+ |y

The remaining terms are estimated similarly, and we obtain (4.5).
The stated inequality (4.6) follows from the Gaussian decay of ¢, in Lemma 4.1. O
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5. THE INNER-OUTER GLUING SYSTEM

Let us consider the initial approximation
up(x,t) = uo(x,t) + ox(z,t)

built in Section 3 for a given choice of the parameter functions A(t), a(t), £(t) satisfying (4.1). Here
up is the function defined in (3.2) and ¢ that in (3.12). We look for a solution of the Keller-Segel
equation (3.1) in the form of a small perturbation of u;, namely

u(z,t) = uy(z,t) + ®(z,t). (5.1)

We write the perturbation ® as a sum of an “inner” contribution, better expressed in the scale of uy,
and a remote effect that takes into consideration the “outer” regime. Precisely, we write
z—¢

B 1) = 150 X 1) + (1), y =", (52)

where x is the smooth cut-off

xet) = () (53)

with xo a smooth radial cut-off function such that xo(z) = 1 if |z| < 1, xo(2) = 1 if |2] > 2. (The
same as defined in (2.4).)

Recall S(u) given by
S(u) = =0+ Au—V - (uVv), v=(-A)"tu,
where the operators act on the original variable x unless otherwise indicated. In the computations
that follow we will express the equation
S(u; +®) =0

for @ given by (5.2), as a parabolic system in its inner and outer contributions ¢* and ¢°. The
coupling in that system will be small if ¢'(y,t) decays sufficiently fast in space and time. That can
only be achieved for suitable choices of the parameters a, A, £ that yield certain solvability conditions
satisfied. The set of all these relations is what we call the inner-outer gluing system. Next we
formulate this system. It will be necessary to successively refine its original expression by further
decomposing ¢* into two contributions with separate space decay, finally arriving at the equations
(5.48), (5.49), (5.50) and (5.52) which are the ones we will actually solve.

Let us observe that
1 i o 1 i o
S(ur + @) = S(u1) = 9 (556'%) = 0up” + Ly [556'X] Lo ¢”)
V- (oV(-A)"'®),
where
Lo le] = Ap =V (V1) = V- (i1 V(=A)"lp), vy = (=A) luy.

We use the notation )
1/) = F(_A)_1¢i7 ¢
in the expressions that follow. We expand
1 . 1 - 2 . 1 . 1 . .
Ly, [FWX] = XﬁAﬁbz + FVX Vo' + FWAX -V (FQSZXVUH -V (11 V).

‘We have

= (-8 @),

V- (Vi) = V- (GUVOX A+ V- (5UV( = 6)x + 15UV - Vi
+V - (@AVY) + V- (@aV () - 9))

and
i 1, 1
V. (59'xVu) =V- (ﬁ¢ Vi) x + F(b Vx - V.
Recall the notation

v =0+ Vr, Vo =5(=A)THUx), ¥r=(-A)""px,
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and also (3.5)
v=allg+R, R= g(fA)*l(U(X -1)).

\2
Then
1, 1, 1, 1,
V- (§¢> xVvi) =V (ﬁfb Vu)x +V - (§¢> Viba)x + p¢ VX - Vug
1
+ pdfvx - Viby
- i L L
= FV (¢'VIo)x +V - (F(b VR)x +V - (FQS V) x
o 1 . 1 .
+ FWVX - VT + FQSZVX -VR + ﬁqbZVx - Vby.
Therefore

1, 1 ;2 1
Loy [paﬁlx] = XFAW +a2 VX Vo' + FWAX
o 1 1,
— [V (6 VX + V- (556 VRIX + V- (576' V)X

a 1 . 1 .
+ FQS’VX - VI + FWVX -VR + P(;S’VX - Vi

«

—[V-(/\Qva)x+V~(

e
£V (A V) + V- (aV (i = ).

(07

UV () = )X + 15U Vx - VY

Next we expand
Loy [¢°] = Ag® = V- (¢°Vor) = V- (w V), ¢° = (=A)71”
We have
V- (V) = V- (GUXVE?) + V- (92 74)
= V- (UVE)X + 5UVX- V7 + V- (o2 V4°)x
+ V- (eaVeo)(1 = x),
and
V- (¢°Vu1) =V - (¢°Vug) + V- (¢°Viha)
=aV - (¢°VIo) + V- (p’VR) + V- (¢°V)y)
=V VI — %U@O + (a—=1)V - (¢°VT)H)
+ V- (¢°VR) + V- (¢°Vy).
Therefore,

(0% (0%
Lunl¢%) = Ap® = |V (GUVE)x + 5UVX - V2 + V- (o2 V°)x

+ V- (o901 )]
1
¥l
£V ($TR) + V- (9°V0).

- [Wf' - VTg — —Ug® + (a — 1)V - (¢°VTy)

Based on the previous formulas we formulate the inner equation
Nu(556) = LI — (o = DV, - (UF,6) = (@ = D)V, - (6'VTo) + NS (u)
— N2V, - (@AVy0°) — N2V, - (V1)) + N2U° — aV,, - (UV,1°)
— AV, - (@aVy¥) = Vi (6'Vy0n) = (@ = D)A*V - (9°VI)
—aVy - (UV, (= 1)) = AV, (@2 (§ = 1)) = Vy - (0'x + N29")V, (§ +0°)),

where

L[QI)] = Ay¢ - vy . (vaw) - Vy ’ (¢VF0)- (5-4)
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We slightly modify the inner equation into the form
N0,¢" = L[¢'] + Bol¢'] + Exx + F(¢', 9%, P)X

where

p = (A’ a’ 5)7

r—§
B\ )

Er(y.t) = N'S(ui(p)(2,1), y=

F(¢',¢°,p) = =N’V - (eaVy1h°) = A2V, - (9°Vyihn) + AU °
— (=AY, - (¢°V,To) — aV, - (UV,1°)
+ Aé ’ qusi - >‘2vy ! (%\Vzﬂ/’) - vy ’ (‘bivyﬂb\)
—(a=1)V, - (UV,) — (a— 1)V, - (¢'V,To)
—aV, - (UVy () — ) = A2V, - (22 Vy (¢ — 1))
— V- (X + X))V (0 +¢°), = (=4y) " (¢'%),

Bol¢'] = M(2¢" +y - V,0'),

and

A
et =x(57)
with xo as in (2.5). Similarly we formulate the outer equation as
Bip” = Ap® — Vo - Ve° + G(¢', ¢°, p)
where

. 2
G(djza(poap) = S(ulap)(l - X) + F

1
+ 32U (=) - aN’UVy - V§° = V- (o Vi°)(1 = x)

—(a=1V - (¢°VIo)(1 = x) = V- (¢°VR) = V- (¢°Vihy)(1 = x)

i 1 L a
Vx - Vo +F¢AX—§¢@X—F¢VX'VFO

1 , 1 1,
— 5V (@' VR)X — 59'VXx VR — 59"V - Vihy

A2 A2 A2
_ %va V=V (V% — )1 - x)

L x4 )V @+ 0) (1 - ).

V@Vl -x) = V- (53

(5.5)

(5.10)

If ¢°, ©° is a solution to system (5.5), (5.9), then u given by (5.1), (5.2) satisfies the Keller-Segel

system (3.1).

5.1. Choice of \y and ag. We explain the choice of Ay in the context of the elliptic equation

L[¢] =h in R?
where h is radial.
Lemma 5.1. Let h(y) be a radial function such that
1+ Iyl () = 2y < o0,
for some v > 4 and satisfying

/ h(y)dy =0
R2
[ nwloPay =o.
R2
Then there exists a radial solution ¢(y) of equation (5.11) such that

o)l < CIA+ [y h(y) | Lo @) if v #6

1
1+ Jyhr=2’

(5.11)

(5.12)

(5.13)

(5.14)
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log(1 + |y .
6] < L+ ) by o i = (5.15)
and
| oty o (5.16)
Proof. Defining g = % — (=A)"1¢ we obtain the equation
V- (UVg) = h. (5.17)

Assuming v > 6 we choose the radial function g defined by

o0 1 T
9(p) = - / 7 [ Mesdsar. o=

and using (5.12) we get

1
<A+ |y) k|| ®mey ————-
l9(p)| < ClI(1+ [y[)"hl[ Lo r2) A
Now we solve Liouville’s equation
—AY—Uyp=Ug inR?* 4(p) =0 asp— oo. (5.18)

Multiplying (5.17) by |y|? and using (5.13) we see that

1
| azody=5 | nw)lyPay =0,
R2 R2

with Zy defined in (3.4). Then by the variations of parameter formula we find that (5.18) has a
unique solution ¢, which satisfies

ot
(T4 fyh)r=*

Then we see that ¢ defined by ¢ = Ug + U satisfies (5.11), (5.14) and (5.16) because ¢ = —A and
1 has the decay (5.19).

If 4 < v <6 we do almost the same, except that we define

9(p) = / ’ %(r) /0 ' h(s)sdsdr.

[P+ A+ DIV < I+ [y) bl @2 (5.19)

O

Remark 5.1. We observe that L[Zy) = 0. This can also be seen in the context of the Lemma 5.1,
where ¢ = Zy which corresponds to g being constant. Indeed, suppose g = 1. Then from (5.18)
P=-1-— %Zo, where zg is defined in (9.2). This gives ¢ = Ug+ Uy = f%zo = f%ZO. This shows
that L[ Zp] = 0.

If h doesn’t satisfy the zero second moment condition (5.13), then a solution still exists but with
worse decay and non-zero mass. More precisely, if h is radial, ||(1 + |y|)"h(y)|| L= ®2) < 00 for some
~v > 6, and satisfies only (5.12), then one can construct a solution ¢ to (5.11), but any such solution
has the estimate
log(1 + |y|)

(1 +[yh*

so worse decay than the one in (5.14). Moreover, the mass of ¢ becomes

1
o= [ do=—[ 9z0=3 [ nwlyPdy
R2 R2 R2 R2

For the inner equation (5.5) it is then natural to impose that the first error S(up)y satisfies the
second moment condition

o) < CIA+ [y h(y) | Lo r2)

/ S(u)x|y|*dy =0, for all t > tg.
R2

The next lemma gives a way of expressing the second moment of u;.
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Lemma 5.2. Let uy be defined in (3.13). Then
/ S(ul)\x—f\dezél/ tp,\dx—a/ E(x—& Nz —€&dx
R2 R2
Jr/ Vo dx - fﬁ/ Ux|:zzf§|2dx—(lfoz)/ E(z — &t \) |z — €2 dx
R2
+4 / +/ 1 / L / ) (5.20)
U - — - = . .
R2 0 R2 g 8 R2 o 8 R2 g
where E, E are defined in (3.10), (3.11).

Proof of Lemma 5.2. Using (2.11) we see that

/ S(ur) | — £dx = —/ Byuole — £[2dz — / drprle — £2da
R2 R2 R2

([t [o) (g Lo L)

But recall that ¢y (z,t) = @x(z — £(t),t) where py satisfies (3.9). Multiplying that equation by |¢|?
and integrating on R? results in

S M2 g N 2
[ owalcrac==a [ onacr [ BN

Therefore

I _(x—f)'é ~ 2
[ oosle—e@dn==a [ onao-C=E [ a0 [ Bcoira

and then

/S(u1)|x—£|2dm:—/ 8tu0|a:—§|2dx+4/ <p>\da:—|—/ Vgo)\da:-é—/ E(x — &, t)|z — €2 dx
R2 R? R2 R2 R2

+4(/RQuO+/Rz<pA)(1—Siw/Rzuo—Siﬂ/RzgpA). (5.21)

But from the formula for d;ug (3.3) and the definitions of E and E (3.10), (3.11) we get

O Uy)x0(z) + 0Bz — &) — aB(z — £,1).

—atuo(x,t) = b\

Hence
/Rz (Bhuo + Bz — €.))|x — £dx
= [ 0 +aB@ =)~ gPdo+ (1) | B =00~ ¢Pds
7'2 Uxlz — €2dz + oz/R2 Bz — &)z — ePdz + (1 — ) /R Bz — &)z — £[2da.
Replacing this in (5.21) we obtain (5.20). O
In the definition (3.13) of u; we will stress the dependence on the parameters by writing p

(A, &) and uy = ui(p). At this point we would like to construct Ao and ag so that setting pg =
(Mo, g, 0) we have

/ u1(po)dx = 8, (5.22)
R2

/]R2 S(u1(po))|z — &2 dx = O(t;-o)’ (5.23)

for some o > 0. The reason for allowing in (5.23) an error is that it is difficult to solve with right
hand side equal to 0 and a remainder of size O(t_%_”) with o > 0 is sufficiently small to proceed
with the rest of the construction.



INFINITE TIME BLOW-UP IN THE KELLER-SEGEL SYSTEM 15
Assuming that (5.22) holds, we get

/S(U1)Ix—§|2dﬂﬁ=4/ wdw—a/ E(x— &t MN)|e — ¢ ds
R2 R2 R2
é

—|—/ Vo dr - _ﬁ/ Ux\m—f\Qda:—(l—oz)/ E(x — &t \)|x — €)da.
R2 R2 R2

It turns out that the main terms in the expression for [, S(ui)|x — £|*dx are the first two. So the
equation

/ S(u1 (po))|z — €2z = 0
RZ

is at main order given by

4/ goAdx—/ Elz — ¢dz = 0.
R2 R2

~ A2 A4
— 2 — - -
/]R? Elz —¢|°dx 64rY ; +O(t2>’ (5.24)

see Lemma 7.5, where T is given in (2.7), so that the equation we want to solve becomes at main
order,

It will be shown later that

/\2
/ padr + 16717 — = 0.
R? t

In §7 we will show that

t—\?2 \ 2 2 4
A A A N loglogt
ordz = —4r ds — 21 — 16772 + O 228087 (5.25)
2 S t t t

see Corollary 7.1. Using (5.25) we see that

A2 = A2 Aloglog ¢
dr + 16772 = —4 ds + 2| + o 225280 5.26
/Rz‘” SR WUW t—s 5+2t]+ ( t ) (5.26)

so that the equation for A is at main order

t—\? \ 2
AA A
/ ds+ — =0.
t

/2 t—s 2t
One can check that \*(t) = \/ﬁf?, where ¢y > 0 is an arbitrary constant, is an approximate solution.
Indeed
—()\*)2 % Lk % (%2 «
/t R NOLNO FRNECY SIS I / Y ds | X
t/2 t — S 2t f,/2 t — S 2t
: M (t)?
~ A (DA () logt + %)

14
24t
The error left out in the approximation (5.26) is too big. We give next a result that shows that for

an appropriate modification of \* we can achieve a smaller error. Let us write E()\) the expression
defined in (3.11) with the explicit dependence on A.

[A*(t)? log t} =0.

Proposition 5.1. Let ¢g > 0 be fized. Forty > 0 sufficiently large there exists Ay : [%’, o0) — (0, 00)
such that

1 ~ 1
/}R2 O dr — i /}R2 E(Xo)|z — €|2de = O(t%"’")’ t > to, (5.27)

for some o > 0. Moreover, for arbitrarily € > 0 small, Ay has the expansion

Co 1
Molt) = Viogt N O<(logt)%*5>7

: Co 1
Ao(t) = — O
o(t) 2t(log t)3/2 + (t(logzﬁ)%*s)7

< -
|>‘O(t)| = tQ(logt)3/27
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ast — 00.

We will prove this result in §7.1.
Once Ag is constructed in Proposition 5.1 we choose aq so that (5.22) holds, by imposing

a(t) [ Ut (2"

We note that by (2.6), (5.27) and (5.24) we get

) dy +/ Oro (T, 1) de =8m, t > to. (5.28)
R2

ao(t) =14+ 0( ;)

as t — oo. A byproduct of the proof of Proposition 5.1 is that

d C
% /]R2 @Xodl‘

<. (5.29)
o (t)] < g (5.30)

t
and from this and (5.28) we get

As a corollary of Proposition 5.1 we get:

Corollary 5.1. Let p, = (Mo, ,0) with ag defined by (5.22) and Ao be given by Proposition 5.1.
Then

1
— 2 —
[, Stusto)le —€Pde = 0( ).
for some o > 0.
Proof. Using Lemma 5.2 we have
/ S(uy) |z — &P de = 4/ O dr — / E(x —&,t; Xo)|x — £|?dx
R2 R? R2

%3 [ U Pdo— (1= a0) [ BGa- 60l - €Pds
A R2 R2

- O(t%id)’

for some o > 0, since dy(t) = O(%) and

2

e 2 _ (0
o E(x — &t Mo)|z —¢| d:v_0< : )

by (5.24) and a direct estimate for the remaining terms in E (c.f. (3.10)).

O

5.2. A further improvement of the approximation. We introduce a correction ¢f(y), y = “"T*E
in the inner approximation to eliminate the radial part of S(u1(p)) (defined in (4.2)), which we define
as

a A (a—1) 1 r—¢
So(u1(p)) = =3 Uy)x + (@ = 1) 5 Zox + 5 — 35 UVaxo- v
2(a —1) (a—1) 1 a? -1 a
+ )\3t1/2 VzXO . VUU + AXOFU — AS\/E UVZXO . V’L/FO — Ad\/%UVZXO A vyR
ala —1)x o?x(1—-x) ax
— Tvy (UV,To) + TU2 — Fva -V, R.
4
— S Orox — V- (oaVuvg) = V- (ugVhy) = V- (oA Vhy). (5.31)
‘With this definition
o (67 .
S(u1) = So(u1) + F'E -V, U(y) x + WU(ZUK - VXxo,

and the terms not in S(uy) correspond to %ﬁ -V, U(y) x + )\%\/EU(y) which are in mode 1.
Then we want ¢} to be an appropriate solution to the equation

L[p4] + M So(u1(pg)) (2, 1) = co(t)Wo  in R?, =€+ Ny, (5.32)



INFINITE TIME BLOW-UP IN THE KELLER-SEGEL SYSTEM 17

where L is the linear operator (5.4), t > g is regarded as a parameter, Wa(y) is a fixed smooth radial
function with compact support, and

[ Wiy =0. [ W)y =1. (53

By Lemma 5.2 and Proposition 5.1, the choice p = p; is so that (5.22), (5.23) hold. Since the
difference between S(uq) and Sy(u;) contains terms in mode 1 only, we get from Corollary 5.1

/Rz XS0 (us (po)) |y [*dy = O(t;m)_ (5.34)

In (5.32) we select ¢o(t) such that
[ MSa(un(po)) + coWalloPPdy =0, ¢ > 1o
R

and thanks to (5.34) we have

colt)] < =

< t>h (5.35)

Note that we have
[ Satur(p) = o
R2
which follows from the constant mass in time of ui(pg) in (5.22) and the form of the operator Sy
(5.31).
We let ¢} be the solution to (5.32) constructed in Lemma 5.1. By (5.15) and (4.5)
: Clog(1 + |y])
iy )] < =28 T 5.36

and

¢6(y? t)dy = 07 t> tO-
R2

5.3. Reformulation of the system. In the outer problem (5.9) we would like to separate the effect
of the initial condition from the coupling G(¢%, ¢°, p).

We take the initial condition in (5.9) to be

L)00(',2‘;0> = @aa

and let ¢*(z,t) denote the solution of
r—§

A

B = Ap* — vmro( ) Vo' in R? x (fy, 00)

(5.37)
©* (- t0) = @ in R%
The initial condition ¢f(z) will be later used to prove the stability claimed in Theorem 1.1. The
topology for ¢ will be specified later on.
Note that VxFo(””T_f) = —4@% so that ¢* is a function of the parameters X, €. Therefore we

will write ¢*(z,t; p) when convenient.

We decompose

=)+ ¢
="+ (5.38)
P=PotP;

where
Po = ()\()70[070)7 P = ()\lua17£1)u
with A\ the function constructed in Proposition 5.1 and «g chosen so that (5.22) holds.

We substitute the expressions for ¢¢, ¢° and p in (5.38) into the equations (5.5), (5.9), and are
led to the following problem for ¢, ¢

{ N0y = L@] + Bo[o] + E2X2 + Fa(¢, 0, P1,05)%  in R? x (tg, 00) (5:30)

¢(-,to) = ¢o inR?
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x _5 * . 2

=Ap — I . R
8“0 2 V:v 0( A\ ) v@ + G2(¢a @, P1, QDO) m X (t07 OO) (540)

o(,to) =0 in R?,
where X is defined in (5.8),
Ey = =0y + Bo[¢] + co(t)Wa
F2(¢7 (pvph 308) = F(¢6 + (ba ‘P* + ()071:)0 =+ pl) + >\4[So(u1(p0 + pl)) - SO(U1(pO))]
. al\? .

+ Xy -V, U(y) x + WU(y)é‘l -Vxo (5.41)
G2(¢7 ®,P1, @8) = G(¢6 + d)? ‘P* + ¥, Po + pl) + )\74E2(1 - )22)X (542)

Talent) = xo (5t ).

d > 0 is a small constant to be fixed later on, and xq is as in (2.5). We recall that F' and G are
defined in (5.6) and (5.10). The expressions for F5 and G2 depend on the initial condition ¢f through
©* (5.37) and ¢g. The role of ¢g will be clarified later on.

By the estimate for Ay in Proposition 5.1 and (5.35) we get

C  log(1+y|) C
Es(y,t)] < W. < Cy/tlogt. 5.43
| 2(?/7 )‘ = tQ(IOgt)z 1+ ‘y|4 + t%+0| 2(y)|’ |y| = og ( )
The reason that we introduce the cut-off x5 is to achieve
C
Exxo(y,t)| < —————
| 2X2(y )| = t,,(l ¥ |y|)6+0

if v <1+26— %. We will choose § and o positive small numbers such that 26 — 3 > 0 so that we
can find 1 <v <1+26— 3.

5.4. Splitting the inner solution ¢. We perform one more change in the formulation (5.39), (5.40),
which consists in decomposing

¢ = o1+ ¢o.

The function ¢; will solve an equation with part of the right hand side of (5.39), which will be
projected so that it satisfies the zero second moment condition.

For any h(y,t) with sufficient spatial decay we define

malbl(®) = [ by, malbl(t) = [ h Dl (5.44)
and
mig bl = [ By, 5=1.2

which denote the mass, second moment and center of mass of h.
Let Wy € C*°(R?) be radial with compact support such that

Wody = 1, / Woly[*dy = 0.
R2 R2

Let W1 ;, j = 1,2 be a smooth functions with compact support and with the form W1 ;(y) = W (|y|)y;
so that

Wi;(y)y; = 1. (5.45)
R2
We recall that W5 defined in (5.33).

Then, h — mo[h|Wy has zero mass, h — mo[h|W3 has zero second moment, and h — mq 1[h]W711 —
ma,2[h]W1 2 has zero center of mass.
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We modify of the operator By appearing in (5.39), and defined in (5.7). The idea is to work with
a variant of it, which coincides with it for radial functions, but for functions without radial part it is
cutoff outside the region |y| < % More precisely, we decompose ¢ in a radial part [¢],.q defined by

2

[¢]md(p,t):% ; d(pe”, t)do (5.46)

and a term with no radial mode ¢ = ¢ — [@],aa- We note that the other linear terms in the equation
behave well with this decomposition. Then we define

. . A
BI6] = M(2[)raa + - Vidlraa) + MN261 +y- Vorxo (2% ) (5.47)
5Vt
where xg is a smooth cut-off in R with xo(s) =1 for s <1 and xo(s) =1 for s > 2.
With these definitions we introduce the following system for ¢1, ¢2, ¢, py,
N0y¢1 = L[¢1] + Bldn] + Fs(¢1 + ¢2, 0, P15 £5)
— mo[F3(d1 + b2, 0, P1, 95)|Wo — ma[F3(¢1 + b2, 0, P1, 5)| W
2
5.48
+Y Wiy iR x (to, 00) 548
j=1
¢1(',t0) =0 in RQ,
N0y = Lgo] + Blda] + malF3(d1 + ¢2, 0, P15 95)]Wa  in R? x (to, 00) (5.49)
$a(-,t0) = g0 in R?, .
6t§0:A¢_VFOV@+G2(¢1 +¢27§07p1a¢3) in RQ X (to,OO) (5 50)
o(-,to) =0 in R?, .
where
F3(¢7<P»P1a808) = E2>22+F2(¢a4P>P17‘P6))~(a (551)

In (5.48) p;(t) are functions so that the right hand side has center of mass equal to zero. A solution
o1, da2, p to (5.48), (5.49) and (5.50) gives a solution to the system (5.39), (5.40) provided p, is such
that the following equations are satisfied

{O:mO[F3(¢1 +¢27§0,p1,§08)](t)7 vt>t07

5.52
Oiﬂj(t), Vit >ty, 7=1,2. ( )

5.5. Mass and second moment. In this section we derive some formulas for the mass and second
moment appearing in the right hand side of (5.48).

In the computation of mg[F3(¢, ¢, Py, ¢4)] and ma[F3(¢, ¢, Py, ¢§)], the following formulas will be
useful.

Lemma 5.3. We have

S(u1(p))de = —8t/ uodx —(‘3t/ padx
2 R2

R? R
afseaf 2 o () 1 f i)
and
/R2(S(u1(p)) — S(u1(po)))dx = _at{al {gﬂ(l I QTA;) Lo (A;” 16ragT A2 2

reale(5) = er(3)) + o - eniie).

where e1(s) is defined by

/]Rz updxr = 8ra [1 + QT%? + ey (A?Q) (5.53)
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Recall that T is given in (2.7) and note that

e1(s) = 0(s%), ass— 0.

Proof. For this we recall that (c.f. (2.8))
S(u1(p)) = —0kuo — e + E(uo + px),

SO
/ S(u1(p))dz = —8t/ updx — Bt/ wadx
R2 R2 R2
)\2 )\2
= fﬁt{Sﬂ'a{l + 2T7} + aeq (?> + /R2 @Adz}.
Therefore

_)\g

/R2(S(u1(p)) — S(ui(po)))dz = —Bt{oq [87r(1 + QT—) + e (f)} + 167ra0T)\

reale(5) e (3)) + [ o —eniie}.

Lemma 5.4. We have

Amia[So(u1 (po + P1 ul(Po))]
f

)|fv—§\2d *v/ U( AO (A )|z|? do

—4%%§)%WKfH—P@@9—%@@3}
- (/Rz(w —soxo)dx)Q

_(1-a) E(x—g,t,/\)|a:—§|2dx+(1—ao)/ Bz, t, \o)|o]? do
R2 R2

= —3271'0[1

~ 16 [ St oo

Proof. We have defined the second moment ms (5.44) integrating with respect to y. Note that

4 20 — T8N 2
s [ sPar= [ (555 -
and therefore

N[ (o + 1)) = Solus (po))] = X* [ Sofus(po + p)(€ + APy
ot [ Salur (po)(€ + MwluPdy
R2
= [ Sotutpo + p) (@ -y
- [ Sotateo))@le - .
We have by Lemma 5.2,
12 _ o I _ . 2
/R? S(uy)|x — &|~dx 4/}1@ padz a/lR? E(x &t N)|x —¢&|*de
s [ Ve o5 [ Ui P
~(-a) [ B0

1
4 1—— - — . .54
+ /Wuo—i—/ww,\ / U o SDA) (5.54)
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where E, E are defined in (3.10), (3.11). Let
m :/ (up + ox)dz, dm =m — 8.
R2
Since
/ (ug + @, )dx = 8,
R2
by (5.22), we have
om = / (Px = o) du
R2
Replacing m in (5.54) we get
1 .
/ S(uy(p))|z — &|?dx = 327 — 4/ updr — — (6m)? — a/ E(z — &t \) |z — €2 dx
R2 R2 2 R2
L @
+/ Voxdz - & — F/ Ux|z — &2 dx
R? R?
~(1-a) [ Bt - g
R2
Also under (4.1) we have by (5.24):

2
/ Ela —¢|? da:——647r’f/\ +eg();)

where
ea(s) = O(s?), ass— 0.
Combining (5.55), (5.53) and (5.56) we get
/ S(uq ( ))|x—§\2dx—327r(1—a)——5m / Uxlz — ¢&)?dx
+/ V<p,\dx~§— (1 —a)/ Ex—¢& 0|z —5\2dac
R? R2
A2 2
~daer () —aer(F).
We can apply this formula to p = pg and get
/ S(us (po))|[2dz = 327(1 — ag) — &g/ U(Z x|z |2de
R2 )\0 R2 )\0
~(1-a0) [ Bla,tido)laPds
Rz
A2 A2
-t () ().
Note that
[ Satwstpople ~ €Pdo = [ Sa(u(po)lads + 16 [ Solus(po))de
R2 R2 R2
— [ Salwnpo)iafda + ¢ [ S(ur(po)iz
R2 R2

because

So(ui(po)zjde = 0.
]RQ

21

(5.55)

(5.56)
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Therefore,

/R?[S(ul(p)) — S(u1(po))]|z — E‘de

o x—fx—ff_z@/zﬁz
3 L, VT o le =€ da+ 55 | UGNl da

“ifoa(5) ~eon ()] - foer () - oea ()]
~([Lor—on)ar)

7<170&)/R E($*§,t,)\)|x—g|2dx+(1*040)/RQE(93,f,>\0)|x|2d5E

= =327 —

~1¢F [ St (pos

6. PROOF OF THEOREM 1.1

Next we define norms, which are suitably adapted to the terms in the inner linear problems (5.48),
(5.49). Let us write the linearized versions of these problems as

N?0y¢ = Llg] + Bl] + h(y,t) in R* x (to,00), (6.1)
o(-,t0) =0 in R?. '
Given positive numbers v, p, € and m € R, we let
12]l0,0,m,p,e =inf K such that (6.2)
1% ] 1 ly| < /tlogt,
Ih(y, )] < tlogt)</?
7 (log b (1 + y])? <|g|) lyl > vITogt.
y €
We also defie
|0l11,0,m,p,e =inf K such that
[o(y, )+ (1 + [y))[Vyo(y, )] < log t)</?
v t(log )™ (1+ [y)” “ﬁt) lyl > iTogt.
y €

We develop a solvability theory of problem (6.1) that involves uniform space-time bounds in terms
of the above norms. We will establish two results: one in which the solution “loses” one power of
t on bounded sets with respect to the time-decay of h, under radial symmetry and the condition of
spatial average 0 at all times. Our second result states that for a general h this loss is only t2 if in
addition the center of mass and second-moment of h are zero at all times.

For the first result we introduce a parameter in the problem in order to get a fast decay of the
solution:

N0i¢ = L[¢] + B[] + h(y,t) in R® x (to, 00), 03
¢(.7t0) = 0120 in RQ, ( ' )

where Z, is defined as
Zolp) = (Zolp) = mz,U o555 72) (6.4)

where my, is such that
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Proposition 6.1. Assume (4.1). Leto >0, e > 0 witho+e <2 and1l <v < %. Let0 < g < 1. Then
there exists a number C' > 0 such that for tog sufficiently large and all radially symmetric h = h(|y|,t)
with ||hlo,v.m 640, < 00 and

/ h(y,t)dy =0, for all t > to,
R2

there exists ¢; € R and solution ¢(y,t) = T*[h] of problem (6.3) that defines a linear operator of h
and satisfies the estimate

C
I8l —1omra-ra2v0+e < qog =g IPlo.vmoro.c
Moreover ¢y is a linear operator of h and

1
|Cl| < C )m Hh||0,u,m,6+a,e-

to " (logto

We also consider the problem
2

N0p = LI¢] + Blo) + h(y,1) + D pi ()W in R? x (to, 00), 63
j=1 :
#(-, 1) =0 in R%
where the function W ; have been defined in (5.45).
Proposition 6.2. Assume (4.1). Let0 <o <1, ¢ > 0 witho+e < 3 and1 < v < min(1+5,3-%, 2).
Let 0 < g < 1. Then there is C such that for ty large the following holds. Suppose that h satisfies
||h||0,l/,m,6+0,5 < 00 and

h(y,t)dy = 0, / h(y,t)|yl*dy =0, for all t > t,.
R2 R2
Then there exists a solution ¢(y,t), p;(t) of problem (6.5) that defines a linear operator of h and
satisfies
||¢||1,V7%’m+q7;174)2+0'+6 < C”h”O’V,m’GJrJ,E'

The parameters u; satisfy
i(®) = [ by Oy + 5 A1)

where fi; are linear functions of h with

- C
|/j’j [h” < t”+1(10g t)y+m+2 Hh”u,m,5+cf,e~

We denote this solution by ¢ = T»'[h].

The proof of the Propositions 6.1 and 6.2 is divided into different steps and presented in sections 8—
12.

Next we consider the linear outer problem:
9y¢” = L°[¢°] + g(,1), in R® x (to, o0) (6.6)
¢°(-,to) = ¢§, in RZ '

where

L] i= Agp = VDo (£ ;(f)(t))} V.

For a given function g(x,t) we consider the norm ||g||.« . defined as the least K > 0 such that for
all (z,t) € R? x (tg, )

1 1 x—E(t)
elognP 1 T i
Accordingly, we consider for a function ¢°(z,t) the norm ||¢|. , defined as the least K > 0 such that

1 1 r—¢&
T TlogtP T+ P <7 VA

9(z,t)| < K (6.7)

19°(x, 1) + (A + [& =€)V g® (2, 1) < K

(6.8)

for all (x,t) € R? x (tg,00).
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We assume that the parameters a, b, 3 satisfy the constraints
b
l<a<4, 2<b<6, a<1+§, B eR. (6.9)

Proposition 6.3. Assume that the parameter functions p = (A, «, &) satisfy conditions (4.1) and
the numbers a,b, B satisfy (6.9). Then there is a constant C so that for ty sufficiently large and for
[|glsx,0 < 00, there exists a solution ¢° = T [g] of (6.6) with ¢g = 0, which defines a linear operator
of g and satisfies

1610 < Cllglso-

For the initial condition ¢§ in (6.6) we consider the norm ||¢§||. defined as

||¢8H*7b =inf K such that
K

(1+ 7

We have an estimate for the solution of (6.6) with g =0 and ||¢g||.» < co.

|66(2)] + (Alto) + [2])[ V¢ (2)] < (6.10)

Proposition 6.4. Assume that the parameter functions p = (A, «, &) satisfy conditions (4.1) and
the numbers a,b, B satisfy (6.9). Then there is a constant C so that for to sufficiently large and for
lo8llepo < 00 there exists a solution ¢° of (6.6), which defines a linear operator of ¢§ and satisfies

16°]l«,0 < Ct5~* (10g t0)” |65 1.5-
The proofs of Propositions 6.3 and 6.4 are contained in Section 13.

In what follows we work with p; of the form

P = (07 O‘lvfl)a

that is, we take A = A\g, @ = ag + a1, £ = &, where A\g and g have been fixed in Section 5.1, and we
write

P =Py +P;-

Next we define suitable operators that allow us to formulate the system of equations (5.48), (5.49),
(5.50), and (5.52) as a fixed point problem. We let

Ai[¢1, ¢2,0,p1) = To' | Fs(d1 + b2, 0,1, 20)
- mO[F3(¢1 + ¢27 ©,P1; @8)]WO - m2[F3(¢1 + ¢2) ©,P1, %03)]W2

—my1[F3(é1 + 2,0, P1,90)| Wi — ma2[F3(d1 + b2, 0, P1, 90) Wiz

Ai? [¢1a ¢23 ®;P1, QDEK)] = 73)2 [mQ[F3(¢1 + ¢23 ®, pl)’ SOS]WQ]

Aoldr, b2, 0, P1,00) = T [G2(d1 + ¢2, ¢, P1, ¥5)]-
Then the equations (5.48), (5.49),(5.50) can be written as
¢1 = Air[d1, $2, 0, Py, 0]
¢2 = Aia|d1, P2, ¢, P1, ¥
@ = Aold1, b2, 9, P1, ¥0.]

Next we consider the equations (5.52), that is, mo[F3(¢1 + ¢2, ¢, p1, ¢§)](t) = 0 and p;(t) = 0. By
(5.51) and (5.41)

mo[F3(¢, ¢, P1, 05)X] = Agmo[So(u1(py + P1)) — So(u1(py))] + mo[E2X2]
+mo[F (¢ + ¢, 9" + ¢, Py + P1)X]

+ Agmo[(So(u1(pPy + P1)) — So(u1(pg))) (X — 1)),
and using Lemma 5.3,

molFs(6, 0,01 23)5] =~ s (1+20°0) 44 (20)]} + o[l
+ A5mo[(So(u1 (po + P1)) — So(ur(py))) (X — 1)].
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This motivates the definition

Aoq [¢17 ¢27 ®©,P1, @8]

1 1
8w<1+2T*§>+e1<13>/t A
o+ Abmol(So (s (Po + 1) = So(us (P))) (X — ))(s) fds (6.11)

Similarly, by (5.51) and (5.41), asking that ; = 0 in (5.48) is equivalent to

{molEaal(s) +malF (¢} + 6. 0" + ¢, + P1)T(5)

Ay
O—Aoa&g/ y)yjxdy + \[51,]/ (y)aszO(\/)ygdy

+ma j[EaXa) + mij[F(h + ¢, 0" + ¢, P + P1)X] + ma;[Blé1]]-

This motivates the definition

A§1 [(bla ¢27 ¥ P1s 808]

00 2
N /t Ao [ ayle (y)y;xdy { O?) g /]R? Uw)9s; 0 :\/i Juidy
+ma j[BaXa](s) + ma;[F(dh + ¢, 9" + ¢, o + P1)X)(5) + m1 [B[¢1]](8)}ds (6.12)
Then we define A, by
Aplo1, 62, 0,1, 05] = (0, Aa, (01, 82,9, P1, 5], Ae, [1, D2, 0, P1, ©0))- (6.13)

Then
P1 = Ay[d1, P2, 0, P1s 0]
is equivalent to the equations (5.52).
We write
¢ = (61, 62,9, P1):

and
Alg] = (A (6, 93], Ainld, 05, Aol 053], Apl, 25)),
and the objective is to find r; such that
¢ =Ald).
The operator A depends on the initial condition ¢fj appearing in the parabolic problem (5.37), and
we will stress its dependence later on when proving the stability assertion in Theorem 1.1.

We define the spaces on which we will consider the operator A to set up the fixed point problem.
For certain choices of constants v, ¢, o, €, a, b, 3, v, © that we will make precise later, we let

= {6 € L=(R? x (t0,0)) | Vyé € L¥(R? x (t9,00), 6]y, 3,01 4540 < 00,

/RZ P(y, t)dy = 0, /]Rz Py, t)ydy =0, t>tg }

Xo == {SD € Lm(Rz X (to,OO)) | vy¢ € LOO(R2 X (to,OO)), ||50||*,0 < 00}7

Xp = 1{(0,a1,&) € C'([to,00)) | larllor viz.0 <00, [I€aller 0 < o0}
where the norms ||¢||1,V7%7%174)2+UJrE and ||¢||«,, are defined in (6.2), (6.7) and [|&1]|¢1 ,m is defined
by

lgllcoum = sup t*(logt)™ |g(t)].
t>to

||g||cl,#,m = ||g||C'0,,u,,m + ||g||CO,,u+1,m~

for a function g € C1([tg, 00)).
We choose in the definition of the outer norm (6.8)

5 1
a=v+s. WwH3<b<6, B< +q. (6.14)

With these choices we see that (6.9) are satisfied. Also v will be in the range 1 < v < 2 so the

2
interval for b is not empty in (6.14).
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We use the following notation: for p; = (0, «1,&1)
IPillx, = llerller vire + I€lloraeq.0,
and for (;: ((bh ¢27 2 pl)

16l x = ||¢1||17V—%,%,4,2+a+e + ||¢2H1,u—%7q7—1,4,2+a+e

w0 T IP1llx, - (6.15)

With the above notation, given ¢§ with |¢§ll«» sufficiently small, we consider the fixed point
problem

¢ = Alg], (6.16)

with (E in a suitable close ball of X. A solution of this fixed point problem yields a solution of the
system of equations (5.48), (5.49), (5.50), (5.52), which in turn gives a solution to (3.1).

We claim that for some constant C independent of o > 1, if ta~'(logt)?||¢gll«s < 1, and
||<;HX <1, then

* C v+14-5
||-/4i1[¢17¢2a907p17LPOH|1,V—%7L;17472+0-+5 = 19 +C(10gt0)2t0 2 ||<)00||* b, (617)

for some 9 > 0 small, a constant C independent of ¢, and to sufficiently large.
Indeed, by Proposition 6.2 we have

HA11[¢1, ¢2; ®;P1» @O]”l 1/77 =L fotote = < C||F3(¢1 + ¢27 ®; P15 SDE)HO,U,GﬂLG’,E'
We recall the expansion of Fj in (5.51). To estimate EaX2 we use (5.43) to get
C

| E2Xll0,0,0,6+0,e < ——
v o,€ t1+26 o V(lOgt0)2

where §, o are positive small constants and are assumed to satisfy 20 — Z > 0. Then we take v in the
range

1<u<1+26—%, (6.18)

with v close to 1.

Let us consider the term )\4[So(p0 + p;) — So(pg)] in F3(p1 + 2,0, p1,95) (c.f. (5.51)). The
formula A*[So(py + P1) — So(py)] (c.f. (5.31)) contains for example the term, evaluated at y = £5 51

o Ao ) (51 -f)—\o)\oy)XO(& -f/;\oy>
. _)‘%dlU(y)Xo(%) — Acwo [U(y) - U(%)}XO(%)
B AngU(& ivoy) {X(J(& w:/;oy> _ m(%’ﬂ (6.19)
But
‘AgdlU(y)XO(Aﬁ)‘ = e (ligt) Far o (G lenler e
SO

H_)‘oalU( )Xo(i%/)‘

C
< —lla o
0,v,6+0,e tg ” 1HCI’V+%’O’

for some 9 > 0.

Similarly,

&1+ Aoy Aoy 1 1 1 |€1] Aoy

— > T 79I 209 <« 5T 209

‘ )‘00‘0{ ) U( Xo )}XO(\/{) < Ologi Plogt LTy o X <\/i>

1 (tlogt)HTa Aoy

Fritiognt (1 e o lelenos
1 1 Aoy
Tt (logt) % (14 Iyl)“"xo( \/>H§1”C o
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SO

[=860[vi - (252 ()]

for some ¥ > 0. The last term in the expression (6.19) is similar.

< Cenl
— || 1
O broe = tg Hlctv+3,00

The terms in A*[So(py + P1) — So(Py)] that contain the function ¢, are

Mt [ 2003 — V- (02 T00) — V- (00¥r,) — V- (93, Viin,)]
Ao’
p(p? +1)
—aVy(Ux) - Vyta, — AOQVy(‘PkoVyon)-

In A\*[So(pg + P1) — So(py)] these terms appear evaluated at y and then at % + y. Using estimates
for the the second derivative of ¢, similar to Lemma 4.1 and assuming

=4 DpPrg — (= D)A0*Vyry - VyT'o + A0>Vyon, - VR + 200 Uxx,

o<1, v<l+4r, (6.20)

we get

1. -
IA*[So(Po + P1) = So(Po)lllo,v,6+0,c < Coliélx.
0

The main term in F3(¢1 + ¢2, 0, Py, ¢5) that depends on the outer solution is A2Up® with ¢° =
©* + ¢ defined in (5.38). Then we have
A2 .
(log 07 {1+ [y < 1¥1
1 1 -
T ognr W e
(tlogt)!*2
43 (logt)A+1 (14 [yl)
1

<c L el
= —- . & X|1P1lx,0-
2% (log t)A=% (1 +[y[)°F

MUy, X < 5o

IA

o7 Xlello

Therefore

to? (logto)?~%
Regarding the function ¢* (c.f. (5.37)) we note that it has the estimate
1 1 z—¢&
E TP TP CT
by Proposition 6.4, provided (6.9) holds, and therefore

- 1
INUpxllow6+0.c < Cr————l¢llx0-

" (2, 1)] < t57" (log to)” |5

(6.21)

XU Mowstoe < Clo" * (l0gt0) % ol

Let us analyze some of the terms in F3(¢1 + ¢2, ¢, Py, ¢§) that depend on the inner solutions ¢

and ¢-. For instance
(@ =1)Vy - (¢;VyTo) = (a = 1)Vye; - VyI'o — (o — 1)¢;U.
We have the estimate
1 1
tlogt tr=3 (logt) = (1 +1y])° 193l 4. 052 02104
1 1

P T (log = E (L1 e 19 et arore

(@ =1)Vy; - VyTox| <

<C

and we get

. C
[(a = 1)Vy; - VyToXllo,v6+0,e < %”(bjnl,y—%,%lA,Z-&-o-‘re’

for some 9 > 0.
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We also have, writing ¢ = ¢1 + ¢2,
: . C
PEVxlososoe < g6l g ozt aiose

for some 9 > 0, if

y> 2. (6.22)

2
Let us estimate the term V, - (UV, (¢ — %)X appearing in (5.6), where ¢ = (=A)~'(A~2¢'y),
P = (—A)"1(A"2¢%). We recall that ¢* = ¢§ + ¢ , cf. (5.38), and therefore we can decompose
¥ = i + b1 where i = (—A) (A" 2¢8x) and ¢ = (—=A) " (A" 2¢py). Similarly, we can decompose
Y = f + 11 where ¥ = (—=A)1(A72¢)) and ¥; = (—A)"2(A71¢). By linearity we need to estimate
separately V, - (UV, (¢} — ¢3)) and V,, - (UV, (11 — 1)) Let us consider the latter one. Note that

1 — 11 = (—A) A1 — x)]-

From the definition of the norm Hq§||17y_%,%7472+0+6

1 1
YO <ol p_1 azt 4oigre — 6.23
9 DT 0l 25t 42400 oy T T [y (6:22)
and so
R 1 1 Vit
\Y - )| <C _1a-1 — —, for |y| < 2.
| y(l/)l wl)(y >| ||¢||1,1/ é, 21,4,2+0+6tu_%(10gt)qT1 (tlogt)% |y| Y
Then
R 1 1 Vit
v,U -V — < C g - , for |y] <2—.
‘ Y y(ﬁ’l 1/11))(9 )| = ||¢H1,y7%,71’4,2+o-+5 tV+1—Ta(logt) qul2 o (1 I ‘y|)6+0. |y| )\

This and a similar estimate for Up(1 — x) give
. . C
I9, - (9,0 =) lossro < 1ol a0

for some ¥ > 0. A similar estimate is obtained for ||V, - (va(z/% — V) Xl0.v.6+0.c using (5.36).

Let us estimate next the term A2V, - (pAV,1)x, where we recall, 1) = (—A)~1(A72¢). To do this
we use that ¢ = ¢1 + ¢2 has zero mass and center of mass, that is,

/ By, t) dy = / oy, t)yjdy =0, t>to.
R2 R2

This and the estimate (6.23) imply
1 log(2 + )
t”_%(logt)q%1 (IT+yh?

by an argument similar to Remark 9.1. On the other hand, from (4.3)

(D] + L+ DIV, 0] < Clolly s ot 4o

C 1 Vit

\Y4 M) < — <2—

| y%\(y )| < tlogt (1 + [y])? [yl A

Therefore
A2 log(2 + [y)
/\2V90)\v¢ yat §C¢ p—1 a-1 o+te 1 a
[A%( Y Yy )y 1)] | ||1 1,955 4,240+ t”*f(logt)% (1+ |y|)8
1 1 Vit

< Clly,y0m

9 S 27
5 4,2+0+e ty+kTU(10gt) q+12—a (1 I |y|)6+g |y‘

A

From this coupled with a similar estimate for A\2py¢ we get

N2V, - (A V)X

C
0,v,640,¢ S tT9||¢| 1’y,%’qT—1’4’2+g+6
0

for some 9 > 0.

The remaining terms in F3(¢1+¢2, @, Py, ¢§) are estimated in a similar way and we get the validity
(6.17).
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Proceeding in the same way we get a Lipschitz bound. Assuming ¢4~ (logto)?||¢g|l«» < 1, for
lo1]lx <1 and |[¢2||x <1 we have

g * g * O g g
HAu[dmpo] - Ai1[¢2a<ﬁo]||1,u—l,‘l;1 4,240+e¢ < tT9H¢1 - ¢2HX7
0

257 3 %

for some ¥ > 0 small, a constant C' independent of tg, and ¢, sufficiently large. Indeed, the Lipschitz
estimate with respect to ¢1, ¢2, and ¢ is direct from the explicit dependence of F5(¢1 + ¢2, ¢, P1, ¥5)
on these variables, which is either linear or quadratic. The Lipschitz dependence on &; (where
p; = (a1,&1)) is also direct from the explicit form of F3(¢1 + ¢2, ¢, Py, ¢§). The Lipschitz condition
with respect to o appears as an explicit dependence on this variable in F3(¢1 + ¢2, ¢, P1, 95)-

lep <1and ||¢]lx <1, then

Let us estimate the operator Ajs. We claim that if t3~" (logt9)? ||

1-g_ ae g o,
il d2, 0, P 0plll1 -1 121 42y pe < Cllogte)™ = ~© + Ctg (logto) = |lphllep-  (6:24)

2 2

Indeed, we apply Proposition 6.1 to get

||m2 [FB((bl + ¢2a ¥, P1, WS)]W2|‘O,U+%,kTq,6+J,€

. C
[Ai2[1, P2, P1,00ll1,— 1 021 g 2pope < (logto) 4

and since Wy has compact support,

||.Ai2[¢1,¢>27<P7P1a§03]||1,u_1 951 424 0te

2

<o 3 (log t) =" F 181,
< Togagyi=a S 17 (logt) = malFs (81 + b2, ¢, Py, )| (1)

Using the definition of F3 (5.51)
ma [F3(¢7 ©,P1, (pé)] = mQ[EZXQ] + ma [F2(¢ﬂ Y, P1, SDS))%]
We have by (5.43) (assuming o < 1),

Ima[E2x2](t)] < =

Therefore, asking that

1 340 o
—-< — & 1+ — 6.25
vt g <5 v<1l+g (6.25)

we get

sup t/+2 (logt) =R Ima[E2x2](t)] <
t>to

9

St Q

for some 9 > 0.
By (5.41)

ma[Fa(9, 0, Py, 05)X) = XN'ma[So(u1(po + P1)) — So(u1(pPo))] + ma[F(¢) + ¢, ¢* + ¢, Py + P1)X]

+ Atma(So(u1 (P + P1)) — So(u1(po))) (X — 1)]-
Of these terms, the largest is the first one. By Lemma 5.4, and since A = )y, we get

)\4m2 [So(ul(po + pl)) - SO(ul(pO))]

=327y — %(21) - U(x)\_of))(o(x)\_og)kc - f‘zd:v
+ /R2 Bz —&,t, M) |z — &2 da — |€)? /R2 S(u1(po))d. (6.26)
But
sup 7% (log £) s (1)] < Cllogto) = ~®llasller iy o (6.27)
under the assumption 0
o> %. (6.28)

The second term in (6.26) is much smaller. For the last term in (6.26) we use Lemma 5.3 and (5.29),
(5.30) to get
¢

S5

/ S(ur (po))de (6.29)
]RZ



30 J. DAVILA, M. DEL PINO, J. DOLBEAULT, M. MUSSO, AND J. WEI

and therefore

2 S d
€0 | [ Stur(po))da
Combining (6.26), (6.27) and (6.29) we get

< m”fl“%lmo-

(ogto) @ oP % (log £) 7 M ma[So (u1 (P + P1)) — So(ur (py))](£)] < Cllogto) ™ = ~®||p1 | x, -

Let’s estimate the remaining terms in mo[F3(¢, ¢, Py, ¢§)]- Consider
AW = [V, 02T, (-) T oRlaPdy+ [V, 69,0 Tlsdy

which appears in the definition of F, where ¢ = ¢1 + ¢o. Let us recall that ¢y = (—A,) 1y and
let’s write

Y= (_Ay)il‘ls
Integrating by parts
AW = [ (BiaVy+ AT, ) - 92X+ 3V, 0.
Using the following Pohozaev type identity
Aya(Vyh - y) + Ayth(Vyhs - y) = Vy - [Vyoa (V) - y) + Vb (Vs - y) — yVydn - Vyil]
and integrating by parts we get
Alt) = — /}R2 (Vs (Vyth - y) + Vb (Vb - y) —yVyon - Vo] - 2V X + yAyXdy.
Therefore

|A(t)| < C V| Vipdy.
2vE/A<|y|<4VE/X

Using that ¢ = (—A)~1¢, and

/ Py, t)dy = 0, / Py, t)ydy = 0,
R2 R2

we have (see Remark 9.1) for any ¢ > 0 small,

C 1
|V'(/)(y,t)‘ S 1+ |y|279 tl’_%(logt)%;l H¢”1,u—%,%,4,2+0+6'

/ padr
R2

|w)\(y7 t)

Using that ¢, and ¢, are radial and

< 1
~ tlogt

by Lemma 4.1 we have
1

C
< — .
= tvlogt 1+ |y|

1
A®I < Ct”“—%(logt)%—l—% 161,05 050 4240

Then

Let us consider the contribution of the term A>U¢*. Thanks to (6.21)

- _ 1—q,
||m2[)\2Ug0*X]W2||0,l/+%,1%q,6+o,5 S Ctg 1(10gt0) 2 ||(p0||*,b7
under the condition

8> 1%‘] (6.30)

The other terms in mg are estimated in a similar way and we get (6.24).
Similarly we get that if ta~ ' (logto)?||@g]l«» < 1, then for ||(;1||X <1 and ||<£2||X < 1 we have

14i2[61] = Aiz[B]llo 3 et 440re < Cllogte) ™= 0|61 — dollx,

20 2

for a constant C' independent of ¢y, where ¢ sufficiently large.
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Let us estimate the operator A,[¢1, ¢a, @, Py, p5]. We claim that if t3~* (logtg)?||§«s < 1, then
for H(b”)( <1,

g C - — *
161, 03] 10 < gz + Ct5*(log to)” || @5 |, (6.31)
(log 10) 57
and for B lx < 1, [allx < 1 and 8~ (logt0) i lp < 1
C

5 191 — ¢2llx-

||AO[$1a SDEK)] - AO[Q_§27 ()08]”*,0 S
(logto) ™=

Note that %1 — />0 by (6.14).
Indeed, by Proposition 6.3
||A0[¢15 ¢2a ©®,P1, @3}

where we recall Gy defined in (5.42).
We start with the term A™*E5(1 — ¥2)x. Using the estimate (5.43) we get

I*,o < C||G2(¢1 + ¢27<P7p17808)||**,05

_ X C
AT Ea(1 = X2)X|swo < 7
0

for some 9 > 0 provided
a <4(1-19).
We also directly get from (4.6)
C
”S(Ul)(l - X)H**,o < %
for some 9 > 0 if a < 4.

Regarding the terms in G (c.f. (5.10)) that the depend linearly on ¢' = ¢} + ¢, we have for

ll,y—%,q—;l74,2+o+e <0

6

1 1 1 r—¢
- — 1A X0 (=)@l -1 a1 404 ope
Togty® Qe =g 1107 W sz g
! ! 18] =1
5 q p—1 a-1 o+4e
T e RN P Y T e

1 C
o < 55

IN
Q

(6.32)

which implies

C

< - -
o S G 19

1

since 8 < %1, which is one of the conditions in (6.14).

We also have, using (5.36),
<<

1 %
HF%AX s~ 1Y

for some ¥ > 0 if
a < 4.
A similar estimate holds for the other terms depending on ¢'.
Some of the terms in G that depend on ¢° = ¢* + @ are
A2 1 1
[z — ¢t to (log ) (1 + |z — £|/VE)°

< e : 10" oo + [le0)
= tologty t*(logt)f (14 |z — &|/VE)P @ b0 T 112llx,0

1
| sUs—x)| <c (1 =20l l-o

which implies that
1 o
|-y

by Proposition 6.4. Other terms are estimated in a similar way.

0+ Cta2(log t0)? 10§ 1.5,

[l

<
xx,0  tologty

Let us estimate the operator 4, which is defined by the equations (6.13). We claim that if
(Oa dl? 51) = Ap[(bl, ¢2a @, pl]
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and t§~ " (log to)? | 0§llp < 1, [|6llx <1, ¢ = (¢1,b2,9, p1), then
|1l pi1.0 < Cllogte)®# + Ctg" (log to)® @5 1«0

- C P
[€1lle20 < 2+ Cto" " (logto) [l .0 (6.33)
0

for some ¥ > 0. Similarly, we have the following Lipschitz estimate. If t§~'(logt0)?|| ¢4« < 1, then
for some ¥ > 0, and for ||¢1||x <1, ||¢2]|x <1,

AL (61, 03] — Aplda, 03]llx, < Cllogto)® 7161 — b2l x, (6.34)
for some 9 > 0.
Indeed, by (6.11)

[ Aoy [P1, 92,0, P10l (D) < (1 ()] + [2(8)] + [13(2)]

where

B0 = [ gamolBaal(s)ds
0

h(o = [ " N2mol(So(ux (o + p1)) — So(uu1 (o)) (% — 1)](s)ds.

Using (5.43) and [, Eady = 0 we get

)\1(2)m0[E2>~<2](t)‘ < th’—%'
This gives
Illcrotie < ot (6.35)
under the assumption
v < § — 20.

2

The largest contribution in I comes from the term \2Ug? in F(¢§ + ¢, p* + ¢, py + 1) (c.f. (5.6)).
The estimate of this term is

1

A3(1) /R AO(f)QU(y)w"(y,t)dy' <C

1
—_— |||« 6.36
=T L (6.36)

and so

| [ vweena < C(10gt0)° = |¢"ll.o-

Clu+i,0
under the assumption
0 < g. (6.37)
Similar estimates for the remaining terms give
1allor 41,0 < Cllogto)®~?||dllx + Ct™ (log to) (|05 «.b- (6.38)
Regarding I3, using (4.5) we have
Nemo[So(ur () (X — 1)] < % (6.39)

Putting together (6.35), (6.38), and (6.39) we get
[ Aa, [61, 82,0, P Polllcr w10 < Clogt)® P I6] x + Ctg ™ (1og t0) 15 |«

assuming also that

1/<§
5

The computations leading to (6.33) are very similar, under the assumption

1
T<v-3 (6.40)
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This restriction arises when considering the largest term in the expression (6.12), namely comes from
estimating the term A2my_j[ox, #X] (A3, is one of the terms in (5.6))

1 .
)\*okg\ml,j[w(@x](t)\ < CAO/ loxo Dyl dy
Rz

1 1
= t(log t)2 tVﬁ%(log t)qgil |‘¢||1,1/7%,%,4,2+0'+6

Let us summarize the restrictions on the parameters. We let 0 < g < 1 be fixed. We take
0 < 6 < o < min(1,49),

and
1 <u<min(1+25— 3,§,1+7,1+3).
2°2 2
because of (6.18), (6.20), (6.25). We also need

1-—
T<® 6<T

by (6.28), (6.37) and by (6.30) and (6.14). We take

0< - 1
g , L
2 =7 2

by (6.22) and (6.40).

Together with the above inequalities we want also the relations o 4+ € < 2, v + < 7 for Propo-
sition 6.1 and o + € < 2, v < min(l + £,3 — %, 2) for Proposition 6.2. The condltlon (6.9) for
Propositions 6.3 and 6.4 hold by (6.14). We see that all these restrictions are satisfied by choosing
first 6, o > 0 small so that 20 — § > 0. Then we take v > 1 close to 1, then let a = v + % and
b satisfying (6.14). Then ©, 8 and ~ can be selected. Note that with the above procedure we are

getting the restriction b > 5.

We already have all elements to solve the fixed point problem (6.16), which we recall
(5 = ‘A[(g]a (5 € B,

where B is the closed unit ball in the Banach space of functions ¢ with ||¢||x < +oo and the norm
defined in (6.15). Thus

B={deX||d|x<1}.
Let o be such that t3~*(logto)?||¢§|l» < 1. Estimates (6.17), (6.24), (6.31) and (6.34), imply that,
enlarging the parameter tg if necessary, A maps B into itself. We also get that A is a contraction

mapping on B. The contraction mapping principle yields the existence of a unique fixed point in B,
which then yields the required existence result.

V+2(

6.1. Stability. Theorem 1.1 gives that if ¢ has mass zero and is small so that ¢ log t0)?||lg|l«p <

1, then the function

w(z,t) = 82 (% (()t)) +¢6<x/\_0é()t),t> +¢(x;0é()t)7t)]x(x,t)
+ Pao (@ —&(1), 1) + (2, ) + ¢"(2,1), (6.41)

solves (3.1) and blows-up in the way described in Theorem 1.1. This follows from the form of the
ansatz (3.2), (3.13), (5.1), (5.38), where ¢ = ¢1 + @2, and ¢1, ¢2, ¢, ©* satisfy respectively the
equations (5.48), (5.49), (5.50) and (5.37). The initial value of u is

) = S [ ) (™) e ()

. XO(x_i%;m) + @@ = E(tos 9o). to) + o (@).

We recall that ¢, is defined in (3.9). The function ¢ doesn’t depend on £ and is radial about the
origin.

We let uf(x) = u*(x;0). Note that u is radial and so its center of mass is zero.
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To prove stability, we would like to prove the following intermediate step: given v defined on R?
small, with mass zero and under some additional assumptions to be defined later on, we would like
to find ¢ with mass zero such that

u(pg) = uf +v. (6.42)
The equation (6.42) for ¢§ has the form
alto; ) [ (= = &(to; 5) i (€ — &(to; ) o5 (L= &) x — &(to; #5)
ik Ui ) () etz e ()
+ @xo (2 = &E(t0; ©0), to) + o ()

= i(()i?f;;? {U<)\o?t0)> +¢6<ﬁ) —l—cl(O)ZO(ﬁ)} ‘Xo(%)
+ P (2, t0) + 0. (6.43)

Computing the mass we find that a(to; ) = a(to;0). Note that lim_, o £(t) = 0 by (6.12). Then
the center of mass of u(-,t) satisfies

lim u(x, t)xdx = 0.
t—o0 R2

Since the center of mass is preserved

/ u(z, to)rdr = 0.
R2

Let’s assume that the center of mass of v and ¢f; are both zero. Then, computing the center of mass
we find that

&(to; ) = 0. (6.44)
Then the equation (6.43) reduces to
a(to;0) 5 T
(@e) - al0) 3 2o (57 + i) = v (6.45)

We will prove at the end of this section the following.

VJr%

Proposition 6.5. There is § > 0 so that if t, > (logto)?||v||l.s < 8, v has mass and center of mass
equal to zero, then

/ v(x)|z[*dr = 0,
R2
1s equivalent to

c1(v) —e1(0) =0.

3
To prove stability we first observe that if v : R? — R satisfies tg+2 (logto)?||v]|+.» < 6, has mass
zero, and

/ v(z)zjde =0, / v(x)|z*de = 0,
R2 R2

then uf + v = u*(¢}) for ¢f = v, by Proposition 6.5.

v+3 .
Now consider a general v with t0+2 (logto)?||v|l«» < 0 (for a possibly smaller § > 0), and mass
zero. We want to show that the initial condition uj 4+ v produces a solution to (3.1) with infinite time
blow as described in Theorem 1.1. Consider

onole = 6 (552) (0]

where p € R? and A > 0. Note that uA,p has mass 87. Then we select A and p such that

/uA,p(x)xjdxzo, /uAyp(x)|x|2dx:/ ug(x)|x|2dx.
R2 R2 R2

Note that [A2 — 1| < Ct3||v||«» < 1 and |p| < Ctg||v|l«» < 1. Then we expand

unp(@) = uy +w
3
and w satisfies tg+2 (logto)?||w|l+» < C§, has mass zero, center of mass zero and second moment
equal to 0. By the previous claim, the initial condition uy ,(z) = u§ + w is such that the solution
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to (3.1) blows up as in Theorem 1.1. Then the same is true for the initial condition uf + v after a
scaling and translation in space.

6.2. Proof of Proposition 6.5.
vl 3
Lemma 6.1. Assume that t0+2 (logto)?||v|l«p < 1, that v has mass and center of mass equal to zero,
and that
c1(v) —e1(0) = 0. (6.46)

Then
/ v(x)|z|?dx = 0.
R2

Proof. From (6.46), ¢ = v solves (6.45), and therefore uf + v is an initial condition for (3.1) for
which the solution blows up in infinite time. The solution u to (3.1) preserves the second moment:

/ u(z,t)|x|*de = const.
R2

We compute the expansion of [, u(z,t)|z[*dz as t — co, based on the expression (6.41).
Note that lim;_,o £(t) = 0 by (6.12). Then

o) [ y(z=E0 e OO [ O
o LU (e e oletar = 205 [ v (S ke - )z + of0),
as t — oco. By explicit computation

1 xr — f(t) 9 _ 9 t 0
SWEE /R u( e )x(@, )]z — €(t) 2z = 8733 1og<)\—%) +0(N) (6.47)

as t — oo.
Using Lemma 4.1

, c
/]Rz oo = €0 <

Using also Lemma 4.1 to estimate the mass and first moment of ¢,, we get

C
t)|zPde < ——. 6.48
[ ont@tlafis < oo (6.45)
Using (6.47), (6.48) and the estimates for ¢, (5.36), ¢ = ¢1+¢d2 that arise from ||¢H1,1,7%,L;1’4’2+0+6 <
00, and ¢, ¢* which arise from ||¢||+,, < 00, [[¢*||+,0 < 00, we get that
t
/ u(z, t)|z|?de = 8w\ 10g(v> +0(\2)
R2 0
as t — oo. But \g was constructed in Proposition 5.1 with the expansion
Co 1
"= Jiogt + \iogoy7=
as t — oo, where ¢y > 0 is a constant. Therefore
/ u(z, t)|x*de = 8mc?
R2
and evaluating at t = ¢ty we obtain
/ u?j(x)|m|2dx—|—/ v(x)|z[Pdr = 8rcl.
R2 R?
We can apply the previous calculation to v = 0 and arrive at
/ ul(z)|z|*dx = 8ncd.
R2
This shows that
/ v(x)|z|?dx = 0.
R‘Z
O

We need an expansion for ¢1 () — ¢1(0).
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ol < 1 and that ¢ has mass and center of mass equal

v
Lemma 6.2. Assume that t0+2 (logto)
to zero. Then

c1(p) — €1(0) = ag /Rz w5 ()| |*dz + Ro(pg),
where ag # 0 and Ry satisfies
|Ro(5)| < Ctoll@g ll«.b- (6.49)

Proof. In the following calculations A = Ag.
First we need to estimate the Lipschitz constant of the solutions ¢1, ¢2, and ¢ with respect to ¢§.
We claim that

161(00) = P1(O)l1 0 — 1 021 4 2ope + 102(00) = P20l s a1 401 0ye

< Cpmty logt0) il (6.50)

t: 0 t0) <C ! ! 5% (log t0) 7|23 6.51

lp(2 6 95) — (@, 10) < Cg s ) (e g™ (log to)”Hlg .6 (6.51)
\ 1

| [5](8) — aa[0](1)] < CW 5% (10810)7 65 (6.52)

We discuss briefly the proof of these estimates. One of the main terms in the right hand side of
(5.50), written for the difference () — ¢(0) is

1
32 [9(90) — 6(0)]Ax| (2. t)
C 1 1
=X log ) (o =€) a0 Vi Lo I6(e8) = 6Oy it g
1 1 .
= e 12090) = 00Ny 25t a2t

tr+3(logt) s (1+ |z —
which implies

H % [6(25) — 6(0)]Ax c

o < WW(‘PS) - ¢(O)||1,V7%,%,4,2+0+67

since # < q , which is one of the conditions in (6.14). (Here x depends on ¢f. There is another
ther in the dlﬁerence that depends on x(¢g§) — x(0) and is estimated similarly.) Then

c 1 1
t”‘*‘%(logt)qzj (1+ |z —&|/VE)P

* v+ — *
16(25) = 6O 021 4 2ose + o (08t0) 5 )
(6.53)

Considering ¢ as an operator of ¢ we examine the effect of the therm A\2U¢. This term appears
in the right hand side of (5.48), where the effect is less important, and in the computation of ay.
Estimating the right hand side of (5.50) as in (6.32), using Proposition 6.3 gives that

aloleil(t) — o] < C [ [ Ul + duntosi) = ol -+t 50)ldy
T 1000 ~ 0O st s 157 G0810)

We consider now the effect of |a1[¢](¢)] in the right hand side of (5.49), where thanks to Lemma 5.4
appears mainly as aq (t)Wa(y), where Wh is radial with compact support. Then Proposition 6.1 gives

1 1 1 ) ( (tlogt)1/2>2+0+€
(log to)! =7 =4 (log £) ‘=~ +a=1 (1 + [y[)* Tyl

* V+% — *
ée) = G0l g, 251 4prope T o (ogto)” ol u.

|¢2(y,t,§03) - ¢2(y7t; O)| S C

Then

* V"Fl — *
162(25) = 2 (O -3 4t azpose < Co16(05) = B0y 4o agpope + 1t (08 t0) 55 s

log to
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The estimate for ¢, is actually better, and therefore

161(68) = S1(0) 1y 222 4z + 162005) = 62(0) 1y s 2ot 4prore

3
1 * *
< Oz 11(98) = 010l 552 v+ 192068) = 620001y 151024040

+ 54 (10 10) i o]
This implies (6.50). Replacing this in (6.53) we obtain (6.51), and similarly we get (6.52).
The parameter ¢; appears in the second inner equation in (5.49), which we write as
N0ypo = Llgo] + Blga] + h(t)Wa  in R? x (to,00)
{¢2(-,t0) =172y inR?

(6.54)

where
h(t7 808) = mQ[FS((bl + (b?v ®, P15 SOS)](t)

Note that ¢o in (6.54) is radial, so the operator B defined (5.47) reduces to B[¢] = MQ2¢+y-Ve) =
AV - (y¢). Multiplying by |y|? and integrating on R? gives

AQ@t/ oly*dy + 2A?\/ olyldy = h(t).
R2 R2
Then
% [ owolldy = [ hs)ds
R2 t
But ¢2(y,to) = c1Z0(y) so

1 oo
ci(pg) = — = / h(s, pg)ds.
O Nt0)? fre Zo(y)lyl2dy Ji, 0

In particular

* = — ! b s, o) — h(s s
Ael) = 10 = / [h(s, ) — h(s, 0)]ds. (6.55)

The function h(t, ¢f) = ma[F5(é1 + P2, ¢, P1, ¢5)](t) is analyzed near (6.25). We follow the same
steps. Using the definition of F5 (5.51)

ma[F3(¢, ¢, 1, 5)] = ma[E2X2(96)] + mae[F2(¢, ¢, Py, ©5)X(¢0)]-
We note that X, x2 also depend on ¢ because ¢ depends on ¢§. By (5.41)
ma[F(9, ¢, P15 90)X(00)] = 1) + L (pg) + I (p5)
where
I(t,5) = X'ma[So(u1(py + P1)) — So(ur(py))]
1 (t,5) = ma[F (¢ + 6, 0" + ¢, Py + P1)X(95)]
HI(t, @) = N'ma[(So(u1 (P + P1)) — So(ur(po))) (X(¢5) — 1)]-

The main term is I(¢f) and the others are treated as perturbations.
By Lemma 5.4, since A = \g, we get

I(t, ) = =32mas(pg) + Lo(¢p), (6.56)
where
1ot 68) = =5 [ U o)l o+ anl) [ Bt o)l o
0 JRr2 0 0 R2
~ € [ (oo
By (6.11)

aq (ta 906) - Oé1<t, 0) = Al(t7 90(*)) + A2<t7 906) (657)



38 J. DAVILA, M. DEL PINO, J. DOLBEAULT, M. MUSSO, AND J. WEI

where
*Y 1 > i 7 * * * *\\ ~ *
At ¢p) = - +2T/\tg)+€1(>\ﬁ)/t AE2){771()[17(<1>O + (w5), ¢ + ©(ws), Po + P1(90))X(95)](s)

— molF(9} + 6(0), £(0), Py + P2 (0)X(0)](5) }ds
1

Aaltegt) =~ [ % {mal(Satus o + pa(5))  Saluao))R(e5) - DI

— mo[(So(u1(pPg + P1(0))) — So(ur(py)))(x(0) — 1)](5)}d8

Let
mo(t, ¢g) = %%mo[F(% +0(05), ¢™ + ©(95), Po + P1(20))X(¢0)](t)
- [ Ut + b iy
so that
mo[F (¢ + d(05), " + @(5): Po + P1(25))X(25)](t) = A3 (t) /Rz U(y)e®(E(t, 5) + Ay, t, 05)dy

+ A5 () (¢, 90)-
By (5.38), ¢° = ¢* + ¢, where ¢ = cp(cpo) solves (5.50) and ¢* solves (5.37). Therefore

Aq(t,h) = / Uy (s,03) + Ay, s, 0p)dyds
8 (]. + 2T + el TO R2

+A1( ) P 0)

where

At p5) = E / [, UOpA6s.58) + 2.5.98) = l6(5.0) + 2. 5,0
(1 + 2T + 61

_8w<1+2rf>+el<;>/t Ios. £6) = o(s, O)lds.

Integrating (5.37) on R? we find that

o [ watide=aey? [ 0" 5 )o@t = [ vwee

and therefore

At pp) = o* (2, t, 04)dx + AL (t, ).

87‘[‘ + 2 | it —|— e /R2
]hen ilOm (651)

a1(t, pp) — ai(t,0) =

1 * * 1 * *
v | @ teide + Aitep) + Aalt, )
87T(1+2Tt)+61( ) R?2

Using this and (6.56) we get
" 4
I(t,p0) — 1(t,0) = — e
1+27120 0 + &=e(R)
+IO( ) P 0) IO(t7O)'

/ ¥ (x,t, ph)dx — 327r/~11(t, ©vg) — 32mAs(t, ©p)
R2

Hence
i) = h00) = =4 [ (outoi)da + it )
where
)\2
2730 + éel(%’
1+ nﬁ (

3 / o 1y o) — 32 A (1, 0) — 327 A (1, 03)
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From (6.55) it follows that

e1(5) — e1(0) = !

A(t0)? [ze Zo(y)|yl|>dy

o0
/ / ©*(z, 8, 0)dxds + é1(pf) (6.58)
to JR2

where
1

h(s, ) ds.
MNt0)? fyz Zoly |y|2dy/ ’

We can relate the integral ftzo fRQ ©*(z, s, p5)drds with the second moment of f as follows. We
2

ci(wy) =

multiply the equation of ¢* (5.37) by |z — £(t)|? and integrate on R? to get

o [ ¢ tle-0Pde= [ Ar G0l -ewPdo~ [ v.ro(*E) ver e - 0P
%) [ ¢t e

/Ag@ |z — |dw—4/ prdx
R2
and

/ v.ro (28D vt e - (o) = - / o € [Alo (3l 4 2V.To () o]

Using the explicit expressions for U and I'g and writing y = £, p = |y|, we get

%m@ﬁw+WJ%ﬂ —*(§MWMVMQ)§
82

(1+p) RS
__{i_kg_i}
“laeer T T

But

= 84—
T+ 0P

So
/R2 <p*(:z:+§(t))[A Fo( )\x|2 +2V Fg(}\) z}dz = 78/1[@2 ga*(x,t)da:Jr/RzU(x 7)\£(t)><p*(x,t)dx

and we find that

8, /R o (2, 8|z — £(t)2dx = —4 /R o (2, t)dx + /]R U(w _/\f(t))go*(x,t)dx

—2%(0) [ ¢ (et - 0.
Integrating and using (6.58) we find that

c1(pg) —c1(0) =

by (6.44), where

1
Ato)? [2 Zoly

o o # e+ o),

x—&(s)

)w*(m, s)dxds

* 1 >
folet) = A(t0)? [ Zo(y)ly|?dy |:/to /Rz U<
2 [ e [ o) - sodsds] + o))

to
We claim that Ro(¢f) satisfies (6.49). Indeed, let us look at
/ o5, 93) — Tols, 0)]ds.

to

Similarly (6.36), we have

A (t,08) —a1 (t,0) / 9 (logto)
U(— z|® dz 07 X
XO )| | =" i (logt)? oll@g b
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Similar computations for the other terms of Iy give

v+3
. to 2 (logto)” .
Io(t,05) — To(t,0)] < ¢0_[10810) " 3y

t+3 (log t)8

*,b-

It follows that

[eS) . to .
— < .
| Wols.5) = (s, 0)s| < €=l

to

The other terms in Ry are estimated similarly. O

Proof of Proposztzon 6.5. It ty+2 (logto)?||v]|+p < 1 and ¢1(v) — ¢1(0) = 0, then Lemma 6.1 implies
that [p, v(z)|z[*dz = 0.

To prove the converse, let
1

(1+ 7

so that ||v1][«, = 1 (norm defined in (6.10)). Assuming ut, E(log tp)? < § and § > 0 small, we have
by Lemma 6.2

v (z) =

e1(v 4+ pvr) — e1(0) = et + Ro(v + poy),

for some constant ¢ # 0. Note that is ¢;(pf) continuous function of ¢, and so is Ry(¢f). By the
intermediate value theorem, there is 1 = O(to]|v]|«,») such that ¢q (v+ pv1)—c1(0) = 0. By Lemma 6.1
Sz O(v(x) 4 pvr (x))]z[*dz = 0, which implies that y = 0. But then ¢1(v) — ¢1(0) = 0. O

7. THE MASS OF @)

We devote this section to prove Proposition 5.1. To that purpose, a basic step is to derive a formula
for the mass of ) defined in (3.12).

Let us write
1
©x ( ) 4 90 (7.1)

where cp ) and cp are the solutions, given by Duhamel’s formula, of the following problems

>\ .
dupl) = Dol + 5 Zo(F)x0(=) i B2 x (%,00)

(7.2)
A = o)+ UTole) s B R ), =T

eI () =0

where the operator Ag is defined in (3.8) and E in (3.11). We let ¢[p, \|(r,t) be the solution of the
problem

r r .o g
Quelp A = Aol N + 33 2o (3 )x( ) B x (3, 00),
90[]3, )‘](7 %0) =0 in sz
given by Duhamel’s formula. By definition, we have
@5 = AL AL

In definitions (7.2), (7.3), (7.4), the parameter function A(t) is assumed to be defined for ¢t > 2. In
the rest of this section we also assume the validity of the condition stated for A in (4.1), namely

)]+ tlog() AL < ———, t> D (7.5)

log(t)’ 2’

(7.4)

for some fixed constant C. Let us define

vm = sup t7(logt)™[p(t)]. (7.6)
t> t0/2

lp
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In what follows we shall only deal with radial functions on R? and sometimes we will consider them
as radial functions on R®. For a fixed constant ¢y > 0 we let

N (t) = \/lc(f@ (7.7)

The following expansion holds.

Lemma 7.1. Assume that A satisfies (7.5). Let 0 < v < 2, m € R and suppose that ||p|l,m < oo.
Then

t—A(t)2 s
/ olp, N (@)da = —47r/ P(9) 4+ Rip Al
]R2

t/2 t—s
where R[p, \] satisfies
1B[p; Allly.m < Cllplly,m-
If A1, Ao satisfy

Aj 1
- <=, j=12,
‘/\* Loo(t/2,00) 2’ J
then we also have
AL — A2
RIp, A + M = Rlp, A+ Aol < C mHiu . 7.8
1Bl A1] = Blp. A+ Nallln < Clolln |52 (73)

For the proof of the above result we will need the following calculation.

Lemma 7.2. Let

1 |=]2 1
= T ——dz, € RS,
F = g [ s

Then
Fw) = — [1 _ e (1 + @)} (7.9)

~ Jult 4

Proof. Let ¢ be given by

1 1 lyl? 1
1) = — T~ RS, ¢ >0
o) = g f o g TR 0

which solves

Orpo = Apspg  in R® x (0, 00)

po(w,0) = ﬁ~
Then
fw) = po(w,1).
Write
po(z,t) = ;Q(L‘jb
Then

0"(9)+ 24/ () + 54/(5) + 20(5) = 0

and we want ¢(s) bounded for s — 0, ¢(s) = s7*(1+0(1)) as s — co. A calculation using the explicit
element in the kernel of the linear operator, s~%, gives

1 _s2 52
q(s):sj{l—e 1 (1+Z)}, s> 0,

and then (7.9) follows.

Proof of Lemma 7.1. The solution ¢[p, A] of (7.4) has the formula

olp, Al(z,t) = (471r)3 /t:/2 )I;((?) (tjs)S /RG e_MZo()ftﬂ)x(\%)dyds, z € RS,

Writing
¢ =¢lp, Al
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we have

2 _
[ etetrde == [ ol blel o
2 1 Fopls) 1 le—w® y y
= — 4(t—s) < P
= (43 /W (s ) E—s) /]R /Rae g dmz@(x(s))x(ﬁ)dyds

2 1 L
= 2 ) /to/2 A(s /R /R i — \/er* (ﬁ)x(%)dyds
Using (7.9) we have

/Rz ol ) = = /t:/z f((j))4 /R (t_ls)Qf((t— 9721 20 (505 ) (5 ) s
: )x

t oo 2
o [ e e (g A (g s

Let us notice that

o o gp(w,t)dm
N /to/2 (S/\)Et)_S) /OOQ {1 B <1 + 4 )}Z()(Z\f(;) (Z\/\t/?)zdzds

We decompose

oz, t)dr = I + I, + I3

t/2
L= /
t0/2
t—X(t)?
L= /
t/2
t
I = /
t— ()2

and separately estimate each term. To estimate I; we note that for s < t/2 we have -2

o
where

t—s —

Assuming that x(z) = 0 for x > 2 we obtain
NG

[T (1 )] (N ()= [

We estimate for s < t/2,

!/f[l *

»b‘“
/_\

4)}20(2% ()

< (s
-o(t- )
where we have used that Zy(p) < C/p* and 1 — e*zT(l +z ) < C#*. Therefore
t/2 I t/2 1—ry
pe)ls . o
s [ s < b | G gt S g P

Let us analyze I,. We write

=L+ lho+Dhy+Ir.+1rq

=A@ p(s)(t—s _z2 22 5)4
Iy, = —16/t/2 ()\)Et))/o [1—6 1 (1—|— 4)}@)\(8;242(12@[3

where
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and

tfk(t S — s .2 2
e [ [ (1) (M (L

/2 Vs
o [ I [ (14 )] 2 (R
e [ [ [t (5 () 40
= [ R [ 1 (1) () (2
L= By 710

Next we find a bound for I» ,. Using that Zj is a bounded function and |1 —e -5 (1+ % )\ < Cz4,
we get

Als)

Vi-s .
[T E (e

z z
D)o ()
A(s) A\

SC/sz’dz q (8)) .
0

It follows that

A p(s)|A(s)2 c AT\ (s)2
Il < ds < m d
el <0 [ R S gl [,
R S
~ t7(logt)™

Using that |1*67%(1+ )\<C’z we get

A(s)

A(s)
Vi=s _z2 22 A(s)? zZy/t — A(s)4 s
— 4 J— <
‘/0 {1 e (1—|— 1 )} (t—s)224x( NG )zdz‘C i—s 2/0 zdz
A(s)°
<
<O
and similarly as before,
C
Lyl < ————+—
| 2,b| — tV(logt)m”p y,m
Using that
2/t —s A(s)4 A(s)8 2/t — s
Z = >1
o ) ) S5 4+O((tfs)326)’ O
we get
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But ’\(i) < 2 in the considered range of s, and then

K
e [ A ()
< szl | ;W - (_)) tos(20 )
A
Pinaly, for T
[l (= D)2 ( ) ()1
</ ;/m[l e (14 j)]%m

4 oo
S A(S) 2/ ZﬁSdZ
(t—8)? Joys/vi=s
4
PG
- (t—s)s

Then

O ()l =) A Ip
/2 Ms)t (t—s)s  — t/(logt)™

12,4

<C

[,m-

Finally we estimate

sl = Vtiw el Nl (R | EATN GO

t
<c / p(8)2| ds
t—A(t)?
C

|

Als)
< — .
— tV(logt)m Hp”v,m

In summary, by (7.10) we have written
1 t—X(t)2

2 R2

p(z, t)de = —2/ p(s)

Sds + I+ 1+ 1oy + 1o+ Iz g + I3,
/2 -

and each of the expressions I, Iz 4, I24, I2,c, 12,4, I3 are linear operators of p with the estimate

15 (2]llym < Cllplly,m-

The proof of (7.8) follows from the explicit expressions for the terms J; in R, and similar estimates
as before.

O
Lemma 7.3. Suppose that \ satisfies (7.5) and <pg\2) be given by (7.3). Then
2) )\(t)2 1
) =— 0] 7.11
ox (0:8:4) TER (t2(logt)2)’ (7.11)
as t — oo, where O(m) is uniform in to. With \* given by (7.7), if A1, A2 satisfy
Aj 1
2 <=, j=1.2,
‘ ML (to/2,00) 27 J
then we also have
2) (2) C A=A
0870, 0:0) = 820,001 < o= |5 (7.12)

t2logt
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Proof. For simplicity of notation let us write p(z,t;A) = @&2)( t). Let us write the right hand side

of equation (7.3) in the following form

Ea(a,t53) = = 3 UW)Va20(2) -2+ 150 Vexo() - VU () + 2 Bxo(2)U 1)

_r __
y - )\7 \/»
To compute p(0,t; A) let us define the following approximation of it

95(707 t) = )\255(7’7 t),

where ¢(r,t) solves the radial heat equation in dimension 6:

1
- WU(:U)VZXO(’Z) -VyTo(y),

5 1 r
0:p =00+ =0, + —=h(—),
@(r,0) =0,
and
8 3 ¢
B0 = 3 X = 2600 + §3600)] -

The solution @(r,t) to problem (7.13) can be expressed in self-similar form as

5 1 r
We find for g the equation

g+ Cg +< g +29+h()=0, ¢€(0,00). (7.14)

Using that the function CL“ is in the kernel of the homogeneous equation, we find the explicit solution
of (7.14),

T[Sy a2 [ 1.2
90(¢) = —a zPei? h(y)e* y dydz.
0 0
To find the solution ¢ with suitable decay at infinity we let
1_
9(¢) = 90(¢) + £ 2(O), (7.15)

8
where

_ T[S 5 a1
z(():<—4/0 3e” 1% dy

is a second solution of the homogeneous equation, linearly independent of CL‘* and

I:/ e 412/ h(y)e%ydeyd:c.
0 0

We observe that

9(¢) = 0(e™) as ¢ = +oc,
which makes the solution (7.15) the only one with decay faster than O((~%) as ¢ — 4o00. An explicit
calculation gives that I = —8, and therefore

A(t)?

0(0,t) = — . 7.16
¢(0,1) A2 (7.16)
Then, using a barrier for the equation satisfied by ¢(x,t; ) — @(z,t) we get
1 ]2
t; A t ——e 7t 1
o(0.53) = 60| < Cqroe ™™ (7.17)
for t > 2, where 0 < ¢ < %. From (7.16) and (7.17) we obtain (7.11).
The proof of (7.12) is similar.
d
Lemma 7.4. Suppose that \ satisfies (7.5) and <p>\ be given by (7.3). Then
2
@ _ o N e 0( 1 ) 7.18
/Rz% 3 et t2(logt)2 /)" (7.18)

where Y is defined in (2.7), that, is, T = [ (xo(s) — 1)s~ds.
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Proof. Integrating (7.3)

d
— @&2) = 4020, 1) —

dt

ot o U WIVaxo(z) - 2de + / Edz.

R2
From (7.11)

@ 5 A 1
ox (0,8) = 442 +O(t2(logt)2>

and we compute

5 UW)Vxo(2) = + B

1 2 1 1
= _FU(y)vZXO(Z) “z+ —me -V,U + —2AxxU - FUVX - VT
A? IS 1 1

= [455 ()25 — 6455 X6 () + 855 (K 5) + xb(s))
4

A2 1 A
+325 3 Xo(s) = } + O( )X{1<s<2}
A2 1 3 A4
o L) = 2xis) + x69)] + 0 (5 ) xazaey
where s = % Then
1

_7/ U(y)Vaxo(z) - zdz + g Edx
[ 2 2o~ 2 s) + 9] s + 0

3
:167922{/W(XO(S)—US—%H/OOO(S—?’ 1Vd } (

— 1675 T+O<)\4>

)
)

Therefore
d (2) A(t)? A2 1
< =25 16775 + O )
dt Jgz A T T t3(log t)?
and integrating we get
2 2
@) _ _or /\—716 T/\ O(;>
/]Rz P 4 + t2(logt)2/"
This is the desired expansion (7.18). 0

As a corollary from Lemma 7.1 and Lemma 7.4 we get:

Corollary 7.1. Assume A satisfies (7.5). Then

t=XA(t)% 3 2 2
/ padx = 747r/ L(s)ds - QW)\—(t) - 1671’T>\ ®) + O(
R2 t/2 t—s t t

1 .
t2(log t)2) + R AL

where R is as in Lemma 7.1.

Lemma 7.5. Let E be defined by (3.11). Assume that X satisfies (7.5). Then

~ A2 1
E|z|*dx = 647 = - |- 1
/R? |z|“dx 64w ; +O(t2(logt)2) (7.19)

Proof. Similarly to the proof of Lemma 7.4 we have

- A1 3 A4
E= 8t3 s [_ ;Xf)(s) +xo(s )} +O( )X{1<s<2}7
where r = |z|, s % and so
)\2 o q 3 )\4
/ Elz[de = 16”*/ vy { - *XB(S) + Xg(s)} s3ds + O( )
R2 o S

- 7647r/\—2T + O(Xl)
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This is (7.19). O
Lemma 7.6. Let E be defined by (3.10). Assume that \ satisfies (7.5). Then

/ E|z|?dx
R2

Bt = ;Zo(i)x()(ji) + ﬁU(%)vsz(z) 24 B(x,0),

and we have already computed [, E|z|?dz in (7.19). We have

qungQW@zﬁvfﬂmmdxﬁ%p
= O(X"log(t)),

<

tlog(t)”
Proof. We have from (3.10)

and so

3 Lo G < 2

7.1. Proof of Proposition 5.1. Let
I\ = 4/ oxdr — / E(\)|z|?dz.
R2 R2
For the proof we proceed by linearization, that is we look for a function A\ satisfying
1
[T[Ao](t)| < Cﬁ’ t >t

with the expansion .
Ao(t) = A™(E) + Ao(t)

where A* was defined in (7.7), that is, A*(t) = \/lc(f? and \o(t), t > Y is a correction. Here ¢g > 0 is

a fixed constant.
We claim that
. log(logt) to
[I[A](8)] < OW7 t> 5
with C independent of 5. In the rest of the proof C' will be a constant independent of ¢y (for tg
large).
Indeed, using the decomposition (7.1) and the notation (7.4) we have

/ gp»dx:/ tpg\l*)dx—i—/ cpg\%)dx
R2 R2 R2

/@g\l*)dx:/ wlp™, \"]dz, p* = AN
R2 R2

(7.20)

and

By Lemma 7.1 we have

t—=A* ()%
.y p*(s) 1 to
Nlda + 4 ds| <C—" t>29,
/Rg@[p ldz + 7T/t/2 t—s ‘9‘ t(logt)2 2
Therefore
log(logt) to
* A d 4 log(t)p*(t)| < C—2>—+ t> —.
[ ol ¥l + amontip 0] < BB

On the other hand, by Lemma 7.4 we have

* 2 * 2
@), _ _9 A (t) 1 T)\ (t) 1
/Rz Pa-de T omr =+ O(t(log t)2>’

and by Lemma 7.5

[\ * 2 _ A*(t)Q 1
/R2E()\ ol dz = —64m T +0(t2(1ogt)2).
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Using the explicit form of \* and the previous formulas we deduce (7.20).
Next let us rewrite slightly the operator I[A] as follows. We have

I[A] :4/ <p[/\)'\,/\]dx—|—4/ @E\?)dac—/ E(\)|z|*dz.
R? R? R?

Let us define
t—A*(t)2
Rlp, N = / olp, Ndz + 47r/ P(s) g
R2 t/2 t—s

This is similar to the decomposition given in Lemma 7.1, but we have changed the interval of inte-
gration to [5,t — A*(¢)?]. We decompose the integral

t—A* (1)

t—A\*(t)? t—tt=?
[ g [ [
p t—s t/2 t—s t_g1-9  t—8

/2
t—tt=? =X (1)
= / p(s) ds +p(t)/ ds
¢ ¢

/2 t—s _p-9 t—35

_ /“"“)2 p() = pls) |

—t1=9 t — S

where 0 < 9 < % is a fixed constant.
We change variables u = A2, so that
t—t' =7 .

11 = 8mi)((1 = 0)los(t) ~ 210 @) 87 [ 7 s

4 [ oGdar 2Rl Vil - [ B(/ilePda

t—A* ()% - -
487 / ) = ils)
t

_y1-9 t—s

Let n be a smooth cut-off such that n(t) = 0 for ¢t < 3to, n(t) =1 for t > to. We define

Tlu] = ~8mi(t) (1 — ) log(t) — 2log(A"(1))) — 8mn(1) /t/Q s

t_tlfv.‘)

want) [ @ Sde+ 2ORl VA ~n(t) [ B(/Dlelda

+ 8m(t) /t_wt) Alt) = fu(s)

t—tl1—7 t — S

which we write

I[p] = L[] + Np] + Rlul,
where

() (t) = =8 (1) (1 — 9) log(t) — 21og(A* (1)) — 87n(t) / IOFS

t/2 t_S

N1(O) = n(t) [ ¢ Fuda+ 200 Rl Vil =) [ B/)lafds

t—A*(t)% - — (s
Rlp(e) = smn(t) [ A = ),

t—tl—0 t—s

S.

Note that I[\](t) = I[A?](t) for t > to.
Instead of finding A such that I[A\] =0 for t > t; we are going to construct p such that

~ C to
I < —
IO < 0 0> 5

for some o > 0.
Let u* = (A\*)? where \* is defined in (7.7). In a first step we will find p1 so that

t
O + ] + N[p* + pa] + R[p*] =0, t> 50 (7.21)
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We will look for y1 with ||p41]4,,m < 0o where, for a function 1 € C1([4, 00)) with im0 p1(t) =0
we define

lalleqm = sup ¢ (0gt)™|in (®)] = llAal3.m-

t>to/

Equation (7.21) takes the form

t—ttY . (8)
0= —8mi((1 —V)log(t) — 2log(A*(t))) — 87r77(t)/ lt“isds
t/2 -
t
+n)ex(t) +n(t)Fip](t), ¢> 50 (7.22)
where .
ex(t) = T[]
and F} is an operator with the following properties:
I [ llym < Cllaalls ym. (7.23)
[F1[fn] = Filpe]llym < Cllia — fizllsym, (7.24)

for fi; satisfying ||fi;]|«,y,m < 1, with 0 <y < 2, m € R, where || ||5,, is defined in (7.6). From (7.20)
we find

log(logt t
|61(t)| S g( g2)7 £
t(logt) 2
Now we apply the contraction mapping principle to the equation (7.22) written in the form
1 to
11 = —n(t)]. [ tler(t) + Flu] )], t > =, 7.25

where
t7t1—1‘)

. 1 f1(s)
I, = ——=ds.
) = (=i TR ey e
We directly check that

. v
e[l m < 35 lAallym-

Let X be the space X = {u1 € C1 ([, 00)) | limy—,o0 p1(t) = 0} with the norm |[|p1]|x = [|pall,1,3—e,
where 0 < ¢ < 1. It follows that if ¥ < % the equation (7.25) has a unique solution p; in the ball
B]_(O) of X.

Therefore we have found g3 with ||p1]/«,1,3—« <1 so that g = p* + pq satisfies

~ t—A* ()% - £
T[] = —8mn(t) / ) = () ) o (7.26)
t—tl—=0 t—s

To estimate this remainder we then need a bound for ji. Differentiating with respect to ¢ in the
decompositions used in Lemmas 7.1, 7.4, 7.5 we obtain
log(logt) to
t2(log t)2’ 2"
Differentiating in ¢ equation (7.25) and using the contraction mapping principle we get that for any
€ > 0 small

len(t)] < ¢

. c
G
Using this we find that the remainder (7.26) has the estimate
—\* 2 . .
AT () — fus) c to
d S ) t> R
PR ) t—s tltd—e 2

where u = pu* + p1.
Next we introduce another correction us to improve the decay of the remainder. We consider
W= "+ pu1 + po and we consider the following equation for pso:
lo

U™ + o+ o] + Np™ + p+ po] + Rlp™ + ] =0, 2> <
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Similarly as before, this equation can be written as

t—t1719

0= —8min((1 — 9) log(t) — 2log(A*(t))) — 811(t) / ’:2(58) ds
t/2 -
t
+nt)ea(t) +n(t) Falpa] (t), > 50, (7.27)
where F satisfies the same estimate (7.23) (7.24), and ey has the estimate
C t
|€2(t)| S W, t > 50

Using again the contraction mapping principle we find a solution ps of (7.27) with ||pa|l« 149-c1 < L.
Then for p = p* + 1 + po

3 AT (D)2 (s
T{u)(¢) = —8m(t) / Aalt) — fials)

1= t — S

To estimate this remainder we need the following bound for jis

iy C
()] < o= (7.28)

which is obtained from an estimate for é,, differentiating with respect to ¢ equation (7.27). The
3
estimate for é, is obtained from an analogous estimate for ¢ pria

From (7.28) we find

~ C to
[ [p](t)] < a0 t> 5

where we recall that 0 < ¥ < % is arbitrary.
Thus letting Ao = /1, p = p* + p1 + p2 we obtain

|I[>\0] t > to.

| S t1+21975

Choosing 9 > % and € > 0 small, we obtain the properties stated in Proposition 5.1.

O
8. INNER LINEAR THEORY
In this section we consider the problem
2
N0ip = LIg] + B[g] + h(y,t) + ) _u; (W1  in R x (to, 00) ®.1)
=1 :
#(-,tp) =0 in R%
that appears in the inner equations (5.48) and (5.49), where, we recall
_ ¢ -1
Ll = V- UV (£ - (-8)"0)].
1 1
—A)! - — | log(—— . .
(8 0(0.0) = 5= [ 10w (=)ot (52)

Slightly more general than the operator B defined in (5.47) we will consider

Bl¢] = C1(1)[¢)rad + ()Y - V(@]raa + (C1(E)P1 + C2(t)y - Vd1)xo (5/\\%)

where [¢],qq is the radial part of ¢ (defined in (5.46)) and ¢1 = ¢ — [}]rad, and where xq is the smooth
cut-off function defined in (2.5). In the sequel we will keep the same notation for B.

In what follows we will analyze the linear initial value problem (8.1) where we assume that the
functions A(t), (;(t) are continuous, o > 1 and that for some positive numbers ¢, C we have

—°_< At) < ¢ for all t > ¢
Viegt — ~ Vlogt 0
IGi(t)] < for all t > t.

tlog2 t
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We change the time variable into

bl
T =T +/ ——ds,
° T S As)?

where 79 = tglogtg. Then
citlogt < 7 < éotlogt
for some ¢1, ¢y > 0. Identifying ¢(y,t) and h(y,t) with ¢(y,7) and h(y, ) we rewrite (8.1) as

2
0-¢ = L[§| + B[¢] + h + Zuj(T)WLj in R? x (79, 00) (®3)

é(-,70) =0 in R?,

We consider problem (8.3) for functions h(y,7) that have fast decay in space. More precisely, we
assume that for all 7" > 0 there is C'r such that

|h(y, ) for all (y,7) € R? x (19, T).

<
T 1+ |yls

In this case, by a solution ¢(y, 7) of (8.3) we understand a continuous function ¢(y, 7), of class C! in
y, such that for any 7" > 7( there exists a Cp > 0 with

C
lo(y, )| + (1 + [y Vyo(y, 7)| < Tﬂ/\ﬁ for all (y,7) € R? x (10, T), (8.4)
and satisfies the integral equation
or) = [ [ Gly—z7—5)[-VoTEe - VUV(-8) 19 (8.5)
T0 R2

2
+2U¢ + Blg] +h+ Y pi(s)W1 (2, 5) dzds,
j=1

where (—A)7!¢ is defined in (8.2) and G(y, 7) is the two-dimensional heat kernel,

1 w2
Gy, ) = RC i

From the formula

1 Yy —z

V(=A)"'h(y) = - h(z)dz

2 Rz |y — 2[?

we see that if |¢(y)| < ﬁ then

- C
V(=2)"1o(y)| < T|y|”(l +1y1%)ll Lo (2).

Using this estimate, existence and uniqueness of a solution of (8.5) satisfying (8.4) are standard.
For a short time 7" > 7y this is established by a contraction mapping argument in an appropriate
L>°-weighted space. Then a direct linear continuation procedure applies.

A first natural condition to impose on h in (8.3) is that

/ h(y,7)dy =0 for all 7 > 79,
R2

in order to achieve that the solution has also zero mass at all times.

We want to find solutions to (8.3) that have fast decay in space and time. For this we need to
assume fast space-time decay of the right hand side, which we do by working with the following class
of norms.

Given positive numbers v, p, € and m € R, we let ||h||,,m p,e denote the least K > 0 such that for
all 7 > 79 and for all y € R?

<
P E

€/2
7 (log 7)™ (1 +[y|)? T o = vm
y €
This is similar to the norm introduced in (6.2) but defined using 7 instead of t. We will give the
results in Sections 9-12 using the norm (8.6).

Ay, 7)| < (8.6)
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Still, fast decay of the right hand side doesn’t imply fast decay of the solution. For example,
consider equation (8.1) without the operator B and without the p;, that is,

9-¢ = L[¢] + h(y,t) in R? x (7o, 00)
¢(-,70) =0 in R?

and suppose that h has compact support in space and time, and that ¢ has sufficient space-time

decay. Then, multiplying (8.7) by |y|? and integrating in R? x (79, c0) gives

/ / Wy, )|y 2dydr = 0,
T0 R2

because if ¢ is a regular function with fast decay, then

/ Ligl|y[*dy = 0,
R2

see Remark 9.2 below. It is then necessary to impose a condition on h, or to adjust a parameter in
the problem in order to get a fast decay of the solution. We develop here the theory by adjusting the
parameter c; in the equation below

0-¢ = L[¢] + B[g] + h(y,t) in R x (9, 00),
¢(t)) =c1Zy  in R?,
where Zq is defined in (6.4).

(8.7)

(8.8)

Proposition 8.1. Let 0 >0, e >0 witho+e <2 and1 <v < %. Let 0 < g < 1. Then there
exists a number C' > 0 such that for ty sufficiently large and all radially symmetric h = h(|y|, 7) with

|2llo,m, 640, <00 and

/ h(y,7)dy =0, for all T > 70,
RZ

there exists ¢; € R and solution ¢(y, ) = T,>*[h] of problem (8.8) that defines a linear operator of h
and satisfies the estimate
C

(logmp)t—1 1R

||¢Hu—l,m+q,4,2+o+e S |l/,m,6+a,e-

Moreover ¢y is a linear operator of h and

1
|Cl| S C v—1

— ||k .
7o (logTo)m ! Pl e

We have stated this result only in the radial setting, because this is what is needed, but there is a
version of it in the non-radial case.

The next result is for the problem

2
0-¢ = L[¢] + Blg] + h(y,7) + > u;Wi; in R® x (79,00),

j=1
¢(,70) =0 in R?
and holds without the radial symmetry assumption.

Proposition 8.2. Let 0 < 0 < 1, ¢ > 0 with o+ € < % and 1 < v < min(l + 5,3 — %,%). Let

0 < q < 1. Then there is C' such that for o large the following holds. Suppose that h satisfies
||h||l/,m,6+o',e < o0 and

/ h(va)dy =0, / h(va)|y|2dy =0, fOT all 7 > 19.
R2 R2

Then there exists a solution ¢(y,T), p; of problem (8.9) that defines a linear operator of h and satisfies

Iu,m,ﬁ-{-o,e-

”¢HV—%,m+%,4,2+a+e < C|h
The parameters p; satisfy
py (1) = — /R iy, m)yjdy + i [h)(7)

where fi; are linear functions of h with

- 1
|/J’][h’](7-)| < C m—+1 ||h||l/,m,6+o,e-
) +

T+l (log T
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We denote this solution by ¢ = T'[h].

Propositions 6.1 and 6.2 given in Section 6 are direct corollaries of Propositions 8.1 and 8.2. The
only changes are due to the change in the time variable, because 7 ~ tlogt, and the fact that the
norms for the solutions in Propositions 6.1 and 6.2 include a gradient term. The estimate for the
gradient follows from the weighted L°° estimate, scaling and standard parabolic estimates.

The proofs of Propositions 8.1 and 8.2 are contained in Sections 9-12. They are based on an energy
inequality obtained by multiplying the equation by a suitable test function, and using an inequality
for a quadratic form. Section 9 contains some preliminaries on this quadratic form.

In Proposition 10.1, we obtain an additive decomposition of the solution ¢(y,7) of (8.8) into a
part with a relatively slow space decay that loses 71/2 with respect to the time decay of the right
hand side, and a term along Zy(y) that loses an entire power of 7. This is the key element for the
proof of Proposition 8.1 in Section 10 (p.80).

Then the proof of Proposition 8.2 in the radial case uses Proposition 10.1 after formally applying
the operator L~! to the original equation and performing a concentration procedure that improves
the space decay of the resulting error. This is done on Section 11, and we give there a proof of
Proposition 8.2 in the case of radial functions.

The proof of Proposition 8.2 in the general case is in Section 12 (p.96).. The idea is that the
decomposition obtained in Proposition 10.1 for solutions with no radial mode does not contain the
term along Z,, which allows us to obtain a much better estimate.

9. PRELIMINARIES FOR THE LINEAR THEORY

A central ingredient in obtaining good estimates for the linearized parabolic operator associated
to the inner problem is the analysis of the quadratic form

o [ 96 9= 5 (M) (91)

This quadratic form arises when considering the linearized Keller-Segel problem (8.1). Indeed, L[¢] =
V - (UVyg) and it is natural to test the equation (8.1) with g, since

/‘uwgz v-wvmgz—/‘vwm?
R2 R2 R2

But from the time derivative we get A2 Jg2 Ordg, which leads to (9.1).
We observe that g has degeneracy directions. Indeed, if 9 = (—A)~1¢ then
A+ U(y)p = —Ug in R,
The operator Ay + U(y) is classical. It corresponds to linearizing the Liouville equation
Av+e” =0 inR?

around the solution 'y = logU. It is well known that the bounded kernel of this linearization is
spanned by the generators of rigid motions, namely dilation and translations of the equation, which
are precisely the functions zg, 21, 2o defined by

20(y) = VIo(y) -y +2
Zj(y) = ayjro(y)v .7 = 172
Note that g is precisely annihilated at the linear combinations of these functions. In the rest of this

section we will state and prove several estimates that take into account this issue, which will be
crucial later on.

(9.2)

The quadratic form (9.1) can be naturally transformed into a similar one in S? by stereographic
projection I : §%\ {(0,0,1)} — R?

Yy Y
H(ylay27y3): ( . 2 )

L—y3’ 1—ys
For ¢ : R? — R we write
g=poll, ¢:5%\{(0,0,1)} - R.
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Then we have the following formulas

/0\Vsz¢|2=/ UVl
S2 R2

1~ -
§UA52<,0 = (Agzyp) o II.

9.1. The Liouville equation. Here we consider the linearized Liouville equation

AY+Up+h=0 inR% (9.3)
The stereographic projection transforms the linearized Liouville equation (9.3) into
Ag2t) + 2 +2h =0 (9.4)

in $2\ {P}, P =(0,0,1), where ¢) = ¢p o II, h = (U~ *h) o IL.
The functions in (9.2) are transformed through the stereographic projection into constant multiples
of the coordinate functions

Zi(w) =cwj, j=1,2, Z(w)=cows, w=(wi,ws,ws)€ S
By standard elliptic theory, if he LP(S?), p > 2, then exists a solution o € W2P(S?) to (9.4) in S?
if and only if h satisfies

hz; =0, j=1,2,3.
SZ

This solution is unique if we normalize it such that
7/’0%‘ = Oa ] = 172733
S2

and then satisfies the estimate ~ B

[ollcria(szy < CllhlLr(s2)
where o =1 — %. By subtracting off a suitable linear combination of the functions z;, j = 0,1,2 we
obtain the unique solution v to (9.4) in S? satisfying

Y1(P) =0, Vg1 (P)=0. (9.5)
For this solution we also have the estimate
[¥1]lcrasz) < CllAlLos2). (9.6)

Lemma 9.1. Let 0 < o < 1. Then there is C such that if 1 satisfies (9.3) and ¥ (y) — 0 as |y| — oo
with h satisfying ||(1+ |y|)**7h| Lo (r2) < 00 and

[ wosnwyay=o. [ wosnudy=o. j=1.2 (97)
then
1L+ YD) ¢l e @zy < CIL+ Y1) >R oo (g2)-
Remark 9.1. Let h: R? — R satisfy ||(1 + |y[)>T7h| oo g2y < +00 where 0 < o < 1. If

/]Rz h(y)dy =0

_c
(1 + [yl

If b : R? — R satisfy ||(1+ |y|)*T7h| Lo (r2) < 400 where 0 < o < 1 and in addition to mass zero
we have

then

[(=8)" h(y)| < 11+ Ty >Rl poe ).

/ h(y)y;dy =0, j=1,2,
RZ’

then
C

|(_A)_1h(y>‘ < W

I+ )™ 7Rl o ).
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The first claim is standard. For the second, write

_ 1 T
(-8 h(w) = 5= | Qoglel ~ogfe vl + )by

and estimate the integral after splitting it into the regions |y| < % and its complement.

Proof of Lemma 9.1. We claim that ¢ = (—=A)~1 (U +h). Indeed the function 1) — (—A)~ (U +h)
is harmonic in R? and decays to 0 at infinity, and therefore it is equal to 0. The assumptions (9.7)
and Remark 9.1 imply that

I+ YD Yl e @zy < CNA+ YD) 7R Lo (r2) + Clll| Lo (). (9.8)
Let ¢ = 1) o I, so that it satisfies (9.4) in S2\ {P} with h = (U~'h) o II. Note that h € L?(S?)
for some p > 2. More precisely
HB”LT’(SQ) <01+ |y\)3+gh||L°°(R2), (9.9)
2

with p < =-. The singularity at P is removable and thus ¥ satisfies (9.4) in S%. By elliptic

regularity ¢ € C1%(8?) for some a > 0. Since 9 decays at infinity, 1[1(P) = 0. By (9.8) we have also
Vg2(P) = 0.

We let ¢, denote the solution to (9.4) satisfying (9.5). The solution to (9.4) in S? satisfying (9.5)
is unique, so that we have 1) = ¢); and by estimate (9.6), (9.9) and (9.8) we obtain

1L+ D) Wl e @zy < ClL+ [y)> 7Rl Lo m2).-
O

9.2. A quadratic form. Here we discuss properties of the quadratic form (9.1). For this we consider
a function ¢ : R — R with sufficient decay, in the form,

6(y)] < ——

(14 [y})z+e )

with 0 < o < 1, and zero mass:
¢dy = 0. (9.11)
R2
We recall g defined in (9.1) g = % — (=A)71¢, and use the notation
b =(-A)""¢
so that
—AYp—Utp =Ug in R?.
We next introduce a normalized version of g, namely g defined by

gt =g+a,

/ gtUdy = 0.
R2

As shown in Lemma 9.3 below, the quadratic form [, ¢g is equivalent to [, U(yg

where a € R is chosen so that

12

It will be convenient to work with functions ¢+, ¥, which are analogues of ¢, zb but associated
to g*. In particular, we want a choice of ¥ such that

—Aypt — Uyt =Ugt, 4t (y) =0 as |yl — oo. (9.12)
Let g =1+ %zo, where zj is defined in (9.2), and observe that
—Athg —Uthg = =U, o(y) =0 as |y| = co.
Then 9" defined by
vt =w—a(1+ 220)= 1~ ao,

indeed satisfies (9.12).

Define
¢t =Ulgh +¢h),



56 J. DAVILA, M. DEL PINO, J. DOLBEAULT, M. MUSSO, AND J. WEI
and obtain the relations
1, @ 1 1L 1L
=0+ 5Un, —avt=ot, [ ot =0
R2
We note that ¢ — ¢+ = 53Uz is a constant times Zy = Uz, which is in the kernel of the operator L.

Lemma 9.2. If ¢ : R? — R satisfies (9.10) and (9.11), then

/gUzj:/ gle]:o, 7=0,1,2,
R?

where z; are the functions defined in (9.2).

Proof. By the definition of ¢ and from (9.10), (9.11) we have

C
W)+ 1+ [y)) Vi (y)| < A+l
and hence also
C
1 1
W(M+ﬂ+wmwbwﬂéaimy~ (9.13)

We multiply (9.12) by z;, integrate in the ball Bg(0) and let R — co. Since z; is in the kernel of
A + U we just have to check that

L .
/ (81/} zj—wl%) — 0, as R— oo,
OBr

ov ov
where v is the exterior normal vector to 0Bg. This follows from (9.13), and the explicit bounds
c
2o < C, |zj(y) < ——, =12,
’ (1+[yl)
c
Vz; )| € ——5-
VAOIS T

A consequence of the previous lemma is the following.

Remark 9.2. Suppose that ¢ : R? — R satisfies (9.10) and (9.11). Then
[ Loty =o.
R2

Indeed, integrating on Bg, with the notation g = % —(=A)"1g,

| sePa= [ v wTglPay
BR BR
:—2/ UVg-ydy+R2/ UVyg-vdS(y)
BR 8BR

:2/ gZody—2/ Ugy -vdy + R? UVg-vdS(y).

By (9.10) and (9.11), g(y) = O(|y|*=9), Vg(y) = O(Jy|*~°) as |y| — oo. Therefore the boundary
terms tend to 0 as R — oo, and we get

/ Llglly[*dy = 2/ 9Zody = 0,
R2 R2
by Lemma 9.2.

Lemma 9.3. There are constants c¢; > 0, co > 0 such that if ¢ : R? — R satisfies
1
Y| < ——5=, 0<o<1
WIS Ty
and (9.11), then
o [ U< [ ort<a | UG (9.14)
R2

R2 R2
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Proof. By Lemma 9.2

/]R?d)g:/H£2(¢L+gUZO)g:/RQ¢L(gL+a):/RQQSLQL

= [ Ulg"+¢H)g
R2

Let g- = gt oIl, ¢t = 1 o IT and write (9.12) as
—Ag2pt — 29t =25, in S2 (9.15)
We also get

3 [0 [ a7+ 0ta

Multiplying (9.15) by Y+ we find that

[t =g [ vt [ @ty

3 [oo= [y [ veite- [ @

We recall that the eigenvalues of —A on S? are given by {k(k + 1) | kK > 0}. The eigenvalue 0 has
a constant eigenfunction and the eigenvalue 2 has eigenspace spanned by the coordinate functions
(w1, T2, 3) = Ty, for (x1,22,23) € S? and i = 1,2,3. Let (\;);>0 denote all eigenvalues, repeated
according to multiplicity, with Ao = 0, A1 = A2 = A3 = 2, and let (e;),;>0 denote the corresponding
eigenfunctions so that they form an orthonormal system in L?(S?), and ey, es, e3 are multiples of the
coordinate functions 7y, w9, m3. We decompose 1/~) and g:

and hence

PSSt 5=t ©10)
=0 Jj=0
where
d;jl = <'¢;l7€j>L2(Sz)’ gjl = <gL7ej>L2(Sz)'
Then

1 — S

! / 9= (G +5 >~ 2
7=0 7=0

Equation (9.15) gives us that
(\j — 2)P+ = 25+, (9.17)
and then

1 _ ol N2 i
Q/RQQSQ—Z(QJ') +Z/\j_2(9j)-
Jj=1 Jj=4
By Lemma 9.2 §i- = g3 = g3 = 0. Therefore

1 N N a1
5 oo 3 5 (9.15)

and

This proves (9.14).
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Lemma 9.4. There exist positive constants c1, ¢y such that if ¢ : R2 — R is radially symmetric and
satisfies (14 |y|)3+7¢ € L>=(R?) with 0 < o < 1, and

| sway=o,

then
& / Ulgh) < / U < e / Ul (9.19)
/ Uty < 02/ U(gh)2. (9.20)
Rz Rz

Proof. Using the same notation as in the proof of Lemma 9.3, we have

5 [ Ut =5 [ Ulwh? 42t 4
R2

2 R2

= /S 1@+ 2005 + (547
= Z[@f)? + 20597 + (57 )°)

As in the previous proof, gji =0 for j =0,1,2,3. Using (9. 17) we get
3

1 oo
1 UL (65)2 = 2 2.
5, U6 X6+ Z ooy

This formula already gives

[ver<c [ viey
R2 R2
We observe that z,ZNJf- = 1215- = 0 by radial symmetry. We also have z,ZNJ(J)- =0, by (9.17). Let
v=2 v
j=4

and note that it satisfies

—Ag2th — 29 =23~ in S2.
By (9.17),

[Pl z2(s2) < CllG* lz2cs2),

and from elliptic estimates

[l cacszy < CllFllL2s2),s (9.21)
for any 0 < o < 1. Since (1 + |y|)**7¢ € L°(R?) and ¢ has total mass 0, we have (1 + |y[)'"7¢ €
L>(RR?) (here the functions are radial) and also (1 + |y|)}*7¢L € L>(R2). Tt follows that ¢ (P) =
0 where P = (0,0,1). Since ¥+ and 1+ differ by a constant times 73 we have
$(P)

L
7/) *1/) 7T3<P)7r37

where m3(x1, x2, x3) = x3. This implies, by (9.21),

19 [l z2(s2) < Clldllzs2) + ClH(P)] < Cllg* |l L2s2-
This proves the other inequality in (9.19) and (9.20).

Lemma 9.5. Suppose that ¢ = ¢(y,t), y € R, t > 0 is a function satisfying

|¢(yat)| < W,

with 0 < o < 1,

/ o(y,t)dy =0, Vt>0,
]R2
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and that ¢ is differentiable with respect to t and ¢; satisfies also

P (y,t)| < W-

/Wfﬁtg:%at/wéf)g

— (=27 +c(t)

Then

where for each t, g(y,t) is defined as

g:

Sle-

and c(t) € R is chosen so that
[ atwov@y=o.
RQ
Proof. Using the notation of the previous lemma, we have

- Prg = /}R2 U(ge +t)g =2 /52 (93 + Urd)-
We have
—Ag2tp — 2p = 2§, in S2.
And differentiating in ¢t we get
—Ag2thy — 2y = 2G;, in S (9.22)
Multiplying by g and integrating we find that

. 1 . o
Uig = *5/ A g — / gtg-
52 52 52

drg = —/ Aty
R2 52

Thus

Decompose as in (9.16) and find that

/ Prg = Z X (¥5):d
R? o
But from (9.22)

(Aj = 2)(0)e = 2(3)s-

We note that g; =0 for j = 0,1,2,3. Indeed, this is true for j = 0 by the assumption fR2 gU = 0.
By Lemma 9.2 this is true also for j = 1,2,3. Then

1 D VR
5/}1{? ¢t9*j§ Y _2(9])159]

and the desired conclusion follows from (9.18). O

9.3. A Poincaré inequality.
Lemma 9.6. Let Br(0) C R? be the open ball centered at 0 of radius R. There exists C > 0 such
that, for any R > 0 large and any g € H'(Bgr) with fBR gUdx =0 we have
C
=] eus[ wepu
R Br Br

Proof. Using a Fourier decomposition we only need to consider the radial case, that is, we claim that
if g(r) satisfies

R r
/0 g(r)mdr =0, (9.23)

then there is C' such that for all R large
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Let 0 < 6 < 1 to be fixed later on. From (9.23) we have

R . 5 ,
/6 g(r)mdr:—/o g(r)(idr.

1+172)2
But
R R
T 1 d 1
/5 g(r)(l—i—rz)eriii/(; g(r )%(14—7“2)(17"

1 g(R) 1 g(6 1/R , 1
it 21t ta ), YT

Therefore

L1g(@) _ 1 lg(R)l +1/’* ()

21+62 - 21+R2 " 2 J;

e | R
5.2 r ; g(r i r.
By the Cauchy-Schwarz inequality

+ 7‘2)2

R 1 R r 1/2
! < "(r)?— - 1/2
/6 lg" ()] 5.2 dr < </5 g'(r) ( )er) (log R — log d)

1+1r2

/05 |9(T)|ﬁdr < 5(/05 9(7’)2(rdr)1/2.

1+ 1r2)2
Hence
R)2 R & r
2 9( . / N2 2/ 2 . .
g(0)* <2 i + 2(log R — log 6) i g'(r) 7(1+ ] dr + 49 ; g(r) 7(1—!—7'2)26# (9.24)
We compute now
R
2 r - _ i
/5 9 G = / (1+7’2>
1 g(R)?> 1 g(5) /R oy 1
= 3ie e Tarse T, 9T
Using (9.24) and the Cauchy-Schwartz inequality we get
R 2 2 R
s T 1 g(R) g(R) / 2"
< _Z _ -
/6 g(r) (1+T2)2dr_ 211 R + iz + (log R — log 6) : g'(r) (1+T2)2dr
2 ’ 2 r 2 f 7ioN\2 r
2 —_— A —_—
+ 26 /0 g(r) (1+T2)2dr+ R /(S g'(r) (1+r2)2dr
1

R 1
+7AR2/ g(r)zfdr.

r
But > §%(1+7") for r € [6,R] if A=4(1+ §5) and R > 1. Choosing A =4(1 + ;) and R > 2
we have

r 2 r 2 R 1ooN2 r
/5 g(r) mdrﬁ [2AR +2(10gR—10g5)]/6 g'(r) (

————d
1+ 1r2)2 "
2 ’ 2 r
49 ———d 9.25
+48? [ g g (9.25)
With 6 > 0 still to be chosen we get from (9.24) for 0 < z < §
R)? R r 0 T
2 < 9l 2(log R — 1 / "(r)? 42/ S
9(2)" < 2= 57— + 2(log R — log z) ; g'(r) I g(r) Aozt
Integrating we get

g ) r 29 .\ ) , r
/0 g(r) mdrq +2logR/ ) ———dr+9¢ /0 g(r) mdr. (9.26)
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Using the condition (9.23) we obtain

R r R r2
[ ot =3 ) o0 ()

1 R? 1t 2
= g(R)—— — = .
Ay 2/0 IR

Then
2 . [ 2 r
R)* <4R ! dr.
98" < /0 AT
Using this combined with (9.26) we get

/(S (r)grdr<624/R ’(T)ZLdr—FMO R/R ’(T)Qédr
o MRt =00y T ey 2o T ey

5
4 2 r
+9 /0 g(r) 7(1+r2)2dr.

Taking 6 = = (this fixes A) gives

1
2

s R

2 r Ry
r)——=dr <4(logR+1 / r dr
/og()(1+7"2)2 < 4(log )Og()(1
Combining this with (9.25) we get

r

R 2 r 2 K 2
_ __dr< ! — _dr.
/0 g(r) T rz)zdr <CR /0 g'(r) T T2)2dr

O
10. LINEAR THEORY: A DECOMPOSITION
Here we consider
9:¢ = L¢] + Bl¢] + h, inR* x (7p,00), (10.1)
¢('77_0) = ¢0 in R2~ '

The results of this section are going to be used later only in the case of radial functions, so we make
this assumption here. We write in the rest of this section ¢ = ¢(y, ) = ¢(p, 7), where y € R?, p = |y|.
The operator B is assumed to be one of the following two:

Blg] =((1)(2¢ +y - Vo) =((T)V - (y9), (10.2)
Blg]l =((T)y- Vo, (10.3)
where
1
¢(r) = —T]iOgT +O(T(log7)1+f’0>’ as T — 00,

for some constants (5 > 0, 0 < g < 1.
We assume that ||h||.. < oo where

|2+ = inf K, such that

1 1
‘h(va)‘ SK min(]-»i)v 7—>7—07 y€R2a
7 (log 7)™ (1 + |y[)6+7 lyl°
where v > 1, € > 0, 0 > 0, m € R. This is the same norm as in (8.6).
We also assume that h has zero mass

/ h(y,7)dy =0 for all 7 > 79, (10.4)
RZ

7_6/2

and the same for the initial condition

/ Pody = 0. (10.5)
R2
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It follows from the equation (10.1), (10.4), and (10.5) that the solution ¢ to (10.1) defined in §8
satisfies

/ é(y, 7)dy =0 for all 7 > 7.
R2

We recall the decomposition of ¢ introduced in §9.2. Given ¢ : R? — R with sufficient decay and
mass zero, we let g = % — (=A71)¢, and define a so that [y, (g+a)Udy = 0. Then define g* = g+a,

Yt =9 —a(l+ 32), and

ot =6 gzo. (10.6)
Actually a is directly computed by
1 1 1
= —— = —_— —A -1 - F . ]- .
“ 81 R2 Ug 81 R2 U< ) ¢ 8T -/]1%2 0¢ ( 0 7)

In the time dependent situation a = a(7) and all functions depend on y € R? and 7.

A difficulty to obtain estimates is the presence of a kernel in the linear operator if B = 0, since
Zy satisfies L[Zy] = 0. It can be proved that the solution ¢ of (10.1) with zero initial condition and
2]+« < oo has the bound

log 7\ 26020
suplo(y, )| < O (122 )
Y ogT

and probably this estimate cannot be improved much. Also ¢ has a some decay at spatial infinity
and in particular it has finite second moment

/2 lo(y, 7)| |y|2dy <00, T>To.
R

Therefore Zy doesn’t describe well the class of solution we want to consider, even for the case B = 0,
in which ¢(7) = 0.
A better candidate to describe the solutions ¢ of (10.1) with zero initial condition and ||h]|.. < oo
is obtained by considering the initial value problem
0, Zp = L[Zp] + B[Zp], inR? x (19,00),
Zp

- 10.8
(',T()) :Z() n R2. ( )

where Z is defined in (6.4). Note that since Zy has mass zero and decays like 1/p* we have my, =
O().
70

We will then consider the problem

{ dr¢ = L¢] + Bo] + h, in R? x (70, 00),
_ (10.9)
¢(',Tg) = (31Z0 m R2,

for radial functions ¢, h, ¢, where ¢; € R is a parameter. We assume that ||h] .. < oo.

Proposition 10.1. Let us assume that 1 < v < %. Then there is C' > 0 such that for any 7
sufficiently large the following holds. Suppose that |h|l. < oo is radially symmetric and satisfies
the zero mass condition (10.4). Then there ewists c1 such that the solution ¢ = ¢~ + $Zy of (10.9)
satisfies

f(r)R(r)?
1
|07 (p,7)| < Cf(T)R(T)WHhH**- (10.10)
where R(7) > 0 is defined by
s T
R(r)” = Tog )7’ (10.11)
where 0 < ¢ < 1, and
fr) = — (10.12)

~ (log )™
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Moreover ¢y is a linear function of h and satisfies

f(70)R(70)?

<C
jea] < (logmp)t—1

1] s

We always decompose ¢ as in (10.6):
and write

Let us denote

w(r) = (~/RQ\BR(T)(O) Ug(T)2)1/2. (10.13)

The strategy for the proof of Proposition 10.1 is contained in the following lemmas. The first one
is an a-priori estimate for the solution, assuming that a(7%) = 0 for some T5.

Lemma 10.1. There is C such that for 1o large the following holds. Suppose that ||h||« < oo is
radially symmetric and satisfies the zero mass condition (10.4) and consider (10.9). Let ¢, a be the
decomposition (10.6). Suppose that for some ¢1 € R there is Ty > 19 is such that

a(Tg) =0.
Then
f(r)R(r)?
(logmp)t—1
f(T)R(7)
(logmp)t—1
f(10)R(10)*
(logmo)1—1

la(T)| < C [Rlsx, T € [10, T3] (10.14)

w(r)| < C [Alls, 7 € [10,T2] (10.15)

| < C - (10.16)

The constant C is independent of Ty and c; .

There is a variant of the previous lemma, where the hypothesis a(T2) = 0 is replaced by an
assumption about its time decay.

Lemma 10.2. There is C such that for 1o large the following holds. Suppose that ||h||« < oo is
radially symmetric and satisfies the zero mass condition (10.4) and consider (10.9). Let ¢, a be the
decomposition (10.6). Suppose that for some ¢1 € R,

a

S € L (70.00).
Then
ol < CXDE D ., > (10.17)
w(r)| < lelhll**, T > 70, (10.18)
o < AR (10.19)

Lemma 10.3. Let Zp be the solution to (10.8) and write it as Zp = Z§ + % Zy according to the
decomposition (10.6). Then az () # 0 for all T > 19.

Lemma 10.4. There is C' such that for 1o large the following holds. Suppose that |h||« < oo is
radially symmetric and satisfies the zero mass condition (10.4). Then there is a unique ¢; € R such
that the solution ¢ = ¢ + $Zo of (10.9) (as in (10.6)) satisfies (10.17), (10.18) and (10.19).

In the first results we do some computations and obtain some estimates, which are used as technical
steps in the main argument.
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The next lemma is a calculation to help us deal with the term B when we multiply the equation
by a suitable test function. It holds for operators more general than B as in (10.2) and (10.3). Let

B[g] = Gi(T)o + G(7)y - Vo,
with (1), (2(7) satisfying

. < ) .
1Gi(T)] < Tlogr for all 7> 79 (10.20)
Lemma 10.5. We have
~ C a(T 1
Blglg™| < / U(gL)2dy+CMHVgLU§||Lz. (10.21)
R2 Tlog T JRr2 Tlog T

Proof. We have
/ B[aﬁ]ngy:/ [G(T)¢ + Ga(T)y - Vlg—dy.
R2

By Lemma 9.3 and the hypothesis (10.20) we have

1\2
a) [ ostan| < C [ vt (10.22)

Let us write

[ v-vowswis= [ v g way+ "2 [ 49z W
RQ Rz RQ

We claim that

y-vw(y)gL(y)dy‘ <c [ rua (10.23)
R2 R2
Indeed, we write
/ y-Vch(y)gL(y)dy:/ y-V(UgL)gl(y)der/ y - V(UpH)g™(y)dy. (10.24)
But
/ y-V(UgL)gl(y)dy=/ y-VU(gL)Q(y)dyﬂL/ Uy-Vgg*(y)dy
=/ y~VU(gL)2(y)dy+%/ Uy - VI(g™)*|(y)dy
=5 [y VUt Pad - [ U Rea,
and so

/]Rz Y- V(Ugl)gl(y)dy’ <C . (gL)2Udy. (10.25)

The second term in (10.24) is:

/ y - V(UYS)g* (y)dy = / (y- VU g (y)dy + / Uy - Vo )g* (v)dy.

We estimate the first term above
1/2
(v- VU)ngHy)dy' <c([ whruay) ([ orvdy)
R2 R2 R2

<C | (¢H)*Udy, (10.26)
]R2

1/2

by (9.20). To estimate [, U(y - Vio')g*(y)dy we write it using radial symmetry:

[ vt vetigt iy =2x | T U)LY (0)g™ (0)pPdp.
R2 0

We use that 1+ satisfies
Ayt — Uyt =Ugt  in R2, z/Jl(p, 7) =0 asp— 0.
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Then, by the variations of parameters formula, since that fRQ Ugtzody = 0, we have

W)= 400) [ U0 a5 [ Ut e
where Zj is a second linear independent function in the kernel of A + U satisfying
[Z0(p)| < C(|log p| +1).
We then compute
| v @ oitan =1+ 1
where

h= /O‘X’ / T UU () (0)20(r)g (g (0)pPrdrdp

/ / l (())U( )zé(p)ZOO )g (T‘)gj‘<0> 27«d d A
0 p p T p
We di]ectly Check ‘hat

L+ Ll < C / (g4 2Udy.
RQ

From this we get that

/Rz Uly - Vt)g*(y)dy| < C Rz(gL)ZUdy. (10.27)

Combining (10.24), (10.25), (10.26), (10.27) we obtain (10.23).
Next we claim that

/ y~vzo<y>gl<y>dy\ < CIVg U L. (10.28)
R2

Indeed, write
y - VZO =V (yZ0> — 2Z0 =V (yZ() — QVZ()) — 4ZO

where zj is defined in (9.2) and satisfies the linearized Liouville equation Azg + Uz = 0. We have
used here that Zy = Uzy. So

/ y-VZo(y)g* (y)dy = —/ (yZo — 2V20)Vg'dy — 4/ 9" Zody.
R? R2 R?
But [g. Zogtdy = [ Uzogtdy = 0 by Lemma 9.2, and |yZy — 2V zo| < ﬁ, 0

1

1 3 1
-VZ L(y)d <c/7v“’d < C|VgtU7=||e.
/Rzy 0(y)g—(y) y‘_ (R2 (1+|y‘)4| 9| y) <CVg Uz

This proves (10.28).
From (10.22), (10.23) and (10.28) we conclude the validity of (10.21).

O

In the next lemma we get an estimate for fRQ ¢g’, but with right hand side that depends on the
solution.

Lemma 10.6. We make the same assumptions of Proposition 10.1. Let f be given by (10.12), w be
defined in (10.13) and let R : [19,00) — (0,00) be continuous. There is ¢ >0, >0 and C > 0 such
that for 1o sufficiently large, if

2
sup 247 o ¢ (10.29)
TZTOTIOgT
then
2 2
67- 1 C / 1 <C 2 h 2 Ca(T) CW(T)
o0+ [ oot < CrapInE, + 05 +c*E,

for some constant ¢ > 0.
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Proof. Equation (10.9) can be written in the form
0.6 =V -(UVg )+ B[#] +h, inR? x (r5,00).
We multiply this equation by g and integrate on R2, using Lemma 9.5:

1
30 [ ogt+ [ v1vgte = [ Biolgt+ [ hot (10.30)
R2 R2 R2 R2

Let H = (—A)~'h, and observe that, since h is radial and fR2 hdy =0,

1

1 [ee]
VH(p,7)| = ‘/ h(s,T)sds —_.
v =] [ he) (e

st
R2

< CFT)IR]

It follows that

V-VHg"| =

VH - Vgt
R2

R2

1
7/ U\Vgl|2+c/ \VH|?U!
2 R2 R2

IN

IN

1
5 | UIVa P+ Cro?InE,

This combined with (10.30) gives

so [ oo+ [Luve <|[ Bl

We use the inequality in Lemma 9.6 to get

c _
ﬁ/ (9" —gr)°U S/ UlVg*|?, (10.32)
Br R2

+ CF(r)?|IR1. (10.31)

for some ¢ > 0, where

1
—1 1
dr = 7/ g U
fBRU Br
/ (gl)2U=/ (gL—§$)2U+2/ ngéU—/ (g%)°U
Br Br Br Br

/ (g7)°U < 2/ (9" — 9%)°U + C(gg)*.
Br Br

From

we get

so, using (10.32),

C
o BR(QL)QUS/ U|V9l\2+CR2(gR) :

for a new ¢ > 0. This implies

c 1
R RZ(QL)2U§/ U|VgJ_‘2+C’R2(gR) +C0ps s U(gh)2.
R
Using that gt = g + a we get
2
% (gl)QUS/ U|VgL|2+C 5 (9 )+C—+C—. (10.33)
RQ

But

/ gtUdy =0
R2

and this implies

SO
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This combined with (10.33) gives
w2
c

ﬁ/ (gl)zUS/ U|Vgt? +C +C—.

We use this together with (10.31) to obtain (for a new ¢ > 0)

30 o0+ [ v [ et
2 R2
i 2017112 a? w?
|, Blola*| + CHERIME + C o + O (10.30)

We obtain from Lemma 10.5 and the assumption (10.29) that

<

C
Blols*| < o [ (o rvay+ 8 wgiot s
R2 T10gT JRr2
¢ 142 la(T )|2 R Lyrdy2
< .
< orr [+ R O IV U
0R2 (9 HY2Udy +| ;” + 2| VgtUz|2.. (10.35)
Taking ¢ > 0 small, and combining (10.34) and (10.35) we get
1 Ca? w?
1, 1277 < 21112 4+ 24 v
o, [ o0t + 15 [ @"PU < CIORINE + G+ Cag
By Lemma 9.3 we obtain
0. [ o0t [ o0t < CrPInIE. + 0l O
R2
for some constant ¢ > 0, which is the desired conclusion. O

The next lemma provides a pointwise estimate for g = 2 — (—A~1)¢ assuming a certain bound
for |U/2g]| 2.

Lemma 10.7. Assume v > 0. Let ¢ be the solution to (10.9) as in §8. Suppose that 11 > 19 and

lg(MU || 22y < K1 fi(7), 7 € [70,71], (10.36)
where K1 > 0 and

fi(r) = log )"

Tv—1 ’

where p € R. Then

Wolles ,_ler] 1
U(y)g(y, )| < C(K1 R(r0) fl( ))fl( )W7 T € [70,T1].
Proof. We define
go = Ug7

and obtain from (10.1) the equation
a'rg() = UaTg = a‘r¢ - U(_A_l)a'rq5
V. DN —_p(=A)ytiv. —U(=A)!
-V [UV(U)] U(=A)"L [V - (UVg)] +h— U(~A)" R

+ Blgo] + B[U¢[g0]] — U(=A)~"(Blgo + Ut [go])), (10.37)
where we regard 1[go] as the operator that maps gg to the unique radial solution to
~AY—Up=go inR% (p,7) =0 asp— occ. (10.38)

We note that this problem has indeed a solution since fR2 gozody = 0 by Lemma 9.2, which is unique
by imposing ¥ (p,7) — 0 as p — oo in the radial setting. This solution is given by the variations of
parameters formula

vlp.) = 2alp) [ " o) z0(r)r dr + 20(p) / " go(r. )20 (r)rdr,
p

where Z is a second linear independent function in the kernel of A+ U satisfying |Zo(p)| < C(]log p|+

1).
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We compute
V- (UVyg)=AgU +VU -Vg=A(gU) — VU - Vg — gAU,

and hence
(=A)THV - (UVg)] = —gU — (=A)7' [VU - Vg + gAU]
=—gU —v
where
vi=(=A)"YV - (goVTIy)). (10.39)
We write (10.37) as
d-g90 = Ago — Vgo - VLo + 2Ugo + Blgo] + h (10.40)
where
h=Uv + B[Uv[go]] — U(=A)"*(Blgo + Ut[go]]) + h — U(=A)"'h. (10.41)
Note that since we are working with radial functions, we can integrate (10.39) explicitly and obtain
v(p,7) = / go(s, 7)Tq(s)ds. (10.42)
P
We claim that for any y € R?:
A (1] s 1
Rllor, ) < Cl K1+ T)———, T € [10,71] 10.43
[Flleem,wn < C(Ki + 55 o) T e (10.43)

Indeed, let us start with

/ " o) PU (o) pdp < / ( / " U)g(s)sas)” / " U 4 v(pdp

S

1
< ClgU? (12 (gey» (10.44)
which follows from (10.42) and Holder’s inequality

Let us write ¢ = 9[go] and 1/; = 1) oI, where II is the stereographic projection. Writing (10.38) in
S? and using standard L theory we find that for any p > 2

7 7 1
¥l oo (s2) + V29| r(s2) < CllgU? || L2(r2),

which implies

1
ol + ([ [90P01) < CllgH e (10.45)
Let y € R2. From (10.36) we see that
oot < O e 7 € frooml
and from (10.36) and (10.44) we have

IUv( )L (B () < CKlfl(T)(lH;f‘?’ 7 € [10, 1] (10.46)

Similarly, inequalities (10.45) and (10.36) imply
I BIUY[go]llLr (B (y)) < CK1f1(T) : ! T € [10,71]. (10.47)

Tlog 7 (14 [y[)*’
Let’s estimate
(—=A)H(Blgo + Udlgo]]) = i (r)(=A) " (y - Vgo + Utlgo])) + C2(7)(=2) " (g0 + Ut[go])-
Note that ¢ = (—A)~'¢ = (=A)~'(go + Uv). But we can estimate ¢ from
oo 1 o0
(o) = 20(p) / —mr [ m()sds > (10.48)
Then (10.36) yields

C 1 1
< — 2| r2(p2y <
[Y(p,7)| < 1+pH9U 22y < CKy fi(7)

1+p

, T €m0, (10.49)
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and so
1

L Jyf>”

Concerning the term (—A)~!(y-V(go+U1))), we notice that if we let w = go+U®, then [p, y-Vw = 0,
and

U(=A)" (g0 + Utlgo))| < CK1f1(7) 7 € [r0, 1) (10.50)

(-8 Vo)) = [ (e )dr — 20(p. 7).

Using (10.36) and (10.49) we get

1
[(=8)" (Y- V(go + U¥))(p,7)| < CKLfi(7)7 > 7€ [70, 71]-
From this and (10.50) we find that
1
—A)! < —_— : :
|U(=A)"(Blgo + Uv[go]])(y, 7)| < CKlfl(T)TIOgT(]_ T T € [10, 1] (10.51)
Finally the estimates
[Pl 1

2l o (By )y + U (—=A) " Rl o (By () < C (10.52)

1\7T
R(mo) ™ (14 g7
are directly obtained.
Combining (10.46), (10.47), (10.51), and (10.52) we deduce (10.43).

From equation (10.40), the estimate (10.43), standard parabolic L? estimates restricted to By (y) x
(max(7 — 1,70),7) and embedding into Holder spaces, we deduce that

[ollex _lea] 1
T < C(K1 + + _—, € [10,71]- 10.53
‘QO(y T)| = ( 1 R(TQ) f1(70)>f1(7_) (1 + ‘y|)2 T [TO Tl] ( )
This is the desired conclusion. We also get from (10.53):
[Plles lea] 1
u(y,7)| < Cl K1+ T)——=, T € |[1,T1] 10.54
0.7 < O (Ko 4 i + e O e o sy
O

In some of the proofs below the following barrier will be useful. Consider the equation
Oy = Agsp+h in (19,00) x R®
¢(10,) =0
where Ags is the laplacian in R®. Suppose that h has the estimate

1 1
Mo S ey

(10.55)

for some 7v,b € R.
Ifvy<3andy< g then there is a barrier satisfying
1

1 1 1
PO S Com s

C1———o .
™ (L +yl/v7T) (L+Jyl/vT)P
Indeed, we can consider all functions to be radial and write p = |y|, y € RS. Let

P(p,7) = %g(\%), (= \%- (10.56)

Then
1
7Y+

- 5 - 5
0.6 = (00 + 20,)6 =~ =1 7€) + 29/0) + 56/(0) +290(0)]
Let g1(¢) = W Since v < £ we have

1" 5 ! !/
[+ 210 + 5+ 190 = G <2,

2
for some ¢, M > 0. Let go(¢) = e~ be the Gaussian kernel, which satisfies

(O + 295(0) + 595(0) + 390(6) =0,
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Let g = C1go + g1. Since v < 3, we can find C; large so that

-l + %g’(C) +59(0 + 19(0)] 2 ﬁccb

Then ¢ defined by (10.56) with g = C1go + g1 is a supersolution to (10.55).

¢>0.

In the next lemma we improve the spatial decay of g = % —(=A7Ye.

Lemma 10.8. Assume 1 < v < %. Let ¢ be the solution to (10.9) as in §8. Suppose that 71 > T
and

lg(U? || L2 gey < Kafi(r), 7 € [r0,71),
where K1 > 0 and

(log )"
7-1/—1

fi(r) =

where p € R. Then

Il e |
R * 7o) MO T

[U(p)g(p,T)| < C(K1 + T € [10,71]. (10.57)

Proof. We us the same notation as in Lemma 10.7 and consider (10.40) for go = Ug with h defined
in (10.41). We are going to use barriers to estimate gq.

We claim that h satisfies
IIhH**) ( 1 1
T +
i) OG0 Tlogr (i + 1ol
Indeed, from (10.53) and (10.54) we find that

iy, 7l < € (K1 + ). reloml  (1058)

]l |
R MO T

To estimate B[U1[go]] we use (10.49) a similar estimate for 9,1, and the assumptions on (1, {2 in
(10.20), to obtain

|~ Uv+h—U(-A)"1h| < C(K1 + T € [0, 7). (10.59)

1 1

|B[UY[go]| < CKM(T)@W’

T € [10,71].

This, (10.59) and (10.51) prove (10.58).

To get better spatial decay we construct a barrier and apply the maximum principle to equation
(10.40) in (R%\ Bg,(0)) x (10, 71), where Ry is a fixed large constant. Several of constants C' below
depend on Ry but we will not keep track of the explicit dependence.

The linear operator for gy in (10.40), acting on radial functions with p = |y|, is given by:

B 1 4p 1
0rg0 ~ [Ago = Vg0 - Vo + Blgo] +2Ug0] = 0790~ 0ppto ~ —0p0 ~ 1 29p90 + O3 )0

1 1
090+ O( =) P00
Tlog T 90+ Tlog T Ppgo
The main part outside of a ball Bg,(0) with Ry big is given by 9; — 0,, — %8,).
By (10.58) we need to construct g; such that
0:g1 — [Ag1 — Vg1 - VDo + Blgi] +2Ug1] >

where

1 1
hi(p,7) = f1(7)<(1+p)6 + TlogT(1+P)5).

To construct gp, let 0 < ¢ < 1, and let g1 (p) be radial and solve
in RS,

—Aeg1 = T4 o7

such that g1 (p)(1 + p*~?) is bounded below and above by positive constants. Let

g1(p,7) = fl(T)gl(p)XO(#> + C4 7_2_19/2{11(;1)/\5)5 +Cy TJ;_(;)Q e*é,
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For appropriate 6 > 0, C1, and Cs, the function gy (p, 7) is a supersolution in (IR{2 \ Br,(0)) x (10, 71)

for the right hand side h;. More precisely, writing M = R2™7 (K, + ”h(H*’)‘ + 4 TO) le1]), we have

(8- — [A = V(-)- VI + B]) Mg, > |h|, in (R%\ Bg,(0)) x (10,71),

Mgy > |gol, on p= Ry, 7€ (70,71),
because of Lemma 10.7, and
M§1(70)2 |ClUgZO|, in R2,
where
Zo o
92, = F - (_A) 1Z0a

is the function g associated to Zy defined in (6.4). We note that Ugz,(p)| < Cﬁ and is supported

on p < 2,/7y. Here we are using that v < % + g. |—_

Using the maximum principle we get

[l el 1
900y )| < O (K + 55 4 50 S V) i
The constant C here depends on Ry, but Ry is fixed and we will not keep track of the dependence of
C on Ryp.
By (10.42) and (10.48) we have

[Alles el 1 !
) < (8 + =5 + ) ) (e + e )

We can now repeat the argument with a new barrier. Consider go(p) the radial solution to

T € [10,71].

- 1 .6 1 _ 1
- = — < < g —
AVY7)) 15 poro in R®, Cll+p4 < g2(p) 7021+p4’ (10.60)
where ¢, co > 0. Let
1) A g
920, 7) = Fi(Diaoxo(57) + O e T O e

For appropriate constants §, C1, Cy, and assuming that v < 2 — g we get a suitable supersolution
and we obtain
1

(1+p)*

R fles _lea
R(ro) " i(m)

90y, )| < C (K1 + 5 A7)

This proves (10.57).

The restriction on v were v < % + g and v < 2 — g. Choosing 9 = % we find that for v < g both
barriers work. g

The next result is a technical step used in several places.

Lemma 10.9. Let ¢ : R? — R be radial such that [z ¢ =0 and |¢(y)| < W for some o > 0.
Let g = % — (=A)"1¢ and assume that ||g||p~ < co. Then
o()| < oAl (10.61)

1+ lyh*
Proof. Let ¢ = (—=A)71¢. Since 1 satisfies
Ay —Uyp=Ug inR?* (p) =0 asp— oo,

we have necessarily

/ Ugzody = 0.
]RZ

We have the variations of parameters formula

P(p) = z0(p) /00 ﬁ)zr /00 Ug(s,T)zo(s)sdsdr, p>1. (10.62)

From (10.62) we find
[W(p,7)| < Cligllpe.
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This and the formula ¢ = Ug + U1 gives (10.61). O

Next we give a proof of Proof of Lemma 10.1, but first we point some estimates of Z defined in
(6.4). Using the general decomposition (10.6), we write

- .. a
%:%+§%

By (10.7)
1 - 1
o= — | ToZo=2+0(2",
8T R2 T0
Hence Zj satisfies
- - a
Zi () = Zo(p) = 5 Zo(p)
log 7
= (Zo(p) = maU(p))xs — (14 OC2)) Zop)
10g7’0 1
=7 -1H)+0
0P = 1) +0(Z20 )
where p
(o) =xo(57=):
Let go = % - (—Ay)_lzo and QOL = go + ag- Note that since Zy has mass zero and decays like
1/p* we have mz, = O(%) We claim that
1
‘/ Zogd dy‘ <Xl (10.63)

Indeed, let us use the notation

so that
- Zy -
Jgo = FO — o.
Let us write
Zy = Zo+h,

where

h=2Zy(xs—1)—mz,Uxs.
Since Az + Uzp = 0 and lim,_,o 20(p) = —2 we have (—A)~'Zy = 29 + 2. Therefore
(

Yo =(-A)"Zy =2+ 2+ (—A) .

Since the mass of Zj is zero

Z5 + 2Zoh + b?
= / udy—/ Zo(zo +2+ (—A) " 'h)dy
R2 U R2

— h(zo 4+ 2+ (=A)"'h)dy
RQ

But Zy = Uz and the mass of h is zero, so

R 2
/Zog /zohdy+/ h—dy—/ Zo(—A) " hdy — h(—A)"hdy
R2 r2 U R2 R2
fdy / h(=A)""hdy,

R2

R2
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because, integrating by parts,

/]R2 Zo(=A) " hdy = /RQ(_AZO)(—A)_lhdy - /R2 Zoh.

By direct computation
L >
(=A,) Th(p)] < Clog(m) {7 PZ VD
7 P < \/7TO
With this inequality we estimate
h? C
Zdyl < =
/RQ U y‘ - 72

and

This proves (10.63).
Proof of Lemma 10.1. We let R be defined by (10.11).

We multiply equation (10.9) by g+ and

integrate in R?. Using Lemmas 10.6 and 9.3 we get
C
o [ 60"+ 1 [ 60t < CHOPINE. + S+ Hrtr (10.64)
R2
for some ¢ > 0, where
1/2
wr)=([  ¢v)
R2\BRr(r)
Let us write
[@lloo, 72 = ol Lo (70,12)
and note that
|77 | <2 77 <
The following inequalities are valid for 79 < 7 < T. From (10.64) we get
c a |2 w |2
0 [0t g f oo < s+ L+ 7 )
oot + 5 [ oot <o (i + |zl + |5l
By Gronwall’s inequality and Lemma 9.3 we get
(10.65)

[ < cserre? (inle. + |75, + 7L, + D)

where
1 v1og

)

D) = 50k

and we have used (10.63).
From (10.65) we find
D 2
2 Diro) ) (10.66)

[ 920 < ot (gl + |77 o+ o g, +
R2 R(r9)2" ™ R%2flloo, s R(70)? Il Rf lloo, 1, R(79)?

Using Lemma 10.8 we get
Vgl < CHRE (g hllee + ||z |+ ||+ leal s ) ey
R(70) B2 flloom,  R(70) I Rf lloo. 1 f(m0)R(10)?/ (1 + p)*
(10.67)
where we have used that for 7y large, Rgmg < f(‘ro)R(To)2
We use this to estimate
1 w 1 2
Rl 1 R

/R2\BR g°U < Cf(T)QR(T)Z(ﬁHhH** + HRLQfHoo,TQ n es
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which implies
w(T) 1
<C
R(T)f(r) — (R(To)
We deduce that

w 1
Il 57, + e )

a
+ HR?fHoo,TQ * Rin

w 1 a 1
— <Ol = ||h|| 5« — — ). 10.68
|77, < (il + | 7 e, + 0 ) (1058
Combining this inequality with (10.66) we obtain
1 1 2
U < Cf(r)2RM)* (5|l —_— 10.69
fo 0 < PR (st + |, e ye) (10:69
and with (10.65) we get
/(gL)2U<Cf(T)2R(T)2(||h|| ] el ) (10.70)
R? - R2 flloc, 1, f(70)R(70)?
Going back to (10.67) we find
1 a 1 1
< 2 |hllas + || 5= . 10.71
Ugo. | < CFOREY (grslbllee + | gz | L+ el mm ) T3 (10.71)
Using Lemma 10.9 we also obtain
1 a 1 1
< Cf(r)R(1)? e : 10.72
0.7 < CIORO (g Wl + | 757 |+ o Frm ) T (007
We multiply the equation satisfied by ¢ (10.9) by |y|*xo(%), and integrate on R?
o, [ olvlxo(f)du= [ (@) + WlaPxoCay+ [ BlellyPxol )y
RQ
R'(1) 5 Y. oy
[ xR (10.73)

where R/ = ‘fiR.
T

We integrate (10.73) from 7 to T, use the decomposition (10.6) and that a(T2) = 0 to get

Mogr<| [ [ wloto) + mluPratgsyivas| + | [ [ Biotolufxo(ls s
H|[ RO / T xal ) %dyds
+] / o Tl iy o]+ | [ o0l (0 ). (10.74

By Lemma 9.4 and (10.70)
CN\1/2
/ 160 Py < R L@ o)

<cre ([ wmre)”

< CFRE)? (|11].. (10.75)

a 1
= Rt o)
B f ooz, T 1‘f(TO)R(TO)2

Analogously,

/. ¢L<Tz>|y|2xO(R(yTQ))dy\ < CrmR@ P (I + |57 ] .+ ol )
< O @REP (Il + || 7|, + |cl|m). (10.76)

Integrating by parts

/T2 / s)]lyl Xo(Rg(JS) )dyds

no 2 )
<
= O/T slog s /RQ |(y, 5)llyl XO(R(S))dyds

T:
* 1 2 Y
0 [ o [0l lduds. (1077
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Let’s estimate, using (10.72)

Ts 1 y
/r SlogS/ |¢(y’8)|‘y|2X°(R(s))dyds

T> a
<¢ [ omera(gaglitle gzl o + ol i)
< Cf(rﬂ%(rf(

Wl + || ]|+ lerl s )
* % o ¢ Ul 5 |-
R(ro) R2fllsom, ™ f(70) R(70)?
The second term in (10.77) is even smaller, and we deduce that

T>

)dyds

< CHE)RI? (g bl

|l
R2f OO,TQ

2 Yy 1
|y| XO(R( R(To)

s)

+ |Cl|

;)
f(T())R(TO)2 ’
From (10.72) we also get

L[ oY) - s s
<C/ i §>)f s (gtlles + | 5], + o1 7y )

< C’f(T)R(T)2<m”h”**

T R'(S)

+ [ea ]

a 1
*HR?HM W)'

Next we look at
/ Lld]lyPxo(%)dy = *2/ UVg-yxo(2)dy - l/ Ulyl*Vg - Vxo()dy
- R - R R Jo R
:2/ QZOXO(E)deré/ gUy - Vxo(L)dy
R R
1
7/ glyPVU - Vxo(Z 7+
We have fR2 9Zy = 0 by Lemma 9.2 and therefore, using (10.71), we find that

/QZOXO( Y )dy’ﬁ/ 9Zody
R? R(7) Rz\BR(,> 0)

1
< f(r )( R )|| H**—i_HRZfH + e 1|W)-
The remaining terms in (10.80) are estimated using (10.69) or (10.71) and we get

g\yleAxO(%)dy

[ elProts] < oo (st + ] + ol

Therefore
T2 Y 2] q 1 a
/ / $)lyl? Xo( g5y duds| < CI(T)R(7)*(logT) (R(TO) **+HRTfHooT2
1
bl )
Finally

T>

< Cf(r)R(r)*(log 7)1 h| s

y
hly\ Xo RG) )dyds

From (10.74), (10.75), (10.76), (10.78), (10.79), (10.81), and (10.82) we get

() log < AR08 7Y (Wil + | 7 |, + 10l sy

75

(10.78)

(10.79)

(10.80)

(10.81)

(10.82)

(10.83)
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Assuming 7q large, we deduce that

[ 757 = Tomrgims (1Al + et s ) (1084)

Note that a(7g) and ¢; are related. Indeed, the initial condition is ¢g = 120 = b + @Zo with

c ~
a(ty) = 87;/ Zolo,

R2
by (10.7). We note that [y, ZoT'p = 167 + O(*%£™). So by (10.84)
f(r0)R(10)? 1
<C < LRI yp o O ey .
|Cl| |CL(T0)| (10g7_ )1 q || H + (OgTo)l_q‘Cl‘
For 7g large, we deduce that
f(r0)R(m0)?
1] < Cla(mo)| < Cw\\hn** (10.85)
This proves (10.16). Replacing this in (10.84) we get
C
o < | Allsss 10.
HRQfHoo,TQ - (logTO)l—q” I (10.86)

which proves (10.14). Combining (10.68), (10.85) and (10.86) we obtain (10.15).
Finally, we also obtain from (10.72)

6o, )| < ¢ LDEY

(log 7)1 4 1+p 7117l s (10.87)

0

Proof of Lemma 10.2. The proof is a slight modification of the one of Lemma 10.1. Using the same
notation as in that proof, integrating (10.73) from 7 to Ty > 7 yields

L ooz )au— [ ool ())
= [ [ o+ il v

/Tz/ Blo(s)ly[*xo( % 7 dyds

- R'(s 2 Y Y
- Yy Y dyd
| e / ST X(ls) - s
Similarly to (10.83) we obtain

1
1 < 21 q . _a - -
a(rltog T < CF)RE) Qog ) (Ihles + || g5 | _ . +1erl fmypsa)
+ Cla(Ty)| log(Ty). (10.88)
The assumption f;}'%g € L*(7p,00) implies that

lim a(7)logT = 0.

T—>00

Letting T — oo in (10.88) we obtain

a 1
a(m)|logT < Cf(T)R(7)?(lo Tq(h**JrH—H +07).
)10 7 < CFEVR() Qo8 ) Ikl + | g ... L+ 1l Fry ey
Then the same argument as in Lemma 10.1 gives the estimates for a, w and c¢;. O

Proof of Lemma 10.3. Here Zp is the solution to (10.8). Assume to the contrary that there is some
T5 > 7 such that
az(Tz) = 0.
We follow the same computations as in the proof of Lemma 10.1 with h = 0 and ¢; = 1. By the
inequality (10.84) in the proof of Lemma 10.1
C 1

HRi?fHoo,T2 = (log 70)1=9 f(70)R(70)?
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which implies

C
|CL(7'O)| = (10g7’0)1 q
But by (10.7)
1 1
a(ro) = 7/ ToZo = 2 + O(2870)
8T Jr2 70

which contradicts (10.89).

7

(10.89)

O

Proof of Lemma 10.4. We let T}, be a sequence such that T, — oo as n — co. Let ¢ be the solution
to (10.1) with initial condition equal to 0. This solution exists but for the moment we don’t have any
control of its asymptotic behavior as 7 — co. Let ¢+, a(r) be the decomposition (10.6) of ¢. Let

Z%, az(1) be the decomposition (10.6) of Zp. Using Lemma 10.3 there is ¢, € R such that

a(Ty) + cnaz(T,) = 0.
Let us define
On =G+ cnZp,
and let
b = OF + %”Zo
be the decomposition (10.6) of ¢,. Then by Lemma 10.1 we have

on()] < CHOE L e, 7 € 0, )
on()] £ O ., 7 € fron T3]
ol < CHIELOT ..

Moreover, we also have the uniform estimate

f(NR(r)?> 1
(log7o)'=41+p

|n(p7)| < C 7172l

for 7 € [19,T,] from (10.87).

By using standard parabolic estimates, passing to a subsequence we may assume that ¢, — ¢; and
¢n, — ¢ locally uniformly in space-time, and that ¢ is a solution of (10.9) for some ¢; such that

f(70)R(10)?

<C
o] = (logmp)t—1

1] s

Moreover ¢ satisfies
f(OR(7)*> 1
(log 70) =7 1+

and writing the decomposition (10.6) as ¢ = ¢ + $Zo we have

[6(p,T)| < C p4||h||**

T T 2
)] < ¢RI ...
We also get
fon()] £ O e

where w is defined in (10.13).
The uniqueness of ¢; is a consequence of Lemma 10.2.

O

Proof of Proposition 10.1. We have already constructed ¢ and ¢; in Lemma 10.4, we have the unique-

ness of ¢ and the estimates for a and ¢; in Lemma 10.2.

We only need to prove the estimate for ¢ stated in (10.10). By the construction of ¢ in Lemma 10.4

and (10.70), (10.85) and (10.86), we get

|60 < CHePREP IR, > .

(10.90)
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We claim that from this inequality we have

1
W”h”**, T>’7—(].

The proof of this estimate is similar to that of (10.57) in Lemma 10.8.

Ulg™(y,7)| < Cf(7)R()

Indeed, we define
9 =Ug"

and obtain the equation
1

ot =5 (09 ()) ~vtar v (09()
+h—U(=A)"'h
+ Blgg] — U(=A)""Blgy ] + BlU¥[gy] — U(—=A) ' BlU¢[gq7]

+d (1)U + gB[ZO] - gU(—A)‘lB[ZO]. (10.91)

Here the notation t[gg] is the one introduced in the proof of Lemma 10.7 in (10.38).

To get an estimate for the solution we need an estimate for a’(7). Since g* = g+a and f]R2 Ugt =0
we have

But integrating (10.37) we find
0. [ sy =~ [ v-a) (V- @)y~ [ U(-2)hy
R2 R2 U R2

- /Rz U(=A)"1(Blgo + Ut[go]])dy,

which gives the expression

o) =g [ VA (V- 0V )ay+ - [ U-a)hay
‘o [, V(=87 (Blgo + Ub ool )dy.

We claim that
' (7)| < C(T)R(T)|| Al (10.92)

Indeed, we have
/ U(—A)*l(V(Uvg—O))dy:/ F0V~(UV9L)dy:7/ VU - Vgltdy
]R2 U RZ R2

= AUgt.
R2

Then, by (10.90)
1/2

_ gJo
[ueart (v wvin)m <c( [ utrv)
< CF(T)R(T) [ Al s
We also have, for the case of the operator (10.2),
/ U(=A)""(Blgo]) dy = / LoBlgo] = C(T)/ LoV - (ygo0)dy
R2 R2 R2
= —((7) |, Vo yUgdy

But by construction and (10.69), (10.85) and (10.86), we get

a7\ /2 ¢ 2
(/R2g U) < Wf(T)R(T) 17| (10.93)
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so, using (10.93)

/R 2 U(—A)_l(B[go])dy’ < Tlng ( /R )"

C 1 5
~ rlogT (logTo)l—qf(T)R(T) 1]«

< CFT)IA]
< CFT)R(T) A s

The last term is estimated similarly and we get (10.92).
Repeating the argument in of Lemma 10.7 we obtain from (10.90)

1

| I
lgd- (g, T)| < CL(T)R(T) ||| s A+ 12

An argument similar to Lemma 10.9 gives
1

o™ (p,7)| < Cf(T)R(T)W\

[l

We have an estimate for ¢ stronger than (10.10) under a stricter assumption on v.

Lemma 10.10. Let us assume that 1 < v < % Under the same assumption of Proposition 10.1 let
¢ = ¢t + 2Zy be the solution of (10.9). Then

W ly| < /T

|6 (v, 7)| < CR(T) F(7) 1] s
T yl > VT,

Proof. We write (10.91) as
drg9& = Agy — Vg - VTo +2Ugy + Blgg] + hu (10.94)

where
by = —U(=A)"{(V - (g4 VTy)

— U(=A)""'Blgy] + BU¥[gy 1] = U(=A) "' B[U%[gp ]

+d'(n)U + 5 BlZo] - 5U(=A) " BlZ)

+h—U(=A)""h.
Then, similarly to (10.58), we have

- 1
h Yy, T S Cf T R T h e
|ha(y, 7)] (T)R(T)[IA] T+ )"
Let
) _ p f(T)R(7) 1 fDR(T) o2
— _ A A ar
7 (1) = FOR@E)0(552) + 4 T A e
where —Aggs = ﬁ with ga(p) = 0 as p = oc0. If v < %, for appropriate positive constants ¢,

Ay, Ag, and O, the function C||h|..g" is supersolution to (10.94) in {(y,7)|T > 70, |y| > Ro}. We
deduce that
min(1, ﬁ)

196 (1, T < CF(T)R(T) |7

(T2
An argument similar to Lemma 10.9 gives
1 <
6% (p,7)| < CF(T)R(T) ]| § TP lyl < VT
nE W=V
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Proof of Proposition 8.1. By Proposition 10.1 there is ¢; such that the solution ¢ to (10.9) has the
properties stated in Proposition 10.1. We recall that by (10.87) ¢ satisfies

f(R(r)” 1
(logmo)1=21+p

We will construct a barrier to estimate ¢ for |y| > Ry, where Ry is a large constant. We consider
the equation (10.9) in R? \ Bg,(0) written in the form

0,6 = Ap — AVT Vo + 2U¢ + B[g] + h, (10.96)

l¢(p,7)| < C

(1. (10.95)

where

h=-VUV% + h.
Since ¥ = (—A)71¢, from (10.95) we get

f(R(r)? 1

<
Vile, 7l < C(logTO)lfq 1+p

3 17 lls

This gives
f(rR(r)? 1
(log7o)' =9 1+p
By (10.97) and the definition of the norm ||A.«,

- T)R(7)? 1 T

)| < R min (1. e
where we have used that o + ¢ < 2. Let g2 be defined by (10.60) and let

VU -Vy| <C

1P (10.97)

€/2

p.7) = IR Panto (522) + L PETE
+ AQL}E(T)QG_%.

Then for suitable positive constants §, A;, Ag, and C, the function C(log7y)? !||hll««¢@ is a super-
solution to (10.96) in {(y,7)|T > 70, |y| > Ro}. For this we need v < 2. Moreover |¢(p,T)| <
Co(p, 7)(log70)7 1 ||h]l«x at p = Ro by (10.95). By the maximum principle

[6(y, 7)| < Co(y,7)(log70)* {|Allws, [yl > Ro.

This gives the explicit bound

R(7)2 1/2 240+e
6(p.7)| < ¢ 2R min(1. =) ..
(log 7o) (1 + p*) p
O
We include here some results that will be useful later. Let
Zo = L|Z].
Lemma 10.11. The function Zo satisfies

A 1

1Zo(p)| < Cm (10.98)

and is supported on p < 27y.

Proof. Let 1) = (—A)"'Zy and g = % — 1. By (6.4) and using that Zg = Uzg, 2o defined in (9.2),
(ZO — Mz, U)X

Qzﬁ—lﬂ:ZOX—mZoX_W

where x(p) = Xo(\/%)' Note that Zy has mass zero and support in By /- It follows that ¢ has also

support contained in By s and then g has support contained in By . Therefore Zo = L[ZO] =
V - (UVg) has also support contained in By /m5-

To get an estimate for Zo let us write
= (=) (Zo— mz,U)x) = (~=A)""Zo + 9,
where
1= (=8)"(Zo(x = 1) = mz,Ux).
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Since Azy + Uz = 0 and lim,_, 20(p) = —2 we have (—A)7'1Z; = 29 + 2. So
Yv=2z0+2+1¢
Hence
g=72(x—1)—2—mzx — 1
and so
Zy = L|Zo) =V - (UVy)

=V -(UNVz(x—1)+ 20Vx —mz,Vx — Vir)). (10.99)
Using radial symmetry and mz, = O(%) we get
1
\Y <C—7—.
| 1bl(p)| — 7_0(1_|_p)
From this and (10.99) we get (10.98). O

Consider the initial value problem
d-¢1 = L[¢1] + B[] in R* x (19,00),
Liga] [91] (10.100)
$1(70) = Zo in R

Lemma 10.12. Let 0 <y <2. Let 1 <1y < %

1
folr) = -
and let R(7) be as in (10.11). Then the solution ¢1 of (10.100) satisfies
PORE? 1 giyee
,7)| <C min(1, — .
0 < O i ™ ()

Proof. A suitable modification in the proof of Proposition 10.1 gives the following result. Consider

;¢ = L[¢] + B[¢] in R? x (19,00),
2 ~[ ]. , ) (10.101)
#(-,t0) = ¢o + 12y in R,
Then there is C' > 0 such that for any 7y sufficiently large the following holds. Suppose that ¢q is
a radial function with zero mass in R?, supported in By ﬁ(()), and such that

Bol)| < M.

Then there exists ¢; such that the solution ¢ of (10.101) satisfies
1/2

HORE? 1 e
ool < M ()

Moreover c¢; is a linear function of ¢y and satisfies

1

<CM-—"-——.
jer] < (log1p)t—1

Let us apply this statement to ¢ = L[Zo], which is radial, with mass zero, support in By /7(0),
and satisfies

1 1
< =
lpo(p)| < oIt
by Lemma 10.11. Then there exists ¢; such that the solution ¢ to (10.101) with ¢ = L[Z,] satisfies
: Folr)R(r)? et
| <c mm(l, —) . 10.102
T O oo RGP (L 1) ! -

We claim that ¢; = 0. To prove this, we multiply (10.101) by |y|? and integrate on R? x (79, c0).
Let’s work with

Bl¢] = ((T)V - (y9).

The case of the operator (10.3) is similar. Then we get

/ oy, 7|y’ dy = —2¢(r /qﬁy, )|y|*dy,



82 J. DAVILA, M. DEL PINO, J. DOLBEAULT, M. MUSSO, AND J. WEI

because [, L[¢]|y|*dy = 0, see Remark 9.2. Integrating
[ dtwloay =2 [ by = e 506 [ Zuiwlay
because [po L[Zo]|y|?dy = 0. Using the asymptotic expansion of ¢ one gets
e 2156 00, as T — 00.
But the bound (10.102) implies that

lim [ é(y,7)|y|*dy = 0.
R2

T—00
This only can happen if ¢; = 0.
We deduce that ¢, defined in (10.100) coincides with ¢, and then (10.102) holds for ¢;. O

11. LINEAR ESTIMATE WITH SECOND MOMENT (RADIAL)

We will prove in this section Proposition 8.2 in the radial case h(p, 7). In this case y; = 0.

Proposition 11.1. Let 0 < 0 <1, € > 0 witho+e <2 and 1 < v < min(l1 + £,3 - ,2). Let

0 < q < 1. Then there is C such that for 19 large the following holds. Suppose that h satisfies
||h||l/7m,6+a,e < o0 and

/ h(y,m)dy =0, / h(y, 7)y|*dy = 0.
R2 R2
Then the solution ¢(y,T) of problem (8.9) satisfies

Iu,m,ﬁ-{-o,e-

||¢H1/—%,7n+%,4,2+o'+5 S C”h’
To describe the idea of the proof more easily let us consider for a moment the equation (8.9)

without B:

_ in 2 To, QO
{¢(8T¢L[¢]+h<y7t> R* x (r0,00) (11.1)

70) =0 inR?
The idea is to formally apply a suitable left inverse L™ of L to (11.1) (to be defined later on in
Lemma 11.1). If we call ® = L™'¢, H = L~1h, then we would like to solve
0,® = L[®]+ H(y,t) in R? x (79, 00)
®(-,m) =0 in R2
In order to get good properties of H, in this step we have already used that h satisfies the second
moment condition. At this point we would like to apply Proposition 10.1, which gives a decomposition

(11.2)

d =t + alr)
2
Note that &1 decays in time like 1/7”’1/2 and so ¢ = L® also decays in time like 1/7”’1/2, which is
better than the estimate provided by Proposition 8.1. It turns out that H decays in space like 1/p**
so we can’t apply directly Proposition 10.1 to (11.2). What we do is concentrate H by solving first

a nicer problem. We write ® = ®; + &5 where ®; is asked to solve
{ 0, ®1 = Lo[®1] + H(y,t) in R? x (79, 00)

Zy.

@1(',’7’0) =0 in Rz.

where

Lol¢] = V - (UV(%)) — Ap— V-V + Ud. (11.3)

Lemma 11.2 below deals with ®;. Then the problem for ®, becomes
0, @y = Lo[®2] + L[®1] — Lo[®;] in R? x (70, 00)
(-, 79) =0 in R?.

It turns out that the right hand side in this equation has better spatial decay and we can apply
Proposition 10.1.

In the next lemmas we give some preliminary results, and the proof of Proposition 11.1 is given at
the end of this section.
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We define the inverse of L that we use. For h : R? — R define ||h||; 640, as the smallest K such
that
K1 <vr
|h(y)| < T Tanese | =2
which depends on 7, treated as parameter here, o, and €.

Lemma 11.1. Let o,¢ > 0. Let h = h(p) be radial and satisfy ||h|+ 640, < 00 and

/ hdy :/ hly|?dy = 0.
R2 R2

Then there exists H radially symmetric such that L[H] = h in R? and satisfies
||H||T,4+U,e < CHhHT,Gﬂne (11~4)

Moreover, H defines a linear operator of h and satisfies

Hdy = 0. (11.5)
RQ

Proof. Write the equation L[H] = h as
V- (UVg)=h
where g = # — (=A)~"'H. We choose g as

o0 1 T
g(p) = —/ 7/ h(s)sdsdr.
P TU(T) 0
Using that [z, h = 0 we check that

1
T P SVT
19(p)| < Cllhllrg40e 4 (T8
;—U+5 p= \/?

Now we solve Liouville’s equation
A —Up=Ug inR? (p) =0 asp— oo,
Since [5, hly|*dy = 0 we check that

/ gZody = 0.
R2

Then we can use the variations of parameter formula, and get

1 _ < T
()] < Cllhllr g § T P SV
S P2 VT

Then define H = U(g + %), which is the desired solution, and note that it satisfies (11.4). Property
(11.5) follows from H = —At and the decay of 3. g

To take into account the operator B we define

Algl =y - Vo,
and compute
Ao L[®] — Lo A[®] = V- (®Uy) — 2L[®] — V- ((y - VU + 2U)V(-A)"1®). (11.6)
Indeed, write ¥ = (—A)~1®. Then
L®=A®-VIy -V -VU -VU +2U9. (11.7)
By direct computation
AAD = AAD — 2AD (11.8)
A(VDy-V®) =V(ALy) - V@ + VIy - V(AD) — 2VT, - VO (11.9)
A(VU -VV)=V(AU) - V¥ + VU - V(A¥) —2VU - V. (11.10)

But —A¥ = ® and therefore
—A(AV) + 2AT = AD.
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Applying (—A)~! gives
AU = (—A)"1(AD) + 2.
Substituting this into (11.10) we obtain
AVU - V) = V(AU) - V¥ + VU - V[(=A) " (A®) + 20] — 2VU - VI
=V(AU) - VU + VU - V[(-A) ! (AD)]. (11.11)
Combining (11.7), (11.8), (11.9), (11.11) we find that
AL® = LAD — 2L + 4UD — 2VU - VU — V(ATy) - VO — V(AU) - VU + 2A(U)d.

But
—2VU -V¥ —V(AU) - VU = -VZ, - V¥
= -V - (ZyVV¥) — Zy®,
so that
ALD = LA® — 203 +4UP — V(ALy) - VO + 2A(U)® — V - (ZoVVY) — ZD.
Using that

2AU)D — Zy® = —2UP + A(U)D
we then obtain
ALD = LA® — 20D +2UP — V(ATy) - VO + A(U)® — V- (Zo VYD)

Let’s consider the terms 2U® — V(Aly) - V® + A(U)®. Noting that V(ALg) = V(y - VI' + 2) = Vz
and that Zy = 2U + A(U), we can write

2UD — V(ATy) - VO +AU)D =2UP — Vzo- VO + AU)D
=Zp® — V- (Vz®) + Az ®.
But Azg+ Zy =0, so
ALD = LAD —2LP -V - (Vzy®) — V- (Z,VT).

We can again write Vzg = V(y - VI'g) and using the radial symmetry of the functions I'y, zo and the
notation p = |y

VZO = %8,)2’0 = %8p(p8p1“0) = yAFO = —yU.
Then
ALD = LAD — 20O + V - (yU®) — V - (Z,VD).

This proves (11.6).
Formula (11.6) leads us to consider the following equation for ® = L=1[¢]:

{@(-ij Z 5[@] + B[®] + C1(r)A[®] + H in R? x (7, 00) L)
where
Al@] = LTIV - (@Uy) = V- (ZoV(-A)'@)],
Zo(y) =2U(y) +y - V,U(y), and B has the same form as B:
Bl®] = Gi(r)y - VO + Go(n)®
with i (7), (o(7) satisfying
G(r)] < TlngT for all 7> 7. (11.13)

and (; satisfies the same restriction, that is, (10.20).

The next lemma allows us to reduce to an equation like (11.12) but with a right hand side with
more spatial decay.
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Lemma 11.2. Let 0 >0, e >0 and 1 <v <min(1+§,3—5). Let H(y,7) be radial in y and satisfy

H(,7)=0 (11.14)
R2

and |H||yma+0,e < 00. Then there exists Hy and ®1 such that
0, ® = L[®] + B[®]|+ H — Hy, inR? x (79,00)
@1(-,7‘0) =0 1n R2.

Moreover ®, and Hy are linear operators of H and satisfy

C arare PSVT
|®1(p,7)| < ﬁ”H”V,m,ﬁl-&-o,e (1-:.@%-2;2 (11.15)
7V (log T) Tap)iTote >N\
C %ﬂ p< T
|Hi(p,7)| < ﬁ”HHU,mA-&-U,e e ; (11.16)
T ( 0og 7_) (1+p)6+g+6 P 2 T.
/ P1dy=0 (11.17)
RQ
Hi(,7)=0. (11.18)

R2
Proof. Write the operator L as
L{g] = Lol¢] = V- (UV(-A)7"¢)
where Ly is defined in (11.3). Consider the problem
0 ®y = Lo[®1] + B[®1] + H, in R? x (79,00),
{@1(~,TO) =0 inR%

The idea is to formally apply Ly ! to this equation. Similarly to the proof of (11.6) we compute

Ao Ly[®] — Lo o A[®] = V - (®Uy) — 2Lo[®).

This leads us to consider the problem

aTCi)ZLo[&)]—‘rBl[(i)]-i-I:I, in R? x (7'0,00)7
N (11.19)
®(-,79) =0 in R?,
where H is a radial function satisfying
Lo[H|=H inR?
and 3 } )
Bi[®] = Gi(T)y - VO + Go(7)®
with
s ~ 1 s ~ - 1
_ _ 7 - _ 9%, (r) = ( ) 11.2
G =0 =0(1,.7) @) =8 200 =0( (11.20)
by (11.13).
We claim that there is a choice of H, which defines a linear operator of H, and satisfies
. - % < T
A+ (1 DIVA] < O H i { CET PEVT (11.21)
7 (log T) Trpzrore P2 VT

Indeed, the equation Lg[H] = H for radial functions has the form

(oo (7)) = o

We select the solution

H(p,7)=U(p) /OP %(r) /OT H(s,7)sdsdr.

Using (11.14) we get (11.21).
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Instead of (11.19) we consider

0Py = Ap2®; — VI - V&, + By [®1] + H, in R? x (75, 00), (11.22)
®y(-,70) =0 in R?, .
We then have the following estimate for ®;:
1
i Tl s yF
1] < ———— || Hlymatoc§ T (11.23)
T (log T) (1+p)2+0+6 p 2 \/’F

For the proof of this we construct a barrier. First we find a solution to
1
d1(p) = 0 as p— .

Ap2py — VI - Vi + =0 inR?

The equation may be integrated explicitly, noting that

1 4

and that the constants are in the kernel of this operator. We then have

° 1 " 1
w0 = [, |, s

and this implies
, C
lp1(p)| + (1+ p)|o7 (p)] < a+p°

Let
X(p,7) = m((s%ﬁ),

where yo € C®(R), xo(s) =1 for s <1 and xo(s) = 0 for s > 2. Define ¢; = W%X- We have

(8T — Ape2 + VI - V)¢1

1 C1
> _
= 7 (log 7)™ (1 +p)2+oX TV /2 1 (log 7)™ X{6\/T<p<25y/T}

for some C > 0, 6 > 0 (assuming 7y large). Now consider

) . 1 2
P2(p,7) = 77492 (log 7)™ (L + p//7)2Fo+e’ 9s(p,7) = TR log )

A computation, using (11.20), shows that
¢ = A1b1 + Ao + Azs
satisfies

Y s < T
(0r — Agz + VDo -V + By)p > ¢ { (I+p)2F p<ANT

(oo )M 7€/
7V (log 7) TFp)eFote p>/T

for some ¢ > 0. This step needs v — 1 < 5 and v + § < 3. By comparison, we find that ®, satisfies
(11.23).

The solution ®; of (11.22) satisfies
0, ®1 = Lo[®1] —U®, + By [®] + H
Applying Ly to this equation we find that
@y = Lo[P4]
satisfies
0-®) = L[®y] + B[®,] + H — H,

with

Hy ==V - (UVV) + Li[US] + GV - (91Uy), Wy = (=A) "'y (11.24)
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Let us verify that ®; and H; satisfy the conditions stated in (11.15), (11.16), (11.18). Indeed,
from standard parabolic estimates and (11.23) we have

- C e PESNVT
\V<I>1| S WHH”%mA—&-O‘,E { (1—"771)3»6/2 (1125)

T P VT

Differentiating in y;, j = 1,2 the equation (11.22) and using standard parabolic estimates, together
with (11.21), (11.25) we obtain

- c T PSVT
|D2(I)1| S W||H||U7Tﬂ74+o,e { (1—:1‘1)3»5/2

(11.26)
e P VT

The definition ®; = Lo[®] and the estimates (11.23), (11.25), (11.26) give the estimate (11.15).
We compute

H = -VU VU, +U®, + VU -V®, + UAD, + V- (91Uy).

Note that [p ®1(-,7) = 0. So, by a direct radial computation of ¥; = (=A)~'®; and (11.15) we
obtain

C R < VT
|V\Ill(pa T)| < D\ ||H |u,m,4+o’,e (1t_€}{—15t2 P f
T (log 7_) (1+p)3+”+6 p 2 \/’7’

This estimate and the ones already obtained for ®; (11.25), (11.26) and for ®; (11.15) yield

C T PSVT
|Hi(p,7)| < WHHHV,WLAHLE {(Hi)e% - ;
To(log T rpeese P2 VT
which is the desired estimate (11.16).
Finally, the zero mass condition (11.18) follows from the form of H; (11.24) and its decay. The
mass condition for ®; (11.17) follows from ®; = Ly[®;] and the decay of ®; (11.23) and (11.25). O

Next we would like to obtain a result similar to Proposition 10.1 for the problem (11.12). In order
to simplify this step, we will modify this equation by allowing a parameter in the initial condition.
This technical obstruction will be removed in the proof of Proposition 11.1. Thus we consider

{ 0:-® = L[®] + B[®] + (1 (7)A[®] + H in R? x (79, 00)
®(

~ (11.27)
'aTO) = CIZ07

where Zj is defined in (6.4).
The next result allows us to say that if in equation (11.27) the right hand side has fast decay, then
we can decompose the solution similarly as in Proposition 10.1. This result is an extension of that

proposition to an equation that has the extra operator A in it, which is treated as a perturbation.
Lemma 11.3. Let0<o<1l,e>0,0+e<2,1 <1/<min(1+§,3—%,%). Let 0 < g < 1. Then
there is C > 0 such that for 7y sufficiently large and for H radially symmetric with ||H ||y m at0,e < 00
and

/ H(y,7)dy=0 forallT > 79
RQ
the solution ® to (11.27) can be decomposed as ® = Py + @Zo with the estimates

1 1 T
Do(p, 7)| < C|H||lvm.a10.¢ min( ,—)
|®o(p, )| [ H 1], 440, T”—%(logT)er% (1+ [y))2 |yt

1
la(7)] < C||H||u,m,4+o,ew-

Moreover ®y and a are linear operators of H.

Proof of Lemma 11.3. We will treat the operator A as a perturbation and therefore consider
0,® = L[®] + B[®|+ H in R? x (75, 00)
o

) (11.28)
-, 70) = €1 2p.
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Let ®1, H; be the functions constructed in Lemma 11.2. Setting & = &1 +Po, (11.28) is equivalent
to the following equation for @,

0-®y = L[®y] + B[®y] + Hy, in R? x (75, 00), (11.20)

‘1)2(',7'0) = 0120 in RQ. .

We now apply Proposition 10.1 to (11.29). We have that ||H1l|/ym 640, < 00 by (11.16), H; is

radial and satisfies the zero mass condition (11.18). By Proposition 10.1 and Lemma 10.10 there
exists ¢; such that the solution @5 of (11.29) satisfies

q)Q(y?T) = (I)2l(ya T) + @ZO(yL

with the estimates

1
T s W SVT
|®5 (y,7)| gc—”}{l””vmﬁ“’»eq (L+Jy])? bl < V7 (11.30)
v~ 2 (log 7)™ "2 e ly| > V7,
y
H v,m g,€
ja(r)] < oI lemoroe (11.31)

7v=(log )™t

(We are ignoring the factor W in the estimate of a(7).) We also know that ¢; is a linear
function of H; and satisfies

|Cl| <C ||I{11||V7m76+076 )
m
~ (log mo) ™+t

Combining (11.15) and (11.30) we conclude that ®, the solution to (11.28), can be decomposed as
O =Py + ?Zo
where ®q(y, 7) = ®; + ®5 is radial and satisfies
[®oly, )l < Cfullf(lc}g})mz min( G e )
and a(7) satisfies, combining (11.16) and (11.31),
alr)] < O

T=1(log 7)™+
We summarize the previous finding as follows. Given H radial satisfying fR2 H(,7)=0for 7>
and || H||v,m 440, < 00, let us denote TO(H) = &g = ®; + 3 and T,(H) = a(7) so that the solution
@ of (11.28),is & = &+ 27, = Ty[H

HH||V,m,4+076'

T.[H]Zy. Then Ty, T, are linear and have the estimates

J+
HTO[H]”O < C||H||um4+a'e (1132)
HT [H}Ha < C||H||Vm4+a' € (1133)
where
oo =" sup 7% (log )™ |y, 7)|
e min (=l 7

lalla = sup 7~ (log 7)™ *|a(7)].

T>To
Moreover ¢ is a linear function of H and satisfies

[ |lv,m a+0.c

al <C .
fer] < “(log 7p)m+1

We will apply these estimates to treat problem (11.27), which can be written as the fixed point
problem

Do = To[H + L A[Po + aZy]]
= Ta[H + ClA[Cb() + aZo]]
By (11.32) and (11.33)
1 To[C1A[®o + aZo]][lo + |Ta[C1 A[®o + aZo]|la < C|C1A[®o + aZo]|lvm ato.e
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We claim that
[CLA[R0][lvm.atae < CTg 7 [ Dollo, (11.34)

for some 9 > 0, where C' is independent of g, and

HClA[aZO]HV,mA-HT,e < (1135)

{ogroya 1

Assume for the moment that (11.34), (11.35) hold. The we see that

® < =
1900+ ol < (o

(I1®ollo + llalla) + Cl[H |lv,m,a+0,e-
For 7y large this gives

[®ollo + [lalla < ClH|lv,m a+0,e:
which is the desired result.

For the proof of estimates (11.34), (11.35) we will need the following property. If ® satisfies
|®(y)| < W for some £ > 0 and [, ®dy = 0, then

V- [@Uy — ZoV¥]|y|l’dy =0, ¥ =(-A)"'d. (11.36)
R2
Indeed,
/ V- (@Uy)ly|*dy = —2/ Uyl dy = 2/ AVUy|*dy
R2 R2 R2
-2 [ vVl
R2
=-2 VV - yZydy
R2
and

/ V - (ZoVO)|y|*dy = —2/ ZoVU - ydy.
R2 R2

To prove (11.34), let us write ¥y = (—A)~1®y. Then
Aldo] = L7V - (2Uy — ZoV¥y)].
Using the definition of L=! given in Lemma 11.1 we have that
L7V - (@Uy) = V- (ZoV(-A)7'®)] = Ug + Uy

where

g(p,7)=— /OO [‘I’o(s,r)s - i?((j)) 8p\110(5,r)} ds, (11.37)

and v is the decaying solution to the Liouville equation
Ay —-Uyp =Ug.
From the definition ¥y = (—A)~'®y and using that fRz Pydy = 0 we have
1 oo
0,Yo(p,7) = ;/ Do (s,7)sds
P

which gives the estimate

1 log(%) p<\T
10,Yo(p, T)| < ClI®ollo g7z | . 7
T 2(logT)™t2 | Z p> AT

Then formula (11.37) gives

1
<C||®ollo—F"—%
90671 < Cllollo— {

1 T
<C||® ; _ min(l, f).
| 0||07"”§(10g7’)m+5’2 p?
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We note that by (11.36) we have [, Ugzody = 0. Then, 1) has the estimate

1 1 T
,7)| < C||® . _ min(l,—).
[v(p,7) | 0||07”_§(10g 7)m+3-2 (14 p)? P2

It follows that A[®g] = Ug + U1 satisfies

1 T
Al® <C|® in(1,— ).
A0l )| < CllRollo— ey min(L 57)

From this inequality we obtain (11.34).
The proof of (11.35) is similar. This time A[aZy] = Ugy + Uy where

a1(p,7) = —a(r) /p h [Zo(s)s _ ?((;; z{)(s)}d&

and 1, is the radial decaying solution to

—Apy — Uy = Ug;.

We then obtain that
1 1
(log7)m+a (1 + p)©
From this estimate we deduce (11.35). O

|AlaZo](p, T)| < C||a||a7y_1

Before proving Proposition 11.1 as stated, we obtain a version of it for the problem

{ 0-¢ = L[¢] + Blg] + h(y,7) in R? x (70, 00), (11.38)
¢(-,70) = 1 Zy in R, .
where

Zo = L|Z].
Lemma 11.4. Let0<o<1,e>0,0+e<2andl <v < min(1+§,3—%,%). Let0 < qg< 1. Then

there is C' such that for 1o large the following holds. Suppose that h is radially symmetric, satisfies
||h||u,m,6+o,e < oo and

/ h(y,T)dy = 0, / h(y,7)|yl?dy =0, 7> 0.
R2 R2

Then there exist ¢; € R and a solution ¢(y,T) of problem (11.38) that define linear operators of h
and satisfy

H¢||V—%7m+L2174)2+0'+6 < C||h||l’7m,6+0~,€'

1

|l <C————
ferl < Té’_l(logq-o)mﬂ

[1Allvm.6+0e-

Proof. Consider equation (11.27), where H is the function constructed in Lemma 11.1. By Lemma 11.3,

there is ¢; such that the solution ® of (11.27) can be decomposed as ® = &y + 'ITT)ZO, where ®¢ and
a satisfy the estimates stated in that proposition. In combination with (11.4) we find
1 1 T
1@0(p, 7)| < Clltlum,ssoc - min o) (11.39)
| 7 Tlogry 1 T 7 TP
1
< C h v,m O, € 1/1 - Nt
‘a’(T>| = || ” ,m,6+0, Tyil(IOgT)m+q
er] € O] (11.40)
c To—1/1 N1 v,m o,€" .
N log moymert IO

Moreover ®q, a, ¢, are linear operators of H.
From standard parabolic estimates and (11.39) we obtain

! ! T ) (11.41)

V(I) , T SChum o,€ 1 qmin( Y115
N T e R e T BT
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a

We consider the equation for &g = & — 27 ) Zy, obtained from (11.27), and differentiate with respect
to y;, § = 1, 2. Using standard parabolic estimates, together with (11.39), (11.41), and the bound for
a'(7) in (10.92), we obtain

|D2<I)0(p7 7—)‘ < CHhHMm’GJrJ,e

1 1 T
T — min ,—= . 11.42
772 (logT)m "2 <(1+ ly1)* Iyl6> (1142)

Let us define ¢ = L[®]. Then ¢ satisfies (11.38) because L[Zy] = 0 and thanks to (11.39), (11.41),
(11.42) we find

1 1 T
) < Cllillym Ue—qmin(i,—). 11.43
lp(p, 7)| Al ,m,6+a, T”_%(logT)m+5 1+ [yD* |y[® ( )
In the rest of the proof we show that
1 1 1 p<\/T
s T S C h v,m O,€ 1 q 1+o €
60,1 < Cllllm st ot (5 {T;glm o

For this we consider the equation (11.38) written in the form

0:¢0 = A¢ — VT4V +2U¢ + Blg] + h, (11.44)
where
h=—-VUVY + h.
Using (11.43) and the radial formula for 1) = (—A)~1¢, we get

1 1 <
V(0 7| < Ol e T P EVT
T a(logT)™ T 5 P2 VT

This estimate and the definition of the norm ||A|,m 610, give

ity Pl < C— ] wT  WsvT
e T R : [yl > V7.

T3+0/2(%)6+0+e

We now construct a barrier very similar to the proof of Proposition 8.1

- 1 5 p 1 1
P — LAY
¢(p:7) 1Tv—é(1og7)m+%92(p)xo(ﬁ>+ 24 E (log 7)™+ E (1 + pfy/T)0r e
1 o2
TN/

e
T/F3 (log 7)™+ 4

where g9 is the function (10.60). We consider (11.44) in { (y,7) | 7 > 70, |y| > Ro } where Ry > 0 is a

large constant. For suitable constants Ay, Aa, Ag, C the function C||h||y.m,640,P is a supersolution.
This computation requires v < %

Moreover ¢(y,7) < C||h|lv.m.6+0.c?(y,T) at |y| = Ro. The initial conditions also compare well.
Indeed, by Lemma 10.11 and (11.40)

/ 1 11
16(p,70)| = e1]Zo(p)| < C

———||h v,m,6+o,e T . g
TOV_l(]OgT())m"'lH || ,m,6+0, T01+p6

and this is supported on p < 24/7,, so
6(p,70)| < Cllhllvm 6400y, 7).
By the maximum principle
|6y, 7)| < Coy, T)lIhllvmo+oe |yl > Ro.

This finishes the proof. 0
Proof of Proposition 11.1. Let ¢, ¢1 be the solution to (11.38) constructed in Lemma 11.4. Let ¢
be the solution to (10.100). By Lemma 10.12 ¢; satisfies
T R(1)? 1

P R(m)” (L4 p)
where 1 < vy < . Then the solution ¢ to (8.9) that we construct is given by

¢=0p—cior.

[91(p,7)| < C

1/2 240+e
T ) , (11.45)

min(l,
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To get the desired estimate on ¢ we need to estimate |c1¢1]. Let f be given by (10.12). By (11.40)
and (11.45)

1A

|Cl¢1<p> 7—)‘ <C

v,m,6+0,€

1 7'6’071]%(7)2 1 . 71/2\ 240+
v—1 m+1 ng 2 1 4 mln(la )
75 (log 1) T R(10)? (1+p%) P

<c 1 R(r) 1 , (1 71/2)2+a+6”h

— logmoR(70) Fr)R(T (1+p%) R . 640.c
1 71/2 2404

< T i 1, — h v,m o,€

< CHORE g min(L-) oo

provided % + v — vy < 0. But 1y can be taken close to %, so we obtain the result by assuming v < %

in addition to the other constraints needed in Lemma 11.4, namely 1 < v < min(14 §,3 - ¢, %) O

12. LINEAR ESTIMATE WITH SECOND MOMENT (GENERAL)

A convenient property of problem (8.3) is that it can be split into Fourier modes. If we decompose

27
) = ha(ll. )+ ). hop) = 5 [ hpe a0 (12.1)
1 2m )
o(u:7) = do(lyl. ) +é1(v.7). - dolp.7) = 5 | $(pe’?, 7)do, (12:2)

then ¢ solves (8.3) if and only if ¢; solves (8.3) where h is replaced with h;, for ¢ = 0,1. If h = hy we
say that h has no radial mode.

For the proof Proposition 8.2 in the general case we will consider in a first step the equation (8.3)
but without the operator B, namely,
0r¢ = L[¢] + h, in R? x (19,00), (123
¢(-,m0) =0 in R?, '
for functions with no radial mode, as explained at the beginning of Section 11. Later on, we will
consider equation (8.3) for functions with no radial mode, where we will treat the operator B[¢] as a
perturbation term that can be assimilated to the right hand side.

The main step in the proof is the following estimate, valid when the functions involved have no
radial mode.

Proposition 12.1. Let 0 <o <1,0<e< 2,0 < v <min(l+ g,% — %), m € R. Then there is a
C > 0 such that for any 7o sufficiently large the following holds. Suppose that h(y,T) has no radial
mode and satisfies ||h

v,m,5+0,€ < 00,
/ h(y,T)y;dy =0 forallT>19, j=1,2. (12.4)
R2

Then the solution ¢(y,T) of (12.3) satisfies

1
|¢(y 7_)‘ < C||h||y,m75+o,e (1+1|fp3‘+a’» |y| < \ﬁ (12.5)
m(ogT)™ | il > VT

Proof. Since h(y,7) has no radial mode, all functions involved in the proof have also this property.
We use the notation from §9.2, particular g = % —(=A)"'¢, gt = g — a with a(7) € R such that

/ 9> (y,7)Udy = 0.
R2
But
/ g(y, ) Udy =0
]RZ

because g has no radial mode, so that a(r) = 0, g* = g, ¢+ = ¢. Then the proof proceeds as the
proof of Proposition 10.1 with some simplifications, since there is no need to estimate a.

We write (12.3) as
0,6 =V -(UVgt)+h, inR?x (rp,00).
We multiply this equation by g and integrate in R2.
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Let R > 0 be a large fixed constant and let

fr) = =t

— mv(logT)™’
Let Tb > 19 and let

[élloc,, = sup_ [p(7)].
TE€[10,T2]

The following estimates are valid for 7 € [rg, T3]. As in the proof of Proposition 10.1 we get

|0 <R (10 mseoe+ | 5] ) (126)

0= ([, 7070)

Similarly as in Lemma 10.8, from (12.6) we get

w 1
7)< Wllomssoe+ |55 ) s
Ugty Dl < ORIl ssoe + || 75 o) e

where

(12.7)

The proof is presented below. We use this to estimate

o= ([, 7)< CrOR= (Wmsroc+ | 77

which implies

< CR|hllymsioe+CR H .
< ORIl pime + CR |25

We deduce that
< CR™7||h]

v,m,5+0,€

f s 42
by ChOOSiIlg R as a large COHSlaIl( .

Now we let T5 — 0o and find
w(r) < Cf(r)R[|A| T > 1. (12.8)

v,m,5+0,€e’

The inequalities that follow hold for 7 > 7.
Combining (12.8) with (12.6) we obtain

/ U < CHOP R sioer 7> 70,
RQ

and using (12.7) we also get

1
U s <C R||h v,m €77 | | \34o "
I g(y T)l = f(T) H || ym,5+0, (1+|y|)3+0'
Let ¢ = (—=A)71¢ so that ¢ = Ug + Urp. Using Lemma 9.1 and the previous estimate we obtain
R 1
[y, T+ A+ W)IVY(y, 7)< C e (1| PRCRE (12.9)

7 (log )™ (1 + |yl)
We consider the equation (12.3) in R? \ Bg(0) written in the form
07 =A¢p — VI'\Veo+2U¢ + h,

where -
h=—-VUV + h.
By (12.9) and the definition of the norm |||y m,5+0,es

1 1 1 lyl < VT
)5+U

77/ < CJh v,m,5+0,€ €
‘ (va)‘ — H || ym,5+0, TV(IOgT)m (1_|_|y T/2

-yl >

Here we are using € < 2. Using barriers as in the proof of Lemma 10.8 we get

1 1 1 lyl < VT
Flte/2
T (log 7)™ (1 + |y|)3+" T ly| > ﬁ

‘¢(ya T)| S C||h||u,m,5+0,e

(For this we need v < 14§, v+ ¢ < %) This proves (12.5).
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Proof of (12.7). We define

90 =Ug,
which satisfies the equation
0-g90 = Ago —Vgo-VFo+2Ugo+iL (12.10)
where
h=Uv+h—-U(-A)"'h
and

v = (=A)"H(V - (90VT0)).

As in the proof of Lemma 10.7 we obtain

R
go(y, 7)< C K, 12.11
90 TS O g (L Ty —
where
N—
v,m,5+0,€ fR oo,Tg.
Applying parabolic estimates to (12.10) and a scaling argument we find
RK
Vao(y,7)| < C . 12.12
‘ gO(y T)‘ = 7_,/<10g7_)m(1 ¥ |y|)3 ( )
Using (12.11), (12.12) and gy = gU we get that
RK
VU -Vg+gAU| < C .
A R T AT
We observe that for i = 1,2
V(UVgq)y; dy = 0. (12.13)
R2
Indeed,
V(UVgq)y; dy = —/ UVge; = / gVUe;.
R2 R2 R2
But from g = % — 1, = (—=A)"1¢ we have
—AY = Uy =Ug = go.
Multiplying this equation by z; = VIge; defined in (9.2) and integrating we get
/ gUVFoei = O7
R2
which is the desired claim (12.13). We note that
—~Av=VU- -Vg+gAU =V -(gVU) inR?
v(y) = 0 as |y| — oc.
Now we can apply Remark 9.1 and deduce that for any ¢ € (0,1) there is C such that
RK
lv(y,7)| < C (12.14)

7 (log 7)™ (1 + [y)>~

We next estimate h. From Remark 9.1 and the assumptions on A, in particular (12.4), we have
[
7 (log 7)™ (1 + [y|)*~"’

[(=A)"'h)(y, 1) < C (12.15)

for any ¢ € (0,1). Also from (12.11) we have
R
K.
7 (logT)™ (1 + [yl)°
Therefore, from (12.15), (12.11), (12.14) we find that for any ¢ > 0

~ RK 1
hiy, )| <C
Ml O og e LT+ e

[Ugo(y,7)| < C

T6/2

1
- _i_i .
pe ) (1+ 1y

min(l7
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We now use a barrier as in the proof of Lemma 10.8, in a domain of the form (R? \ Bg,) x (79, 0)
where Ry is a large constant. We let §(y) be the radial decaying solution to —Agg = W and

_ 1 . Y ) 1 1 _lw?
e () o e
70:7) = ot 0 (57) + O g gy [ v +
where
,u:min(5+0+e 6 — ).
We assumethat v < ’_%_57 v<l1l+5,v+72 < 2, and 0 + ¢ < 1. Since ¥ > 0 is arbitrary we
only need v < 5—3,v<l+g5ando <l Then for an appropriate choice of Cy, C5, the function
RKg(y,7) is a supersolutlon By the maximum principle
l90(y, T)| < CRKG(y, 7).
This proves the desired estimate (12.7).
O
Next we consider equation (8.3), which we recall,
87—(;5:[/(25 +h+ ,u W1 inRQX To, OO
[¢] + Z j N (70, 00) (12.16)

é(-,70) =0 in R2
For ¢ with no radial mode we can write
Ay
BlY) = (G006 + G0y To)xo( 7)-
Corollary 12.1. Let 0 <o <1,0<e<2,1< 1/<m1n(1+2,2 —Z), m € R. Then there is a
C > 0 such that for any T suﬁiczently large the following holds. Suppose that h(y,T) has no radial

mode and satisfies ||h||y,m 5+0,e < 00. Then there is a solution ¢(y,T), p; of (12.16) that is a linear
operator of h and satisfies

H¢||V,m,3+o,2+e >~ (1217)

i(r) = = [ sy + (o) (12.18)

C
log T

|ﬂ][h’]| S TU+1+U( )m+1 ||h||V7m75+0',€'

Proof. Using Proposition 12.1, there is a linear operator 7' so that given h with ||h]|y.m 540, < 00,
with no radial mode, and satisfying the condition (12.4) associates the solution ¢ of (12.3). Then the
solution ¢ of (12.16) can be written as

o="T[Blo +h+2uy W),
where p; is chosen so that

/RQ(BW] + h)y;dy + p;(t) =0, V7> 7. (12.19)

The estimate (12.5) implies

2
18l 3oz < IBI6] + hllvmssonc + sup 7*(log 7)™ Z Iy (v

T>To

Using standard parabolic estimates we also get

NyIVellv.msto2+e < IBIS] + hllvmsto.c + sup 7 “(log 7)™ Z |1 (7
Jj=1

To estimate p1; note that multiplying (12.16) by y; and integrating we get that

/ qSy]dy = 0, V71 > 70
R2
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Therefore

C
B(¢)dy| < v,m,34+0,24€
B < o llmasas

and from the definition (12.19)

2
sup 7/ (log 7)™ > _ [11;(1)| < CllAllvim s toe +

T>T0

C

W H¢||u,m,3+o,2+e-

j=1

We also have that

B v,m (TES
IBI6l st < o

o] + [yl Vel

v,m,3+0,2+¢€-
Then for 7y large we deduce the estimate (12.17).
Finally, from (12.19) we get (12.18) with fi; a linear operator of h satisfying

C
[ B0 < et l6llmaioase
C

| [h]] =

— vt (log T)mtl 1Rllu im0

We are now in a position to prove Proposition 8.2 in the general case.

Proof of Proposition 8.2. We decompose h = hg + hy and ¢ = ¢g + ¢1 as in (12.1), (12.2). We apply

Proposition 11.1 to get
H¢O||IJ—%7TR+%,4,2+O’+E < CHh”lam,G-&-mE'
To estimate ¢; we use Corollary 12.1. First we select 0 < 9 < % Then note that

171

v,m,6—9,0+e+10 S C||h|

v,m,6+o,e:
Then Corollary 12.1 gives a solution ¢; of (12.16) such that
91llv.m 3+5.2+¢ < Cllhallvm5+5.6
We take ¢ =1 — 19 and € = e+ 0 + 9 and get
61

|u,m,4719,2+o'+6+19 < C”hl ||V,m,6719,0'+6+19

and
i) == [ by + 116

because hq is radial, with

bl < g M loma-o.rtcso
But

o1l -1 mrga210te < NP1llvm+sa-9240+ct0
and hence

16l s g a210pe < Clbllmsoe.

To apply Corollary 12.1 weneed 1 <v <1+ §and v <1+ g. Given 1 <v <min(1+ §,3 - ¢, %)

we can select 9 € (0, 3) such that v < 1+ g and then proceed. This concludes the proof.

O
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13. THE OUTER PROBLEM

We consider the linear outer problem:

{ 019 = L°[¢f] +§(x,t), in R? x (ty,00) "
@°(-,t0) =0, in R
where
ol e z — (1) _ (z—¢)
Lolp] = Dpp = Vy [Fo( ) )} Vg = Amo—kélm v

For g : R? x (tg,00) — R we consider the norm ||g|/.«, defined as the least K such that for all
(z,t) € R? x (to,00)

1 1 = x —&(t)

| <K i T A
lg(z,t)] < (t —to+ A)e(logt)s 1+ [P’ Vi—tg+ A

where A > 0 is a constant.
We also define the norm ||¢||., as the least K such that
1 1 x—¢

Yz, ) + A+ |z — &) Vep® (2, 1) < K 67
67, )| + (At = DIV (o)) < K fr— o T e © = e
for all (z,t) € R? x (tg, 00).
We assume that the parameters a, b satisfy the constraints
b
l<a<4, 2<b<6, a<1+§. (13.2)
There is no restriction on f3.
We recall from (4.1) that we are assuming that
: C
MO < ————, t>to, 13.3
MO < o > (13.3)
and
EOI< 5 t>to, (13.4)

where 0 < 0 < %

Proposition 13.1. Assume that a,b satisfy (13.2), ﬁ is sufficiently large, and A, € satisfy (13.3),

(13.4). Then there is a constant C' so that for ty sufficiently large and for ||g||sx,0 < 00 there exists a
solution ¢° = Ty [g] of (13.1), which defines a linear operator of g and satisfies

%110 < Cllgllsso-
Proposition 6.3 in Section 6 follows from Proposition 13.1 with A = ¢g.

Lemma 13.1. Let 2 < § < 6 and h(r) satisfy
A2 \B=2

|h(r)] < GINETP = G (13.5)
where X > 0. Then there is a unique bounded radial function o(r) satisfying
L°lp]+h=0 inR%
Moreover ¢ satisfies
C \—2
lo(r)[ + A+ )|0rp(r)] < =C (13.6)

(L4+r/N)P=2 7 (r+\)P-2

Proof. The equation for ¢ is given by

1 4r
arr (7 N9 |, 9o
wlr) + r + A2 4 r2

r

We change variables p = § and let ¢(r) = ¢(5). Then we need to solve

_ 1 4p I
— _— h =
8pp90+<p+1+p2)8pg0+ (p)=0, p>0,

)(%gp(?") +h(r)=0, r>0.

where

h(p) = A*h(Ap).
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By (13.5)

The bounded solution is given by
o0 1 U_
5(p) = ————— [ h(s)s(1+ s%)*dsdv.
20)= [ S [ M+ R s

By direct computation we get

C
D ) < ——
[B(p)| + (14 p)|0p(p)| < Lk
and this implies (13.6).

O

Proof of Proposition 13.1. To find a pointwise estimate for the solution ¢° we construct a barrier.
Using polar coordinates z — £(t) = re’®, L° can be written as:

. 1 dr 1
L [90] = arr%o + (; + 2+ T2>ar90 + 7*7286090.
First we construct a function ¢ (r,t) such that
1 4r ~ 1 1
0= — (- g ) O] 2 :
[ ¢ ro A2+ I (t—to+ A)2(logt)? (1 47/t —to + AP
Let
Y R N I
(t —to+ A)e=I(logt) (1+ t_£J+A)b/2
Choosing a large constant C1, 17 satisfies
) 1 1
Oy — Opptpr — —0ptpy > , T >0, t > tg,
T e vy Vv e s A °
where ¢ > 0. Here we require a < 4 and a < 1+ %, which are part of the conditions (13.2). Then
1 4r 5 A\?
O — 0O — (—+ 5—= )0 |1 = |0 — Opp — — O 4————0,
{t (r+)\2+r2) I {t T Y1t r(r? + A\2) 1
1 1 A2
Z C T -4 |8r'l/}1|
(t—to—“A)a(lOgt)ﬁ (1+\/ﬁ)b 7"(’/‘2—|—A2)
(13.7)
But
r b Cl 2
ar’(/Jl = — — e It tA)
(t—to+ A)2(logt)P L (1+ t_;2+,4)b/2“ 2 }
and so
A2 A 1 1
5 [0 < C : (13.8)
r(r2+2)"" 2 A2 (t—to + A)2(logt)? (1 + L )b/2H
We note that for r </t — tg + A we have
A A? 1 A 1
A |9 < <C . (13.9
r(r2 4+ A?) 9ripn] < 2+ X2 (t—to+ A)2(logt)? = ~ (r2 +A2)2 (t — to + A)o1(logt)? (13.9)
where we have used that A > \(¢)2.
Let 15(r; A) be the bounded solution of
1 4r ~ A2
- 8rr (7 7)6r:| = 75 12 2 07
[ * r+)\2+r2 V2 (r2 +A2)2 e
given by Lemma 13.1. Then 1), can be written as
~ (T
Va(r; A) = 1o (X)’
for a function v, satisfying
- - c
[W2(p) + (L + p) |5 (p)] < (13.10)

14 p?
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Let
1 -
Velrt) = G T Ay T feg gy V2T A
Then, using (13.10) and (13.3), we get
1 4r
|:at - arr - (; + /\2 + TQ)aT]’lZ)Q
1 A2 a—1 B\ - (r2 + \2)2
- (E—to+A) logt)? (12 4 4)? - (t "ot A tlogt)%(r) z2

r(r?+?)°
-3 ()5
S 1 A2 [ B r2 4+ X2 }
T (t—to+ A (logt)? (r2 + A2)2 t—to+ Al
Therefore there is 6 > 0 (fixed independent of ¢y) such that for all ¢y large,

4r )8]¢ >1 1 A2
224 r2) T = 9 (=t + A)a~1(logt)? (r2 + A2)2

[0~ 0,0 - (% + for r < 20v2.  (13.11)

Let xo € C*°(R) be such that xo(s) =1if s <1 and xo(s) =0 if s > 2 and define

xs(r:t) = Xo (Wﬁ)

We consider

§ =y + Mibaxs,

where M > 0 is a constant to be fixed later. We compute, using (13.7)

1 4r ~ 1 A2
[& - 67»7- — (; + )\2 + 7’2) jlw (t _ t() + A)a(logt)ﬁ(]_ + ﬁ)b - 47.(7,.2 —+ )\2) |87¢1|

+ Mys [at Oy — (% + /\247—:7"2)&} G+ R(r0),  (13.12)

| \/

where
R = M[l/fzatxzs — 20,120, X5 — 1212( X+ 5rX5 tie e )\2 3rX5)]-

We have, by (13.10),
1
(t —to+ A)*ti(logt)s’

where C5 is independent of M (although it depends on d), and is supported on v/t —tg+ A <r <
204/t — tg + A.

We claim that there is M > 0 and ¢ > 0 so that for all ¢, sufficiently large

|R(r, )| < CaMN?

(13.13)

1 4r ~ 1
[8,5 ~ O = (; + A2+ Tz)ar}w = ct“(logt)ﬁ(l +7/Vt)b (18.14)

for all » > 0, t > tg.
Indeed, if r < §v/t —tg + A, then from (13.12), (13.7), (13.11) and (13.9) we get

1 4r 7 1
O =0 — =+ 5330 z¢ 0
[ 2 (,, A2+T2> J¥ (t —to+ A)*(logt)?(1 + —===)
-C A .
(2 + 22) (t — to + A)a=1(log )P
1 4r =
L e eI LA
1
> c r )
(t—to + A)*(log )P (1 + Z=F—)"

b

(13.15)

if M > C. Here we fix M = C.
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If 63/F—fo + A <r < 25\F—to + A, then by (13.12), (13.7), (13.9) and (13.13) we get
1

L, 4 )ar]u? > ! -~ CoMN?

[at =0 = (? HPCERE (t —to+ A)2(log )P (1 + =—)
o 1 (i _ 6'22\4)\2 )
C (t—to+ A)*(logt)P\30  t—ty+ A

(t—to + A)e+1(logt)P

By taking W‘?})Z large, we get
1 4r ~
O — (= —— >
{& Orr (7“ * A2 +r2)ar}w -
for Ot —tg + A <r <26/t —tg+ A.
If r > 25yt —tog + A, by (13.12) and (13.8)

1

C
4 , 13.16

1 4r 1
0 _87“7”_ - 3o | o |Yr >
[ ! (7’ p e 7"2)8 Jin “U—to+ Ao (log )P (1 + ==
_C A2 1 1
72+ X2 (t —to + A)*(logt)? (1 + t,[;A)b/Q“
1 A2
> —o— 2~
~ (t—to+ A)*(logt)B(1 4+ Jﬁ)b [C t—to+ A
c 1
> = 13.17
- 2(t—t0+A)a(10gt)’8(1+ﬁ)b ( )
if Wﬁ)z is sufficiently large.
Combining (13.15), (13.16) and (13.17) we deduce the estimate (13.14).
Let
P(z,t) = P(lz - &L 1).
Then by (13.14)
Vil = 1 4 oo a@=8-¢
0= 161 [ - (L o]0t
1 . -
> c T - 5 5r¢
(t—to+ A)*(logt)P (1 + =—==)" el
But
1 1 1 1 1
aﬂli S C T + C N Xs 7’7t
O Gy A 2o 17 (1 o1+ =t + Ay W(log )P A (1 /07 @7
1 1 r
C ‘ .
+ §(t — to + A)*=1/2(log t)? (1 +r/X)? Xo (5\/75 —to+ A)
Using (13.4) we see that if ¢ is sufficiently large,
c 1
O — L° > - :
( t )[w] - Q(t—t()‘f'A)a(lOgt)’B(l"‘ﬁ)b
O

A direct consequence of the proof of Proposition 13.1 (using the same barriers) is the following,
for the initial value problem

(13.18)

Ord° = L°[¢°], in R? x (tg,00)
P°(-,to) = @3, in R”.

Consider the norm

48]« p =inf K such that

o K
[95(z)] < T a0 g

O+ =54
where b € (2,6), A > 0.
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Proposition 13.2. Assume that a,b satisfy (13.2), ﬁ is sufficiently large, and A, € satisfy (13.3),

(13.4). Then there is a constant C so that for ty sufficiently large and for ||¢§|«p, < 0o there exists a
solution ¢° of (13.18), which defines a linear operator of ¢§ and satisfies

16°]lx.0 < CA*~* (log t0)? || 55| -
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