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GLOBAL EXISTENCE AND AGGREGATION OF CHEMOTAXIS-FLUID
SYSTEMS IN DIMENSION TWO

FANZE KONG, CHEN-CHIH LAI, AND JUNCHENG WEI

ABSTRACT. To describe the cellular self-aggregation phenomenon, some strongly coupled PDEs
named as Patlak—Keller-Segel (PKS) systems were proposed in 1970s. Since PKS systems possess
relatively simple structures but admit rich dynamics, plenty of scholars have studied them and ob-
tained many significant results. However, the cells or bacteria in general direct their movement in
liquid. As a consequence, it seems more realistic to consider the influence of ambient fluid flow on
the chemotactic mechanism. Motivated by this, we consider the chemotaxis-fluid model proposed
by He et al. (SIAM J. Math. Anal., Vol. 53, No. 3, 2021) in the two-dimensional bounded domain.
It is well-known that the PKS system admits the critical mass phenomenon in 2D and for the whole
space R?, He et al. also showed there exists the same phenomenon in the chemotaxis-fluid system.
In this paper, we first study the global well-posedness of two-dimensional chemotaxis-fluid model
in the bounded domain and prove the solution exists globally with the subcritical mass. Then
concerning the critical mass case, we construct the boundary spot steady states rigorously via the
inner-outer gluing method. While studying the concentration phenomenon with the critical mass,
we develop the global W2P theory of the stationary Stokes operator in 2D.

KEYWORDS: Chemotaxis-fluid Models, Global Existence, Spot Localized Patterns; Global Reg-
ularity.
1. INTRODUCTION

In this paper, we consider the following Patlak—Keller—Segel-Navier—Stokes (PKS-NS) system in
2D:

%—?=An—V-(nVc)—u-Vn, zeN,t>0,
g—f=Ac—c+n, reQ,t>0,

= +tu-Vu+ = Au + ggn Ve, cu=0, ze€t>0,

g‘; \% VP =A \% \% 0 Q 0 (1.1)
o _ % _ g, z e d,t>0, '
u-v=0 (Su-v),=0, x €00, t>0,

n,c,u)l- = (Nng, Cp, Ug T €

(. ¢, w)(-0) = (n, o, o), Q,

where 2 — R? is a bounded domain with the smooth boundary 09, v denotes the unit outer
normal vector, Su = %(Vu-ﬁ- Vu') represents the strain tensor and the subscript 7 is the tangential
component. Here n and c are the cellular density and the chemical concentration; u and P denote
the fluid velocity field and the pressure, respectively. Moreover, (ng,co, ug) is a given initial data
with V - up = 0 for the compatibility consideration. In particular, the boundary condition in ()3
is the Navier boundary condition with zero friction. (1)) was proposed by Siming He et al. [29]
to describe the cellular self-aggregation phenomenon in a moving fluid. The physical explanation
of the forcing term ggnVe is that the cells are driven by the fluid to move without acceleration, in
which €p measures the strength of coupling between fluid and the evolution of cells.

System (LI)) can be naturally treated as the coupling of Patlak—Keller—Segel (PKS) models and
incompressible Navier-Stokes (NS) equations. Indeed, with the absence of the fluid advection term
u - Vn, the n-equation and c-equation in (1)) consist of the minimal Keller—Segel model, which
serves as a paradigm to describe the travelling band of E. coli [43, [44]. Of concern the variants and
applications of minimal Keller—Segel model, we refer the readers to well-written surveys [36] [63]. It
is because the Keller—Segel models have relatively simple structures but admit rich dynamics that
plenty of researchers have extensively studied them in 1D and higher dimensions over the past few
decades [20] 39 [49] [72]. Focusing on the global well-posedness of systems, Osaki et al. [62, [54]
proved that the solution in 1D is uniformly bounded in time. It is worthy mentioning that for the
2D case, one of the most famous phenomena is so-called “chemotactic collapse”. To be more precise,
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there exists some critical threshold M, defined by

87, Q = R? or By with the initial data being radial,
My = . (1.2)
47, otherwise

such that when the initial cellular mass satisfies
M := J u(z,0)dzr < My,
Q

the solution to (L)) is bounded uniformly in time ¢; otherwise if M > M, the time-dependent
system (LI)) admits the blow-up solutions [57} 5] [33, 56, 8, 24, [66, [70]. In particular, the authors
detected the finite blow-up phenomenon by studying the evolution of the cellular second moment
11, 17 22 33 34, 35]. Focusing on the critical case M = Mp, on one hand, the solution to (L))
is shown to exist globally [9] [68]; on the other hand, the infinite time blow-up solution with the
finite second moment was constructed [10, [19]. For the incompressible Navier-Stokes equation, it is
well-known that Leray [48] and Hopf [37] established the existence of global weak solutions to the
time-dependent incompressible Naiver-Stokes equation. There are also many results on the study
of global regularity in Navier-Stokes equations [7, 26l 25 27, [4T], [42] [61]. For the global regularity
of time-dependent and stationary Naiver-Stokes equations with Navier-type boundary conditions in
3D, we refer the readers to [3, [4, 2, 6, [5]. Focusing on the PKS-NS system in the whole space R?,
He et al. [29] have shown the local and global existence of solutions in the Sobolev space H®, s > 2
when the initial cellular mass is strictly less than 8. Moreover, Lai et al. [47] have proved the global
existence of the free-energy solution when the initial mass is equal to 87. We are motivated by the
results to consider the global-wellposedness of PKS-NS system (L)) in the 2D bounded domain.

To further understand the dynamics of (ILI)), it is natural to consider the corresponding stationary
problem of ([I1I), which is

0=An—V-(nVe) —u-Vn, x € €,
0=Ac—c+mn, x €,
u-Vu+ VP =Au+¢pnVe, V-u=0, ze€, (1.3)
2_223_5:07 x € 010,
u-v=0 (Su-v)r=0, x € 0.

With the absence of ambient fluid flow in ([I3]), it is well-known that (I3) admits the concentration
phenomenon [7I]. Indeed, of concern steady state problem ([3]) with the velocity fluid field u
being identically zero, Lin, Ni and Takagi [49] 58| [59] firstly initiated the analytical approach to
construct the large amplitude solution. Motivated by this seminal work, many researchers studied
the non-constant steady states possessing striking structures to Patlak—Keller—Segel models [30, [3T],
20, 5T, 12]. For example, Wei and Delpino [20] constructed the multi-spike equilibrium to minimal
Keller—Segel models in 2D via “localized energy method”. Kang et al. [39] formally showed the
existence of spikes in the asymptotically limit of domain size L » 1. Moreover, its local stability
was studied by Chen et al. [I4]. It is worthy mentioning that Wang and Xu [72] adopted an
innovative method arising from bifurcation techniques to directly tackle the steady state problem
without heavily using the structure of equations. Whereas, concerning system ([.3]), there is few
result involving the construction of non-constant solution with excited structures. Motivated by
this, we shall construct the non-constant solutions, especially boundary and interior spikes, to the
stationary PKS-NS system (L3).

In summary, our two main aims of this paper are to show the existence of global-in-time solution
to (LI) when the initial mass M < M, and study the concentration phenomenon with the critical
mass. For achieving the former one, the main vehicle is the following decreasing free energy functional

possessed by (LI)):
J(n,c,u) := J

Q
where the first term is the entropy of the cellular density n and the second term represents the
kinetic energy of the velocity field u. Here and below, for the consideration of local and global well-
posedness, without loss of generality, we assume g = 1. In fact, we prove the free energy (L) is
dissipative along the dynamics, which is

1 1 1
nlogndr + = [ |u? da:ff nedx + —J Adr+ = | |Ve|*dz, (1.4)
2 Ja Q 2 Ja 2 Jo
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Lemma 1.1. Let (n,c,u) be the solution of (I1), then we have the energy functional J given by
(I4) satisfies the following energy dissipation:

%j(t) =— JQ n|V(logn — ¢)|? dx — J

Q

Oc 9
(E d:v—J |Vul|* dx. (1.5)

Proof. Test (II)); against logn — ¢, then we integrate the n-equation by parts to get
J ne(logn — ¢)dx =J V- [nV(ogn — ¢)](logn —¢) — J u-Vn(logn —¢)dx
Q Q Q

=— J n|V(logn — ¢)|? d + J
Q

u~anognda:+J u- Vnedz
Q

Q
=7JQ n|V(logn7c)|2d:1:+Jﬂu~Vncdx, (1.6)
where we use the integration by parts to obtain from V - u = 0 that
J;) u-Vnlogndr = JQ u-V[n(logn —1)]dz = 0.
In addition, one has from the c-equation that

d d
J nt(logn — ¢)de =— nlognd:v— —f ncdw—i—f nee dx

_4 n(logn — ¢) dI+J (¢t — Ac+ c)ep dx
_ n(lognfc)d:quJ( 1) d:z:+l£<f |vc|2+c2) dz (1.7)
di o 2 di : '

where ¢; = ac . Combining (L) and (IT), we have

1d
pr Qn(lognfc)daﬁLJQ( ct)? dx+§a( |Ve|? + ¢*) dz
= ff n|V(logn — ¢)|* dx +J u- Vnedz. (1.8)
Q Q

We multiply (LI)s by u and integrate it by parts to find from the divergence-free that
2dtf |u|2d3:—f [Au+nVe—VP — (u-V)u]dx
——J |Vu|2dx—f u-Vncdw—f u-VPdz. (1.9)
Q Q Q
Upon summing (L&) and (L), we obtain

(logn—c)d:v—i—— J |Vc|2+c dw—i—— J lu|? dz

4
dt 2 dt 2 dt

=— f (ct)? dw — f n|V(logn — ¢)|* dx + f u- Vnedz,
Q Q Q
which proves this lemma. O

With the help of Lemma [Tl we plan to follow the idea shown in [56] to prove system (L))
admits the global-in-time solution under the subcritical mass case. To this end, we shall develop
the semi-group theory of the non-stationary Stokes operator in 2D and establish the local-in-time
existence of (I1)).

For the latter aim, we will employ the inner-outer gluing method to construct the boundary spot
steady state of (II)) with the critical mass. The key observation is that the forcing term nVe in
(I3 can be written as a stress tensor. Indeed, recall that chemical concentration c¢ satisfies

Ac—c+n=0, T €,
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then we have
2 2
nVec=—AcVec+ cVe = —V-(Vc@Vc)—l—V(@) +V(%>. (1.10)

It follows from (LI0) that stationary problem (3] can be written as

0=An—-V-(nVc)—u-Vn, x€eQ,
0=Ac—c+mn, x €,
w-Vu+ VP = Au— eV (Ve@Ve) + 6V (I55) +5V(5), vViu=0, ze0 (111
S_Z:g_lc/:ov x € 010,
u-v=0, (Su-v)r=0, x € 0.

One formally sees that potentials

2w (55 +av (3)

can be absorbed into the pressure term, and we shall focus on the equivalent form (LII)) then discuss
the existence of spots in 2D. We wish to mention that if the fluid velocity field satisfies u = 0 in
(CII) and (n,c) is the solution to the stationary minimal Keller—Segel model, ¢ should satisfies the
compatibility condition

) +aie(5)

for the scalar function P. In addition, (I3]) has the approximate scaling invariance property. More
precisely, if (n,c,u, P)(z) is a solution to ([L3), then (ny,cx,ur, Py)(z) = (\2n,c, A, \2P)(\z)
satisfies the following system:

V 2
VP = £,V - (Ve® Ve) +aov<| d

0=An—V-(nVe)—u-Vn, xe,,

0= Ac— Nc+n, z € Qy,
u-Vu+ VP = Au+¢pnVe, €y,
2_223_5:07 IE@Q)\,
u-v=0 (Su-v),=0, x € 0Ny,

where Q) := Q/A. The scaling invariance property causes the fully coupling issue of the linearized
system associated with (ILIT]), which forces us to impose the smallness assumption on g and the
detailed discussion will be shown in Section Moreover, due to the presence of velocity field u
in (LII) and Navier-type boundary conditions, we have to develop the WP theory of the Stokes
operator in 2D and the argument will be exhibited in Section It is worthy mentioning the
interesting results involving the estimates of the solution to the two-dimensional non-stationary
Stokes equation in [50]. In detail, assuming the domain Q as the half space Ri, they perform the
Laplace transform to establish the explicit formula of the time-dependent solution and give the
pointwise estimate. They also stated one can apply the same extension as what we used in Section[7]
and focus on the corresponding whole space R? problem to derive the desired estimate by studying
the properties of Oseen tensor. Whereas, since the domain in our model setting is bounded with the
arbitrary smooth boundary, we are not able to employ the similar approaches directly and construct
the solution of the stationary Stokes system. In fact, the strategy what we shall follow is that we
first decompose the solution as the inner and outer parts, then take the same method as in [50]
to construct the inner solution and develop the same pointwise decay estimate, finally show the
existence of the outer solution by formulating the global W?2P? estimate. In particular, we have to
borrow the idea exhibited in [2] to give the delicate estimate near the boundary.

Now, we state the main results of this paper. Concerning the global regularity of the two-
dimensional Stokes operator, we have
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Theorem 1.2. Consider the following abstract problem:
—Au+VP=f ze,
divua = 7, x €,
u-v=yg, x € 09,
2[S(u)v], = hr, €09,

where Q < R? is a bounded domain with C*' boundary 0. Let f € LP(Q), n € WIP(Q), g €

Wz_%’p((?Q), and h € Wl_%’p(aﬂ) satisfy the compatibility conditions @7) and @2I3). Then for

1 <p < oo, system ([[LI2) has a unique solution (u, P) € (W2P(Q) x WHP(Q))/N (). Further, the

solution satisfies the following estimate:

(1.12)

Iz @)@ + 1P lwre@r
<C (|f|LP(Q) + 0w + HQHszg,p(m) + |h|wli*”(an)) ;

where C > 0 is a constant, T and N are given by @I1) and [2I2)), respectively.

Focusing on the global-wellposedness of (ILl), we perform the energy estimate and apply the
Moser-Alikakos iteration to obtain the following results:

Theorem 1.3. Assume that initial data (ng,co, ug) € C°(Q) x WH*(Q) x D(Az) with D(As) defined
by (B-_-QD; ng, o = ng'é 0 and

M := | nodz < Moy, (1.13)
Q

where My is defined by (I2). Then (I1) admits the classical global-in-time solution (n,c,u).

For Theorem [[.3] we give some remarks as follows:
Remark 1.4.

We have proved the global existence of the solution to (1) with the subcritical mass. For the
critical mass case, our conjecture is that the solution also exists globally and the idea of proof may
follow from [B5] directly. We believe at least for the parabolic-elliptic counterpart of (I1]), their
approach is durable with the slight modification.

Considering the concentration phenomenon, we assume €y « 1 is sufficiently small but fixed, then
construct the solution with the striking structure to (ILII]) via the inner-outer gluing method, which
are summarized as

Theorem 1.5. There exists a sufficiently small eg > 0 such that for all sufficiently small ¢ > 0,
(L11) admits a family of solutions (ne,ce,ue) satisfying the following forms:

1 L= 55
ne(x) = 5_2W< 5 ) + o(1); (1.14)
ce(z) = [Tpee(z) + Ho(2,&) — 4loge]| + o(1), (1.15)
where W and L', . ¢ are defined by
8p 8p x—&

9 . |.9\9°? r §e = ].Og y Y = 3
(12 + Jy?)?" ~F (u? +[y[?)? €
H¢ 1is the correction term of c., which satisfies

—AH® + H* = —T,¢., z€,
oi” _ _Mpee € 0Q.

v ov

In particular, as e — 0, & converges to the critical point of the following energy functional:

T (§) = 4mH (&, §), (1.16)
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where the critical point of T, is assumed to be non-degenerate and H denotes the reqular part of the
following Neumann Green’s function:

{ AG—-G=—-0(xz—-¢), xe€qQ,

‘;—§=O, T € 09

w is determined by
log 8112 = 4T H (&, €).

We give the following remarks to explain our results shown in Theorem
Remark 1.6.

o Qur subsequent proof of Theorem implies that €9 > 0 can be chosen as a universal
constant independent of € given in the conditions and the domain size |Q|.

e Due to the approzimate scaling invariance property of system (I11l), the linearized inner
problem is fully coupled whenever €y > 0 is sufficiently small. In fact, the inner problem is
given by

hi+u-V¢=A¢—-V . (¢VD) =V - (WV),
hy = Ay — 9 + ¢,
hs + VP = Au— oV - (VI ® V),

where hy, ha and hg are generic error terms.
o The smallness of eg is needed to guarantee the fixed point argument and the detailed discus-
sion is shown in Section [8.

The theoretical tool what we mainly use to show Theorem is the inner-outer gluing method,
which is powerful and has been successfully applied on plenty of elliptic and parabolic problems
[21, B8]. We observe that system (LTI can be naturally understood as the coupling of classical
Keller—Segel models with transport effect and incompressible Navier-Stokes equations. When ¢q is
sufficiently small, the construction of ansatz is in spirit of the pattern formation within the following
minimal Keller-Segel models:

0=An—-V-(nVe), z€Q,

0=Ac—c+n, x €, (1.17)
= 2 -, z € 0.

In fact, Del Pino and Wei [20] showed the existence of spots to (LIT) rigorously via the Lyapunov-
Schmidt reduction method. Davila et al. [I9] further constructed the infinite time blow-up solution
to the non-stationary counterpart of (LI7) in the whole space R%. We find that the vital step in the
proof of Theorem is the formation of inner and outer linear theories, which crucially relies on
the arguments shown in [45]. In [45], the authors borrowed the ideas from [20, [19] and developed
the linear theory successfully applied on the minimal Keller—Segel models with logistic growth.

Although [20], [19] and [45] provide many useful ideas that can be applied on the proof of Theorem
[A the fully coupling between transported Keller—Segel models and incompressible Navier-Stokes
equations forces us to develop new ingredients in the inner-outer gluing procedure, which are shown
as follows:

e Similarly as in [46], the transport term u - Vn in ([CII)); cannot be regarded as a small
perturbation term in the linearized inner problem. Indeed, after scaling with inner variable

Yy = ””;5, the linearized operator in the inner region becomes
Ly [®] — u[®] - V,W = h,
{ _AT - o, (1.18)

where Ly [®] is given by (£I4). The order of u[®] - V,W is precisely the same as the
leading order term in error h. To tackle with this issue, we adjust €9 > 0 in the forcing term
g0V - (Ve® Ve) of (LII)s such that the smallness of u[®] is provided. As a consequence,
the transport term u -V, W can be truly realized as a perturbation term in the linearized

inner problem (I8])).
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e To guarantee the construction of boundary spots, we impose Navier boundary conditions
with zero friction rather than no-slip boundary conditions. Motivated by this, we have to
develop the new WP theory subject to Navier boundary conditions in 2D.

e Of concern the boundary spot, the location is assumed to be at the boundary rather than
in the interior of domain. As a consequence, we have to flatten the boundary and explore
its influence on the error. Moreover, we must develop the new inner linear theory restricted
in the half space Ri.

e Unlike the parabolic stokes operator, the stationary counterpart has non-trivial kernels and
some solvability conditions are needed to be imposed such that the existence and unique-
ness of the solution are provided. Thus, it is necessary to solve the corresponding reduced
problems.

The paper is organized as follows. In Section B} we formulate the W?2P theory of the Stokes
operator subject to Navier boundary conditions. The section[3lis devoted to the global well-posedness
of (L)) with the subcritical mass. Section@H8 focus on the construction of the boundary spot steady
state with the mass exactly being My given by (L2)). In detail, Section [l shows the idea of the choice
of ansatz and the error computations. Section [l is devoted to the effect of boundary on the error
estimates. Next, we establish the inner and outer linear theories modes by modes in Section
Section [ focuses on the model problem of Stokes operator. In Section 8 we construct the boundary
spot via the inner-outer gluing method and fixed point argument.

Throughout the paper, we shall use the symbol “<” to denote “< C” for a positive constant
C independent of z and t. Here C might be different from line to line. For convenience, we shall
replace location &, by £ without confusing readers in Section EH8

2. W?2P THEORY FOR STOKES SYSTEM

In this section, we consider the abstract problem ([I2)), which is the generalized inhomogeneous
Stokes system of non-solenoidal velocity field with nontrivial right hand side in the slip-Naiver
boundary condition. Note that ¢, := (¢ - 7)T so that we may assume the right hand side of
(LI2)4 to be parallel to 7. Before discussing the W?2? theory and prove Theorem [[2], we give some
preliminary notations and results.

2.1. Preliminaries.
Define

H?(div,Q) = {ve LP(Q) : divv e LP()}, HP(curl, ) = {veLP(Q):curlve LP(Q)},

equipped with the norms

. 1/p 1/p
HVHHP(div,Q) = (HVHiP(Q) + [div VH?F(Q)) ; HVHHT’(curl,Q) = (H"Hip(n) + HCUFIVH]ZP(Q))

Thanks to [4], the spaces D(£?) is dense in HP(div, ) and HP(curl, ). Let the closures of D(Q2) in
H?(div, Q) and HP(curl, ) be Hj(div, ) and HJ(curl, ), respectively. Then we have the charac-
terization

HY (div, ) = {v e HP(div,Q), v-v =0 on 0Q},
H{ (curl, Q) = {v e HP(curl, ), v-v =0 on 0Q}.
Define the space
XP(Q) = HP(div, Q) n HP(curl, )
with the norm
P ) P /P
HVHXP(Q) = (HVHLP(Q) + HleVHLP(Q) + HCHYIVHLP(Q)) ‘
Let
XE@Q)={veXP:v-vr=00n00}, XK (Q) ={veXP:v-7=0o0nd0},
X3(2) = X7 () n X ().
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Recall the trace spaces, for £ > 0 and p € (1, ),
Wk*%’p(aQ) = tr(WFP(Q)) = {v e W 12(0Q) : 3w e W"?(Q) such that tr(w) = v},

and H2 (0Q) := W1~2:2(5Q).
For p € (1,0), denote its dual exponent by p', i.e. 1/p+ 1/p’ = 1. Let [Hf (div, )]’ be the dual
space of Hg, (div, Q) with the pairing
Giap =G '>[Hg’(div,9)]/ng’(div,Q)’ (2.1)
where we use the parameter p, instead of p’, on the left hand side for notational convenience. Let
/ 1 ’
Wfi’p(ﬁﬂ) denote the dual space of Wz (09) = W'¥7 (9Q) with the pairing
D00 7= b oy ew B 00y (2.2)
Define
VP(Q) = {ve W'?(Q) :divv=0inQ, v-v =0 on 0Q}
equipped with the W1?(Q)-norm and
EP(Q) = {v e WIP(Q) : Av e [HE (div, Q)]'} ,
with the norm
lesioy = ¥ + 1A% ey sy -

By the same argument as in the proof of [65, Lemma 4.2.1], D(Q) is dense in EP(12).
Introduce the kernel spaces

KL (Q) ={vel?(Q):divv=curlv=0in Q and v-v = 0 on dQ},
KR (Q)={vel?(Q):divv=curlv=0in Qand v-7 =0 on 0Q}.
Now we state the key identity in our analysis on the boundary.
Lemma 2.1. For any v e W2P(Q) with v -v = 0 on dQ, we have
2[S(v)v]r = (curl v)T — 25v,  on 09,
where K is the curvature on 0S).

Proof. The lemma follows directly from the proof of [16, Lemma 2.1] using the density of the space
D(Q) in {ve W?P(Q) : v-v =0 on 0Q}. O

Next, we establish the Green identity of Stokes system.

2.2. Green formulas.
We first derive two useful Green formulas in the following two lemmas.

Lemma 2.2. Let Q < R? be a bounded domain with C*' boundary Q) and 1 < p < 0. The linear

mapping v : v — curlv|aq defined on D(Q) can be extended to a linear and continuous mapping
v EP(Q) > WP (09).
Moreover, we have the Green formula: For any v € EP(Q), ¢ € VP (Q),
—(Av, ), = J (curlv)(curl ) dz — {(curl V)T, )50 (2.3)
Q

where (-, )q , and (-, -)sq ,, are the pairings defined in 2.1) and 2.2).

Proof. By the density argument as in the proof of [65, Corollary 4.2.2] we may assume v € D(Q)

and ¢ € W12 (Q) n X’}/ (©). By the integration by parts formula and using dive = 0 in Q and
@ v =0 on 09, we gets

J (curlv)(curlp)de = — | Av-pdx +J (curl v)(par1 — p112)dS, @ = (p1,92), Vv = (v1,19).
Q Q o0
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Since for 7 := (71, 72) = (=2, 1), one has wov; — Y13 = PaTo + Y111 = @ - 7. Thus, we duduce

f (curlv)(curlp)dx = — | Av-pdx + f (curlv)T - ¢ dS.
Q Q o0

Rearranging the above equation, the lemma is proved. O

Lemma 2.3. Let Q < R? be a bounded domain with C*' boundary Q0 and 1 < p < 0. The linear

mapping © : v — [S(v)V]r|eq defined on D(Q) can be extended to a linear and continuous mapping

1

0 :EP(Q) > W »P(0Q).
Moreover, we have the Green formula: For any v € EP(Q), ¢ € VF'(Q),

AV, =2 [ 83 :5(p) do — 2SO @ (2.4

where (-, )q , and (-, +)sq ,, are the pairings defined in 2.1) and 2.2).
Proof. The lemma follows straightforwardly from the proof of [2, Lemma 2.4] using the identity
Av = 2divS(v) — V(divv).
O

It follows from above that one can extend Lemma 21l to a statement in W5 (09). Indeed, we
have the following corollary.

Corollary 2.4. For any v € EP(Q) with v-v =0 on 09, we have
2[S(v)v]r = (curlv)T — 26V, in Wfi’p(aQ),

where k is the curvature on 0N).

2.3. An auxiliary problem.
In view of Corollary 2.4 we consider the following auxiliary problem:

—Au+VP=f inQ, (2.5a)
divu =17 in , (2.5b)
u-v=g ondQ, (2.5¢)

curlu=H on 09Q. (2.5d)

According to Lemma 2] the auxiliary problem (21) is equivalent to the generalized Stokes system
(CI2) when H = h + 2x(u - T), where k represents the curvature on 5.

We establish the existence and uniqueness of weak solution for the auxiliary problem (23] in the
following theorem.

Theorem 2.5. Let Q < R? be a bounded domain with C1'' boundary 02 and 1 < p < 00. Suppose
f e [HY (div,Q)]', ne LP(Q), g € Wl_%’p(aﬂ), He W_%’p(aﬂ) satisfy the following compatibility
conditions: ,

for any ¢ € K4 (Q),

<fa 90>Q7p + <HT7 @>{)Q)p = 07 (26)

J ndx =J gdS. (2.7)
Q oQ

Then the auziliary problem ([23) has a unique solution (u, P) € WhP(Q) x (LP(2)/R). Moreover,
the solution satisfies the estimate

by + 1Plancarm = (flg oy * 11lven * 190,00 gy 1Ly )
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Proof. Decompose u = z + V6, where

—Az+Vr=f+Vp in Q, (2.8a)
divz =0 in ©, (2.8b)
z-v =0 on 0f, (2.8¢)
curlz = H on 09, (2.8d)
and
Af =1 in Q, (2.9a)
VO -v =g on 0. (2.9b)

By the W?2P theory of Neumann problem of Poisson’s equation, there exists a unique solution
0 e W2P(Q)/R of [Z9) with

e (P T I

For the system (28], by Lemma [2.2] every solution of ([2.8) also solves

J (curl z)(curl ) da = {f, cp>97p +{HT, go>m)p, for all p € Vp’(Q).
Q

The rest of the proof follows from the same argument in the proof of [65, Theorem 4.2.4] (see also
[3, Theorem 4.4]). O

2.4. Weak solutions of the generalized Stokes system ([12).
We consider the inhomogeneous Stokes system of non-solenoidal velocity field with nontrivial
right hand side in the slip-Naiver boundary condition (LIZ)).

The case of n = 0 and ¢ = 0. The following proposition provides a weak formulation of the
generalized Stokes system (IL.I2)) for the case of n = 0 and g = 0.

Proposition 2.6. Suppose n = 0 and g = 0. Let f € [Hgl(div,Q)]’ and h € Wﬁi’p(ﬁQ). Then
the problem of finding a distributional solution (u, P) € WYP(Q) x LP(Q) of the generalized Stokes
system ([[LI2) is equivalent to the problem of finding u € VP(Q) such that

2 L S(u) : () dz = (£, ), + (hT,@)aq,, for all ¢ € V7' (Q). (2.10)

Proof. Tt is a direct consequence of the Green formula (24) in Lemma 23] via the same proof of [2]
Proposition 3.1]. O

We now introduce the kernel 7 (2). Define
TP(Q) ={ve W"P(Q):S(v)=0inQ, and v-v =0 on dQ}. (2.11)
The following result characterizes the kernel 77(Q).
Lemma 2.7.

(@) - span{B}, B = cx' + b, for some constant ¢ # 0 and b, if Q is a disk,
{0}, otherwise,

L

where x— := (—x2,x1). In particular, TP (Q) does not depend on p so that we can denote it by T ().

Proof. For v = (v1,v2) € TP(Q), one has d1v1 = 0, dave = 0, and 01v2 = —0av;. Integrating the
first two equations, we deduce vy (z1,22) = c1(x2) and va(x1,22) = c2(x1). It then follows from
01vy = —0qvy that d1ca(x1) = —02¢1(x2) = ¢ for some constant c¢. Thus, ¢1(z2) = cxy + be and
ca(x1) = —caa + by for some constants by, by. Therefore,

v(x) = x4+ b, xt= (—xa,21),

for some constant scalar ¢ and vector b = (by, bs).
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Suppose ¢ # 0. By the change of variables of translation (y1, y2) = ¥ (x) := (z1+(b2/c), xa—(b1/c))
we have that v(y) = ¢(—y2,%1). Since the normal vector is invariant under translation, we have
v = vy where vy is the outward normal of Q, = ¥(Q). Then v(x) - v = 0 on J9Q implies that
0=v(y) vy = c(—y2(vy)1 + y1(vy)2) on 0Qy. This means that vy is parallel to (y1,y2), implying
that €y, hence € is a disk.

If ¢ = 0, then v = b. But since v(x) - v = 0 on 0, we must have b = 0. This completes the
proof of the lemma. O

We also denote

NEQ) :=T(Q) xR={(v,c): ve T(Q), ce R}. (2.12)

Remark 2.8. Since divB =0 and 8-v =0 on dQ, B € V¥ (Q). By choosing ¢ = 3 in ZI0), we
deduce the following compatibility condition:

& Bq, +<hT,B)sq, =0 (2.13)
for solving the generalized Stokes system (L12)) when n =0 and g = 0.
The following lemma is stated in [69] (2.6)]) for general dimension without proof.

Lemma 2.9 (Poincaré-Morrey inequality). Let Q be a Lipschitz bounded domain in R%. Then, we
have

inf |u+ vHig(Q) <C (|S(u)|igm) + f lu-v|? dS) , for allue HY(Q), (2.14)
veT (Q) o0

where the constant C' depends only on Q. In particular, the seminorm [S(u)|yz2q) @s a norm equiv-
alent to [ulg (o) fue H'(Q), u-v =0 on dQ, and {u-Bdx = 0.

Proof. The proof of the inequality (ZI4]) is similar to that of [2 (3.7)] with a slightly modification
to the two-dimensional case.
Suppose on the contrary of the lemma. There exists a sequence {uy}x in H!(Q) such that

e — PugfZaoy > b (|S<uk>|iz<m # [ e ds) ,

where P is the orthogonal projection from L?(2) onto 7(€2). We may assume |uy — ’PllkH%ﬂ(Q) =1
So

1
z> HS(uk)Hiz(Q) +J lug -v|?dS, k=1,2,.... (2.15)
o

Set wr = up — Puy. Then, wy is bounded in H*(2) by the Korn inequality. In particular, wy
is bounded in WHP(Q) for all 1 < p < 2. By Sobolev embedding W1P(Q) — LI(Q) for all
1 <q < 2p/(2—p). Choosing 1 < p < 2 and ¢ = 2, we get H'(Q) — L2(Q). So, by Rellich-
Kondrachov compactness theorem, wy, converges, up to a subsequence, to w in L?(2) and weakly
in HY(Q). Thus, it follows by taking the limit in (2I5) that IS(W)llr2) = 0 and w-v = 0
on 0, w € T(). On the other hand, w = limj_(ur — Pug) € T(Q)*, where T(Q)* is the
orthogonal complement of 7(Q) in L?(2). So, we must have w = 0. This contradicts with the
relation |Wg |2y = 1 for all k and completes the proof of the inequality (ZI4). The equivalence of
the norms follows from the Korn’s second inequality: HVquP(Q) <C \|S(u)\|i2(m if ue H'(Q2) such
that §, u- Bdz = 0. This proves the lemma. O

We are now in a position of prove the existence and uniqueness of weak solution to the generalized
Stokes system (LI2]) for n = 0, g = 0. We first consider the Hilbert case, p = 2.

Theorem 2.10 (n = 0, g = 0, p = 2). Suppose 1 = 0 and g = 0. Let f € [H3(div,Q)] and
h e H-2(0Q) satisfy the compatibility condition ZI3) with p = 2. Then, the generalized Stokes
system (LI2) has a unique solution (u, P) € (H(Q)x L%(Q))/N(Q). Moreover, we have the estimate

s gy ) + 1P zzaym < (1Bl gerzcaany + 123 o) (2.16)
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Proof. The proof is exactly the same as that of [2] Theorem 3.4] using the Poincaré-Morrey inequality
@I4) and the weak formulation in Proposition via an application of Lax-Milgram theorem on
the bilinear form a on H*(£2) defined by

a(u, p) = JQ S(u) : S(y) dz.

Next, we extend the result in Theorem [2.10] to the case p = 2 in the following theorem.

Theorem 2.11 (n =0, g =0, p > 2). Supposen =0, g =0, and 2 < p < w. Let f € [H5(div, Q)]
and h € W_%’p(aﬂ) satisfy the compatibility condition [2I3)). Then, the generalized Stokes system
@CI2) has a unique solution (u, P) € (WLHP(Q) x LP(Q))/N(Q). Moreover, we have the following

estimate:
b rien + Pl = (IFlg oy *+ 1y oy ) (27)

Proof. The proof is similar to that of [2 Theorem 3.7] with a slightly modification to the two-
dimensional case.
Note that for p > 2

[HE (div, Q)] — [H3(div,2)]' and W~ 5P(0Q) — H3(39). (2.18)

By Theorem for the case of p = 2, the generalized Stokes system ([LI2]), when n = 0 and g = 0,
has a unique solution (u,7) € (H(Q2) x L?(Q))/AN(Q). Applying Corollary 24l we have

(curlu)T = 2[S(u)v]+ + 2ku, = (h + 2k(u- 7)) on H_%((?Q), Kk is the curvature on 052,

because u € E2(Q) and u-v|sq = 0. Thus, (u,7) is the solution to the auxiliary problem (2.5]) with
H = h+2k(u- 7). It then follows from the Green formula (Z3)) in Lemma 22 that (u, ) solves the
following variational problem: For all ¢ € V2(),

L(curl u)(curlp) dz = {f, @) 5 + ((h +26(u- T))T,¢) 40 o

In particular
&, 9)q.0 + (h+26u-T)T,0)a0, =0, forall pe K7(Q).
More generally, for p > 2 and ¢ € K’% (Q),
(f, (P>Q7p +{(h + 2k(u-7))T, 80>aQ,p =0,

which verifies the compatibility condition (Z8) because u-7 € Hz (052) — Wﬁi’p(aﬂ) for2<p<ow
so that H = h+2k(u-7) € W_%’p((?Q). The compatibility condition ([2.7]) is also satisfied since = 0
and g = 0. By Theorem 2.5, we have (u, P) € WHP(Q) x (LP(Q)/R), 2 < p < 00, by uniqueness, and

lalwie@) + 1Pl e@)r < <|f|[H(T)’/(div)gl)]/ + P+ 2k(u- T)|W;’T’((m))

< ’
- <|f|[H5 (@iv.)) T ”h”w*%’p(am o |u|W%’p<5Q>> '

We now establish the estimate (2.I7). For p = 2, Theorem [2.11] is proved in Theorem 2101 For
2 < p < o, by Morrey’s inequality WP (Q) — C%7(Q) — L4(Q2), v = 1 — (2/p), for all q € [1,0].
Hence, we have

(2.19)

<
Hu”w’%*’(aﬂ) < Hu”wl’%’q(aﬂ) , for all g €[1,0].

Choosing ¢ = 2 and applying trace theorem, we deduce

g5y = (g oy < e
S €l ez @iv.op + HhHH%(m) (2.20)
< HfHHg’/(div,Q)]’ + Hhwaé’p(aﬂ) )
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where we used the estimate ([2.16]) (for p = 2) in the second last inequality and the embedding (28]
in the last inequality. The desired estimate ([2I7)) follows by using ([220) in ([2I9). This proves
Theorem 2111 O

The case of general n and g.

Corollary 2.12. For 2 < p < o, let f € [HY (div,Q)]', n € LP(Q), g € W' #2(Q), and h €

P(0) satisfy the compatibility conditions (220) and (ZI3). Then, the generalized Stokes system
(m) has a unique solution (u, P) € (WHP(Q) x LP(Q))/N(2). In addition, (u, P) satisfies the

estimate
b scayeron Pl <€ (flg vy * 11y + 1901y 1Pl 20 )

Proof. The proof follows from an application of Theorem 2.11] and Green formula ([2.4)) via the same
argument in the proof of |2 Corollary 3.8] using the decomposition u = z + V@, were z solves

—Az+ VP =1f+Vn in Q, (2.21a)

divz =0 in Q, (2.21b)

z-v =0 on 0, (2.21c¢)

2[S(z)v]r = HT on 09, (2.21d)

where H = h — 2(S(VO)v) - 7, and 6 solves ([2.9). O

2.5. Strong solutions of the generalized Stokes system ([.12)).

Theorem 2.13. For2 <p <, let £ € LP(Q), n e WP(Q), g e W> 52(0Q), and h e W' 52(Q)
satisfy the compatibility conditions 1) and ZI3). Then, the generalized Stokes system (LI2)) has
a unique solution (u, P) € (W2P(Q2) x WHP(Q))/N(Q). Further, the solution satisfies the following
estimate:

|mWHWﬂQ+WWU@m~(mm)+mmwm+M|2ﬂmnme%ﬂm)
(2.22)

Proof. To begin with, it follows from Corollary that (ILI2) has a unique solution (u, P) €
(WLP(Q) x LP(Q))/N(Q). It remains to improve the regularity of the solution and derive the

estimate (Z22)).

Adopting the same idea as in the proof of Corollary .12 we decompose u = z + V6, where z
solves (2.2I)) with H = h—2(S(VO)v) - T, and 6 solves (2.9). For 0 solving (2.9), we use the classical
elliptic theory to get

10172, P (Q)/R < lnl. @) T HQH 5700 (2.23)

For z satisfying (2.2I) with H = h —2(S(VO)v) - T, we set w = curlz. Since z€ EP and z-v = 0 on
09, we have that curlz = 2(S(z)v) - 7 + 2k(z - 7) on Q2 by Corollary 24l Then w solves
—Aw = curlf in , (2.24a)
w=h—=2(S(VO)v) -7 +2k(z-T) on . (2.24b)
The classical elliptic theory then gives
[wlwrr @) = lewlfl o, +1h =2(8(VOw) -7+ 26(z - 7)1y

77(60)
9 (2.25)
< Elgoqey + 11, . m+wﬂlﬁwﬂﬂww%wm
By trace theorem, Ha29HW17%’p(OQ ~ H626‘HW1 P(Q) < HGHWB () and HZH ?(00) < H HWl P (Q)"

Thus,

Jeollwnsiay < lewrl €l g + 171 + 1Bl + Il wrs oy -

_1
w'TB P (00)
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Moreover, applying Theorem[2.ITlon z, noting that the compatibility condition (Z.13]) can be checked
with the aid of Green formula ([24]) as in the proof of [2, Corollary 3.8], one has

HZHWLP(Q) b Hf + VWH[Hg'(diva)]/ + Hh - 2(S(v9)l/) ’ THWf%,P(aQ)

< , , 2

< oy g+ b+ Py
< Wl + IMlwre ) + Hh”wl’%*’(asz) + |‘9|‘W2’%”’(09)

<

[Elzagen + Iy + Wl a0y + 8lwancay

where we used the trace theorem again in the last inequality. Thus, by using (223) and (2:20) in

[228) we obtain

olwroey < W@y + 18l gs g + ITlwin@y + 19003 e

(o9 (69)

Therefore,
7€ X>P(Q) := {v e LP(Q) : divv e WHP(Q), curlv e WP(Q), v v e W2 55 (69)}

since divz = 0, curlz = w € WP, z-v = 0 on 0f2. Thus, u = z + V8 € X>P(Q) since V@ also
lies in X2?(£2). We can now apply the embedding X??()) — W?2?(Q) in iv) of Remark 2 of [I8]
Corollary 1, p.p. 212-213] (see also [53, (1.15)] and [23, Lemma 2.2]) to show that u € W2P(Q)
and derive the estimate (Z22) for u. Finally, for the pressure 7, the regularity = € W1P(Q) and its
estimate in (222)) follows from the equation Vi = Au+ f € LP(§2). This completes the proof of the
theorem. O

Remark 2.14 (The case 1 < p < 2). Theorem [213 (as well as Theorem [Z11] and Corollary [2.12)
can be proved for 1 < p < 2 by the duality argument performed in the proof of [2] Theorem 3.9]. We
skip the detailed discussion for small p.

Combining Theorem .13 and Remark[2.14], we have proved Theorem[T.2] Theorem [[.2establishes
the global regularity of the two dimenional stationary Stokes operator with the Navier boundary
condition. It plays the vital role on the construction of the outer solution to the velocity field u shown
in Section [/l Furthermore, by using Theorem [[.2] the semi-group estimate of the non-stationary
Stokes operator is also be developed in Subsection 3.1

3. GLOBAL EXISTENCE: SUBCRITICAL MASS CASE

In this section, we shall discuss the global well-posedness of system (LI and prove Theorem
[[L3l Before this, we have to study the local-in-time existence of the solution. Whereas, noting that
the velocity u satisfies the incompressible Navier-Stokes equation subject to the Navier boundary
condition rather than the no-slip one, we are driven to develop the corresponding semi-group theory
and establish the desired semi-group estimate. The detailed discussion will be shown in Subsection

81

3.1. Analyticity of Stokes semigroup in L?((Q).
In this subsection, we prove the Stokes operator with Navier slip boundary conditions generates
a bounded analytic semigroup on L2 (Q) for all 1 < p < o, where

L2(Q)={vell(Q):divv=0in Q and v-v = 0 on 0Q}.

The case p = 2.

Theorem 3.1. Let € € (0,7) be fized, f € L2(Q) and A€ . = {\ e C* : |arg\| < m —e}. Then we
have the following:
(i) Assume that Q is of class CY'1. Then, the resolvent problem

Au—Au+Vr=f divu=0, inQQ, (3.1a)
u-v =0, [S(w)v]- =0, on 0Q, (3.1b)
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has a unique solution (u,w) € HY(Q) x (L?(Q))/R. Moreover, the solution satisfies the estimates

C
a2y < ﬁ I£lL2 ) » (3:2)
C
IS()p2q) < ﬁ 1£] 20 » (3.3)

for some constant C. > 0 independent of £ and A.
(ii) If Q is of class C**, then (u,7) € H2(Q) x H'(Q), and u satisfies the estimate

C(Q, )\, €)
a2 () < T I£lLe )

for some C(Q2, \,e) > 0.

Proof. The theorem follows from the same argument as in the proof of [6, Theorem 3.2] via the
variational problem of finding u € V2(Q) such that

a(u,go)=J f-Bdx, forall p e V3(Q), a(u, @) :=)\J u-@d:v—i—QJ S(u) : S(p) dz,
Q Q Q
which is equivalent to finding a distributional solution (u, 7) € H(Q) x L?(2) of ([B.1)) thanks to the

Green formula (24) in Lemma 23] O

The general case 1 < p < 0. We now extend Theorem Bl to the general case 1 < p < 0. To
begin with, we first establish the following existence and uniqueness theorem.

Theorem 3.2. Assume that Q is of Cbt. Let ¢ € (0,7) be fived, f € L2(Q) and X € ¥.. Then the
resolvent problem [B1) has a unique solution (u,m) € WEP(Q) x (LP(Q)/R). If Q is of class C*1,
then (u,7) € W2P(Q) x WHP(Q).

Proof. By using a duality argument with Theorem B.I] and embedding theorems as in the proof of
Theorem 2.17] the theorem follows. We omit the details for brevity. O

Now, we proceed to prove resolvent estimate for 1 < p < oo. For this purpose, we use the
following lemma whose proof is the same as for [5, Lemma 2.5] with a slightly modification to the
two-dimensional case.

Lemma 3.3. Let ue WHP(Q) such that Au e LP(Q). Then

—9 2
- |u|P*2Au.ﬁdx=J P2Vl dr + 42— f ‘V|u|p/2‘ dz
Q Q p Q

2
ou ou ou

+ilp—2 up4Re<—~ﬁ>Im<—~ﬁ)da¢<—,up2u> .

b2 % | o Re( = )

We also need the following lemma whose proof is is the same as for [2, Lemma 2.1] with a slightly
modification to the two-dimensional case.

(3.4)

Lemma 3.4. For any v.e W2P(Q), we have

ov ov
2 [S(V)V]_’_ = VT(V . V) + <8_I/)T — <V-,— . g) T, (35)
where s is the arc length parameter of 0S).

Remark 3.5. If Q is of class C*1, and if u € WHP(Q) such that u-v = 0 and [S(u)v], = 0
on 0K, then, thanks to @&5),(0u/ov), = (ur - (0v/ds))T belongs to W=1/Pr(0Q) — L¥ (09).

Consequently, the integral
0
J a2 (-“) -°dsS (3.6)
oQ w),
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is well-defined, and the term <0u/81/, |u|p72u>aﬂp in B4) can be replaced by B4). That is, we
have for u e WHP(Q) such that Au e LP(Q) that

9 2
—J luP~2Au - tdx =J [ulP~2|Vul? dx +4p—2J ‘V|u|p/2’ dx
Q Q p Q

2
ou ou ou
i(p — p—4 - - . - p=2 (27 ) .
+i(p—2) k_gljﬂ [ul’~* Re <0Ik u) Im <0Ik u) dx LQ |u] (81/)7_ uds.

We are now ready to estimate of the solution of B for p > 2. To begin with, we consider the
case when A is away from zero.

(3.7)

Proposition 3.6. Let 1 < p < o and A € C* with Re X = 0. Let f € LE(S2), and let u e W2P(Q)
be the unique solution of the resolvent problem [BI). Then u satisfies the estimate
K

ooy < 37 1Elaocen- (3.8)
for some k = k(p,Q) > 0 independent of X and £.

Proof. For the case when A is away from zero, the same argument as in the proof of [6, Proposition
3.6], with the aid of the formula [B.7) for two-dimensional case, enable us to find A\g = Ao(€2,p) > 0
such that (B8] holds for all A € C* with Re A = 0 and |\| = Xo.

For the case when 0 < |A| < g, (B8) follows as in [0, Remark 3.7] using (3:2) and (33]) together
with the Sobolev embeddings.

We skip the details and only note that the embeddings for dimension three used in the proofs of
[6l, Proposition 3.6] (e.g. H2(Q) — WHP(Q) for 2 < p < 4 and W?4(Q) — WL*(Q)) and in [6]
Remark 3.7] (e.g. H(Q) — L?(Q) for 2 < p < 6) also apply to our 2-D case. Indeed, for dimension
two we have that H2(Q) — H*(Q) — WIP(Q) for 2<p <4 and s = 2 — (2/p) € [1,3/2] and that
H(Q) — H*(Q) > LP(Q) for 2<p <6 and s = 1 — (2/p) € [0,2/3]. O

Let A, be the Stokes operator on L2 () with Navier slip boundary conditions given by
Apu = —P,Au, where P, : L?(Q) — LZ(Q) is the Helmholtz projection,
with domain
D(A,) = {ue W?P(Q) nL2(Q) : [S(u)v], =0 on dQ}. (3.9)
Theorem 3.7. The operator —A, generates a bounded analytic semigroup on LE ().

Proof. Tt follows from Theorem and Proposition that —A, is a sectorial operator on L2 (€2).
Therefore, —A,, is the infinitesimal generator of an analytic semigroup by [32] Theorem 1.3.4, p.20].
O

We now derive an estimate for the semigroup {e~“47*};~o. To this end, we first obtain a bound
on pure imaginary powers of —A,.

Theorem 3.8. There exists an angle 6 € (0,7/2) and a constant C > 0 such that
HA;SH <Cel? for all seR. (3.10)

Proof. The proof is similar to that for [28] (3.44)] using the interpolation-extrapolation theory (see
[1L V.1.5]) via the Stokes operator for Navier-type boundary conditions u-n = 0, curlu x n = 0
on the boundary in dimension three. To adapt the proof to our two-dimensional case, we only need
to replace the boundary condition curlu x n = 0 by curlu = 0, and the vector-valued curlu for
dimension three by scalar-valued curlu for dimension two. O

As a corollary of Theorem[3.8] we have the following Sobolev type embedding theorem for domains
of fractional powers.

Theorem 3.9. For all 1 < p < oo and for 6 € (0,1/p),

D(Af,) — L), where 2 = % — 0.
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Proof. In view of the bound ([B.I0) on pure imaginary powers of A,, we can apply [67, Theorem
1.15.3] to determine the domains of definition of A? for 6 € (0,1):

D(47) = [L5(2), D(4,)],,
the complex interpolation space. By definition of D(A,) and Sobolev embedding, we have

[LE(Q),D(A,)], — [LP(Q),Wz’p(Q)]e — W20P(Q) — LI(Q), for % = % -0,

provided 0 < 6 < 1/p. O
We are now in the position to estimate the semigroup {e=4#*};>.
Theorem 3.10. For all p < q < o, there exists § > 0 such that for all t > 0
e 0] gy < CLp) e P g (3.11)

IS4 00) |y ) < CLQp) e D2 g (3.12)

and for all m,n e N

< C(ij)eféttf(ern)*(l/:D*l/lI) HuOHLP(Q) . (3.13)

am
H— AleArty,
La(2)

atm P

Proof. The proof is similar to that of [28, Theorem 3.6.3] with a slightly modification to the two-
dimensional case.

For the case p = ¢, the estimates (3.11]), (312) and (BI3) follow from [64) Theorem 6.13, Chapter
2|.
| Suppose that p < q. Let s € (1/p — 1/¢,1/p) and set 1/py = 1/p — s. Obviously, p < ¢ < po
so that 1/q = 0/po + (1 — 0)/p for 0 € (0,1) and 0 = $H=He — Y4 For all £ > 0, we have
e~ “rfug € D(AS) — LP°(Q) by Theorem Thus, e~4rfug € LY(Q) and

A — Ayt

_ 0 _ 1-0 s/ 1-0
ptuf’HLq(Q) <Cle Ath'OHLpo(Q) e APtU'OHLP(Q) <C|4; (e Artug) uOHLP(Q)

< O ) () Juol g

=Ce 00 HUOHLP(Q) = C eyl ”uOHLP(Q) ;

_ 0
e HLP(Q) e

proving (BIT)).
The estimates (B12) and (BI3) follows from the same proof for [28] (3.66), (3.67)]. We leave out
the details for the sake of brevity. g

3.2. Local and global existence.
Invoking Lemma [B.10] we study the local-in-time existence and summarize the results as follows:

Lemma 3.11. Suppose (no,co,ug) € C°(Q) x WL2(Q) x D(Az) with D(As) defined by B9); no
and ¢y are nonnegative but not identically equal to zero in Q. Then there exists T < o0 such that the
unique pair (n,c,u, P) with positive n and ¢ solve (1) in a classical sense. Moreover, if T < oo,
we have

i (Il ey + lelwre (@) + [ASullwaq)) = o, (3.14)
for some q > 2.
Proof. The proof is shown in Appendix [Al O

With the local existence result, we focus on the global well-posedness of (IT)). A useful observation
is the mass conservation of cellular density n. Indeed, we have from the integration by parts that

if nd$=f ntdx=J u-Vndx=—f (V-u)nd:v—l—J u-vdS=0. (3.15)
dt Jo % Q Q o0
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An immediate consequence of ([B.I5) is the boundedness of ¢ in L'. In fact, we integrate the c-
equation by parts and obtain that

ARCE R
— | cder+ | cde=| ndr 1.
dt Jo Q Q

By solving the Gronwall’s inequality, one has |¢|| r1(@) < 1. Summarizing the results above, we have

Lemma 3.12. Let (n,c,u) be the solution of time-dependent system (I1l) and the conditions in
Theorem [L.3 hold. Then we have

J nda:+f cdr < 1.

Q Q

Now, we state several useful preliminary lemmas for the arguments below on the proof of global
well-posedness.

Lemma 3.13 ( Cf. Lemma 2.4 in [52] ). Assume that Q = R? is a bounded domain with the smooth
boundary. Let p € (1,0) and r € (0,p). Then there exists C > 0 such that for any 6 > 0,

IF1Ze < OIVfIT2" 1 f log [ fIILr + CIfIZ- + Cs,
where f € WH2(Q) and constant Cs > 0 depending on 4.
Lemma 3.14 ( Cf. Lemma 2.2 in [13] ). Let (n,c,u, P) be the solution of {I1]). Then there exists
constant C' depending on |[Vco|Le and || such that

e, D)lwra < C(1+ sup (-, s)er),
s€(0,t)

whereqe[l,NN—_pp) ifpe[1l,N); qe[1,0) ifp=N and g = if p> N.

Proof. We follow the argument in [I3] to rewrite the c-equation as the abstract form then perform
the heat Neumann semigroup estimate to prove the lemma. Noting the steps are the same as in [13],
we omit the details. ]

Lemma 3.15 ( Cf. [60] ). Let Q@ ¢ RN, N > 1, be a bounded smooth domain. Let j = 0,
k = 0 be integers and p, q, r, s > 1. Then there is a constant C' > 0 such that for any function
we LI(Q) n L(Q) with D*w e L™ () such that

|D7wlLe < CIDMw|§e |w] 2™ + Cllw]zs,
Wh6T6%=%+(%*%)Oé+l_Ta with £ < o < 1.

We shall follow the ideas in [56] to show the global existence of the solution. Firstly, we cite the
following Moser-Trudinger type’s inequalities given in [56]:

Lemma 3.16. Assume Q < R? with the smooth boundary 0S), then for any small ¢ > 0 and
we WH2(Q),

1 2
e < Caexp { (g + <) IVul ] }
e T < ex +€)|Vw + w ,
L Q €Xp 89() H HL2(Q) |Q| H HLI(Q)
where Cq is some positive constant depending on |Q| and 0q denotes the minimum interior angle at

the vertices of Q. In particular Oq = 7 if there is no corner on 2.

Lemma 3.17. Let Q = {x e RY : |z| < R} (N > 2) and w € WYY (Q) with w = w(|z|). Then for
any € > 0, there exists C = C(|Q, €) such that

1 2N
e £ oy () Vel + gl
j v < Coxp {( 5=+ €) IVuls o + gglvlom -
where By is given by
Nay \N-1 1/(N—-1
ﬂN:N(N—l) ,QNZNWZ\{El )a

and wy_1 denotes the surface area of the unit sphere in RV,
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By using Lemma 310 and Lemma B.I7 we have from the energy dissipation given in Lemma [[T]
that
Lemma 3.18. Assume condition (LI3) holds. Then (n,c,u, P) satisfies

J neds <1, |7()] < 1.
Q

Proof. Firstly, we have the free-energy J(¢) given by (L)) can be rewritten as

J(t) = fﬂnlogndx— (1 +5)J

Q
where § > 0 is any small number. From (B16), we find
e(1+6)c

ncdw—i—f [6nc + l(|Vc|2—i-c2)] dr + lf lu|? du, (3.16)
Q 2 2 Ja

70> - [ nlog

Q
On the other hand, noting n satisfies (3.10]), one has

n
—dr = 1.
J,

Then by using the fact that —logx is convex, we apply Jensen’s inequality to obtain

1 e(1+d)c e(1+d)e\ 5
—log{— | eM*Dedzt = —1 J —d <J —1 —d
Og{MJ\Qe ‘r} 8 Q n M v Q 08 n M v

1
dx + | dncdz + —J (|Ve]* + ¢2) du.
Q 2 Jo

e(1Jr5)c
=—— | nlog dzx. (3.17)
Q
In light of Lemma [B.16] one gets
. 1 2(1+9)
L 190 4 < exp { <2—Mo + e)(l +6)2 Vel 3 + Wucnp(m}, (3.18)
where € > 0 is small. Upon substituting 18] into B.IT), we arrive at
1 1 1 2(1 + 6)
1 (1+6)c <t 4 (1 2 2
log(Mer dw) NIOgM+(2M0 +6)(1+5) [Ve|7z + Ql lelzs,
which yields
1 1
Jt) = - Mlog{— J e(1+o)e daz} + J [5710 + - <|Vc|2 + 02)] dx
M Jq Q 2
1 1 2(1 + 0) 1
> _ _ - 2 2 - 2 2
= M[logM+(2MO +6)(1+5) [Ve|72 + Q) HCHD]—%J;Z [5nc+2(|Vc| +c )]
(3.19)
We rearrange (3.19) to find
1 1 9 9
{5 - M5 +e)a+ 2 }Ivelts + 5L nedz
1 2(1+0
<M{ log - + %Mp} LT <1+7(0) < 1. (3.20)
To obtain the boundedness of |V¢[2(q) and ||nc|1(q), we require for sufficiently small €,5 > 0 that
1 1
S =M+ ) (1482 >0. 21
5 2M0+e(+5) >0 (3.21)
Letting € — 0% and 6 — 07, one finds (3.21)) becomes
M < M.

With this condition, we readily obtain from ([B.20]) that
f nlogndzr <1, J |Vc|2dx <1
Q Q

This completes the proof of our lemma. O
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It is worthy mentioning that SQ nlogmn dz is bounded from below. Indeed, according to the lower
bound of function z log x, one has

1
J nlogndx = ——|Q|.
Q €

With the help of key Lemma [BI8] we can show the boundedness of |n| 2, which is
Lemma 3.19. Assume the condition [I.13) holds. Then we have

J n?dr < 1.
Q

Proof. Test the n-equation in ([I.1]) against n, then we integrate it by parts and apply the c-equation
to get

1
—if n2dx=—f |Vn|2d:t—J nV-(nVc)dw—f u-Vnndz
2dt Jo ) Q Q

=7J |Vn|2da:ff u-VnndaerJ nVn - Vedx
Q Q Q
1
=—J |Vn|2d:1:fj u-Vnndaj——J n?Acdz
Q Q 2 Ja

=7J |Vn|2d:1:fj u-Vnnda:flf n?(c; + ¢ —n)dx
Q Q 2 Ja

1 1
< - —J nc, de + —Jngdaz,
2 Jg 2
where we have used the boundary conditions of u. Thanks to Lemma B.I3] one has n satisfies
Inllzs < elVnlEIntognl + Cc(Intognln + ] ), (3.22)

where € > 0 is any small constant. Invoking the Holder’s inequality and Lemma [B.T5] we obtain
| el da <ledtatniz
Q
1/2 1/2 1/272
Sleelz=[(IVAlZE + InlZ2)n] 2]
Sledz(1Val 2 Inl oz + Inl72)
<e|Vn|Zs + Cellleelzz + et r2)In[Z-- (3.23)
Combining (3:22) and (3:23)), one gets
d
al\n\liz +2[Vn|72 <e|Vnlia + (led7e + leelz2)In]7e
+&3|Vn|3s|nlogn|pr + Ce(|nlogn|?. + |n|L1). (3.24)

We rearrange ([3:24)) to arrive at

ZInliz + 2 —e—€lnlogn] )| VnlZ:
<Cel(lealZz + lleelz2)nl7z + [nlognlZs + [n] L))

In light of Lemma 318 we have |[nlogn|r: is bounded. As a consequence, we choose € small such
that

d
L ol + 19nl2;
<O[(lleel 72 + lleel c2) ] 7 + [nlogn|g: + |n]z)]. (3.25)
On the other hand, one can conclude from Lemma that

1/2 1/2
Inllzz < C(IFnl L2 Il + 0 21).



QUALITATIVE ANALYSIS OF KS-NS SYSTEMS 21

where C' > 0 is some constant. It follows that

[Vali. = InlZ: — Clnli:. (3.26)
Upon substituting (326]) into (8:23]), one finds
d
S Inlze + [nlz < CllledlZe + ledlz) InlZ: + B, (3.27)

where B is defined by

B:= iug(l\nlogn\lil +nfzr + InfZ0)-
>

Noting that energy dissipation (LI) gives us

t
|t ogas <1 (3.28)
0
then we define y1(t) = |[n(-,¢)|7. and y2(t) = [ci(-,t)[32, then rewrite (B27) as the following
differential inequality:
yi(t) +y1(t) < (y2 + Vy2)u1 + B. (3.29)
By Young’s inequality, we have y satisfies
Ly
<-+2Z
ViR <5+ 3
Substituting it into ([3.29]), one finds
1 3
Yy + (5 - §y2>y1 < B. (3.30)
Combining (330) with ([B.28]), we obtain that
U1 (t) < 17
ie. |n(-,t)| L2 is uniformly bounded in time. O

Lemma BI9 implies |n(-,t)|z2 is bounded. Moreover, we find from Lemma BI4] that for any
q € [1,+0),

leC, )lwre < 1.

With the boundedness of |n|r2 and |¢|ly1.«, we next prove the boundedness of ||n|~ and |c|y 1.,
which are

Lemma 3.20. Assume that all conditions in Theorem [L.3 holds. Then we have
In(t)|oe + e t)wre < 1. (3.31)

Proof. For p > 1, we multiply the n-equation in (LI by nP~!, then apply the integration by parts
and the divergence-free property of u to get

lif npdx=—(p—1)f np_2|Vn|2dx+(p—1)f np_1Vn-Vcd:E—J nP~lu- Vndr
p dtJg Q Q Q

4(p—1 P
T %J \VnE2de + (p — UJ nP~'Vn - Veds, (3.32)
Q Q

where we have used the boundary conditions of u. On the other hand, by Young’s inequality, one
has

—1
J nP~|Vn||Ve| dx L= J nP~2|Vn|? dx + CPJ nP|Ve|* du
Q 2 Ja Q
2(p—1 » 1
<@ J [Vn2|?de + = J nPtdy + Cpf |Ve2PHD) dg. (3.33)
p Q P Ja Q
In light of BI9), we find
J V2P < O, (3.34)
Q
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On the other hand, by using Gagliardo-Nirenberg’s inequality given in Lemma [B.15] one has

2

2J Pl de < MJ |Vn2|?de + C,. (3.35)
Q p Q

We collect (332), 333), B34) and B35) to arrive at

d
—f npd:b—i—J n? dr < Cy,
dt Jo Q

where p > 1 is arbitrary. By the standard Moser—Alikakos iteration, we obtain that n(-,t), Vc(-,t) €
L*(Q). O

Proof of Theorem [1.3}
With the help of Lemma B.20] it is left to study the estimate of velocity u. Firstly, we define
w := curl u and obtain from ([I))3 that the vorticity equation is

Ow+ (u-Viw=Aw+ V x (nVe), (3.36)

where V- u = 0 in Q. Next, we estimate the vorticity w. To this end, multiplying the [B.36]) by w,
we integrate it by parts to obtain

1d

Eauwuiz + | Vw3 = J V x (nVe)wdzr = —J nVe- Viwdz. (3.37)
Q Q

We integrate [B.3T) over (0,t) and apply the Young’s inequality to find

1 t 1 t
—kuiz +J HV(UH%z dr =—Hw0\|%2 *J J nVe - (Vj‘w)dasz
2 0 2 0 Jo

1 1
<glunls + 5 | (nVels + 194l ar.

which implies
t
) + j IVewlEdr < Jwol2 + C(T),

where we have used [B3T]) and positive constant C' satisfies C'(T') — 0 as T' — o. Moreover, noting
that [Vulrz = |V x u|pz = ||z, we have

[Vu|: < C(T). (3.38)
By using the Gagliardo-Nirenberg-Sobolev’s inequality, i.e. Lemma [3.15] we obtain
lulee < (Jufz®IVulge + [ufce), (3.39)

where a € (0,1). Due to energy dissipation (LX), one has u € L2. Hence, combining (3.38) and
(B39)), we finish the proof of Theorem 3 O

Remark 3.21.

Lemma [F20) establishes the uniformly-in-time boundedness of |n|p= and ||c|w1.«. However, due
to the growth bound of |u|L= ast — T~, we can not rule out the infinite time blow-up of (I1l). We
conjecture that velocity u possesses the uniformly-in-time bound in the subcritical mass case.

Theorem [[3 demonstrates that (ILT]) admits the global-in-time solution with the subcritical mass.
Next, in Section [4H8 we shall focus on the critical mass case and construct the stationary solution
with the striking structure.



QUALITATIVE ANALYSIS OF KS-NS SYSTEMS 23

4. THE CHOICE OF ANSATZ AND ERROR ESTIMATES

First of all, we borrow the idea from [20] to determine the approximate solution of (LIT)). Next,
we reduce the transported Keller—Segel system as the single equation with a nonlocal term. To begin
with, we find with the absence of transport term u - Vn, the n-equation of (LII) implies

n = e%e”, (4.1)

where ¢ > 0 is any small constant. Upon substituting (£1I)) into the c-equation, one has the standard
minimal Keller—Segel model is reduced as

{ Ac—c+e%e=0, ze,

g—fl=0, x € 0f).

(4.2)

In this paper, we plan to construct the boundary spot, i.e. the location is assumed to be at
the boundary 0. In fact, similarly as shown in [20] and [45], the construction of boundary spot
is the modification of interior counterpart. Thus, we first give the ansatz of single interior spot
and compute its error. Assume that the solution is concentrated at & € ), then we introduce the
stretched variable y = IT{, define ¢(x) = ¢(€ + ey) — 4loge and obtain from ([@2]) that the limiting
problem of € is

Ayc+ef =0, yeR2

After imposing the following integral constraint

J eCdy < 4o,
R2

we arrive at

Ayje+e® =0, yeR? (4.3)
Sz €dy < +o0. :
It is well-known that (3] has a family of solutions as follows:
8u?
c,=log—F ___ u>o. 4.4
g (12 + [y[?)? 44
By using ([@.4), we find the “rough” ansatz of ¢ is given by
x—& 82
-7 (—)f41 Ty =log—H 45
Co € c oge € 0og (ILLQ + |y|2)2 ( )

where ¢ represents the location of the local spot. Moreover, noting that n = £2e€,

(3] that the basic ansatz ng of n is

1 x—¢& 8u?

2 € (2 + ly[?)
Since ¢ must satisfy the Neumann boundary condition, we set H¢ as the correction term of ¢y, which
is determined by

one finds from

£ 4.
S x € 09, (4.7)

{ —~AH®+ H* = -T,., zc9Q,

It is easy to find that there exists the solution to (A7) satisfying H® € C1'® in 2D. We summarize
and choose the approximate solution of (n,c) as

1
n=—=W+¢, c=—4loge + ')+ H° + 1, (4.8)
5

where (¢,1) is the remainder term.

We have obtained the desired approximate solution defined in (ILI4) and (LIH). Next, we shall
compute and analyze the error generated by (A8]). Similarly as in [45], the coupled n-equation and
c-equation can be reduced as the single form S(n) = 0, where S(n) is given by

S(n):=Aun+ V.- (nV(A, —1)"'n) —u- V,n.
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Upon substituting (£8)) into S(n) = 0, we have

1 1
1 1

F D)~ 5 Ve (WY) — V- (47T

—u-Vyp=0. (4.9)
For simplicity, we use “I'” replace “I',, ¢” without confusing the reader. Noting that I' and W satisfy
(#X) and (&6), one further obtains from (£9) that

1 N
S(n) == 5V, (WVLH) = 5u-V,W

1
- VCE : ((bv:ﬂ/’) - vw ' (¢va8)
—u-V;p=0.
Our goal is to show the existence of (¢, ¢) via the inner-outer gluing method and fixed point theorem.
To this end, we decompose ¢(x) as
r—¢&

(;5():52(1)()()-1-@0,?4: PR (410)

s

)
2
€ b

VA

X(r) = { 0 :

with § > 0 is a small constant. Upon substituting (£I0) into (&3], we have

1 1
S(n) == Vy- -(WV.H?) — Su- VW
1 ; 1 ; 1 =i
+ 58,0 = 5V, @V, D~ 5V, - (WY, T )y

1
+ Bap® = Vi (Vo (T + H) = Ve (W)
2 ; 1, 1
1 —i 1 ;
+ E_4vy ) (va\y )X - €_4vy -(WV,¥)x

1 i 1 T, 1
+ E_4vy (WY, W)X — €_4vy (W,

Lo (R #)o) - o (g
_ éu-Vy<€—12‘I>ix+g0°), (4.11)
where ¢ = —(A; — 1) 1¢,
Wi —(a, - 52)_1(q>ix), T = A0 (4.12)

and

v —(a, - 52)_1q>i, YO = f(8—2Ay - 1)_1<p°. (4.13)
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Before formulating the inner-outer gluing scheme, we define the inner operator Ly, and outer oper-
ator L° as

Ly[®]=A,2-V, - (WV,¥)-V,-(2V,I), —A;lfb =T, (4.14)
and
LO[SD] :Am@_vm@'vm(r""HE))_(p(l—‘—’—HE)' (415)

By using (@I4)) and [@I5]), we simplify @II) to get

eV, - (WVmHE) +eu-V, W+ 2V, - (WV1°)

—2eV, @V, — 20 A x + 'V, T -V, x

1 _. .
+ €2V, - ((E—Qrb‘x + ) Vyp) + eV, (VL HY)
L etu v, (Lt g
euVy 3 x +¢
—Vy - (WY, 8 )y + V, - (WV, )y
—Vy (WY, U)x +V, (WV,T)
=Lw[®']x + ' L°[¢°.

Now, the construction of interior spot is transformed to show the existence of remainder term (¢, 1).
However, focusing on the construction of boundary pattern, we need to study the effect of boundary
on the ansatz and error analysis. Our strategy is to strengthen the boundary and analyze the
corresponding new error.

It is worthy mentioning that we mainly compute the error arising from the transported Keller—
Segel system here and the study of Stokes operator and u-equation will be shown in Section [1

5. THE EFFECT OF BOUNDARY ON SPOTS

In this section, we flatten the boundary and study the influence of boundary curvature on the
error estimate arising from S(n) = 0. To be more precisely, we define the graph p(z1) such that

{(z1,22) = (z1,p(z1)}, and Xy 1= 21 — &1, Xo = 22 — & — p(v1 — &) with £ = (&,82). In such
coordinate, we have p(0) = p’(0) = 0. On the other hand, the gradient, Laplace and Neumann
boundary operators become

0 0 8)7

_— . / [
5X1 8X2 p(X1)7

Ve = ( 0X>

A, =Ax + (pl(Xl))anzxz - 2p,(X1)aX2X1 - p//(X1)0X2,

and

(14 (P (X)) = (F (X)), — o, — (0(X1)) 0,

In the inner coordinate Y; = &%, i = 1,2. Moreover, p(X1) = p(¢Y1) can be expanded as
1
p(X1) = 5p"(0)°Y7 + O(e?). (5.1)
By using (&), one finds
Aw — A +(’Y2ia _ 2 (vl ~ L reve
20 = S Ayw+ (P(eV))” 5 0vvw — (0 (V1)) dvivew — —p" (V1) dvyw

1 2 1
= Avw+ (p"(0)*Y v, vyw — gp//(o)ylaylyzw - EP”(O)@YQUJ +0(1),
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and

- 1 1 3’(1}1 3’(1}2 ’
Viwy - Viws = E—QVywl -Vyws + 5—2 oY, aY2( (Eyl))
1 3’(1}1 3’(1}2 3’(1}1 3’(1}2 ’
(ayl Y, "o, ayl)p(EYl)
3’(1}1 3’(1}2 ” 242
- 0))°Y;
1 (8w1 ows Owy Ows

_ ] —  —_— —_— ,/
v, oY, | ov, ayl) (0)¥1+ O(1).

1
= —QVy’wl Vyws + —
3

With the help of (B2 and (53]), we are able to compute the error generated by the approximate

solution ([E8) involving the boundary curvature term. Upon substituting (@S] into ¢*S(n) = 0, we
obtain

45 (u) =g4[vw-(vw($w+¢) - (8—12W+¢)V1(F+H+w)>] .V, ( 2W+¢)

=2 AW +e'Ny¢ — Vo (%W +e%¢) - Vo (T + H+¢) — (W + e*¢) A, (T + H +¢) —u- V. (2W + 9)
2 2

N B 5 ’ a ” / 2 a[[ /!
=Ay W 26Y18Y2p (eYh) + vz [p'(eY1)]* — OYQp (eY1)
¢ 2 %9 ¢
2 _ 9.2 / / 2 _ "
+e®Ayp— 2 aylang( Y1) +¢° ayz[ plev))? — e W' (eM1)

—(2V W - VoI + &'V - VoI + €'V, 0 - Vatp — 2V, W - Vb)) = 14
— (WAL + WAL + e*oA T + oA 1)) := I,
— E2WALH — *¢A,H — >V, W -V, H —*V,¢ -V, H

o(eW + &3
—u-V,(eW +%9) + (ET—ZE@#(EH).

Noting that ¢ can be decomposed as ([£10) and we strengthen the boundary locally near the location
&, one finds (¢, ¢)(x) satisfies

8z) = P IY) + 6% ~(Bg = 1) 9= (5.4)

Next, we substitute (54 into I; to get

I =2V, W -V, +*V,¢ -V, [ + 'V, 0 V,op
(5 - T 5) (& S 5)
N (aglx) ) 5(8‘121,2”#(5&), a(;i/:o) | ( T v, )

. (a(cpix) o(®iy) (Eyl),a(q’i")

oY, oY, ©

or  or
+&3V,0° - <0_Y1 - a—YQPI(EYl)a -

o(®i (@) o(®
+€2< (ale)_ ((%x)p(EYm (®'x)
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We further rearrange I; and obtain

- L AEAAY oW or )
I =VyW -Vy I (0}/2 oY, + oY, 0Y1>p(8Y1)+

; o(®'x) or  or a(®iy)\ , o(®'y) or
+ Vy(®'x) - VyT ( v, ov. T v P (Y1) +

iy oVl oW oW ovt oW o
VW - Vy Ul — 2T ) ) (eYs A
+ Vy Y (55'2 oY, + v, 85'1>p(6 1)

; i [a@x) ol ol a(@iy) ) A(diy) ol ,
+ Vy(®'x) - Vy ¥ (61’2 v T oy p'(eYr) + o, an[p(s 1)]

or or or
+ Egvz(po . (a—y,l — 8—5/2[)/(5}/1) —> + €4Vz§00 . Vﬂ/}

" 0Ys
@) A(2x) o(®'y) o
2 o / . i

where —(A, — 1)"1(®'y) = ¥'. Proceeding I with the same argument, we have

I =2WAT 4+ WA + AT + e*dA ¢
2 2

0°I r or
=WIAVT —2—— /(Y5 '(cY:))2 — (Y
l Y 6Y16Y2p (E 1) + 83/22 (p (E 1)) 561/2/) (E 1)]

2 2

. 02T r
Oy | AyT — 2——— /(Y] —(p'(eY7))? — Y
+ Xl Y 6Y16Y2p(€ 1)+ 83,22@ (eY1)) (eY1)

oo
E&ng

—_

o o 2 o
WAy U —2——— (Y] —(p(eV1))? — e=—=)p" (eY;
+ [ Y 6Y183/2p (E 1) + 61/22 (p (E 1)) 583/2/) (E 1)]
i Ti aQ\i}i / aQ\i}i / 2 a\iji "
2 0*r or
2,0 _ / / 2 _ "
+ e | AyT 20Y18Y2p (eY1) + vz (p'(eY1)) Eang (eY1)

+ 54300 A+ £2<I>ixAm(w — \if‘)
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Focusing on the inner region |z — &| < €, we substitute I; and I into €*S(u), then obtain
e1S(u) =AyW — VyW - VyI — WAy

oW U or oW o°1 2w
(5557 + 37337 ) +2W -
A MY, ovhov,

p' (Y1)

2w ower . @T\., .., (oW oy,
<3y22 t o, Wa—Y22> [p'(eY1)]” — E<6—Y2 - Wa_y2)p (eY1)

+ Ay ®iy — Vydi - Vy Ty — Vy W - Vy Ty — Ay TY — WAy T

BTN PR L W L
PREUX | *ovi0y, — oy, oY; | oYs o, Y1 0Ys | 0Ys 0V,
oo 02T T 00 0T 0T 00
“ v Cvens ‘2@5252“‘<5§5ﬁ*7ﬁ§52)]
201 00l T WO T, 0¥ 00 aT %0
/ 2 e . ) SO i S|
)] X[ayg W, o, o, vl g T man ¢ ayg]

—EVyW . VXH —&u- VYW
I(eW + &39)
oYz

Noting that X; = €Y1, X2 = Y3 and p(0) = p/(0) = 0, we find p(X1), p'(X1) and p”(X;) can be
expanded as

—WAxH —cu-Vy® +uy P (V1) +H. O. T. (5.5)

1
p(eYr) = 5/}”(0)623/12 +0(%), (5.6)
1
p'(eY1) = p"(0)eYr + 5#”(0)621/12 +0(e?), (5.7)
and
1
p'(eY1) = p"(0) + 9" (0) + 5p D (0)e*YY + O(E?). (5.8)
In addition, it follows from W = e that
82W+8W or T 0
Y7 0Ys Y, ovg 7
(W or AWy oy P, EW
Y, 0Y,  0Ya Yy Y 0Yy T ovidYy
and
oW or

Upon collecting (5.6)—(E.3), we simplify (5.5 as
e48(u) =(Ay® — Vyd' - VyD — Vy W - VyT — &AL — WAy T )y

BTN PR L W A
PRERIXISoviay, ~ \ovi oy, | oY, on, oY, 0, | 0Y, oY,

2 2t 25t i At T oAgi

— 25! o°r _26\11 _2@i8\11 _ aiai+a£a£

VOYy S ovioY, WY,  \ 0Y, Y, | oY, oV,

291 0®l T oW T T .. 2T 00 0T 2T
/ Y; 2 _7__7__7_(1)17 7__7(1)1

o)) X[ NE o, onov, vzt g T wav, Cavg ]

—eVyW - VxH —eu-VyW + H. O. T. (5.10)
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Now, we have from (G.I0) that in the inner region |z — £| < €, the leading order error is O(e) and
given by

I3 := —eVyW - VxH —eu-VyW. (5.11)

It follows from (G.IT)) that the leading order error does not include any boundary curvature term
0"(0). Tt is natural to further formulate the inner and outer problem satisfied by ®! and ¢°. In fact,
since we flatten the boundary locally, the form of outer operator is the same as (LI3). However,
compared to (£I4), the inner operator should be written in Y-variable and the inner problem will
be solved in Ri rather than R?. After finishing the error estimate to the equation, we focus on the
study of boundary conditions.

Since (n, c¢) satisfies the no-flux boundary condition, we similarly use [@I0) and calculate to get

=5%—IZ — EWZ_Z + 532—7/5 — EW% — 53¢2—£ — 53¢g—1ﬁ —e(W + 52¢)2—IZ

=\/ﬁ - g—‘g + W% + p’(EYl)(g—I;/l - W{f—;) - [p'(syl)]2(g—‘g - W{f—}z)
_ 0(‘1’ixa;2€2<p°) N Wﬁ(‘i’i;yj%") (V) <5(‘1>ixa;€290°) ~ Wa(@igyf2¢°)>
e (3(‘1>ixa;r/2€2s0°) B Wa(@i;jw)
(@) (e - A en)) - @iy e () e
ST oA 2 (o)
oW + @y + 220 (S — ) S+ [d(sm)]f—i)]- (5.12)

Next, we perform the order analysis by regarding ¢ as the variable. On one hand, we expand
1

I

1 1 / 2 4
—— =1——|p'(e\1)]* + O(%). 5.13
s B O RYEICy (5.13)
On the other hand, since W = e, one finds
¢ 61—‘_ =0,i=1,2. (5.14)
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Upon substituting (513) and (5.14]) into (5.12]), we obtain that in the inner region |z — | < ¢,

“0 0| - 2w T s e (2w I (2 - w e
- (S v - S - S - @i(z—fj (e¥1) - g% - g—zw’(am)“‘)
oW+ @) (S — V)T + [p'(amfj—i)]

=(1+ 0(e?)) Zz + Wg—z + p"(0)eYy <%i - WZ—?/:) — [p"(0)eY1]? (%{2 - Wg—z
— 0 (S O - o - (0N
- @i(g—i "(0)eYi - Z% - Z—z(p”(ow&) +0()
+5(W+<I>i)(§—§2 —p’(&Yl)g—)iIl + [p'(gyl)]2§—)i). (5.15)

By checking (5.15), one finds from ®' and T' are both o(1) that the leading order error of boundary
estimate is O(e) and given by
0H
I =W —. 5.16
1 X, (5.16)
It follows from (B.I6]) that the boundary curvature term p”(0) also does not influence the leading
term of boundary error.

We summarize the arguments shown in Sectiondland Section[5l then obtain that the approximate
solution of boundary spot is still given by (&S8]). To show the existence of remainder term (¢, 1)),
it is necessary to establish the linear theory of corresponding linearized operators, which will be
exhibited in Section

6. LINEAR THEORY: TRANSPORTED KELLER-SEGEL SYSTEM

In this section, we shall discuss the properties of linearized Keller-Segel operators. Recall that ¢

and ¢ satisfy (@10), (EI2) and [@I3); moreover, the inner problem satisfied by (@, @1) is formulated

as
Lw[®] := Ay® —Vy - (WVy W) = Vy - (dVyT) = h, Y eR2, 6.1)
(—Ay)~10 = T, Y eR2, '

where we replace (@i,@i) by (®,¥) without confusing the reader. Before studying (6.1]), it is
necessary to establish the linear theory of inner problem (6.I)) in the whole space R? at first. Indeed,
assume that the location £ €  and consider the inner problem formulated by

{ Ly [®]:=A,® -V, - (WV,¥) -V, (®V,I[')=h, yeR?

(~A,)10 =¥, yeR?, (62)

then we define the inner norm in R? as

|All500 == sup e [R|(L + [y])**, é1,01 >0
yeR2

and have the following lemma:
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Lemma 6.1. Suppose that h satisfies

J h(y)dy = 0, f h(y)yjdy =0 for j=1,2, (6.3)
R2 R2

then for any ||h||s, 440 < 00 with §1 > 0, o € (0,1), there exists the solution ® = T;[h] to (€2) such
that

[@]61,240 < [hlls1,a+0,
where T;[h] is a continuous linear operator.
The proof of Lemma [61] shown in [45] (Cf. Lemma 3.1), crucially relies on the Fourier mode

analysis since we solve ([6.2]) in 2D. For the sake of completeness, we give the sketch of the proof
here.

Proof. First of all, we define g as
P
=—-U
) W )
then rewrite (6.2) as the following divergence form:
{ V- (WVg)=h, yeR?

AT — @, (6.4)

Next, we perform the Fourier expansions of h, ®, ¥, g and g := Wg. We first write the error term
h(y) as

h(y) =(p,0) = D hi(p)e™ :=ho(y) + I (y) + hi(y), (6.5)

where Ry, (y) = hi(p)e’™. Then, we decompose (®, ) and (g,7) as
®(y) (resp. W(y)) = @(p,0) (resp. ¥(p,0))

o0 0

= Z i)k(p)eike (resp. Z ‘i’k(/))eiw)

k=—00 k=—00

=0 (y) + P1(y) + L(y) (vesp. Yo(y) + Yi(y) + Y1 (y)),

and

g(y) (resp. g(y)) = g(p,0) (vesp. g(p,0))

i k zk@ resp Z gk sz)

k=—0o0
:=go(y) +91(y) + 91(y) (resp. Go(y) + 1 (y) + 7. (¥)), (6.6)

respectively. Now, we construct the solution (®,¥) to (64) mode by mode. In each mode k, one
has (P, hy) satisfies

V- (Wvgk) = hka yesz
AV, =Wy, + Wy,

which is equivalent to the following mode k problem:

Ek[gk] = hku yER27 (6 7)
\I/kpp —\Ifkp + \I/;g =g, t+ W‘I’k, ’

where Li[Gk] := Grpp + %gkp - ’;—igk — (InW),gxp + Wi It is vital to study the bounded kernel
functions such that

- 1~ k2 . -
\Ijkpp + ;\Ijkp - F\I/k + W\:[Jk = 0
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Indeed, we have the fact that at mode k£ = 0,1, the bounded kernel functions are given by
2
_pr =l

-1 Zj:=0,T, j=1,2, (6.8)

ZQZ

where T is defined in (£3).
Owing to the existence of ([G.8]), we must impose the orthogonality conditions on mode 0 and 1.
At mode 0, we impose the mass condition given by

J hdy = 0.
]RQ

It immediately follows from (G.5]) that

JRQ ho(p)pdp = 0. (6.9)

Then, by choosing the solution gy to (6.7) with k = 0 as

go(p) = L % JOT ho(s)sdsdr, (6.10)

we have from (€9), [@I0) and |Als, 410 < 1 that go satisfies
Golp)| < 27 2. (6.11)
In light of g = Wg and (G.0), we use (G.I1) to get go has the fast decay property, which is

e Ilare

190(p)| < gz (6.12)

We further apply the variation-of-parameters formula on ¥g-equation to choose ¥y satisfying
[Wo(p)| < |h]asoe® Inp. (6.13)
We summarize (612) and (613) to obtain that

= )
£ 440
|Po(p)] < T

which gives us the desired estimate of mode 0.
Similarly, to guarantee the desired decay estimate at mode 1, we impose the first moment orthog-
onality condition given in ([6.3]), which is

J hy;dy =0, 7 =1,2.
R2

By direct computation, we further obtain that

[ Wz =o (6.14)

where Z; := dipF. Recall that \111 satisfies

)

- 1~ 1 - -
\I}lpp + _\Illp - —2\111 +Wo, =0.
p p
Then we apply the variation-of-parameters formula on ¥;-equation and use (.14) to choose the
solution satisfying

|\i/1| < 561 HhH4+U .
p°

On the other hand, we consider the operator £; and employ the maximum principle to show that
g1 satisfies

(6.15)

e [Allaso

91| < T (6.16)

Upon collecting 6.I5) and (G.I6), we have the desired estimate of ®; at mode 1.
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Focusing on other modes arising from A, it is straightforward to derive the desired estimates by
using the maximum principle, which was shown in [45] and we omit the argument here. O

However, Lemma [6.1] is valid only when the location of spot is assumed to be in the interior of
domain Q. If £ € 09, we must modify Lemma and impose new orthogonality conditions. To
construct the boundary spot, we first define the inner norm in Ri as

[Pl62,0,50 = €% sup [R](1+ [y[)™2,
ye]R2+

where 0o > 0, vo > 0. Then, with the help of even reflection and Lemma 6.1 we establish the
following linear theory in R? :

Lemma 6.2. Given any function h(y) and B(y) satisfying

J hdy — BdS, =0, f hy dy — By1dS, =0, (6.17)
R oR2 R% oRY
and assume |h|s,,a+0,50 < 00 with 62 > 0 and o € (0,1). Then, we have the problem
Lw[®] = h, yeR2,
2 e A (6.18)
Wal =8 9g=u—-Y¥, yedRi

admits a solution ® = TH[h] satisfying the following estimate:
|@l65,240,5 S Bz, 440,
where TH[h] is a continuous linear operator.

Proof. We refer the reader to Lemma 3.2 in [45]. For the sake of completeness, we exhibit the sketch
of proof. Our strategy is to define the intermediate variable 7 such that

WVn-edy =0,

2
R+

where e; = (1,0). Define gy := g — 1, then we transform system (6.I8) as the following form:

V- (WVgn)=h—-V-(WVp), yeR:
W =0 € 0R? (6.19)
ov ’ Y +
Next, we perform the even reflection and define g as
= 0;
Gy = g (y1,92), Y2 (6.20)
gn (Y1, —y2), Y2 <O.

Thanks to (6.20), one has ([6.19) can be evenly extended into R? and the form is shown as follows:

V- (WVgy) =h, yeR? (6.21)
where h is given by
7= {h@l, 0) = V- WIN)(p), 9220,
h(yr, —y2) =V - (WVn)(y1, —y2), y2 <O0.

We wish to apply the results of Lemma [61] on (@21I)). To this end, it is necessary to verify the
orthogonality conditions given by ([6.3]). For the mass condition, noting that h is the even function,
one finds
[, s =v2) = V- VIR gy = [ ) = 5 W0, ve)dy,
RZ R2

Then we use the divergence theorem to obtain from (6.I7) that

f hdy = 2f [h =V - (WVn)ldy = QJ hdy — 2f (WVn) - vdS,
R2 ]R%r aRi

R

an

=2 hdy — 2 W=dS, =2 hdy — 2 pdS, =0,
R2 oR? ov R2 oR2

2
+

(6.22)
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which verifies the mass condition. On the other hand, we deduce from the even property of h that

J [h(y1, —y2) =V - (WVn)(y1, —y2) |yady = J
R2

. [A(y1,52) = V- (WVn)(y1,y2) [yrdy.

+

It similarly follows that

J hyrdy = 2]
R2 R

2
+ +

b=V WVlndy =2 [ hndy—2 [ s, 0. (623)
R? oR2
which verifies the center of mass condition. By using (6:22)) and ([6.23]), we utilize Lemma [6.1] to find
there exists the solution (@, ¥) to (6I]) such that
H(I)H52,2+<T,H < HhH52,4+0,H7 02 >0,0€ (07 1).

It completes the proof of Lemma. O

Lemma and Lemma help us establish the inner linear theory of linearized Keller—Segel
operator. It is natural to discuss the corresponding property of outer operator L° defined by (£15)
next. We assume @(z) = ¢(y) and rewrite L° in y-variable to obtain the operator becomes

ZO[‘P] = 52[’0[90] =Ayp —Vyp- vyv - 52V907 (6.24)

where V :=T' + H¢. By studying (6.24)), we define the outer norm as

- |h|
B\ 5500 := €% sUp ———————— §3,13 > 0,
H H 3,V3, yeQ. (1 + |y _5/')—1/2 3 3
then formulate the following outer linear theory:
Lemma 6.3. Assume that ||h|p+2,0 < 00, then the problem
ZO[‘P] =h, yell,
2 —, y e Q.
admits the solution o = T,(h) satisfying
[llss.0.0 < [7]l55.0+2,0, (6.25)

where d3 and b are positive constants; moreover, T,(h) is a continuous linear mapping.

Proof. The proof of this Lemma is the slight modification of Lemma 3.3, [45]. We shall construct
the barrier function then apply the maximum principle to show the estimate (G.25]).
Define the barrier function w as

C
w = Wy + Wy + W1 = ! )bJrOQ’LUo+CgE1.

(u? +ly = ¢
Here 4, C2, C5 are positive constants and wg, w; are functions. We will explain and determine
them later on. Since the location satisfies 53» € 0f)., we rewrite 0f). near 5; as the graph (y1,y2) =
(y1,p(y1)) with p(0) = 0 and p’(0) = 0, then find
Jwy _ b (2= &) — (1 — &) ()
ov ly = &l + 1y =D L+ |p'(y)|?
=0("). (6.26)

To guarantee the boundary condition, we choose wg as the unique solution to the following problem

{ —Awg + VV - Vg + e2G(y, §)wo = 0, y € e, (6.27)

0 ow
- -8, ye o,
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Moreover, one has wy satisfies wg < °. Letting w; := &®

__ Gbry Chb
(u2+ 1y = &NP+2 0 (ly — &N + |y — &))b+!

N 4Cbly — €2 Gy —¢)
W+ ly =D +ly =€) ) A+ ly=¢)+?
CIEQG(yug/) 2 N\ —
———— = 4 (3e°G :
TETE)E + C3e (yafj)wl
C1b(4 —b) Cib(y — &)
> - denVH®
(W2 +ly =2 A4y —¢)i+
ClE2G(ya€;‘) Cy
A+ ly=¢° (14 |y — &Pt
where Cy4 > 0 is a positive constant. On the other hand, upon combining ([€28) and (E21), we find

2_15 = 0 on 09). Therefore, we use the maximum principle to show that

, we calculate to get for y € Q,

Lo[w] =

denVH®

+ C3e*Gy, &) =

ol < &% [hfpra,0w,
which gives us the desired estimate (G.25]). O
With the preparation of error estimates shown in Section [B] and linear theory shown in Section

arising from the transported Keller—Segel system, we next investigate the existence of solution to
the u-equation of (3]). In particular, we shall establish the linear theory of Stokes operator.

7. ERROR ESTIMATE AND LINEAR THEORY: STOKES OPERATOR

In this section, given the ansatz of (n,c), we compute the error of u-equation at first. Recall that
u-equation of (L)) is
|Ve|? 2

) +50V<%). (7.1)

U-Vu+ VP = Au— £V - (Ve® Ve) + aov(
In light of [@8]), we have the forcing term in (7)) becomes

Vo (Ve®Ve) =V - [V(I + HE + ) @ V(I + HE + )]
=V, (VoI ® V,T) + 2V, - (V,[ @ VH) + 2V, - (V,[ ® V1))

It follows from (2] that (ZI) can be written as

9 0%
—Auu — & [vw (VoL ®V,TD) + 2V, - (V. @ VH) + 2V, - (Vo[ ® V1))

u-Vu+v(P—go|Vc|2 _ 02)

+ Vo (VHOVH) +2V, - (VH@ V1) + Ve - (Vo ® V1) |. (7.3)

Upon letting P := P — & ‘V;‘z _ 50% and
F:=—¢g [me QV.I +2(V,IT®VH) + 2(V, I ® V1))
+VHQ®VH +2(VH® V1) + Vb ® vm],

we obtain (3]) becomes
u-Vou+ V,P=Au+V,-F
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Considering the divergence-free and boundary conditions, we rewrite the u-equation in (LI]) as

u-Vmu—i-VwP:Amu—i-Vw-IF, x €€,

Vz-u=0, x €€,
u-v =0, x € 09, (7-4)
(Su-v)r =0, x € 0.

It is straightforward to see that in R?, F is a 2 x 2 matrix, i.e. F = (Fj;); j=12. Of concern
the existence of the solution to system (4], we find it is necessary to study the corresponding
homogeneous problem and impose the orthogonality conditions on (Z4]) if the non-trivial kernel
exists. Indeed, as shown in Section 2] more precisely Theorem .13 if the following compatibility
conditions hold:

J(u-ku)-ﬁda@:J (F-v)r-BdS— | F:VBdx, (7.5)
Q oQ Q
and

J Vz~ud:1:=J u-vdr, (7.6)
Q oQ

where B = cx' + b and x* = (—x5,2;)T with ¢ = 0 and b being a constant vector, we have there
exists a unique solution u to system (Z.4]). Thus, for the proof of the existence, it suffices to verify
([T3) and ([Z6]). On one hand, since u-v = 0 and (Su-v), = 0 on 952, one obviously has (Z.6) holds.
On the other hand, we compute

J(Vm-]F)-ﬁd:czj (F-V)T-ﬁdS—f F:VAda, (7.7)
Q o0 Q
and use V -u = 0 in ) to get

J(u-Vmu)-ﬁd:E=J[Vm-(u®u)]-ﬁdx

Q

Q
=J [(u®u) -v]; -BdS— | (u®u): VBdz. (7.8)
Iy} Q
Next, we calculate the integrals term by term. Recall that F = Ve ® Ve, which is

F (0z,€)%  0Op,COp,c
N aml Camzc (8120)2 '

Then we have

F.v— ( Oy €(Ony V1 + Oycia) ) _ ( 0xlc§—§ ),

Oy C(Ogyc1 + Opyca) Oy Co

where v = (v1,12)7. Noting that c satisfies the Neumann boundary condition, one further obtains

J (F-v),-BdS =0. (7.9)
o0
Similarly, by using u- v = 0 on 02, we get
J [(u®u)-v],-BdS =0. (7.10)
o0
In addition, since
0 -1
w-(] )

we find

f F:VBdr = J (Opy COpyC — Oy COgyc) dz = 0. (7.11)

Q Q

Furthermore, the symmetry of u ® u implies

L(u®u) : VB dx = 0. (7.12)
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Upon collecting (1), (T8), (C9), (I0), (CII) and (CI2), one obtains (T.H) is true. Therefore, we

have (T4 admits the unique solution u under the solvability conditions () and (T.8]).
Next, we perform the error analysis. Noting that the location £ of the single boundary spot is on
09, we have to flatten the boundary locally. Indeed, one has for |z — | < ¢,

Azu=Axu+ (p'(X1))?0x,x,u — 20" (X1)0x,x,u — p"(X1)dx,u

1 1 2 1
=zAvu+t E—Q(P/(Eyl))%lfmu — 2/ (EV1)0vviu = —p"(N1)dvu,

Vmp=((9X1P—p/(X1)(9X2P,aX2P)
=VXP—(p’(X1)6X2P,O)

1 -1 -
=gVfo g(pl(EY1)8Y2P,O).

and
o 0 0
Ve F=(-2, 2 ) F— (-2 . p(X1),0) - F
(axl axg) (aXQ /(X1),0)
1 1/ 0
=~ Vy F— (2 . j(V1),0) - F.

ey 5(6}’2 PH(eN), )

Since p’ and p” satisfy (5.7) and (5.8]), we find in the inner region,
e2A,u=Ayu+o(l), eV,P=VyP+o0(l), eV, -F=Vy- F+o(l). (7.13)

In addition, considering the divergence-free condition V,-u = 0 in 2 and Naiver boundary condition
(Su-v); =0 on 09, we have in the inner region,

eVy-u=Vy- -u+o(l), eSpu-v)r =(Syu-v); +o(1). (7.14)
Moreover, we decompose u as
u=cu'x(y) + u°. (7.15)
By using (7Z.13)), (7I4) and (7.15)), we formulate the inner problem satisfied by u! as

VP =Au' +V-F, YeR%,
V-u =0, Y eRZ, (7.16)
dy,ul = ub =0, Y € 0R?,

where u' = (ul,u}). Correspondingly, noting that
A(uly) = Auly +2Vu' - Vy + u'Ay,
one establishes the following outer problem of u°:

Vm(P —xP) = Awu.o + (1 —=x)Vs -F+2eV,x - Voul + (A )ul — PV, 7€,

Vi -u® =—-eVyx-u, T €,

u v =0, r € 09,

(Se(u®) - v)7 = =(S;(eu'x) - V), z € 0N
(7.17)

After finishing the error estimate, we shall first focus on (.I6]) and establish the inner linear theory,
then find the solution to (Z.I7) by using the WP estimate of Stokes equation.

To study the inner problem (7.186]), our idea is to perform the extension of velocity field u' and
solve the whole space problem, then derive the desired pointwise decay estimate by the representation
formula. To begin with, we state the following useful lemma.

Lemma 7.1 ([40, Lemma 2.2]). Leta>0,b>0, k>0, m >0 and k+ m > N. Define

dz
I:= , = 0.
JRN ([ +a)F(z—a[+ )" *
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Then, with R = max{|z|, a, b} ~ |z| + a + b, we have
N—k—m —-m R —k R —m , N—k —kpN—m
I <R + 0xn R 10g3+5mNR 10g€+]lk>NR a +1,,~nR b ,

where 6qp and 1o~p are defined by

5aﬂ={17 a=ﬁ7 1a>6={17 a>/37

0, a=7; 0, otherwise.

By using Lemma [} we are able to derive the decay estimate satisfied by u! in (ZI6)). Before
stating our result, we define the norm | - | sy—2,4+2 satisfied by the forcing term F as

IF5r—2a+2 =& ™) sup [F|mo(l+[V]*?), (7.18)
YeR?%

where 7, a > 0 and |F| is given by

|F|l,0(Y) := sup |Fj;(Y)| for Y e RY.

ij=1,
Thanks to (C.I8]), we summarize our result as the following lemma:

Lemma 7.2. Let v € (0,1) and a € (0,1) be constants. Assume that ||F|
solution (u*, Py) of system (T.I6) satisfies

Sy—2,a4+2 < 00, then the

X 57_2
T, < =
jH:l?)§|u](Y)| ~ ‘|F|S,v—2,a+21 Y (7.19)
and
(V)| <|F o 7.20
< —_—. .
P 5 Bl 1201 o (7.20)
Proof. First of all, we define EF as an extension of F to R?, which is
EF(Y1,Ys) = i =l (Y1,-Ys) for Ys < 0.
—Fy oo
Then, we let @' be the solution of the following Stokes equation in the whole space R?:
VQ, = A + V- (EF), Y eR?,
{ V-il =0, Y € R?. (721)
We have from the representation formula that the solution to (ZZI)) is
2 2
al(Y) = Z JRQ Uij(Y —2)(V - (EF)),(z)dz = Z J}Rz Ui; (Y — 2)0,, (EF) 1 (2) dz,
’:1 PR (7.22)
3 2 2
Qu(Y) =), , Q;(Y = 2)(V - (EF));(2)dz = )] » Qi (Y — 2)0., (EF)jx () dz,
j=1 Jk=1

where (U;j,Q;), i, = 1,2 is the Lorentz tensor given by

ZTiZ 5

1 1 Zj

- 2wo|z|?’

and wy denotes the measure of the unit ball in R2.
Now, we verify that the restriction i'1‘|R2+ is the solution to (CI6). It is straightforward to show

that the restriction i'1i|R2+ satisfy Stokes equation (I6l);. Next, we check the boundary condition
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([CI8)2. Indeed, we rewrite (C.22)); as the following form:

(V) = JRQ (ﬁ log |V — z| + 4—302 %) (V- (EF)),(z) dz

1 (Y1 —21)(Y2 — 22)

+JR2 4_w2 |Y*Z|2 (V(EF))Q(Z) dz,

BY) = f ﬁ . |§2)_(§|2 A (v ®F)(2) d

+ JRz (—i log|Y — 2| + 4—(12 %) (V- (EF))2(2) dz.
Noting that
(V- (EF))1(2) =02, (EF)11(2) + 02, (EF)12(2),
(V- (EF))2(2) =0z (EF)21(2) + 02, (EF)22(2),

we find (V- (EF)); and (V - (EF)), are even and odd in 29, respectively. Then, we obtain
( 1 —Z2 2 (Y= 21)?(—2)

Oy, (Y1,0) = J

R2 _E (Y1 — 21)2 + Z% - 4wg ((Yl _ 21)2 + Z%)

2) (V- (EF))1(z)dz

1 (Y1 — 21) ((Yl —21)2 + z%) —2(Y1 — 21)73 . Ny —
+ JW o (O o)+ 27 (V- (EF))2(2) dz = 0,
and
= [ L =e(hia) o 2)dz
0.0 - || g g (V- () (2)d
%

1
_ _ 2 2 __ . =
+ J}Rz ( yym logy/ (Y1 — 21)2 + 22 + Tos =T z%) (V- (EF))2(z)dz = 0.

It follows that the boundary condition (T.18)); is satisfied, and hence u' = ﬁi|Ri solves (T.1G).

Our next aim is to show ([Z.I9) by using (Z22). In fact, we have from integration by parts formula
that for Gl,

@) =— Y f 0, Us (¥ — 2)(EF);1(2) dz. (7.23)
jik=1YR?

Noting that F satisfies ||F|s,,—2,a+2 < o0, we take

-2
[Flio(2) § 1o @< 0.1, (7.24)
Upon substituting (Z224)) into (Z23)), one has
~; 1 g1 2
pw (V)] < J;W Y — 2| 1+ |z|>te dz. (7.25)

It is necessary to show that the RHS in (T25]) is well-defined. In fact, we find

J 1 1 d J 1 1 d
2= ————s—dz
r2 [Y — 2| 1+ |22t r2 2] 1+ ]z =Y|>te
1 1 1 1
| Rt e
JBO(J) 2| 1+ |z = Y[2+e R2\Bo(s) |2| 1+ |z —Y[**+e

27d J‘ 1 1
-4 e
1+ |Y|2+a R2\ By (5) |Z| 1+ |Z - Y|2+a

. 1 1 1
max |@;(Y)| < 6”_2f dz ~ 57_2J —dz
=12 r2 [Y —2[ 1+ [z[>*e R2 (%+|z|)(|z7Y|+%)2+
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Then, we invoke Lemma [71] to find
1 1 g2
Y) <2 + < :
max [5(Y)] 5 € <(|Y|+1)1+a |Y|+1> T+]Y]

which gives the proof of (Z.19).
Next, we derive the decay estimate for pressure ()1. Recall that the representation formula for

Q1 in (T22) is
2
am =X [ o -y - @), (7.2
j=1
where |Q;(z)| < |z|7!. According to the assumption that |F||s,—2 442 < 00, we have
F o 2
T, < -
]H:ullé |(VY )J(Z)| ~ 14+ |Z|3+a' (7 7)

Upon substituting (Z27)) into (Z26]), one obtains

1 g2

d
@05 | e

Similarly, we have

J 1 1 d J 1 1 d
z = — __dz
r2 |Y — 2| 1+ |23+ r2 |z| 14 |z =Y|3te

—J v g f 1 g
Bo(s) 12| 1+ ]z = Y[3Fe R2\Bo(s) 12| 1+ |z —Y[?Fe

276 +J‘ 1 1 d
= — 2z,
1+ |Y|3+a R2\Bo (5) |Z| 1+ |Z - Y|3+a
where § > 0 is a small but fixed number. Thus,

2
Lo e R | e
g2 [V — 2| 1+ 7] R (2 4+ 2)(lz = Y|+ 3)

By using Lemma [.1] we further get

1 1 er—2
72 + < :
Q)<< <<|Y|+1>2+a |Y|+1) ST

Now, we derive the decay estimate of Q1; however, by noting ([TI9)), the algebraic decay rate
satisfied by @ is expected to be 2. To show this, we integrate the solution formula ([26]) of Q; by
parts to get

_y f Q)Y — 2)0-, (BF)j4(2) d=

Jkl

-- Z | @ 1@ - )
2 2
S R e T o IS N

o ijl Lm(a) @5(2) 0=, [(BF) ;i (Y = 2)] d

2

+J;1LBD(6)Q (2)(EF) (Y — 2) - v.dS. + Z J 0szJ 2)(EF) (Y — 2)dz,

J,k=1 \BU
(7.28)
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where v, denotes the unit outer normal of By(d). Noting that |Q;(z)| < |z|~!, we find

2 —
1 g2
- Q3(2)0:, [(BF);5(Y — 2)]de| < f 1_ a7 4
‘ j,kz—llfBo(é) ’ * ! ‘ Bo(o) 2| 1+ |z = Y[3ta
21
_ —2
=7 W’ (7.29)
and
Y [ QemRL - vas Lo,
i(z ik —2)-v,dS,| < f — z
21 deBo) ! ! oBo(s) 2| 1+ |z[*T
eV 2
:W. (730)

Moreover, in light of |VQ, ()| < |2|72, combining (Z.29) and (T30), we apply (724) on (T.28) and
deduce that

~ 2o 2reV 2
)| < y—2
Q) 5 e YPre T 11 62+a

J 1 Y2 J
+ ———————dz
R2\Bo(s) [2[* 1+ [z — Y[2Fe
1
Ns'Y*QJ N 5 T 9Fa dz
R2 (2 +2])" (= Y|+ 3)
Thanks to Lemma [Z.I] one finds

. o 1 1
Q1 (Y)] < &7 [W(1+10g(1+ |Y|))+W]
2 Y[ 1
= (<|Y| (e 1)2) 020 (731
- g2 g2

~

+ :

(L+ V> (14 ]Y))?
Then, we simply take 0 = a in (3] to obtain

~ 8’7_2

Y| € ——=,
QWIS o
which completes the proof of ([T.20)). O

Lemma establishes the desired inner estimate of the velocity field u. Next, we consider the
outer problem (ZI7) and hope to find the solution via the WP estimate of Stokes equation. To
this end, we must estimate V,u! and readiy have the following lemma.

Lemma 7.3. Under the assumptions of Lemma[7.3, the following estimates hold:

g’ 3

T ’LY < F —2,0+277 N2
|v u( )| H |S;'Y 2, +2(1+ |Y|)2

(7.32)

and

IVaPr e (Base)\Bs(6) S Ve Flloe(sas6)\85))- (7.33)

Proof. Noting the representation formula of u! is (7.22));, we have

o, (V) = )] J 02 Ui (Y — 2)0., (EF) () dz. (7.34)
jik=1YR?
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Since max_ |V2U;;(z)| < |#|~2 and F satisfies
ij=1,2
e’ 2

Il 7,00 (2) < T4 [o2ra’

one applies the integration by parts on (Z34)) to get
: 1 Y2 1 12
e B e ] IR e ey
Bo(sn) 12| 1+ [z = Y[3*e B2\Bo(s:) 12> 1+ [z =Y [>*¢
~5772J\ — 1
R (2| +3) (= Y|+

By using Lemma [l we obtain

dz.
2
%) +a

1 1 1
dz < + .
J. 1+ D% v+ ) & S T oz (9] 02

Moreover, recall that y = m;f, one completes the proof of (Z.32]).

For pressure Py, invoking the W2? theory shown in Theorem 213, we readily derive the estimate

(C33). O

With the help of Lemma [.3] we now focus on the outer part and formulate the outer linear
theory satisfied by u®. To begin with, noting the existence of non-trivial kernel discussed in (7.5)
and (Z6), we must impose the orthogonality conditions on system (ZI7) and modify the problem
as

Va(P = xP1) = Au° + f+diB, z€,

Vi -u®=—-eVyx-u, €,
u v =0, ) x € 09, (7.35)
(Sz(u°) -v), = hr, x € 09,

fou®-Bdr =0, u®e H*(Q),
where 3 = cx* + b with constant ¢ # 0 and constant vector b, and
fi=(1—=x)Va -F+2V,x Vou + (A x)u' — PV,
- ) (7.36)
ht = — (Sz(eu'yx) - V).

Here d; is determined to satisfy
J f-ﬁd:v—kdlf ﬁ-ﬁd:erQJ hr-BdS = 0.
Q Q 0

Then, considering system (Z.35]), we have the following results:

Lemma 7.4. Assume that |F|s,—2.a+1 < 0, then we have system (7.39) admits the solution (u°, P)
satisfying

[a®[w2.p () + |P — xPy lwir) S [Fllsy—2.24a P> 2. (7.37)

Moreover, we have the following Hélder estimate holds:

[u®ce) S |Fsqy—2,2+as (7.38)

where a € (0,1).

Proof. We shall apply the W?2? theory on system (7.35]). Before this, we must verify the compatibility
conditions. It is straightforward to see the first condition is satisfied since we choose d; such that

Jf-ﬁdﬁdlfﬁ-ﬁdﬁzf hr-BdS = 0. (7.39)
Q Q o0
Next, we claim

J sz-uidaz =0,
Q
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which establishes the second orthogonality condition. Indeed, we have the fact that u' is divergence-
free. Then in light of u = u'y + u® and the boundary conditions of u', one completes the proof of
our claim.

Now, we can use the WP estimate (2.22) to find

< [(1=x)Ve - F+2eV,x - Vou' +e(Ax)u’ — PV

1o yauny + | P = xP Ao

Wtr(Q)
T gy + | Saleun) 2]

_1
w PP (09)
+ du 8] e (-
(7.40)

For the formulation of the outer estimate, it is necessary to study d;. Thanks to the cut-off function
X, we have from (739) that

dy = — (Lf-ﬁdw—i—2LQﬁT-ﬁdS)/JQﬁ-ﬁd;v
— ( L\Bs@) 7. Bdr + 2LQ\35<5> hr ﬁdS) / Lg- 8de.

Then by Holder’s inequality and Trace theorem, we estimate d; to get

jda| S 1oy + 1Al oz (7.41)

(o)’

where f and h are given by (Z.36). With the help of (Z4I)), we utilize the boundedness of || 3| Lr(Q)
and check (T40) to obtain

[0 |y ) + le — XPHWLP(Q) < | =x)Ve - F+2eV,x - Vou'! + (A x)u! — Plvm)(HLP(Q)

+[eVax - wp g + (Seleu’x) - V)THWk%wp(m) .
(7.42)
Noting the definition of the cut-off function y, we further have
(1= 2)Va  F| < [Fllsy-22+a8"", (7.43)
126V, x - Vo' + e(Apx)u' — PVox| < |F|s,y—2,24087, (7.44)
eVax - W] S [Flsoa2ra” (7.45)
and
[eVax - Vo] < ||Flls.y—2,24+a8” (7.46)
In particular, since dy,u} = uh = 0 on JR?, we get
|(Sa(eu'x) - v)r| < [eVax - u'l + [e*0] < &7[Flsy—221a (7.47)

and
‘Vz[(Sm(suix) V)| < [eVax- Veul| 4 [eAyxul| + €2V, ul
< €7|Fllsy—2,2+a- (7.48)

Upon collecting (T43), (T44), (C43), (C46), (40 and (T4]), one finds from (C42) that (Z37)

holds. Moreover, noting that p is assumed to satisfy p > 2, we use Sobolev embedding theorem to
readily obtain (7.38]). O

For the velocity field u, by using Lemma and Lemma [7.4] we have the following proposition:

Proposition 7.5. Assume that |F|s—1,2+c < © with 0 < 7v,a < 1. Then there ezists a solution
(u°, P) to system (TA4) satisfying
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o forx € Bs(€) := {z||x — &| < 0} with § > 0 being some sufficiently small number,

g7 1
[u(@)] S [Flls 202 — (7.49)
1+ |25
and
B(@)] < |F|
P(z)| < |F|sy—2,a42———=;
T4 Y ))?

o for x e QN\B;s(&),

lalwes@ss@) + IVPlrr@ss ) S IFlsy—224as D> 2;

moreover,

lullce@ s ) < [Flsy-2,2+a-
Focusing on the results stated in Proposition [Z.5] we give some remarks.

Remark 7.6.

e For the outer problem (717), we find the only difference between (7.17) and (7.33)) is the
Lagrange multiplier term di18. In fact, by solving the reduced problem in Section[8, one can
readily see that dq = 0.

o ([T49) in Proposition 7.5 implies that
sy-1.1 < [F|

e Noting that u is divergence-free, we can write u-Vu =V - (u® u), where ® represents the
tensor product defined by (v @ w);; = viw;. We shall solve u in the class |ufs—1,1 < 0.
Then the advection term u -V u satisfies

[l Sy—2,2+a-

62773

[u-Veu| < ——,
L

which is a perturbation compared to V - F. In this case, we are able to solve u by the fized

point argument and the detailed discussion will be shown in Section[3

With the help of Proposition [[.5] we are able to study the concentration phenomenon in Section
&
8. INNER—OUTER GLUING SYSTEM: EXISTENCE OF SOLUTION

This section is devoted to the construction of the boundary spot in stationary problem (LII]) via
the inner-outer gluing method. Before performing the inner-outer gluing procedure, we collect some
notations and definitions. Recall that the inner operator Ly [®] is given by

Lw[®] = A,® — V, - (WV,0) =V, - (BV,T), —A;'d = ¥;
the outer operator is defined as
IO[‘P] = Ayp — Vyp -V, V — Vo,
where the inner and outer norms | - |ls,,, and | - |, are

[R50 2= &% sup [A(y)[(1 + [y — €'))"* and [h],,0 := sup e |h(y)[(1 + [y — &'])™,
yeR2 yeQ

with y = £ and g = f In addition, ¢ is decomposed as

o) = 5@ Wl — €D + "

)= |

where Y is

3

1, r
0, r

ol

VoA
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and 0 > 0 is fixed but small constant. However, the center of the boundary spot is located at the
boundary of Q. To tackle this, as shown in Section [ we define the graph p(z1) as {(x1,z2) =
(1, p(z1)} with p(0) = p’(0) = 0 and transform (z1,22) and (y1,y2) as

X1 =21 =&, Xo=a2—& —plz—&),

1
Yi=y1—&, Yo=y2— & — gp(a(yl — &)
where y1 = x1/e and yo = x2/c. Moreover, for any function w,

Ayw = Axw + (p/(Xl))28X2X2w - 2p/(X1)aX2X1w - p”(Xl)aX2w7

/ 2 dw ’ ’ 2 (8'1)
1+ (P'(X1))) = = (¢ (X1)0x,w = Ox,w = (p'(X1)) " Oxp w0,

and

Ayw =Ayw + (p'(eY1))? Oy, yv,w — 29" (eY1) Oy, vow — ep” (€Y1) Oy, w,

T+ (o) 52

5, P (EV)dvw = [L+ (1) ]ovw.

For the sake of convenience, we denote the flatten operator P, ¢ such that for any function w,

Poew(zi,z2) = w(X1,X2), Ppew(yr,y2) = w(Y,Ys).

In addition, we are able to compute V,(P,¢w) and Ay(P,¢w) in the X and Y variable by using
&) and [®2), respectively. With the flatten operator P, ¢, we further define the inner norm in the
half space R? as

[P,z = €% sup [A](1 + [y])**, b2, 02 > 0.
ye]Ri

We can get the desired solution (¢, 1, u) of (LI if (@', ¢°, u, £) solves the following inner-outer
gluing system:

u-Vu+VP=Au750V~}'(<I)iH,<p°,u,§) in €,

V=0 in Q, (8.3)
u-v=0 (Su-v),=0 on 09,
and
LW [(I)II‘I] :77'[ ((I)II—Iﬂ 3007 u, §H) n Ri,
%?;O—Waaq;;’ = B(®y.¢°u.6n)  on ORI, (8.4)
L [¢°] = G(Py, ¢°,u,€) in Q.

where @y = P, @, Uy = —AJ @Y, €y = (€4.1,0)7,

D i Vel? 2
F(Pp7§/®,@0,u,€) :VC®VC* <| 2| ) (_)7

H(P,e®', 0% u,éy) :=eV, - (WV,H)x +eu- V,Wx + &V, - (WV,9°)x
1 i o i £
+229, - (S +¢°) Vi )x + €V, - (¥'V. H)x
+teu-V,dlxy —V, (WY, T)y +V,  (WV, Ty
+ [vy : (va‘i’i) —Vy- (va‘I’i)X]Xa
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o B oy, T\, NG -

csor o ar

u (aY O -5, ~wm ¢ P O)eYi)?)
Pl a H " . aa;l . aa;l " 2

@l (e (0)eYs — Tl G 0)e1)?)

+e(W + @}{)(;—i — p’(aYl)a—)Ii + [0 (eY1)] 6—X2) +H.0.T.,
and
G(P,e®', % u,&) :=e’V, - (WV,H)(1 - x) +e*u- V,W(l —x) + &>V, - (WV,4°)(1 - x)
—2V,®' -V, x — ®'A,x + 'V, T -V, x
+e2Vy - (V) (1 = X) + @ (V. H - Vyx)
+e(u-Vyx)® +ctu- Viup°
+ [Vy ) (va‘i/i) —Vy- (va‘l/i)X](l - X)-

In particular, as shown in Section [5l all terms involving the curvature are readily perturbations,
which implies

H(P, @', 0% u,&) =eVy - (WVxH)xy +eu-VyWxy +*Vx - (WVxY°)xn
42V - ((5_12@’“1 + <p°)vy¢) Xi +eVy - (@'Vx H)x
+eu-Vydixy — Vy - (WYY T)xy + Vy - (WVy )y
+[Vy - (WVy W) = Vy - (WVy¥)xu]xs + HO.T,
where the cut-off function x g is defined by
xu(y) =1 for y e@i N Bs/-(0) and  xpm(y) =0 for ye R2 n Bis,.(0),

with 6 > 0 is a small constant. For operator Ly [P, ¢ ®'|, we rewrite it in the Y-variable to get

Lw[Ppglq)] Lwy[(I)H]+ N [‘I)l ]

where
Lwy[®] =Ay® —Vy - (WVyU) — Vy - (dVy]), —A;1<I> =V,

and N,[®};] is given by

w

s aQ(Q)HXH ) ow 6§H 62@]{
it 2 J7 (22 -

o(paxm) OT 32F
Y, 0Y; @ ov? ((I)HXH))]

/(&_Yl)[a2(¢HXH) _ (0_W 0@]{ ow a@H) _ aQEH W (8.5)

+

0Y10Ys oY, oYy | 0Ys 0Y; 0Y10Ys
_ (3(‘1’HXH) or 3_Fa(¢HXH)) T (@ )]
oY, oY, oY, oY, oY 0Y, PAH
o 0w or
—ep(en1)| ( a@jH) ~ WS~ (@) ay]

with U = —(A +&2) Y (®rxn).
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To use Lemma [6.2] we have to impose the orthogonality condition on ([84]). To begin with, we
define compactly supported radial functions Wy(r) such that

2
R+

and compactly supported radial functions Wi 1 such that
f Wia([Y])Y1dY = 1.
R

Next, we modify (84) to formulate the following problem:
Lw,y [®Y] = 7:1(‘1’}{, ¢°,u, &) — mo[H]Wo — ma[H]W11  in R2,

0D} A% S(@i o
(8€O*W(ayf :ﬂ(‘bHa@ ,u, &) on 0R?%, (8.6)
&L [¢°] = G(®ly, ¢°,u,€) in Q.

where
H( iHa 9007 u, gH) = H(q)}b 9007 u, gH) - NP[(I)}IL
mo[h] and m[h] are given by

mo[h] = JR hdY — BdY and my[h] = J hY1dY — BY: dY. (8.7)

2 2 2 2
2 oR? R% oR?

Given the velocity field u, we are able to find the solution to (86) by invoking Lemma and

Lemma Indeed, based the linear theories developed in Section [G] we shall solve the inner and
outer problems arising from the transported Keller-Segel model in the norms below.
e We use the norm | - |5,.440.# to measure the right hand side # in (88)), where
- s -
HhHég,4+a,H =% sup |h|(1+]y)**7
ye]Ri

with o > 0 and d2 € (0,1).

e We use the norm || - |[s,,240,1 to measure the inner solution ®; in (86]), where
H(I)ilLI!|52,2+g,H =792 qup |<I>}I|(1 + Jy))*re. (8.8)
yeRi

e We use the norm | - | 55,245, to measure the right hand side G in ([8.6]), where

s

9ll53,2+5.0 == 7% sup |g|(1 + |y — €')***
ye,

with d5 € (0,1) and b € (2, 3).
e We use the norm | - |5,,6,0 to measure the solution ¢° in (86, where

[0°l52.0,0 2= €272 sup | (1 + |y — €])".
yeQe

Based on linear theory developed in Section [7} we shall solve the incompressible Navier-Stokes
equation with the free-slip boundary condition in the following norms.

e We use the norm | - |s,y—2,2+q to measure the forcing term F, where
—(~— xr — a+2
IFlsm2asn 1= =0 D sup | F@)] (1 +] 2= ™)
zeQ) g

with v € (0,1) and a € (0, 1).
e We use the norm | - |s—1,1 to measure the solution u, where

sy—11:=c O Vsup |u(z)| (1 + ’x —¢ D (8.9)
e €

[l
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We then define the spaces for the inner problem, outer problem and parameters as

By = { @) eL?(R2) : 7,8} € LZ(R2); @], o, 0 <o}, (8.10)
o e o 0 o 6@0
E, = {cp e L) : Vyp° € LP(Q); [¢°]s5.6.0 < 0, 5, —0on aQE}, (8.11)
and
Ep = {£eR?: [¢], = [¢] < o0}, (8.12)

Moreover, we define E4 and solution ¢ as
Ey=Eix E,, ¢ = (P, ¢°)"
with the norm | - ||g, is given by

1125 = [l 1050 + 1955 .00
For the incompressible Navier-Stokes equation (83]), we shall solve u in the following space:
E,={uel?*Q):V-u=0inQ, |u|s,_11 < Meo}, (8.13)

where u satisfies the boundary conditions, €y > 0 is the sufficiently small but fixed number and
M > 0 is some fixed constant.

We collect (810), BII), BI2) and (BI3) to define space X as
X :=E x By x E, x E, (8.14)

In conclusion, we will solve (8) and ([83)) in the space X by the fixed point theorem.

8.1. Estimate of remainder term ¢.

The coupled system (IT)); (I3 is close in spirit to the classical minimal Keller-Segel model.
To find the desired steady state, it suffices to show u - Vn is a perturbation term in the topology
given above. In this case, we are able to show the existence of ¢ = E%‘I)‘H xu + ¢° by performing the
argument shown in [45] with the slight modification.

Effect of the transport term u- Vn in the inner problem.

As discussed in Section [1 the scaling invariance leads to the fully coupled property of system
(LII). Concerning the linear theory established in Section [6] we find the term u - Vn gets coupled
in each mode. More precisely, the mode k of velocity field u solved from ([83]) with the forcing term
—eoV - (VI ® V1) enters the inner problem of transported Keller—Segel model. To study the role
of advection (u - Vn)y, we note

1 1
u-Vyn = u~vx(€—2w+ 5 ®lxn + <p°),
then use the topology defined in (814 and the norms given by ([B8)) and (8] to obtain in Y-variable

and the inner region,
Me
let(u- V)| < EWW.
It follows that

le*(a - Vn)syaso.m < €Y% Mey.
If we choose d3 = v € (0,1) and let gg be fixed but sufficiently small number, we have u- Vn is
readily a perturbation compared to the other terms in right hand side .

Effect of the transport term u- Vn in the outer problem.
In the outer region, we can see the leading term in advection u-V,n is u- V,¢°. Then, thanks
to the cut-off function, we similarly substitute n = S%W + giz‘I’IHXH + ¢° into u- Vn to get

e (1 = xmu- V| < e(l = xu)u- VyW|+e(l = xu)|Wu- Vyxul
+e(l—xm)hu- V| +e(l - xm)|@yu- Vyxul
€’Y+52(1 _XH)

+b+2
vy —epee < Meoe

+e3(1 — xm)u- Vy¢°| <
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which implies
H€4(1 - XH)(U‘ ’ vn)Hlss,b-i—Zo < M€0€’Y+62_63,

If we choose v > d3 —d2 € (0, 1), we find the drift term u- Vn is a perturbation in the outer problem
due to the smallness of &g.

We have shown that the transport term u - Vn can be regarded as the perturbation and hence
does not influence the fixed point argument. Next, we focus on the incompressible Navier-Stokes
equation (B3]) and estimate the velocity field u.

8.2. Estimate of the velocity field u.
For the analysis of solution u to (83)), the key is to estimate the coupled forcing term —&oV - F,

which is
[Vel?

Ve 2
—eoV - F =—e9V - (VC@ VC) + oV

>+50V<%). (8.15)

First of all, by using the c-equation of (I.T]), we obtain the right hand side of (8TIH]) has the following
equivalent form:

2

2
-0V - (Ve® Ve) + EOV(WQC' > + EoV(%) = go(c — Ac)Ve. (8.16)

Then one observes that in (816]), the main contribution terms come from I' + H¢ + (W;I,o + W}Ll +
TIH L)x, where @;LO’ @;Ll and @}I | are mode 0, mode 1 and higher modes in the remainder term,

respectively. Noting that I';, H® and Ti}w dominate other small terms thanks to Lemma [6.2] we
compute from —A,H® + H® = —T" in  that

(c—Ac)Ve (T + H + Ty o — AT — AH® — ATy, )(VT + VH® + V)
— — AIV,I — AV, HE

—i 2 —i
— — Vv Uy o)?
— V- (VU ® VT ,) + v<7‘ 2H’°’ ) i+ v<7( ?0) )
Hence, by using —A,T" = E%W, we next only need to evaluate

V., (V,T®V,T) and V, - (V,T ® V, Ty, (8.17)
and

ATV, He. (8.18)

First of all, noting that TiH)O and I' are both radial, we claim V, - (V, I ® V,I') and V, - (Vxl“ ®

Vz@iH)o) can be written as potentials. To show this, we shall prove the following lemma:

Lemma 8.1. Assume Ri(|y|) and Ra(|y|), y € R? are radial functions. Then we have there exists
a scalar function w(y) such that

Yy (VyR1® VyRy) = Vyw. (8.19)

Proof. We rewrite the left hand side of (8I9) in the polar coordinate (p,#) and study by component
to get

[Vy ’ (Vle ® vle)]l :ayl (0y1Rlay1R2) + 0yz (ay2Rlay1R2)

=c0800,(0,R10,Rz cos® ) — sinf d9(cos? 0)0,R10, Rz
p
. . cosf .
+5in600,(0,R10,R2 sin 0 cos 0) + ; 09(0,R10, R sin 0 cos 0)

— 0500, (0, R10,Ra) + %apRlapRQ]. (8.20)
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Similarly, we obtain the second component satisfies

[V, (VyRy ® VyRy)|a =0y, (8 R1dy, Ra) + Oy, (8, R10y, Ra)
—sin 6] 0,(0, 10, Ra) + %8,,}21 A (8.21)
Combining (820) and (821)), one lets
wi= (0,R10,Rz + J %apRla,,& dp),

then has
Vy - (VyR1® VyRy) = Vyw,
which finishes the proof. O
To show our claim, we compute (817 to get
1
Ve (VoI @V, I) =5V, - (V,T®V,I)
g . (8.22)
Ve (VoI @V, 0y) ==V (V, L ®V,¥).

Noting the facts that T" and WB are radial, we apply Lemma Bl on [822) to readily obtain V, -
(V.,I'® V,TI') and V,, - (me ® Vmﬁg) are potentials, which can be absorbed in the pressure P of

T 2 Tt 2
problem (83)). It is obvious that other terms such as V(%) and V(@) are potentials.

On the other hand, we have to estimate (8I8]), which is

1 1
AmFVzHE S o 71 . w4’
| R Eay
so that
HAwFVmHE |S,v—3,3+a «1

with v € (0,1).
In conclusion, the leading order term in F defined by (819 is

d2—2

VLoV, < v,

g
e | Vils e

from which we conclude that
—i
HEOVLEP ® vmllll HS,’)’72,2+¢1 < €o,

where we have chosen d; = v € (0,1) and a = ¢ € (0, 1). For the estimate of u, we give the following
remarks:
Remark 8.2.

o As shown in LemmalG2, we have constructed the mode 0 solution @ZJ with the logarithmic
growth owing to the existence of non-trivial kernel Zy, which may cause the slow decay
difficulty in the fized point argument.

e The forcing involving radial modes can be absorbed into the pressure P thanks to Lemma
&1

e The equation —ALH® + H® = —T" helps us rule out the slow decay problem caused by HE.

o The smallness of g and the decay property of mode 1 solution guarantee the required estimate
of the coupled forcing F.

It is necessary to discuss the advection u - Vu. As mentioned in Remark [Z.6 considering the
solution u € E,, with E,, defined by (8I3)), the nonlinear term u- Vu in B3] can be regarded as a
perturbation compared to the forcing gV - F. Indeed, since u e E,, we get

f;_27—3

. R
VS
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which implies

[u- Vul

S,y—3,a+3 < e« 1

if we choose 0 < a <~y < 1.
In summary, we obtain the incompressible Navier-Stokes equation ([83]) serves as the following
perturbed Stokes system:

VP = Au— gV - Fi (P, 0% 0, Exp),
with
Fi(®, ¢° 0, n) = F(Py, 0%, u,6m) +uu,
where we have rewritten u- Vu = V- (u® u) by using the fact that u is divergence-free.

8.3. Fixed point argument: proof of Theorem
We are ready to perform the gluing procedure and prove Theorem Similarly as in [45], we
use Lemma [62] Lemma [6:3 and Proposition [[5 to rewrite the solution £ = (u, &, ¢°, &x)T as

u=A,(u, @y, 0% En), Py = A, Py, 0% 8n), ¢ =A(u, P, ¢ En),
and
£ = Ap(u, ', 9% &pr).
Recall that space X is given by (8I4), then we define the norm | - |x as
€1 = |9, 5.0 11 + 19 D500 + 1.1 + [€rtlp.
Now, we formulate the fixed point problem as
€ = A(&),
where A(E) is given by
AE) = (Au(E), Ai(E), As(E), Ap(E)), A:BicX > X
with
By:={EecX:|€|x <1}.

We claim that A is a contraction mapping from B; onto itself. The proof is based on Section 4
and Section 5 of [45], we only need to perform the slight modification. For the sake of completeness,
we give the sketch of arguments. First of all, we shall show for |€]x < 1,

JAE)x < 1.

For the inner operator A;, since we have shown the drift term u - Vn is a small perturbation, one
finds for Y € Bys/-(0), the leading term in H satisfies

Coed2
(14 [Y)rte
where C' > 0 is some constant. On the other hand, since we flatten the boundary locally near the
location &, it is necessary to estimate the new error N, given by (85]). However, according to (5.6),
(7) and (B8, one has N, is a small perturbation compared to error 7 shown in (88]).

For the outer operator A,, due to the smallness of u - V,n in the outer region, we note that the
error term involving the inner solution ®! are the leading one, then obtain for Vy®' - Vyy,
02 gz —02 02

e|Vy®' - VxH* ()| <

€ —c -
(1 + |Y|)4+g = 152627253 (1 4 |Y|)4+g+252,2537

where C} > 0 is some constant. For the Stokes operator A,,, as discussed in Subsection [B.2] we have
from the smallness of ¢ that |A,|x < 1. For the parameter operator A, since u-Vn is proved to be
the perturbation in the inner problem, we only need to adjust £z to eliminate Lagrange multipliers
mo and m; given by (87, which will be discussed later on.

As shown in [45], by choosing suitable 6, da, 83, o, b v and a, we prove that A maps from B;

into itself. Here we choose §, ds2, d3, o and b such that § ~ \/e, 0 = a € (O, %), v = b3 € (0,1),

662763|VY(1)1 . VyXHl < 01862763
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0<d3=02+% <1andb=2+ . Moreover, under the same restriction of parameters, we can
similarly show that there exist constants 71, 72,73 € (0,1) such that

|A[EL] — Ail€2]l62,240,5 < T1]E1 — E2]lx,
[AG[[E1] = Aol[E2]lI63,6,0 < T2 E1 — E2] x,
[Aul€1] — Aul€2]lsy—1,1 < T3]E1 — €2 x,
lAp[E1] = AplE2]llp < Ta| €1 — E2f x

for any €1, €5 € X with H81HX7 H£1HX < 1.
In conclusion, one finds there exists 7 € (0,1) such that

A(By) c By and | A(¢1) — A(2)|x < 7é1 — d2|x . Vo1, ¢2 € B

It follows that which implies that there exist the solution such that ¢ = A(¢).

Now, we show the contraction property of the operator A,. It suffices to adjust the location
&m such that mg = my = 0 defined by 87). We shall show &y only takes care the first moment
orthogonality condition and the mass orthogonality condition will be satisfied automatically. To
begin with, by using the Neumann boundary conditions of (n,c), we integrate the n-equation in
([3) with the Lagrange multiplier by parts to get

an 80
0= LQ (0_1/ a "a_u> ds + JQ(V ‘wndo - LQ(U -v)ndS + mo,

which implies my = 0 since u is divergence-free and u satisfies the no-slip boundary condition.

We next consider the first moment orthogonality condition stated in (6I7). We have shown that
u- Vn can be regarded as a small perturbation in Subsection [81l Thus, similarly as in [45], we have
the leading term in the Y-variable is V - (WV x H¢). Then by using the integration by parts, one
gets

EJ Vy - (WVH®)Y1xudY

R

=¢ WVH® -vYixgdS+e WV H® -eixgdY (8.23)
oR2 R2

+e WV H® - Y1VxudY,

R}
where e; = (1,O)T. Then we expand Vx H® as
VxH(x) = VxH (&) + eVXH (&)Y + O(£?). (8.24)

Upon substituting [824)) into ([823]), we find the boundary integral in ([823) exactly matches the
corresponding error which comes from 3 given in ([88). Proceeding term V, - (®'V,H) with the
same argument, we finally obtain from the first moment condition that

&1 = O(e™),

where 0 < 7y, < 1 but 7, ~ 1. In addition, we have {2 = 0 since the centre of boundary spot is
located at 0€2. As a consequence, the leading term of £ is precisely given by the critical point of
(LI6).

Now, we have established the existence of desired single boundary spot shown in Theorem
via the fixed point theorem. For the fixed point argument shown in Section [l we give the following
remarks:

Remark 8.3.

e For the mass orthogonality condition arising from the study of n-equation in (I.11), we show
it must be satisfied without adjusting any parameter by integrating the n-equation by parts.

o While solving the incompressible Navier-Stokes equation ([8.3), we also impose the compati-
bility condition due to the existence of non-trivial kernel 8. However, as discussed in Section
[4 we find [TH) holds without adjusting any parameter.

o the smallness of €y guarantee that the operator A, has the contraction property.
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For the multi-spot case, we only need to modify the ansatz as

n) = 3 2 (5) + (5 U0 On -9+ 0 )

i[%( Y g oyl (a6))] + + <%i (y— &),y 5)+¢°(>>

where £i = §;/e, {5 € Q and ¢; = 87 for j < k; {; € dQ and ¢; = 47 for k < j < m. Next, we can
solve the transported Keller—Segel models and the Navier-Stoke equation together, then perform the
argument to construct the desired multi-spots in the same manner. We omit the details.

APPENDIX A. APPENDIX: LOCAL-IN-TIME EXISTENCE

In this appendix, we shall adapt the argument shown in [73] and take the slight modification to
prove the local well-posedness of system ([LT]), which is

Proof of Lemma [ 11

Existence: Our strategy is to employ the contraction mapping theorem. To this end, we fix
T € (0,1) and R > 0. Define the Banach space X as

X := L*((0,T); C°(Q) x Wh*(Q) x D1(4,)), ¢ > 2.
where D is defined by
D;(4,) = {ue W(Q) n LL(Q) : [S(u)v], =0, u-v =0 on d}.
Let the closed set S be
S :={(n,c,u) € X||[n(-,t)| L= + [[c|wie + Jul-, t)|wr« < R for ae. te (0,T)}.

Then we introduce a mapping & = (fi)l, B, (i)g) on S by defining

t
d1(n,c,u)(-,t) = e ng — f =92V . (nVe) +u- Vn}(-,s)ds
0

t
By (n, c,u) (-, t) = A" Vey — f e(=)(A=Dp (. s)ds,
0

and

t

B3(n,c,u)(-t) == e Hauy + J e~ =D AP[(u- V)u + nVe](-, s) ds

0
for (n,c,u) € S and t € (0,T). Here and below, (¢/2)i=0, (e7*4);>¢ and P are the Neumann heat
semigroup, the Stokes semigroup with the Navier boundary condition and the Helmholtz projection
in L2(92), respectively.

For ¢ > 2, we define B as the sectorial operator —A + 1 in L4(2) with the homogeneous Neumann
boundary condition. Then, one has the fact that D(B?) < C°(Q) continuously, where we pick
B € (0,1) such that 2¢ < 8 < 1. Noting that V - (nu) = u - Vn, we similarly obtain as in [73] that
there exist constants ¢y, ca, cs(R) > 0 such that

[@1(n, e, ) (-, )| e <[ o] e +01f | BP e =9 B=Nn (. )| La ds
t 1
<|nollpe + CQJ (t—s)” B- 2||(nVe + nu) (-, )| e ds

<|nollpe + es(R)T=7,

for all t € (0, T). Here we have used Theorem [3.0]to get u € L? since « € (%, 1).
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For &, (n,c,u)(-,t), we perform the similar argument to find there exist constants c4, c5, cg(R)
such that

t
\|<i>2(n, c,u) (- )|l <Het(A_1)CQHW1,oc + C4J HBBle_(t_S)(B_l)V -(nVe+nu)(, 8)| e ds
0

t

Sleolwee + s f (t — )1 n(-,5)| Lo ds
0

<leolwe + c(RYT5,

where (7 is chosen such that 37 € (%, 1) and t € (0,7T).
Finally, we proceed ®3(n, ¢, u)(-,t) and use BI2) in Theorem BI0 to obtain

1
[®3(n, ¢, w) () [wra <[le™ouofywra + 07J le =M (u- V)u +nVe](, )| Lo ds
0

t
<luofwra + ch (t =) 2([(u- V)ulra + [nVe|ra) (- s) ds
0

<[uolwra + co(R)T?,
where constants c7, cs and cg(R) are positive. Here we have applied the Holder’s inequality to find
[(a- V)uls < Jure [ Valoe < esouffya,
and
InVe|Le < enrlnf = [Ve[waee,

with c19 and c11 are positive constants.

Now, we choose R > 0 large enough at first, then take 7' > 0 be sufficiently small to prove that &
maps S into itself and is further a contraction mapping. Then by the Banach fixed point theorem
that there exists (n,c,u) € S such that é&(n,c, u) = (n,c¢,u). Thanks to the standard bootstrap
arguments, parabolic regularity theories and de Rham theory, we have (n,c,u, P) readily solves
(TI) classically in 2 x (0,T). Noting that T only depends on |nglre=, ||co|w.= and |ug|w1.« with
q > 2, one further obtains ([B.I4]) holds.

The positivity of (n,c) is the direct consequence of the parabolic weak and strong maximum
principles.

Uniqueness: we shall argue by contradiction. Assume there are two solutions (ni,ci,uy, Pp)
and (ng, cz, ug, Ps) satisfying () in 2 x (0,7T) for some T > 0. We subtract the ni-equation and
no-equation then multiply it by n1 — ng to get for ¢t € (0,Tp) with Ty < T,

1d 9 9
_ 4 ~no)2d V(ni — no)2d
5 7 Q(nl ng)” dx + L [V(ny —ng)|” da
=J (n1 —n9)Ve-V(ng —ng)de + J noV(c1 — ca) - V(ny — ng) dx
Q Q

- L(ul —u2)Vn(ny —ng) de — L u2V(n1 — na)(n1 — nz) de.

Since Ty < T, one has for some q > 2,
[na (o)L + [n2(s )lze + [Ver ()L + [Vea( 1)L + i wre + [uz|wie < 1.

Similarly as discussed in [73], we apply V-u; = V-uz = 0 and W4 — C°(Q) for q¢ > 2 to finally
arrive at
1d

Sxan

1 A A .
<§f |V(Cl —Cg)|2 d:v—i—le (n1 —n2)2dx+01 J(Cl —Cg)QdJJ-‘rClJ |u1 —UQ|2 dx, (Al)
Q Q Q

1
(nl — n2)2 dr + §f |V(7’Ll — n2)|2dx
Q
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for ¢t € (0,T,) with positive constant C,. Proceeding the c-equation with the similar argument, one
finds

lif (c1 —c2)? dx +J |V(c1 — c2)|?dx < f (nq — ng)? da. (A.2)

For the u-equation, we test the subtraction of u; and us equation against u; — us and integrate
it by parts to have

1
3 J (u; —u)?dz + | |[V(uy —up)]Pde = — J [(w1 —ug) - V](u; —ug) - uy de
Q Q Q

+ J;)(ul . V)(u1 — ug)(ul — 112) d.I
+ J;)(?’Ll — ng)Vcl (111 — 112) d.I

+ f naV(er —¢2) - (up — ug) da.
Q

By using the Holder’s inequality, one further obtains for ¢ € (0, Tp),

1d 1
S —wldz+ = | |[V(u —u)?d
2t ), [u; — us|dr + 5 L [V (u; — ug)|” de
~ 1 ~
<02J (n1 — TL2)2 dx + 5 |V(Cl — C2)|2 dx + 02 |111 — 112|2 dI, (A3)
Q Q Q

where C’g > ( is a constant.

Define y = {,(n1 - na)?dx + §, (a1 7?2)2 dz + §, [up — uz|? dz, then we collect (A]), (A2) and
(A3) to find ¥’ < Csy with constant C3 > 0, which implies y = 0 for ¢ € (0,Tp), then reaches
a contradiction. As a consequence, we have (1) admits the unique solution locally under the
condition of Theorem O
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