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GLOBAL EXISTENCE AND AGGREGATION OF CHEMOTAXIS-FLUID

SYSTEMS IN DIMENSION TWO

FANZE KONG, CHEN-CHIH LAI, AND JUNCHENG WEI

Abstract. To describe the cellular self-aggregation phenomenon, some strongly coupled PDEs
named as Patlak–Keller–Segel (PKS) systems were proposed in 1970s. Since PKS systems possess
relatively simple structures but admit rich dynamics, plenty of scholars have studied them and ob-
tained many significant results. However, the cells or bacteria in general direct their movement in
liquid. As a consequence, it seems more realistic to consider the influence of ambient fluid flow on
the chemotactic mechanism. Motivated by this, we consider the chemotaxis-fluid model proposed
by He et al. (SIAM J. Math. Anal., Vol. 53, No. 3, 2021) in the two-dimensional bounded domain.
It is well-known that the PKS system admits the critical mass phenomenon in 2D and for the whole
space R2, He et al. also showed there exists the same phenomenon in the chemotaxis-fluid system.
In this paper, we first study the global well-posedness of two-dimensional chemotaxis-fluid model
in the bounded domain and prove the solution exists globally with the subcritical mass. Then
concerning the critical mass case, we construct the boundary spot steady states rigorously via the
inner-outer gluing method. While studying the concentration phenomenon with the critical mass,
we develop the global W 2,p theory of the stationary Stokes operator in 2D.

Keywords: Chemotaxis-fluid Models, Global Existence, Spot Localized Patterns; Global Reg-
ularity.

1. Introduction

In this paper, we consider the following Patlak–Keller–Segel–Navier–Stokes (PKS–NS) system in
2D:
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Bn
Bt “ ∆n ´ ∇ ¨ pn∇cq ´ u ¨ ∇n, x P Ω, t ą 0,
Bc
Bt “ ∆c´ c ` n, x P Ω, t ą 0,
Bu
Bt ` u ¨ ∇u ` ∇P “ ∆u ` ε0n∇c, ∇ ¨ u “ 0, x P Ω, t ą 0,
Bn
Bν “ Bc

Bν “ 0, x P BΩ, t ą 0,
u ¨ ν “ 0, pSu ¨ νqτ “ 0, x P BΩ, t ą 0,
pn, c,uqp¨, 0q “ pn0, c0,u0q, x P Ω,

(1.1)

where Ω Ă R2 is a bounded domain with the smooth boundary BΩ, ν denotes the unit outer
normal vector, Su “ 1

2
p∇u`∇uJq represents the strain tensor and the subscript τ is the tangential

component. Here n and c are the cellular density and the chemical concentration; u and P denote
the fluid velocity field and the pressure, respectively. Moreover, pn0, c0,u0q is a given initial data
with ∇ ¨ u0 “ 0 for the compatibility consideration. In particular, the boundary condition in (1.1)3
is the Navier boundary condition with zero friction. (1.1) was proposed by Siming He et al. [29]
to describe the cellular self-aggregation phenomenon in a moving fluid. The physical explanation
of the forcing term ε0n∇c is that the cells are driven by the fluid to move without acceleration, in
which ε0 measures the strength of coupling between fluid and the evolution of cells.

System (1.1) can be naturally treated as the coupling of Patlak–Keller–Segel (PKS) models and
incompressible Navier-Stokes (NS) equations. Indeed, with the absence of the fluid advection term
u ¨ ∇n, the n-equation and c-equation in (1.1) consist of the minimal Keller–Segel model, which
serves as a paradigm to describe the travelling band of E. coli [43, 44]. Of concern the variants and
applications of minimal Keller–Segel model, we refer the readers to well-written surveys [36, 63]. It
is because the Keller–Segel models have relatively simple structures but admit rich dynamics that
plenty of researchers have extensively studied them in 1D and higher dimensions over the past few
decades [20, 39, 49, 72]. Focusing on the global well-posedness of systems, Osaki et al. [62, 54]
proved that the solution in 1D is uniformly bounded in time. It is worthy mentioning that for the
2D case, one of the most famous phenomena is so-called “chemotactic collapse”. To be more precise,
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there exists some critical threshold M0 defined by

M0 “
"

8π, Ω “ R2 or BR with the initial data being radial,
4π, otherwise

(1.2)

such that when the initial cellular mass satisfies

M :“
ż

Ω

upx, 0qdx ă M0,

the solution to (1.1) is bounded uniformly in time t; otherwise if M ą M0, the time-dependent
system (1.1) admits the blow-up solutions [57, 15, 33, 56, 8, 24, 66, 70]. In particular, the authors
detected the finite blow-up phenomenon by studying the evolution of the cellular second moment
[11, 17, 22, 33, 34, 35]. Focusing on the critical case M “ M0, on one hand, the solution to (1.1)
is shown to exist globally [9, 68]; on the other hand, the infinite time blow-up solution with the
finite second moment was constructed [10, 19]. For the incompressible Navier-Stokes equation, it is
well-known that Leray [48] and Hopf [37] established the existence of global weak solutions to the
time-dependent incompressible Naiver-Stokes equation. There are also many results on the study
of global regularity in Navier-Stokes equations [7, 26, 25, 27, 41, 42, 61]. For the global regularity
of time-dependent and stationary Naiver-Stokes equations with Navier-type boundary conditions in
3D, we refer the readers to [3, 4, 2, 6, 5]. Focusing on the PKS-NS system in the whole space R2,
He et al. [29] have shown the local and global existence of solutions in the Sobolev space Hs, s ě 2
when the initial cellular mass is strictly less than 8π. Moreover, Lai et al. [47] have proved the global
existence of the free-energy solution when the initial mass is equal to 8π. We are motivated by the
results to consider the global-wellposedness of PKS-NS system (1.1) in the 2D bounded domain.

To further understand the dynamics of (1.1), it is natural to consider the corresponding stationary
problem of (1.1), which is
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0 “ ∆n´ ∇ ¨ pn∇cq ´ u ¨ ∇n, x P Ω,
0 “ ∆c ´ c` n, x P Ω,
u ¨ ∇u ` ∇P “ ∆u ` ε0n∇c, ∇ ¨ u “ 0, x P Ω,
Bn
Bν “ Bc

Bν “ 0, x P BΩ,
u ¨ ν “ 0, pSu ¨ νqτ “ 0, x P BΩ.

(1.3)

With the absence of ambient fluid flow in (1.3), it is well-known that (1.3) admits the concentration
phenomenon [71]. Indeed, of concern steady state problem (1.3) with the velocity fluid field u

being identically zero, Lin, Ni and Takagi [49, 58, 59] firstly initiated the analytical approach to
construct the large amplitude solution. Motivated by this seminal work, many researchers studied
the non-constant steady states possessing striking structures to Patlak–Keller–Segel models [30, 31,
20, 51, 12]. For example, Wei and Delpino [20] constructed the multi-spike equilibrium to minimal
Keller–Segel models in 2D via “localized energy method”. Kang et al. [39] formally showed the
existence of spikes in the asymptotically limit of domain size L " 1. Moreover, its local stability
was studied by Chen et al. [14]. It is worthy mentioning that Wang and Xu [72] adopted an
innovative method arising from bifurcation techniques to directly tackle the steady state problem
without heavily using the structure of equations. Whereas, concerning system (1.3), there is few
result involving the construction of non-constant solution with excited structures. Motivated by
this, we shall construct the non-constant solutions, especially boundary and interior spikes, to the
stationary PKS-NS system (1.3).

In summary, our two main aims of this paper are to show the existence of global-in-time solution
to (1.1) when the initial mass M ă M0 and study the concentration phenomenon with the critical
mass. For achieving the former one, the main vehicle is the following decreasing free energy functional
possessed by (1.1):

J pn, c,uq :“
ż

Ω

n logn dx` 1

2

ż

Ω

|u|2 dx´
ż

Ω

nc dx` 1

2

ż

Ω

c2 dx` 1

2

ż

Ω

|∇c|2 dx, (1.4)

where the first term is the entropy of the cellular density n and the second term represents the
kinetic energy of the velocity field u. Here and below, for the consideration of local and global well-
posedness, without loss of generality, we assume ε0 “ 1. In fact, we prove the free energy (1.4) is
dissipative along the dynamics, which is
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Lemma 1.1. Let pn, c,uq be the solution of (1.1), then we have the energy functional J given by
(1.4) satisfies the following energy dissipation:

d

dt
J ptq “ ´

ż

Ω

n|∇plogn´ cq|2 dx´
ż

Ω

´Bc
Bt
¯2

dx´
ż

Ω

|∇u|2 dx. (1.5)

Proof. Test p1.1q1 against logn´ c, then we integrate the n-equation by parts to get
ż

Ω

ntplog n´ cq dx “
ż

Ω

∇ ¨ rn∇plogn´ cqsplogn ´ cq ´
ż

Ω

u ¨ ∇nplog n´ cq dx

“ ´
ż

Ω

n|∇plogn´ cq|2 dx`
ż

Ω

u ¨ ∇n logn dx`
ż

Ω

u ¨ ∇nc dx

“ ´
ż

Ω

n|∇plogn´ cq|2 dx`
ż

Ω

u ¨ ∇nc dx, (1.6)

where we use the integration by parts to obtain from ∇ ¨ u “ 0 that
ż

Ω

u ¨ ∇n logn dx “
ż

Ω

u ¨ ∇rnplogn´ 1qs dx “ 0.

In addition, one has from the c-equation that
ż

Ω

ntplog n´ cq dx “ d

dt

ż

Ω

n logn dx´ d

dt

ż

Ω

nc dx`
ż

Ω

nct dx

“ d

dt

ż

Ω

nplogn ´ cq dx`
ż

Ω

pct ´ ∆c` cqct dx

“ d

dt

ż

Ω

nplogn ´ cq dx`
ż

Ω

pctq2 dx` 1

2

d

dt

´

ż

Ω

|∇c|2 ` c2
¯

dx, (1.7)

where ct “ Bc
Bt . Combining (1.6) and (1.7), we have

d

dt

ż

Ω

nplogn ´ cq dx`
ż

Ω

pctq2 dx` 1

2

d

dt
p
ż

Ω

|∇c|2 ` c2q dx

“ ´
ż

Ω

n|∇plogn´ cq|2 dx`
ż

Ω

u ¨ ∇nc dx. (1.8)

We multiply p1.1q3 by u and integrate it by parts to find from the divergence-free that

1

2

d

dt

ż

Ω

|u|2 dx “
ż

Ω

u ¨ r∆u ` n∇c´ ∇P ´ pu ¨ ∇qus dx

“ ´
ż

Ω

|∇u|2 dx´
ż

Ω

u ¨ ∇nc dx´
ż

Ω

u ¨ ∇P dx. (1.9)

Upon summing (1.8) and (1.9), we obtain

d

dt

ż

Ω

nplogn ´ cq dx` 1

2
¨ d
dt

´

ż

Ω

|∇c|2 ` c2
¯

dx` 1

2
¨ d
dt

ż

Ω

|u|2 dx

“ ´
ż

Ω

pctq2 dx´
ż

Ω

n|∇plogn´ cq|2 dx`
ż

Ω

u ¨ ∇nc dx,

which proves this lemma. �

With the help of Lemma 1.1, we plan to follow the idea shown in [56] to prove system (1.1)
admits the global-in-time solution under the subcritical mass case. To this end, we shall develop
the semi-group theory of the non-stationary Stokes operator in 2D and establish the local-in-time
existence of (1.1).

For the latter aim, we will employ the inner-outer gluing method to construct the boundary spot
steady state of (1.1) with the critical mass. The key observation is that the forcing term n∇c in
(1.1)3 can be written as a stress tensor. Indeed, recall that chemical concentration c satisfies

∆c´ c` n “ 0, x P Ω,
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then we have

n∇c “ ´∆c∇c ` c∇c “ ´∇ ¨ p∇c b ∇cq ` ∇

ˆ |∇c|2
2

˙

` ∇

´c2

2

¯

. (1.10)

It follows from (1.10) that stationary problem (1.3) can be written as
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0 “ ∆n´ ∇ ¨ pn∇cq ´ u ¨ ∇n, x P Ω,
0 “ ∆c ´ c` n, x P Ω,

u ¨ ∇u ` ∇P “ ∆u ´ ε0∇ ¨ p∇c b ∇cq ` ε0∇
´

|∇c|2

2

¯

` ε0∇
`

c2

2

˘

, ∇ ¨ u “ 0, x P Ω,
Bn
Bν “ Bc

Bν “ 0, x P BΩ,
u ¨ ν “ 0, pSu ¨ νqτ “ 0, x P BΩ.

(1.11)

One formally sees that potentials

ε0∇
´ |∇c|2

2

¯

` ε0∇
´c2

2

¯

can be absorbed into the pressure term, and we shall focus on the equivalent form (1.11) then discuss
the existence of spots in 2D. We wish to mention that if the fluid velocity field satisfies u ” 0 in
(1.11) and pn, cq is the solution to the stationary minimal Keller–Segel model, c should satisfies the
compatibility condition

∇P “ ´ε0∇ ¨ p∇c b ∇cq ` ε0∇

ˆ |∇c|2
2

˙

` ε0∇
´c2

2

¯

for the scalar function P. In addition, (1.3) has the approximate scaling invariance property. More
precisely, if pn, c,u, P qpxq is a solution to (1.3), then pnλ, cλ,uλ, Pλqpxq “ pλ2n, c, λu, λ2P qpλxq
satisfies the following system:

$
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0 “ ∆n´ ∇ ¨ pn∇cq ´ u ¨ ∇n, x P Ωλ,

0 “ ∆c ´ λ2c ` n, x P Ωλ,

u ¨ ∇u ` ∇P “ ∆u ` ε0n∇c, x P Ωλ,
Bn
Bν “ Bc

Bν “ 0, x P BΩλ,

u ¨ ν “ 0, pSu ¨ νqτ “ 0, x P BΩλ,

where Ωλ :“ Ω{λ. The scaling invariance property causes the fully coupling issue of the linearized
system associated with (1.11), which forces us to impose the smallness assumption on ε0 and the
detailed discussion will be shown in Section 8. Moreover, due to the presence of velocity field u

in (1.11) and Navier-type boundary conditions, we have to develop the W 2,p theory of the Stokes
operator in 2D and the argument will be exhibited in Section 2. It is worthy mentioning the
interesting results involving the estimates of the solution to the two-dimensional non-stationary
Stokes equation in [50]. In detail, assuming the domain Ω as the half space R2

`, they perform the
Laplace transform to establish the explicit formula of the time-dependent solution and give the
pointwise estimate. They also stated one can apply the same extension as what we used in Section 7
and focus on the corresponding whole space R2 problem to derive the desired estimate by studying
the properties of Oseen tensor. Whereas, since the domain in our model setting is bounded with the
arbitrary smooth boundary, we are not able to employ the similar approaches directly and construct
the solution of the stationary Stokes system. In fact, the strategy what we shall follow is that we
first decompose the solution as the inner and outer parts, then take the same method as in [50]
to construct the inner solution and develop the same pointwise decay estimate, finally show the
existence of the outer solution by formulating the global W 2,p estimate. In particular, we have to
borrow the idea exhibited in [2] to give the delicate estimate near the boundary.

Now, we state the main results of this paper. Concerning the global regularity of the two-
dimensional Stokes operator, we have
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Theorem 1.2. Consider the following abstract problem:
$

’

’

&

’

’

%

´∆u ` ∇P “ f , x P Ω,
divu “ η, x P Ω,
u ¨ ν “ g, x P BΩ,
2rSpuqνsτ “ hτ , x P BΩ,

(1.12)

where Ω Ă R2 is a bounded domain with C1,1 boundary BΩ. Let f P LppΩq, η P W 1,ppΩq, g P
W 2´ 1

p
,ppBΩq, and h P W 1´ 1

p
,ppBΩq satisfy the compatibility conditions (2.7) and (2.13). Then for

1 ă p ă 8, system (1.12) has a unique solution pu, P q P pW2,ppΩq ˆW 1,ppΩqq{N pΩq. Further, the
solution satisfies the following estimate:

}u}W2,ppΩq{T pΩq ` }P }W 1,ppΩq{R

ďC
ˆ

}f}LppΩq ` }η}W 1,ppΩq ` }g}
W

2´
1

p
,p

pBΩq
` }h}

W
1´

1

p
,p

pBΩq

˙

,

where C ą 0 is a constant, T and N are given by (2.11) and (2.12), respectively.

Focusing on the global-wellposedness of (1.1), we perform the energy estimate and apply the
Moser-Alikakos iteration to obtain the following results:

Theorem 1.3. Assume that initial data pn0, c0,u0q P C0pΩqˆW 1,8pΩqˆDpA2q with DpA2q defined
by (3.9), n0, c0 ě 0,ı 0 and

M :“
ż

Ω

n0 dx ă M0, (1.13)

where M0 is defined by (1.2). Then (1.1) admits the classical global-in-time solution pn, c,uq.

For Theorem 1.3, we give some remarks as follows:
Remark 1.4.

We have proved the global existence of the solution to (1.1) with the subcritical mass. For the
critical mass case, our conjecture is that the solution also exists globally and the idea of proof may
follow from [55] directly. We believe at least for the parabolic-elliptic counterpart of (1.1), their
approach is durable with the slight modification.

Considering the concentration phenomenon, we assume ε0 ! 1 is sufficiently small but fixed, then
construct the solution with the striking structure to (1.11) via the inner-outer gluing method, which
are summarized as

Theorem 1.5. There exists a sufficiently small ε0 ą 0 such that for all sufficiently small ε ą 0,
(1.11) admits a family of solutions pnε, cε, uεq satisfying the following forms:

nεpxq “ 1

ε2
W

ˆ

x´ ξε

ε

˙

` op1q; (1.14)

cεpxq “
“

Γµ,ε,ξpxq `Hεpx, ξεq ´ 4 log ε
‰

` op1q, (1.15)

where W and Γµ,ε,ξ are defined by

W “ 8µ2

pµ2 ` |y|2q2 , Γµ,ξ,ε “ log
8µ2

pµ2 ` |y|2q2 , y “ x´ ξε

ε
;

Hε is the correction term of cε, which satisfies
" ´∆Hε `Hε “ ´Γµ,ξ,ε, x P Ω,

BHε

Bν “ ´ BΓµ,ξ,ε

Bν , x P BΩ.
In particular, as ε Ñ 0, ξε converges to the critical point of the following energy functional:

Jmpξq “ 4πHpξ, ξq, (1.16)
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where the critical point of Jm is assumed to be non-degenerate and H denotes the regular part of the
following Neumann Green’s function:

"

∆G ´G “ ´δpx´ ξq, x P Ω,
BG
Bν “ 0, x P BΩ;

µ is determined by

log 8µ2 “ 4πHpξ, ξq.

We give the following remarks to explain our results shown in Theorem 1.5:
Remark 1.6.

‚ Our subsequent proof of Theorem 1.5 implies that ε0 ą 0 can be chosen as a universal
constant independent of ε given in the conditions and the domain size |Ω|.

‚ Due to the approximate scaling invariance property of system (1.11), the linearized inner
problem is fully coupled whenever ε0 ą 0 is sufficiently small. In fact, the inner problem is
given by

$

&

%

h1 ` u ¨ ∇φ “ ∆φ´ ∇ ¨ pφ∇Γq ´ ∇ ¨ pW∇ψq,
h2 “ ∆ψ ´ ψ ` φ,

h3 ` ∇P “ ∆u ´ ε0∇ ¨ p∇Γ b ∇ψq,
where h1, h2 and h3 are generic error terms.

‚ The smallness of ε0 is needed to guarantee the fixed point argument and the detailed discus-
sion is shown in Section 8.

The theoretical tool what we mainly use to show Theorem 1.5 is the inner-outer gluing method,
which is powerful and has been successfully applied on plenty of elliptic and parabolic problems
[21, 38]. We observe that system (1.11) can be naturally understood as the coupling of classical
Keller–Segel models with transport effect and incompressible Navier-Stokes equations. When ε0 is
sufficiently small, the construction of ansatz is in spirit of the pattern formation within the following
minimal Keller–Segel models:

$

&

%

0 “ ∆n ´ ∇ ¨ pn∇cq, x P Ω,
0 “ ∆c ´ c` n, x P Ω,
Bn
Bν “ Bc

Bν “ 0, x P BΩ.
(1.17)

In fact, Del Pino and Wei [20] showed the existence of spots to (1.17) rigorously via the Lyapunov-
Schmidt reduction method. Davila et al. [19] further constructed the infinite time blow-up solution
to the non-stationary counterpart of (1.17) in the whole space R2. We find that the vital step in the
proof of Theorem 1.5 is the formation of inner and outer linear theories, which crucially relies on
the arguments shown in [45]. In [45], the authors borrowed the ideas from [20, 19] and developed
the linear theory successfully applied on the minimal Keller–Segel models with logistic growth.

Although [20], [19] and [45] provide many useful ideas that can be applied on the proof of Theorem
1.5, the fully coupling between transported Keller–Segel models and incompressible Navier-Stokes
equations forces us to develop new ingredients in the inner-outer gluing procedure, which are shown
as follows:

‚ Similarly as in [46], the transport term u ¨ ∇n in (1.11)1 cannot be regarded as a small
perturbation term in the linearized inner problem. Indeed, after scaling with inner variable
y “ x´ξ

ε
, the linearized operator in the inner region becomes

"

LW rΦs ´ urΦs ¨ ∇yW “ h,

´∆yΨ “ Φ,
(1.18)

where LW rΦs is given by (4.14). The order of urΦs ¨ ∇yW is precisely the same as the
leading order term in error h. To tackle with this issue, we adjust ε0 ą 0 in the forcing term
ε0∇ ¨ p∇c b ∇cq of (1.11)3 such that the smallness of urΦs is provided. As a consequence,
the transport term u ¨ ∇yW can be truly realized as a perturbation term in the linearized
inner problem (1.18).
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‚ To guarantee the construction of boundary spots, we impose Navier boundary conditions
with zero friction rather than no-slip boundary conditions. Motivated by this, we have to
develop the new W 2,p theory subject to Navier boundary conditions in 2D.

‚ Of concern the boundary spot, the location is assumed to be at the boundary rather than
in the interior of domain. As a consequence, we have to flatten the boundary and explore
its influence on the error. Moreover, we must develop the new inner linear theory restricted
in the half space R2

`.
‚ Unlike the parabolic stokes operator, the stationary counterpart has non-trivial kernels and
some solvability conditions are needed to be imposed such that the existence and unique-
ness of the solution are provided. Thus, it is necessary to solve the corresponding reduced
problems.

The paper is organized as follows. In Section 2, we formulate the W 2,p theory of the Stokes
operator subject to Navier boundary conditions. The section 3 is devoted to the global well-posedness
of (1.1) with the subcritical mass. Section 4–8 focus on the construction of the boundary spot steady
state with the mass exactly beingM0 given by (1.2). In detail, Section 4 shows the idea of the choice
of ansatz and the error computations. Section 5 is devoted to the effect of boundary on the error
estimates. Next, we establish the inner and outer linear theories modes by modes in Section 6.
Section 7 focuses on the model problem of Stokes operator. In Section 8, we construct the boundary
spot via the inner-outer gluing method and fixed point argument.

Throughout the paper, we shall use the symbol “À” to denote “ď C” for a positive constant
C independent of x and t. Here C might be different from line to line. For convenience, we shall
replace location ξε by ξ without confusing readers in Section 4–8.

2. W 2,p theory for Stokes system

In this section, we consider the abstract problem (1.12), which is the generalized inhomogeneous
Stokes system of non-solenoidal velocity field with nontrivial right hand side in the slip-Naiver
boundary condition. Note that ϕ

τ
:“ pϕ ¨ τ qτ so that we may assume the right hand side of

(1.12)4 to be parallel to τ . Before discussing the W 2,p theory and prove Theorem 1.2, we give some
preliminary notations and results.

2.1. Preliminaries.

Define

Hppdiv,Ωq “ tv P LppΩq : div v P LppΩqu , Hppcurl,Ωq “ tv P LppΩq : curlv P LppΩqu ,

equipped with the norms

}v}Hppdiv,Ωq “
´

}v}p
LppΩq ` }div v}pLppΩq

¯1{p

, }v}Hppcurl,Ωq “
´

}v}p
LppΩq ` }curlv}pLppΩq

¯1{p

.

Thanks to [4], the spaces DpΩq is dense in Hppdiv,Ωq and Hppcurl,Ωq. Let the closures of DpΩq in
Hppdiv,Ωq and Hppcurl,Ωq be H

p
0pdiv,Ωq and H

p
0pcurl,Ωq, respectively. Then we have the charac-

terization

H
p
0pdiv,Ωq “ tv P Hppdiv,Ωq, v ¨ ν “ 0 on BΩu ,

H
p
0pcurl,Ωq “ tv P Hppcurl,Ωq, v ¨ ν “ 0 on BΩu .

Define the space

XppΩq “ Hppdiv,Ωq X Hppcurl,Ωq
with the norm

}v}XppΩq “
´

}v}p
LppΩq ` }div v}pLppΩq ` }curlv}pLppΩq

¯1{p

.

Let

X
p
T pΩq “ tv P Xp : v ¨ ν “ 0 on BΩu , X

p
N pΩq “ tv P Xp : v ¨ τ “ 0 on BΩu ,

X
p
0pΩq “ X

p
T pΩq X X

p
N pΩq.
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Recall the trace spaces, for k ě 0 and p P p1,8q,

Wk´ 1

p
,ppBΩq “ trpWk,ppΩqq “

 

v P Wk´1,ppBΩq : Dw P Wk,ppΩq such that trpwq “ v
(

,

and H
1

2 pBΩq :“ W1´ 1

2
,2pBΩq.

For p P p1,8q, denote its dual exponent by p1, i.e. 1{p` 1{p1 “ 1. Let rHp1

0 pdiv,Ωqs1 be the dual

space of Hp1

0 pdiv,Ωq with the pairing

x¨, ¨yΩ,p :“ x¨, ¨y
rHp1

0
pdiv,Ωqs1ˆH

p1

0
pdiv,Ωq

, (2.1)

where we use the parameter p, instead of p1, on the left hand side for notational convenience. Let

W´ 1

p
,ppBΩq denote the dual space of W

1

p
,p1 pBΩq “ W

1´ 1

p1 ,p
1

pBΩq with the pairing

x¨, ¨yBΩ,p :“ x¨, ¨y
W

´
1

p
,p

pBΩqˆW
1

p
,p1

pBΩq
. (2.2)

Define

VppΩq “
 

v P W1,ppΩq : div v “ 0 in Ω, v ¨ ν “ 0 on BΩ
(

equipped with the W1,ppΩq-norm and

EppΩq “
!

v P W1,ppΩq : ∆v P rHp1

0 pdiv,Ωqs1
)

,

with the norm

}v}EppΩq “ }v}W1,ppΩq ` }∆v}
rHp1

0
pdiv,Ωqs1

.

By the same argument as in the proof of [65, Lemma 4.2.1], DpΩq is dense in EppΩq.
Introduce the kernel spaces

K
p
T pΩq “ tv P LppΩq : div v “ curlv “ 0 in Ω and v ¨ ν “ 0 on BΩu ,

K
p
N pΩq “ tv P LppΩq : div v “ curlv “ 0 in Ω and v ¨ τ “ 0 on BΩu .

Now we state the key identity in our analysis on the boundary.

Lemma 2.1. For any v P W2,ppΩq with v ¨ ν “ 0 on BΩ, we have

2rSpvqνsτ “ pcurlvqτ ´ 2κvτ on BΩ,
where κ is the curvature on BΩ.
Proof. The lemma follows directly from the proof of [16, Lemma 2.1] using the density of the space
DpΩq in

 

v P W2,ppΩq : v ¨ ν “ 0 on BΩ
(

. �

Next, we establish the Green identity of Stokes system.

2.2. Green formulas.

We first derive two useful Green formulas in the following two lemmas.

Lemma 2.2. Let Ω Ă R
2 be a bounded domain with C1,1 boundary BΩ and 1 ă p ă 8. The linear

mapping γ : v ÞÑ curlv|BΩ defined on DpΩq can be extended to a linear and continuous mapping

γ : EppΩq Ñ W´ 1

p
,ppBΩq.

Moreover, we have the Green formula: For any v P EppΩq, ϕ P Vp1 pΩq,

´x∆v,ϕyΩ,p “
ż

Ω

pcurlvqpcurlϕq dx´ xpcurlvqτ ,ϕyBΩ,p, (2.3)

where x¨, ¨yΩ,p and x¨, ¨yBΩ,p are the pairings defined in (2.1) and (2.2).

Proof. By the density argument as in the proof of [65, Corollary 4.2.2] we may assume v P DpΩq
and ϕ P W1,p1 pΩq X X

p1

T pΩq. By the integration by parts formula and using divϕ “ 0 in Ω and
ϕ ¨ ν “ 0 on BΩ, we gets
ż

Ω

pcurlvqpcurlϕq dx “ ´
ż

Ω

∆v ¨ ϕ dx`
ż

BΩ

pcurlvqpϕ2ν1 ´ ϕ1ν2q dS, ϕ “ pϕ1, ϕ2q, ν “ pν1, ν2q.
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Since for τ :“ pτ1, τ2q “ p´ν2, ν1q, one has ϕ2ν1 ´ ϕ1ν2 “ ϕ2τ2 ` ϕ1ν1 “ ϕ ¨ τ . Thus, we duduce
ż

Ω

pcurlvqpcurlϕq dx “ ´
ż

Ω

∆v ¨ϕ dx`
ż

BΩ

pcurlvqτ ¨ϕ dS.

Rearranging the above equation, the lemma is proved. �

Lemma 2.3. Let Ω Ă R2 be a bounded domain with C1,1 boundary BΩ and 1 ă p ă 8. The linear
mapping Θ : v ÞÑ rSpvqνsτ |BΩ defined on DpΩq can be extended to a linear and continuous mapping

Θ : EppΩq Ñ W´ 1

p
,ppBΩq.

Moreover, we have the Green formula: For any v P EppΩq, ϕ P Vp1 pΩq,

´x∆v,ϕyΩ,p “ 2

ż

Ω

Spvq : Spϕq dx ´ x2rSpvqνsτ ,ϕyBΩ,p, (2.4)

where x¨, ¨yΩ,p and x¨, ¨yBΩ,p are the pairings defined in (2.1) and (2.2).

Proof. The lemma follows straightforwardly from the proof of [2, Lemma 2.4] using the identity

∆v “ 2 div Spvq ´ ∇pdiv vq.
�

It follows from above that one can extend Lemma 2.1 to a statement in W´ 1

p
,ppBΩq. Indeed, we

have the following corollary.

Corollary 2.4. For any v P EppΩq with v ¨ ν “ 0 on BΩ, we have

2rSpvqνsτ “ pcurlvqτ ´ 2κvτ in W´ 1

p
,ppBΩq,

where κ is the curvature on BΩ.

2.3. An auxiliary problem.

In view of Corollary 2.4, we consider the following auxiliary problem:

´∆u ` ∇P “ f in Ω, (2.5a)

divu “ η in Ω, (2.5b)

u ¨ ν “ g on BΩ, (2.5c)

curlu “ H on BΩ. (2.5d)

According to Lemma 2.1, the auxiliary problem (2.5) is equivalent to the generalized Stokes system
(1.12) when H “ h` 2κpu ¨ τ q, where κ represents the curvature on BΩ.

We establish the existence and uniqueness of weak solution for the auxiliary problem (2.5) in the
following theorem.

Theorem 2.5. Let Ω Ă R2 be a bounded domain with C1,1 boundary BΩ and 1 ă p ă 8. Suppose

f P rHp1

0 pdiv,Ωqs1, η P LppΩq, g P W 1´ 1

p
,ppBΩq, H P W´ 1

p
,ppBΩq satisfy the following compatibility

conditions:
for any ϕ P K

p1

T pΩq,
xf ,ϕyΩ,p ` xHτ ,ϕyBΩ,p “ 0, (2.6)

ż

Ω

η dx “
ż

BΩ

g dS. (2.7)

Then the auxiliary problem (2.5) has a unique solution pu, P q P W1,ppΩq ˆ pLppΩq{Rq. Moreover,
the solution satisfies the estimate

}u}W1,ppΩq ` }P }LppΩq{R À
ˆ

}f}
rHp1

0
pdiv,Ωqs1

` }η}LppΩq ` }g}
W

1´
1

p
,p

pBΩq
` }H}

W
´

1

p
,p

pΩq

˙

.
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Proof. Decompose u “ z ` ∇θ, where

´∆z ` ∇π “ f ` ∇η in Ω, (2.8a)

div z “ 0 in Ω, (2.8b)

z ¨ ν “ 0 on BΩ, (2.8c)

curl z “ H on BΩ, (2.8d)

and

∆θ “ η in Ω, (2.9a)

∇θ ¨ ν “ g on BΩ. (2.9b)

By the W 2,p theory of Neumann problem of Poisson’s equation, there exists a unique solution
θ P W 2,ppΩq{R of (2.9) with

}θ}W 2,ppΩq{R À
ˆ

}η}LppΩq ` }g}
W

1´
1

p
,p

pBΩq

˙

.

For the system (2.8), by Lemma 2.2 every solution of (2.8) also solves
ż

Ω

pcurl zqpcurlϕq dx “ xf ,ϕyΩ,p ` xHτ ,ϕyBΩ,p, for all ϕ P Vp1 pΩq.

The rest of the proof follows from the same argument in the proof of [65, Theorem 4.2.4] (see also
[3, Theorem 4.4]). �

2.4. Weak solutions of the generalized Stokes system (1.12).
We consider the inhomogeneous Stokes system of non-solenoidal velocity field with nontrivial

right hand side in the slip-Naiver boundary condition (1.12).

The case of η “ 0 and g “ 0. The following proposition provides a weak formulation of the
generalized Stokes system (1.12) for the case of η “ 0 and g “ 0.

Proposition 2.6. Suppose η “ 0 and g “ 0. Let f P rHp1

0 pdiv,Ωqs1 and h P W´ 1

p
,ppBΩq. Then

the problem of finding a distributional solution pu, P q P W1,ppΩq ˆ LppΩq of the generalized Stokes
system (1.12) is equivalent to the problem of finding u P VppΩq such that

2

ż

Ω

Spuq : Spϕq dx “ xf ,ϕyΩ,p ` xhτ ,ϕyBΩ,p, for all ϕ P Vp1 pΩq. (2.10)

Proof. It is a direct consequence of the Green formula (2.4) in Lemma 2.3 via the same proof of [2,
Proposition 3.1]. �

We now introduce the kernel T pΩq. Define

T ppΩq “
 

v P W1,ppΩq : Spvq “ O in Ω, and v ¨ ν “ 0 on BΩ
(

. (2.11)

The following result characterizes the kernel T ppΩq.
Lemma 2.7.

T ppΩq “
#

span tβu , β “ cxK ` b, for some constant c ‰ 0 and b, if Ω is a disk,

t0u, otherwise,

where xK :“ p´x2, x1q. In particular, T ppΩq does not depend on p so that we can denote it by T pΩq.
Proof. For v “ pv1, v2q P T ppΩq, one has B1v1 “ 0, B2v2 “ 0, and B1v2 “ ´B2v1. Integrating the
first two equations, we deduce v1px1, x2q “ c1px2q and v2px1, x2q “ c2px1q. It then follows from
B1v2 “ ´B2v1 that B1c2px1q “ ´B2c1px2q “ c for some constant c. Thus, c1px2q “ cx1 ` b2 and
c2px1q “ ´cx2 ` b1 for some constants b1, b2. Therefore,

vpxq “ cxK ` b, xK “ p´x2, x1q,
for some constant scalar c and vector b “ pb1, b2q.
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Suppose c ‰ 0. By the change of variables of translation py1, y2q “ ψpxq :“ px1`pb2{cq, x2´pb1{cqq
we have that vpyq “ cp´y2, y1q. Since the normal vector is invariant under translation, we have
ν “ νy where νy is the outward normal of Ωy “ ψpΩq. Then vpxq ¨ ν “ 0 on BΩ implies that
0 “ vpyq ¨ νy “ cp´y2pνyq1 ` y1pνyq2q on BΩy. This means that νy is parallel to py1, y2q, implying
that Ωy, hence Ω is a disk.

If c “ 0, then v “ b. But since vpxq ¨ ν “ 0 on BΩ, we must have b “ 0. This completes the
proof of the lemma. �

We also denote

N pΩq :“ T pΩq ˆ R “ tpv, cq : v P T pΩq, c P Ru . (2.12)

Remark 2.8. Since divβ “ 0 and β ¨ ν “ 0 on BΩ, β P Vp1 pΩq. By choosing ϕ “ β in (2.10), we
deduce the following compatibility condition:

xf ,βyΩ,p ` xhτ ,βyBΩ,p “ 0 (2.13)

for solving the generalized Stokes system (1.12) when η “ 0 and g “ 0.

The following lemma is stated in [69, (2.6)]) for general dimension without proof.

Lemma 2.9 (Poincaré-Morrey inequality). Let Ω be a Lipschitz bounded domain in R2. Then, we
have

inf
vPT pΩq

}u ` v}2L2pΩq ď C

ˆ

}Spuq}2L2pΩq `
ż

BΩ

|u ¨ ν|2 dS
˙

, for all u P H1pΩq, (2.14)

where the constant C depends only on Ω. In particular, the seminorm }Spuq}L2pΩq is a norm equiv-

alent to }u}H1pΩq if u P H1pΩq, u ¨ ν “ 0 on BΩ, and
ş

Ω
u ¨ β dx “ 0.

Proof. The proof of the inequality (2.14) is similar to that of [2, (3.7)] with a slightly modification
to the two-dimensional case.

Suppose on the contrary of the lemma. There exists a sequence tukuk in H1pΩq such that

}uk ´ Puk}2L2pΩq ą k

ˆ

}Spukq}2L2pΩq `
ż

BΩ

|uk ¨ ν|2 dS
˙

,

where P is the orthogonal projection from L2pΩq onto T pΩq. We may assume }uk ´ Puk}2L2pΩq “ 1.

So

1

k
ą }Spukq}2L2pΩq `

ż

BΩ

|uk ¨ ν|2 dS, k “ 1, 2, . . . . (2.15)

Set wk “ uk ´ Puk. Then, wk is bounded in H1pΩq by the Korn inequality. In particular, wk

is bounded in W1,ppΩq for all 1 ď p ď 2. By Sobolev embedding W1,ppΩq ãÑ LqpΩq for all
1 ď q ă 2p{p2 ´ pq. Choosing 1 ă p ă 2 and q “ 2, we get H1pΩq ãÑ L2pΩq. So, by Rellich-
Kondrachov compactness theorem, wk converges, up to a subsequence, to w in L2pΩq and weakly
in H1pΩq. Thus, it follows by taking the limit in (2.15) that }Spwq}L2pΩq “ 0 and w ¨ ν “ 0

on BΩ, w P T pΩq. On the other hand, w “ limkÑ8puk ´ Pukq P T pΩqK, where T pΩqK is the
orthogonal complement of T pΩq in L2pΩq. So, we must have w “ 0. This contradicts with the
relation }wk}L2pΩq “ 1 for all k and completes the proof of the inequality (2.14). The equivalence of

the norms follows from the Korn’s second inequality: }∇u}2
L2pΩq ď C }Spuq}2L2pΩq if u P H1pΩq such

that
ş

Ω
u ¨ β dx “ 0. This proves the lemma. �

We are now in a position of prove the existence and uniqueness of weak solution to the generalized
Stokes system (1.12) for η “ 0, g “ 0. We first consider the Hilbert case, p “ 2.

Theorem 2.10 (η “ 0, g “ 0, p “ 2). Suppose η “ 0 and g “ 0. Let f P rH2
0pdiv,Ωqs1 and

h P H´ 1

2 pBΩq satisfy the compatibility condition (2.13) with p “ 2. Then, the generalized Stokes
system (1.12) has a unique solution pu, P q P pH1pΩqˆL2pΩqq{N pΩq. Moreover, we have the estimate

}u}H1pΩq{T pΩq ` }P }L2pΩq{R À
´

}f}rH2

0
pdiv,Ωqs1 ` }h}

H
´

1

2 pBΩq

¯

. (2.16)
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Proof. The proof is exactly the same as that of [2, Theorem 3.4] using the Poincaré-Morrey inequality
(2.14) and the weak formulation in Proposition 2.6 via an application of Lax-Milgram theorem on
the bilinear form a on H1pΩq defined by

apu,ϕq “
ż

Ω

Spuq : Spϕq dx.

�

Next, we extend the result in Theorem 2.10 to the case p ě 2 in the following theorem.

Theorem 2.11 (η “ 0, g “ 0, p ě 2). Suppose η “ 0, g “ 0, and 2 ď p ă 8. Let f P rHp
0pdiv,Ωqs1

and h P W´ 1

p
,ppBΩq satisfy the compatibility condition (2.13). Then, the generalized Stokes system

(1.12) has a unique solution pu, P q P pW1,ppΩq ˆ LppΩqq{N pΩq. Moreover, we have the following
estimate:

}u}W1,ppΩq{T pΩq ` }P }LppΩq{R À
ˆ

}f}
rHp1

0
pdiv,Ωqs1

` }h}
W

´
1

p
,p

pBΩq

˙

. (2.17)

Proof. The proof is similar to that of [2, Theorem 3.7] with a slightly modification to the two-
dimensional case.

Note that for p ě 2

rHp1

0 pdiv,Ωqs1
ãÑ rH2

0pdiv,Ωqs1 and W´ 1

p
,ppBΩq ãÑ H´ 1

2 pBΩq. (2.18)

By Theorem 2.10 for the case of p “ 2, the generalized Stokes system (1.12), when η “ 0 and g “ 0,
has a unique solution pu, πq P pH1pΩq ˆ L2pΩqq{N pΩq. Applying Corollary 2.4, we have

pcurluqτ “ 2rSpuqνsτ ` 2κuτ “ ph ` 2κpu ¨ τ qqτ on H´ 1

2 pBΩq, κ is the curvature on BΩ,
because u P E2pΩq and u ¨ ν|BΩ “ 0. Thus, pu, πq is the solution to the auxiliary problem (2.5) with
H “ h` 2κpu ¨ τ q. It then follows from the Green formula (2.3) in Lemma 2.2 that pu, πq solves the
following variational problem: For all ϕ P V2pΩq,

ż

Ω

pcurluqpcurlϕq dx “ xf ,ϕyΩ,2 ` xph` 2κpu ¨ τ qqτ ,ϕyBΩ,2.

In particular
xf ,ϕyΩ,2 ` xph` 2κpu ¨ τ qqτ ,ϕyBΩ,2 “ 0, for all ϕ P K2

T pΩq.
More generally, for p ě 2 and ϕ P K

p1

T pΩq,
xf ,ϕyΩ,p ` xph ` 2κpu ¨ τ qqτ ,ϕyBΩ,p “ 0,

which verifies the compatibility condition (2.6) because u ¨τ P H 1

2 pBΩq ãÑ W´ 1

p
,ppBΩq for 2 ď p ă 8

so that H “ h`2κpu¨τq P W´ 1

p
,ppBΩq. The compatibility condition (2.7) is also satisfied since η “ 0

and g “ 0. By Theorem 2.5, we have pu, P q P W1,ppΩq ˆ pLppΩq{Rq, 2 ď p ă 8, by uniqueness, and

}u}W1,ppΩq ` }P }LppΩq{R À
ˆ

}f}
rHp1

0
pdiv,Ωqs1

` }h ` 2κpu ¨ τ q}
W

´
1

p
,p

pBΩq

˙

À
ˆ

}f}
rHp1

0
pdiv,Ωqs1

` }h}
W

´
1

p
,p

pBΩq
` 2κ }u}

W
´

1

p
,p

pBΩq

˙

.

(2.19)

We now establish the estimate (2.17). For p “ 2, Theorem 2.11 is proved in Theorem 2.10. For
2 ă p ă 8, by Morrey’s inequality W 1,ppΩq ãÑ C0,γpΩq ãÑ LqpΩq, γ “ 1 ´ p2{pq, for all q P r1,8s.
Hence, we have

}u}
W

´
1

p
,p

pBΩq
À }u}

W
1´

1

q
,q

pBΩq
, for all q P r1,8s.

Choosing q “ 2 and applying trace theorem, we deduce

}u}
W

´
1

p
,p

pBΩq
À }u}

H
1

2 pBΩq
À }u}H1pΩq

À }f}H2

0
pdiv,Ωqs1 ` }h}

H
´

1

2 pBΩq

À }f}
H

p1

0
pdiv,Ωqs1

` }h}
W

´
1

p
,p

pBΩq
,

(2.20)



QUALITATIVE ANALYSIS OF KS-NS SYSTEMS 13

where we used the estimate (2.16) (for p “ 2) in the second last inequality and the embedding (2.18)
in the last inequality. The desired estimate (2.17) follows by using (2.20) in (2.19). This proves
Theorem 2.11. �

The case of general η and g.

Corollary 2.12. For 2 ď p ă 8, let f P rHp1

0 pdiv,Ωqs1, η P LppΩq, g P W 1´ 1

p
,ppBΩq, and h P

W´ 1

p
,ppBΩq satisfy the compatibility conditions (2.7) and (2.13). Then, the generalized Stokes system

(1.12) has a unique solution pu, P q P pW1,ppΩq ˆ LppΩqq{N pΩq. In addition, pu, P q satisfies the
estimate

}u}W1,ppΩq{T pΩq ` }P }LppΩq{R ď C

ˆ

}f}
rHp1

0
pdiv,Ωqs1

` }η}LppΩq ` }g}
W

1´
1

p
,p

pBΩq
` }h}

W
´

1

p
,p

pBΩq

˙

.

Proof. The proof follows from an application of Theorem 2.11 and Green formula (2.4) via the same
argument in the proof of [2, Corollary 3.8] using the decomposition u “ z ` ∇θ, were z solves

´∆z ` ∇P “ f ` ∇η in Ω, (2.21a)

div z “ 0 in Ω, (2.21b)

z ¨ ν “ 0 on BΩ, (2.21c)

2rSpzqνsτ “ Hτ on BΩ, (2.21d)

where H “ h´ 2pSp∇θqνq ¨ τ , and θ solves (2.9). �

2.5. Strong solutions of the generalized Stokes system (1.12).

Theorem 2.13. For 2 ď p ă 8, let f P LppΩq, η P W 1,ppΩq, g P W 2´ 1

p
,ppBΩq, and h P W 1´ 1

p
,ppBΩq

satisfy the compatibility conditions (2.7) and (2.13). Then, the generalized Stokes system (1.12) has
a unique solution pu, P q P pW2,ppΩq ˆW 1,ppΩqq{N pΩq. Further, the solution satisfies the following
estimate:

}u}W2,ppΩq{T pΩq ` }P }W 1,ppΩq{R À
ˆ

}f}LppΩq ` }η}W 1,ppΩq ` }g}
W

2´
1

p
,p

pBΩq
` }h}

W
1´

1

p
,p

pBΩq

˙

.

(2.22)

Proof. To begin with, it follows from Corollary 2.12 that (1.12) has a unique solution pu, P q P
pW1,ppΩq ˆ LppΩqq{N pΩq. It remains to improve the regularity of the solution and derive the
estimate (2.22).

Adopting the same idea as in the proof of Corollary 2.12, we decompose u “ z ` ∇θ, where z

solves (2.21) with H “ h´ 2pSp∇θqνq ¨τ , and θ solves (2.9). For θ solving (2.9), we use the classical
elliptic theory to get

}θ}W 3,ppΩq{R À }η}W 1,ppΩq ` }g}
W

2´
1

p
,p

pBΩq
. (2.23)

For z satisfying (2.21) with H “ h´ 2pSp∇θqνq ¨ τ , we set ω “ curl z. Since z P Ep and z ¨ ν “ 0 on
BΩ, we have that curl z “ 2pSpzqνq ¨ τ ` 2κpz ¨ τ q on BΩ by Corollary 2.4. Then ω solves

´∆ω “ curl f in Ω, (2.24a)

ω “ h´ 2pSp∇θqνq ¨ τ ` 2κpz ¨ τ q on BΩ. (2.24b)

The classical elliptic theory then gives

}ω}W 1,ppΩq À }curl f}
rHp1

0
pΩqs1

` }h´ 2pSp∇θqνq ¨ τ ` 2κpz ¨ τ q}
W

1´
1

p
,p

pBΩq

À }f}LppΩq ` }h}
W

1´
1

p
,p

pBΩq
`
›

›B2θ
›

›

W
1´

1

p
,p

pBΩq
` }z}

W
1´

1

p
,p

pBΩq
.

(2.25)

By trace theorem,
›

›B2θ
›

›

W
1´

1

p
,p

pBΩq
À

›

›B2θ
›

›

W 1,ppΩq
À }θ}W 3,ppΩq and }z}

W
1´

1

p
,p

pBΩq
À }z}W 1,ppΩq.

Thus,

}ω}W 1,ppΩq À }curl f}
rHp1

0
pΩqs1

` }h}
W

1´
1

p
,p

pBΩq
` }θ}W 3,ppΩq ` }z}W 1,ppΩq .
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Moreover, applying Theorem 2.11 on z, noting that the compatibility condition (2.13) can be checked
with the aid of Green formula (2.4) as in the proof of [2, Corollary 3.8], one has

}z}W 1,ppΩq À }f ` ∇η}
rHp1

0
pdiv,Ωqs1

` }h´ 2pSp∇θqνq ¨ τ }
W

´
1

p
,p

pBΩq

À }f}
rHp1

0
pdiv,Ωqs1

` }∇η}
rHp1

0
pdiv,Ωqs1

` }h}
W

´
1

p
,p

pBΩq
`
›

›B2θ
›

›

W
´

1

p
,p

pBΩq

À }f}LppΩq ` }η}W 1,ppΩq ` }h}
W

1´
1

p
,p

pBΩq
` }θ}

W
2´

1

p
,p

pBΩq

À }f}LppΩq ` }η}W 1,ppΩq ` }h}
W

1´
1

p
,p

pBΩq
` }θ}W 2,ppΩq ,

(2.26)

where we used the trace theorem again in the last inequality. Thus, by using (2.23) and (2.26) in
(2.25) we obtain

}ω}W 1,ppΩq À }f}LppΩq ` }h}
W

1´
1

p
,p

pBΩq
` }η}W 1,ppΩq ` }g}

W
2´

1

p
,p

pBΩq
.

Therefore,

z P X2,ppΩq :“
!

v P LppΩq : div v P W 1,ppΩq, curlv P W 1,ppΩq, v ¨ ν P W 2´ 1

p
, 1
p pBΩq

)

since div z “ 0, curl z “ ω P W 1,p, z ¨ ν “ 0 on BΩ. Thus, u “ z ` ∇θ P X2,ppΩq since ∇θ also
lies in X2,ppΩq. We can now apply the embedding X2,ppΩq ãÑ W2,ppΩq in iv) of Remark 2 of [18,
Corollary 1, p.p. 212–213] (see also [53, (1.15)] and [23, Lemma 2.2]) to show that u P W2,ppΩq
and derive the estimate (2.22) for u. Finally, for the pressure π, the regularity π P W 1,ppΩq and its
estimate in (2.22) follows from the equation ∇π “ ∆u` f P LppΩq. This completes the proof of the
theorem. �

Remark 2.14 (The case 1 ă p ă 2). Theorem 2.13 (as well as Theorem 2.11 and Corollary 2.12)
can be proved for 1 ă p ă 2 by the duality argument performed in the proof of [2, Theorem 3.9]. We
skip the detailed discussion for small p.

Combining Theorem 2.13 and Remark 2.14, we have proved Theorem 1.2. Theorem 1.2 establishes
the global regularity of the two dimenional stationary Stokes operator with the Navier boundary
condition. It plays the vital role on the construction of the outer solution to the velocity field u shown
in Section 7. Furthermore, by using Theorem 1.2, the semi-group estimate of the non-stationary
Stokes operator is also be developed in Subsection 3.1.

3. Global Existence: Subcritical Mass Case

In this section, we shall discuss the global well-posedness of system (1.1) and prove Theorem
1.3. Before this, we have to study the local-in-time existence of the solution. Whereas, noting that
the velocity u satisfies the incompressible Navier-Stokes equation subject to the Navier boundary
condition rather than the no-slip one, we are driven to develop the corresponding semi-group theory
and establish the desired semi-group estimate. The detailed discussion will be shown in Subsection
3.1.

3.1. Analyticity of Stokes semigroup in LppΩq.
In this subsection, we prove the Stokes operator with Navier slip boundary conditions generates

a bounded analytic semigroup on Lp
σpΩq for all 1 ă p ă 8, where

Lp
σpΩq “ tv P LppΩq : div v “ 0 in Ω and v ¨ ν “ 0 on BΩu .

The case p “ 2.

Theorem 3.1. Let ε P p0, πq be fixed, f P L2pΩq and λ P Σε “ tλ P C˚ : | argλ| ă π ´ εu. Then we
have the following:

(i) Assume that Ω is of class C1,1. Then, the resolvent problem

λu ´ ∆u ` ∇π “ f , divu “ 0, in Ω, (3.1a)

u ¨ ν “ 0, rSpuqνsτ “ 0, on BΩ, (3.1b)
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has a unique solution pu, πq P H1pΩq ˆ pL2pΩqq{R. Moreover, the solution satisfies the estimates

}u}L2pΩq ď Cε

|λ| }f}L2pΩq , (3.2)

}Spuq}
L2pΩq ď Cε

a

2|λ|
}f}L2pΩq , (3.3)

for some constant Cε ą 0 independent of f and λ.
(ii) If Ω is of class C2,1, then pu, πq P H2pΩq ˆH1pΩq, and u satisfies the estimate

}u}H2pΩq ď CpΩ, λ, εq
|λ| }f}L2pΩq ,

for some CpΩ, λ, εq ą 0.

Proof. The theorem follows from the same argument as in the proof of [6, Theorem 3.2] via the
variational problem of finding u P V2pΩq such that

apu,ϕq “
ż

Ω

f ¨ ϕ dx, for all ϕ P V2pΩq, apu,ϕq :“ λ

ż

Ω

u ¨ϕ dx` 2

ż

Ω

Spuq : Spϕq dx,

which is equivalent to finding a distributional solution pu, πq P H1pΩq ˆL2pΩq of (3.1) thanks to the
Green formula (2.4) in Lemma 2.3. �

The general case 1 ă p ă 8. We now extend Theorem 3.1 to the general case 1 ă p ă 8. To
begin with, we first establish the following existence and uniqueness theorem.

Theorem 3.2. Assume that Ω is of C1,1. Let ε P p0, πq be fixed, f P L2pΩq and λ P Σε. Then the
resolvent problem (3.1) has a unique solution pu, πq P W1,ppΩq ˆ pLppΩq{Rq. If Ω is of class C2,1,
then pu, πq P W2,ppΩq ˆ W 1,ppΩq.

Proof. By using a duality argument with Theorem 3.1 and embedding theorems as in the proof of
Theorem 2.11, the theorem follows. We omit the details for brevity. �

Now, we proceed to prove resolvent estimate for 1 ă p ă 8. For this purpose, we use the
following lemma whose proof is the same as for [5, Lemma 2.5] with a slightly modification to the
two-dimensional case.

Lemma 3.3. Let u P W1,ppΩq such that ∆u P LppΩq. Then

´
ż

Ω

|u|p´2∆u ¨ u dx “
ż

Ω

|u|p´2|∇u|2 dx` 4
p´ 2

p2

ż

Ω

ˇ

ˇ

ˇ
∇|u|p{2

ˇ

ˇ

ˇ

2

dx

` ipp´ 2q
2
ÿ

k“1

ż

Ω

|u|p´4 Re

ˆ Bu
Bxk

¨ u
˙

Im

ˆ Bu
Bxk

¨ u
˙

dx´
〈Bu

Bν , |u|p´2u

〉

BΩ,p

.

(3.4)

We also need the following lemma whose proof is is the same as for [2, Lemma 2.1] with a slightly
modification to the two-dimensional case.

Lemma 3.4. For any v P W2,ppΩq, we have

2 rSpvqνs
τ

“ ∇τ pv ¨ νq `
ˆBv

Bν

˙

τ

´
ˆ

vτ ¨ Bν
Bs

˙

τ , (3.5)

where s is the arc length parameter of BΩ.

Remark 3.5. If Ω is of class C1,1, and if u P W1,ppΩq such that u ¨ ν “ 0 and rSpuqνsτ “ 0

on BΩ, then, thanks to (3.5),pBu{Bνqτ “ puτ ¨ pBν{Bsqq τ belongs to W1´1{p,ppBΩq ãÑ Lp1 pBΩq.
Consequently, the integral

ż

BΩ

|u|p´2

ˆBu
Bν

˙

τ

¨ u dS (3.6)
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is well-defined, and the term
〈

Bu{Bν, |u|p´2u
〉

BΩ,p
in (3.4) can be replaced by (3.6). That is, we

have for u P W1,ppΩq such that ∆u P LppΩq that

´
ż

Ω

|u|p´2∆u ¨ u dx “
ż

Ω

|u|p´2|∇u|2 dx` 4
p´ 2

p2

ż

Ω

ˇ

ˇ

ˇ
∇|u|p{2

ˇ

ˇ

ˇ

2

dx

` ipp´ 2q
2
ÿ

k“1

ż

Ω

|u|p´4 Re

ˆ Bu
Bxk

¨ u
˙

Im

ˆ Bu
Bxk

¨ u
˙

dx´
ż

BΩ

|u|p´2

ˆBu
Bν

˙

τ

¨ u dS.
(3.7)

We are now ready to estimate of the solution of (3.1) for p ą 2. To begin with, we consider the
case when λ is away from zero.

Proposition 3.6. Let 1 ă p ă 8 and λ P C˚ with Reλ ě 0. Let f P Lp
σpΩq, and let u P W2,ppΩq

be the unique solution of the resolvent problem (3.1). Then u satisfies the estimate

}u}LppΩq ď κ

|λ| }f}LppΩq . (3.8)

for some κ “ κpp,Ωq ą 0 independent of λ and f .

Proof. For the case when λ is away from zero, the same argument as in the proof of [6, Proposition
3.6], with the aid of the formula (3.7) for two-dimensional case, enable us to find λ0 “ λ0pΩ, pq ą 0
such that (3.8) holds for all λ P C˚ with Reλ ě 0 and |λ| ě λ0.

For the case when 0 ă |λ| ď λ0, (3.8) follows as in [6, Remark 3.7] using (3.2) and (3.3) together
with the Sobolev embeddings.

We skip the details and only note that the embeddings for dimension three used in the proofs of
[6, Proposition 3.6] (e.g. H2pΩq ãÑ W1,ppΩq for 2 ď p ď 4 and W2,4pΩq ãÑ W1,8pΩq) and in [6,
Remark 3.7] (e.g. H1pΩq ãÑ LppΩq for 2 ď p ď 6) also apply to our 2-D case. Indeed, for dimension
two we have that H2pΩq ãÑ HspΩq ãÑ W1,ppΩq for 2 ď p ď 4 and s “ 2 ´ p2{pq P r1, 3{2s and that
H1pΩq ãÑ HspΩq ãÑ LppΩq for 2 ď p ď 6 and s “ 1 ´ p2{pq P r0, 2{3s. �

Let Ap be the Stokes operator on Lp
σpΩq with Navier slip boundary conditions given by

Apu :“ ´Pp∆u, where Pp : LppΩq Ñ Lp
σpΩq is the Helmholtz projection,

with domain

DpApq “
 

u P W2,ppΩq X Lp
σpΩq : rSpuqνs

τ
“ 0 on BΩ

(

. (3.9)

Theorem 3.7. The operator ´Ap generates a bounded analytic semigroup on Lp
σpΩq.

Proof. It follows from Theorem 3.2 and Proposition 3.6 that ´Ap is a sectorial operator on Lp
σpΩq.

Therefore, ´Ap is the infinitesimal generator of an analytic semigroup by [32, Theorem 1.3.4, p.20].
�

We now derive an estimate for the semigroup te´Aptutě0. To this end, we first obtain a bound
on pure imaginary powers of ´Ap.

Theorem 3.8. There exists an angle θ P p0, π{2q and a constant C ą 0 such that
›

›Ais
p

›

› ď Ce|s|θ, for all s P R. (3.10)

Proof. The proof is similar to that for [28, (3.44)] using the interpolation-extrapolation theory (see
[1, V.1.5]) via the Stokes operator for Navier-type boundary conditions u ¨ n “ 0, curl u ˆ n “ 0

on the boundary in dimension three. To adapt the proof to our two-dimensional case, we only need
to replace the boundary condition curl u ˆ n “ 0 by curl u “ 0, and the vector-valued curl u for
dimension three by scalar-valued curlu for dimension two. �

As a corollary of Theorem 3.8, we have the following Sobolev type embedding theorem for domains
of fractional powers.

Theorem 3.9. For all 1 ă p ă 8 and for θ P p0, 1{pq,

DpAθ
pq ãÑ LqpΩq, where

1

q
“ 1

p
´ θ.
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Proof. In view of the bound (3.10) on pure imaginary powers of Ap, we can apply [67, Theorem
1.15.3] to determine the domains of definition of Aθ

p for θ P p0, 1q:

DpAθ
pq “ rLp

σpΩq,DpApqs
θ
,

the complex interpolation space. By definition of DpApq and Sobolev embedding, we have

rLp
σpΩq,DpApqs

θ
ãÑ

“

LppΩq,W2,ppΩq
‰

θ
ãÑ W2θ,ppΩq ãÑ LqpΩq, for

1

q
“ 1

p
´ θ,

provided 0 ă θ ă 1{p. �

We are now in the position to estimate the semigroup te´Aptutě0.

Theorem 3.10. For all p ď q ă 8, there exists δ ą 0 such that for all t ą 0
›

›e´Aptu0

›

›

LqpΩq
ď CpΩ, pq e´δtt´p1{p´1{qq }u0}LppΩq , (3.11)

›

›Spe´Aptu0q
›

›

LqpΩq
ď CpΩ, pq e´δtt´p1{p´1{qq´1{2 }u0}LppΩq , (3.12)

and for all m,n P N
›

›

›

›

Bm

Btm An
p e

´Aptu0

›

›

›

›

LqpΩq

ď CpΩ, pq e´δtt´pm`nq´p1{p´1{qq }u0}LppΩq . (3.13)

Proof. The proof is similar to that of [28, Theorem 3.6.3] with a slightly modification to the two-
dimensional case.

For the case p “ q, the estimates (3.11), (3.12) and (3.13) follow from [64, Theorem 6.13, Chapter
2].

Suppose that p ă q. Let s P p1{p ´ 1{q, 1{pq and set 1{p0 “ 1{p ´ s. Obviously, p ă q ă p0

so that 1{q “ θ{p0 ` p1 ´ θq{p for θ P p0, 1q and θ “ 1{p´1{q
1{p´1{p0

“ 1{p´1{q
s

. For all t ą 0, we have

e´Aptu0 P DpAs
pq ãÑ Lp0pΩq by Theorem 3.9. Thus, e´Aptu0 P LqpΩq and

›

›e´Aptu0

›

›

LqpΩq
ď C

›

›e´Aptu0

›

›

θ

Lp0 pΩq

›

›e´Aptu0

›

›

1´θ

LppΩq
ď C

›

›As
p

`

e´Aptu0

˘›

›

θ

LppΩq

›

›e´Aptu0

›

›

1´θ

LppΩq

ď Cpe´δtt´sqθpe´δtq1´θ }u0}LppΩq

“ C e´δtt´θs }u0}LppΩq “ C e´δtt´p1{p´1{qq }u0}LppΩq ,

proving (3.11).
The estimates (3.12) and (3.13) follows from the same proof for [28, (3.66), (3.67)]. We leave out

the details for the sake of brevity. �

3.2. Local and global existence.

Invoking Lemma 3.10, we study the local-in-time existence and summarize the results as follows:

Lemma 3.11. Suppose pn0, c0,u0q P C0pΩq ˆ W 1,8pΩq ˆ DpA2q with DpA2q defined by (3.9); n0

and c0 are nonnegative but not identically equal to zero in Ω. Then there exists T ď 8 such that the
unique pair pn, c, u, P q with positive n and c solve (1.1) in a classical sense. Moreover, if T ă 8,

we have

lim
tÑT´

`

}n}L8pΩq ` }c}W 1,8pΩq ` }Aα
2u}W 1,qpΩq

˘

“ 8, (3.14)

for some q ą 2.

Proof. The proof is shown in Appendix A. �

With the local existence result, we focus on the global well-posedness of (1.1). A useful observation
is the mass conservation of cellular density n. Indeed, we have from the integration by parts that

d

dt

ż

Ω

n dx “
ż

Ω

nt dx “
ż

Ω

u ¨ ∇n dx “ ´
ż

Ω

p∇ ¨ uqn dx`
ż

BΩ

u ¨ ν dS “ 0. (3.15)
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An immediate consequence of (3.15) is the boundedness of c in L1. In fact, we integrate the c-
equation by parts and obtain that

d

dt

ż

Ω

c dx`
ż

Ω

c dx “
ż

Ω

n dx À 1.

By solving the Grönwall’s inequality, one has }c}L1pΩq À 1. Summarizing the results above, we have

Lemma 3.12. Let pn, c, uq be the solution of time-dependent system (1.1) and the conditions in
Theorem 1.3 hold. Then we have

ż

Ω

n dx`
ż

Ω

c dx À 1.

Now, we state several useful preliminary lemmas for the arguments below on the proof of global
well-posedness.

Lemma 3.13 ( Cf. Lemma 2.4 in [52] ). Assume that Ω Ă R2 is a bounded domain with the smooth
boundary. Let p P p1,8q and r P p0, pq. Then there exists C ą 0 such that for any δ ą 0,

}f}pLp ď δ}∇f}p´r

L2 }f log |f |}rLr ` C}f}pLr ` Cδ,

where f P W 1,2pΩq and constant Cδ ą 0 depending on δ.

Lemma 3.14 ( Cf. Lemma 2.2 in [13] ). Let pn, c, u, P q be the solution of (1.1). Then there exists
constant C depending on }∇c0}Lq and |Ω| such that

}cp¨, tq}W 1,q ď C
´

1 ` sup
sPp0,tq

}np¨, sq}Lp

¯

,

where q P
”

1, Np
N´p

¯

if p P r1, Nq; q P r1,8q if p “ N and q “ 8 if p ą N.

Proof. We follow the argument in [13] to rewrite the c-equation as the abstract form then perform
the heat Neumann semigroup estimate to prove the lemma. Noting the steps are the same as in [13],
we omit the details. �

Lemma 3.15 ( Cf. [60] ). Let Ω Ă RN , N ě 1, be a bounded smooth domain. Let j ě 0,
k ě 0 be integers and p, q, r, s ą 1. Then there is a constant C ą 0 such that for any function
w P LqpΩq X LspΩq with Dkw P LrpΩq such that

}Djw}Lp ď C}Dkw}αLr}w}1´α
Lq ` C}w}Ls ,

where 1
p

“ j
N

`
`

1
r

´ k
N

qα ` 1´α
q

with j
k

ď α ă 1.

We shall follow the ideas in [56] to show the global existence of the solution. Firstly, we cite the
following Moser-Trudinger type’s inequalities given in [56]:

Lemma 3.16. Assume Ω Ă R2 with the smooth boundary BΩ, then for any small ǫ ą 0 and
w P W 1,2pΩq,

ż

Ω

e|w| dx ď CΩ exp
!´ 1

8θΩ
` ǫ

¯

}∇w}2L2pΩq ` 2

|Ω| }w}L1pΩq

)

,

where CΩ is some positive constant depending on |Ω| and θΩ denotes the minimum interior angle at
the vertices of Ω. In particular θΩ “ π if there is no corner on Ω.

Lemma 3.17. Let Ω “ tx P R
N : |x| ď Ru pN ě 2q and w P W 1,NpΩq with w “ wp|x|q. Then for

any ǫ ą 0, there exists C “ Cp|Ω|, ǫq such that
ż

Ω

e|w|dx ď C exp
!´ 1

βN
` ǫ

¯

}∇w}NLN pΩq ` 2N

N |Ω| }w}L1pΩq

)

,

where βN is given by

βN “ N
´ NαN

N ´ 1

¯N´1

, αN “ Nω
1{pN´1q
N´1 ,

and ωN´1 denotes the surface area of the unit sphere in RN .
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By using Lemma 3.16 and Lemma 3.17, we have from the energy dissipation given in Lemma 1.1
that

Lemma 3.18. Assume condition (1.13) holds. Then pn, c,u, P q satisfies
ż

Ω

nc dx À 1, |J ptq| À 1.

Proof. Firstly, we have the free-energy J ptq given by (1.4) can be rewritten as

J ptq “
ż

Ω

n logn dx´ p1 ` δq
ż

Ω

nc dx`
ż

Ω

rδnc` 1

2
p|∇c|2 ` c2qs dx` 1

2

ż

Ω

|u|2 dx, (3.16)

where δ ą 0 is any small number. From (3.16), we find

J ptq ě ´
ż

Ω

n log
ep1`δqc

n
dx`

ż

Ω

δnc dx` 1

2

ż

Ω

p|∇c|2 ` c2q dx.

On the other hand, noting n satisfies (3.15), one has
ż

Ω

n

M
dx “ 1.

Then by using the fact that ´ logx is convex, we apply Jensen’s inequality to obtain

´ log
! 1

M

ż

Ω

ep1`δqc dx
)

“ ´ log

ż

Ω

ep1`δqc

n

n

M
dx ď

ż

Ω

ˆ

´ log
ep1`δqc

n

˙

n

M
dx

“ ´ 1

M

ż

Ω

n log
ep1`δqc

n
dx. (3.17)

In light of Lemma 3.16, one gets
ż

Ω

ep1`δqc dx À exp
!´ 1

2M0

` ǫ
¯

p1 ` δq2}∇c}2L2pΩq ` 2p1 ` δq
|Ω| }c}L1pΩq

)

, (3.18)

where ǫ ą 0 is small. Upon substituting (3.18) into (3.17), we arrive at

log
´ 1

M

ż

Ω

ep1`δqc dx
¯

À log
1

M
`
´ 1

2M0

` ǫ
¯

p1 ` δq2}∇c}2L2 ` 2p1 ` δq
|Ω| }c}L1,

which yields

J ptq ě ´ M log
! 1

M

ż

Ω

ep1`δqc dx
)

`
ż

Ω

”

δnc` 1

2

´

|∇c|2 ` c2
¯ı

dx

Á ´ M
”

log
1

M
`
´ 1

2M0

` ǫ
¯

p1 ` δq2}∇c}2L2 ` 2p1 ` δq
|Ω| }c}L1

ı

`
ż

Ω

”

δnc` 1

2
p|∇c|2 ` c2q

ı

.

(3.19)

We rearrange (3.19) to find
!1

2
´M

´ 1

2M0

` ǫ
¯

p1 ` δq2
)

}∇c}2L2 ` δ

ż

Ω

nc dx

ďM
!

log
1

M
` 2p1 ` δq

|Ω| }c}L1

)

` J ptq À 1 ` J p0q À 1. (3.20)

To obtain the boundedness of }∇c}L2pΩq and }nc}L1pΩq, we require for sufficiently small ǫ, δ ą 0 that

1

2
´M

´ 1

2M0

` ǫ
¯

p1 ` δq2 ą 0. (3.21)

Letting ǫ Ñ 0` and δ Ñ 0`, one finds (3.21) becomes

M ă M0.

With this condition, we readily obtain from (3.20) that
ż

Ω

n logn dx À 1,

ż

Ω

|∇c|2 dx À 1.

This completes the proof of our lemma. �
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It is worthy mentioning that
ş

Ω
n logn dx is bounded from below. Indeed, according to the lower

bound of function x log x, one has
ż

Ω

n logn dx ě ´1

e
|Ω|.

With the help of key Lemma 3.18, we can show the boundedness of }n}L2, which is

Lemma 3.19. Assume the condition (1.13) holds. Then we have
ż

Ω

n2dx À 1.

Proof. Test the n-equation in (1.1) against n, then we integrate it by parts and apply the c-equation
to get

1

2

d

dt

ż

Ω

n2 dx “ ´
ż

Ω

|∇n|2 dx´
ż

Ω

n∇ ¨ pn∇cq dx´
ż

Ω

u ¨ ∇nn dx

“ ´
ż

Ω

|∇n|2 dx´
ż

Ω

u ¨ ∇nn dx`
ż

Ω

n∇n ¨ ∇c dx

“ ´
ż

Ω

|∇n|2 dx´
ż

Ω

u ¨ ∇nn dx´ 1

2

ż

Ω

n2∆c dx

“ ´
ż

Ω

|∇n|2 dx´
ż

Ω

u ¨ ∇nn dx´ 1

2

ż

Ω

n2pct ` c´ nq dx

ď ´ 1

2

ż

Ω

n2ct dx` 1

2

ż

n3 dx,

where we have used the boundary conditions of u. Thanks to Lemma 3.13, one has n satisfies

}n}L3 ď ǫ}∇n}2{3
L2 }n logn}1{3

L1 ` Cǫ

´

}n logn}L1 ` }n}1{3
L1

¯

, (3.22)

where ǫ ą 0 is any small constant. Invoking the Hölder’s inequality and Lemma 3.15, we obtain
ż

Ω

|n2ct| dx ď}ct}L2}n}2L4

À}ct}L2

“

p}∇n}1{2
L2 ` }n}1{2

L2 q}n}1{2
L2

‰2

À}ct}L2p}∇n}L2}n}L2 ` }n}2L2q
ďǫ}∇n}2L2 ` Cǫp}ct}2L2 ` }ct}L2q}n}2L2. (3.23)

Combining (3.22) and (3.23), one gets

d

dt
}n}2L2 ` 2}∇n}2L2 ďǫ}∇n}2L2 ` p}ct}2L2 ` }ct}L2q}n}2L2

`ǫ3}∇n}2L2}n logn}L1 ` Cǫp}n logn}3L1 ` }n}L1q. (3.24)

We rearrange (3.24) to arrive at

d

dt
}n}2L2 ` p2 ´ ǫ ´ ǫ3}n logn}L1q}∇n}2L2

ďCǫrp}ct}2L2 ` }ct}L2q}n}2L2 ` }n logn}3L1 ` }n}L1qs.
In light of Lemma 3.18, we have }n logn}L1 is bounded. As a consequence, we choose ǫ small such
that

d

dt
}n}2L2 ` }∇n}2L2

ďCǫrp}ct}2L2 ` }ct}L2q}n}2L2 ` }n logn}3L1 ` }n}L1qs. (3.25)

On the other hand, one can conclude from Lemma 3.15 that

}n}L2 ď C
´

}∇n}1{2
L2 }n}1{2

L1 ` }n}L1

¯

,
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where C ą 0 is some constant. It follows that

}∇n}2L2 ě }n}2L2 ´ C}n}2L1. (3.26)

Upon substituting (3.26) into (3.25), one finds

d

dt
}n}2L2 ` }n}2L2 ď Crp}ct}2L2 ` }ct}1L2q}n}2L2 `Bs, (3.27)

where B is defined by

B :“ sup
tą0

p}n logn}3L1 ` }n}L1 ` }n}2L1q.

Noting that energy dissipation (1.5) gives us
ż t

0

}ctp¨, sq}22ds À 1, (3.28)

then we define y1ptq :“ }np¨, tq}2L2 and y2ptq “ }ctp¨, tq}2L2 , then rewrite (3.27) as the following
differential inequality:

y1
1ptq ` y1ptq À py2 ` ?

y2qy1 `B. (3.29)

By Young’s inequality, we have y2 satisfies

?
y2 ď 1

2
` y2

2
.

Substituting it into (3.29), one finds

y1
1 `

´1

2
´ 3

2
y2

¯

y1 ď B. (3.30)

Combining (3.30) with (3.28), we obtain that

y1ptq À 1,

i.e. }np¨, tq}L2 is uniformly bounded in time. �

Lemma 3.19 implies }np¨, tq}L2 is bounded. Moreover, we find from Lemma 3.14 that for any
q P r1,`8q,

}cp¨, tq}W 1,q À 1.

With the boundedness of }n}L2 and }c}W 1,q , we next prove the boundedness of }n}L8 and }c}W 1,8 ,
which are

Lemma 3.20. Assume that all conditions in Theorem 1.3 holds. Then we have

}np¨, tq}L8 ` }cp¨, tq}W 1,8 À 1. (3.31)

Proof. For p ą 1, we multiply the n-equation in (1.1) by np´1, then apply the integration by parts
and the divergence-free property of u to get

1

p
¨ d
dt

ż

Ω

np dx “ ´ pp ´ 1q
ż

Ω

np´2|∇n|2 dx` pp´ 1q
ż

Ω

np´1∇n ¨ ∇c dx´
ż

Ω

np´1u ¨ ∇n dx

“ ´ 4pp´ 1q
p2

ż

Ω

|∇n p
2 |2 dx` pp´ 1q

ż

Ω

np´1∇n ¨ ∇c dx, (3.32)

where we have used the boundary conditions of u. On the other hand, by Young’s inequality, one
has

ż

Ω

np´1|∇n||∇c| dx ďp´ 1

2

ż

Ω

np´2|∇n|2 dx` Cp

ż

Ω

np|∇c|2 dx

ď2pp´ 1q
p2

ż

Ω

|∇n p
2 |2 dx` 1

p

ż

Ω

np`1 dx` Cp

ż

Ω

|∇c|2pp`1q dx. (3.33)

In light of (3.19), we find
ż

Ω

|∇c|2pp`1q ď Cp. (3.34)
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On the other hand, by using Gagliardo-Nirenberg’s inequality given in Lemma 3.15, one has

2

ż

Ω

np`1 dx ď 2pp´ 1q
p

ż

Ω

|∇n p
2 |2 dx` Cp. (3.35)

We collect (3.32), (3.33), (3.34) and (3.35) to arrive at

d

dt

ż

Ω

np dx`
ż

Ω

np dx ď Cp,

where p ą 1 is arbitrary. By the standard Moser–Alikakos iteration, we obtain that np¨, tq, ∇cp¨, tq P
L8pΩq. �

Proof of Theorem 1.3:

With the help of Lemma 3.20, it is left to study the estimate of velocity u. Firstly, we define
ω :“ curl u and obtain from (1.1)3 that the vorticity equation is

Btω ` pu ¨ ∇qω “ ∆ω ` ∇ ˆ pn∇cq, (3.36)

where ∇ ¨ u “ 0 in Ω. Next, we estimate the vorticity ω. To this end, multiplying the (3.36) by ω,
we integrate it by parts to obtain

1

2

d

dt
}ω}2L2 ` }∇ω}2L2 “

ż

Ω

∇ ˆ pn∇cqω dx “ ´
ż

Ω

n∇c ¨ ∇Kω dx. (3.37)

We integrate (3.37) over p0, tq and apply the Young’s inequality to find

1

2
}ω}2L2 `

ż t

0

}∇ω}2L2 dτ “1

2
}ω0}2L2 ´

ż t

0

ż

Ω

n∇c ¨ p∇Kωqdxdτ

ď1

2
}ω0}2L2 ` 1

2

ż t

0

p}n∇c}2L2 ` }∇Kω}2L2q dτ,

which implies

}ω}22 `
ż t

0

}∇ω}22 dτ ď }ω0}22 ` CpT q,

where we have used (3.31) and positive constant C satisfies CpT q Ñ 8 as T Ñ 8. Moreover, noting
that }∇u}L2 “ }∇ ˆ u}L2 “ }ω}L2 , we have

}∇u}L2 ď CpT q. (3.38)

By using the Gagliardo-Nirenberg-Sobolev’s inequality, i.e. Lemma 3.15, we obtain

}u}L8 À p}u}1´α
L2 }∇u}αL2 ` }u}L2q, (3.39)

where α P p0, 1q. Due to energy dissipation (1.5), one has u P L2. Hence, combining (3.38) and
(3.39), we finish the proof of Theorem 1.3. �

Remark 3.21.

Lemma 3.20 establishes the uniformly-in-time boundedness of }n}L8 and }c}W 1,8 . However, due
to the growth bound of }u}L8 as t Ñ T´, we can not rule out the infinite time blow-up of (1.1). We
conjecture that velocity u possesses the uniformly-in-time bound in the subcritical mass case.

Theorem 1.3 demonstrates that (1.1) admits the global-in-time solution with the subcritical mass.
Next, in Section 4–8, we shall focus on the critical mass case and construct the stationary solution
with the striking structure.
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4. The Choice of Ansatz and Error Estimates

First of all, we borrow the idea from [20] to determine the approximate solution of (1.11). Next,
we reduce the transported Keller–Segel system as the single equation with a nonlocal term. To begin
with, we find with the absence of transport term u ¨ ∇n, the n-equation of (1.11) implies

n “ ε2ec, (4.1)

where ε ą 0 is any small constant. Upon substituting (4.1) into the c-equation, one has the standard
minimal Keller–Segel model is reduced as

"

∆c´ c` ε2ec “ 0, x P Ω,
Bc
Bν “ 0, x P BΩ. (4.2)

In this paper, we plan to construct the boundary spot, i.e. the location is assumed to be at
the boundary BΩ. In fact, similarly as shown in [20] and [45], the construction of boundary spot
is the modification of interior counterpart. Thus, we first give the ansatz of single interior spot
and compute its error. Assume that the solution is concentrated at ξ P Ω, then we introduce the
stretched variable y “ x´ξ

ε
, define cpxq “ cpξ ` εyq ´ 4 log ε and obtain from (4.2) that the limiting

problem of c is

∆yc ` ec “ 0, y P R
2.

After imposing the following integral constraint
ż

R2

ecdy ă `8,

we arrive at
"

∆yc` ec “ 0, y P R
2,

ş

R2 e
cdy ă `8.

(4.3)

It is well-known that (4.3) has a family of solutions as follows:

cµ “ log
8µ2

pµ2 ` |y|2q2 , µ ą 0. (4.4)

By using (4.4), we find the “rough” ansatz of c is given by

c0 “ Γµ,ε

´x´ ξ

ε

¯

´ 4 log ε, Γµ,ε “ log
8µ2

pµ2 ` |y|2q2 , (4.5)

where ξ represents the location of the local spot. Moreover, noting that n “ ε2ec, one finds from
(4.5) that the basic ansatz n0 of n is

n0 “ 1

ε2
W

´x´ ξ

ε

¯

, W “ 8µ2

pµ2 ` |y|2q2 . (4.6)

Since c must satisfy the Neumann boundary condition, we set Hε as the correction term of c0, which
is determined by

" ´∆Hε `Hε “ ´Γµ,ε, x P Ω,
BHε

Bν “ ´ BΓµ,ε

Bν , x P BΩ. (4.7)

It is easy to find that there exists the solution to (4.7) satisfying Hε P C1,α in 2D. We summarize
and choose the approximate solution of pn, cq as

n “ 1

ε2
W ` φ, c “ ´4 log ε` Γµ,ε `Hε ` ψ, (4.8)

where pφ, ψq is the remainder term.
We have obtained the desired approximate solution defined in (1.14) and (1.15). Next, we shall

compute and analyze the error generated by (4.8). Similarly as in [45], the coupled n-equation and
c-equation can be reduced as the single form Spnq “ 0, where Spnq is given by

Spnq :“ ∆xn` ∇x ¨ pn∇p∆x ´ 1q´1nq ´ u ¨ ∇xn.
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Upon substituting (4.8) into Spnq “ 0, we have

Spnq “ 1

ε4
∆yW ´ 1

ε4
∇y ¨ pW∇yΓq

´ 1

ε3
∇y ¨

`

W∇xH
ε
˘

´ 1

ε3
u ¨ ∇yW

` ∆xφ´ 1

ε2
∇x ¨ pW∇xψq ´ ∇x ¨ pφ∇xΓq

´ ∇x ¨ pφ∇xψq ´ ∇x ¨ pφ∇xH
εq

´ u ¨ ∇xφ “ 0. (4.9)

For simplicity, we use “Γ” replace “Γµ,ξ” without confusing the reader. Noting that Γ andW satisfy
(4.5) and (4.6), one further obtains from (4.9) that

Spnq “ ´ 1

ε3
∇y ¨

`

W∇xH
ε
˘

´ 1

ε3
u ¨ ∇yW

` ∆xφ´ 1

ε2
∇x ¨ pW∇xψq ´ ∇x ¨ pφ∇xΓq

´ ∇x ¨ pφ∇xψq ´ ∇x ¨ pφ∇xH
εq

´ u ¨ ∇xφ “ 0.

Our goal is to show the existence of pφ, ψq via the inner-outer gluing method and fixed point theorem.
To this end, we decompose φpxq as

φpxq “ 1

ε2
Φipyqχpyq ` ϕo, y “ x´ ξ

ε
, (4.10)

where radial function χ is defined by

χprq :“
"

1, r ď δ
ε
,

0, r ě 2δ
ε
,

with δ ą 0 is a small constant. Upon substituting (4.10) into (4.9), we have

Spnq “ ´ 1

ε3
∇y ¨

`

W∇xH
ε
˘

´ 1

ε3
u ¨ ∇yW

` 1

ε4
∆yΦ

iχ´ 1

ε4
∇y ¨ pΦi∇yΓqχ ´ 1

ε4
∇y ¨

´

W∇yΨ
i
¯

χ

` ∆xϕ
o ´ ∇x ¨ pϕo∇xpΓ `Hεqq ´ 1

ε2
∇x ¨ pW∇xψ

oq

` 2

ε3
∇yΦ

i ¨ ∇xχ` 1

ε2
Φi∆xχ´ 1

ε4
Φi∇yΓ ¨ ∇yχ

` 1

ε4
∇y ¨

`

W∇yΨ
i˘

χ ´ 1

ε4
∇y ¨ pW∇yΨ

iqχ

` 1

ε4
∇y ¨ pW∇yΨ

iqχ ´ 1

ε4
∇y ¨ pW∇yΨ̂

iq

´ 1

ε2
∇y ¨

´´ 1

ε2
Φiχ` ϕo

¯

∇yψ
¯

´ 1

ε3
∇y ¨

´

Φi∇xH
εχ
¯

´ 1

ε
u ¨ ∇y

´ 1

ε2
Φiχ` ϕo

¯

, (4.11)

where ψ “ ´p∆x ´ 1q´1φ,

Ψ̂i :“ ´
´

∆y ´ ε2
¯´1

`

Φiχ
˘

, Ψ
i
:“ ´∆´1

y Φi (4.12)

and

Ψi :“ ´
´

∆y ´ ε2
¯´1

Φi, ψo :“ ´
´ 1

ε2
∆y ´ 1

¯´1

ϕo. (4.13)
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Before formulating the inner-outer gluing scheme, we define the inner operator LW and outer oper-
ator Lo as

LW rΦs “ ∆yΦ ´ ∇y ¨ pW∇yΨq ´ ∇y ¨ pΦ∇yΓq, ´∆´1
y Φ “ Ψ, (4.14)

and

Lorϕs “ ∆xϕ´ ∇xϕ ¨ ∇xpΓ `Hεqq ´ ϕpΓ `Hεq. (4.15)

By using (4.14) and (4.15), we simplify (4.11) to get

ε∇y ¨
`

W∇xH
ε
˘

` εu ¨ ∇yW ` ε2∇x ¨ pW∇xψ
oq

´ 2ε∇yΦ
i ¨ ∇xχ´ ε2Φi∆xχ` Φi∇yΓ ¨ ∇yχ

` ε2∇y ¨
´´ 1

ε2
Φiχ` ϕo

¯

∇yψ
¯

` ε∇y ¨
´

Φi∇xH
εχ
¯

` ε3u ¨ ∇y

´ 1

ε2
Φiχ` ϕo

¯

´ ∇y ¨
`

W∇yΨ
i˘

χ ` ∇y ¨ pW∇yΨ
iqχ

´ ∇y ¨ pW∇yΨ
iqχ` ∇y ¨ pW∇yΨ̂

iq
“LW rΦisχ` ε4Lorϕo.

Now, the construction of interior spot is transformed to show the existence of remainder term pφ, ψq.
However, focusing on the construction of boundary pattern, we need to study the effect of boundary
on the ansatz and error analysis. Our strategy is to strengthen the boundary and analyze the
corresponding new error.

It is worthy mentioning that we mainly compute the error arising from the transported Keller–
Segel system here and the study of Stokes operator and u-equation will be shown in Section 7.

5. The Effect of Boundary on Spots

In this section, we flatten the boundary and study the influence of boundary curvature on the
error estimate arising from Spnq “ 0. To be more precisely, we define the graph ρpx1q such that
tpx1, x2q “ px1, ρpx1qu, and X1 :“ x1 ´ ξ1, X2 “ x2 ´ ξ2 ´ ρpx1 ´ ξ1q with ξ “ pξ1, ξ2q. In such
coordinate, we have ρp0q “ ρ1p0q “ 0. On the other hand, the gradient, Laplace and Neumann
boundary operators become

∇x “
´ B

BX1

´ B
BX2

¨ ρ1pX1q, B
BX2

¯

,

∆x “ ∆X ` pρ1pX1qq2BX2X2
´ 2ρ1pX1qBX2X1

´ ρ2pX1qBX2
,

and

p1 ` pρ1pX1qq2q B
Bν “ pρ1pX1qqBX1

´ BX2
´ pρ1pX1qq2BX2

.

In the inner coordinate Yi “ Xi

ε
, i “ 1, 2. Moreover, ρpX1q “ ρpεY1q can be expanded as

ρpX1q “ 1

2
ρ2p0qε2Y 2

1 `Opε3q. (5.1)

By using (5.1), one finds

∆xw “ 1

ε2
∆Y w ` pρ1pεY1qq2 1

ε2
BY2Y2

w ´ 2

ε2
pρ1pεY1qqBY1Y2

w ´ 1

ε
ρ2pεY1qBY2

w

“ 1

ε2
∆Y w ` pρ2p0qq2Y 2

1 BY2Y2
w ´ 2

ε
ρ2p0qY1BY1Y2

w ´ 1

ε
ρ2p0qBY2

w `Op1q,
(5.2)



26 F. KONG, C. LAI, AND J. WEI

and

∇xw1 ¨ ∇xw2 “ 1

ε2
∇Y w1 ¨ ∇Y w2 ` 1

ε2
Bw1

BY2
¨ Bw2

BY2
pρ1pεY1qq2

´ 1

ε2

´Bw1

BY1
¨ Bw2

BY2
` Bw1

BY2
¨ Bw2

BY1

¯

ρ1pεY1q

“ 1

ε2
∇Y w1 ¨ ∇Y w2 ` Bw1

BY2
¨ Bw2

BY2
pρ2p0qq2Y 2

1

´ 1

ε

´Bw1

BY1
¨ Bw2

BY2
` Bw1

BY2
¨ Bw2

BY1

¯

ρ2p0qY1 `Op1q.

(5.3)

With the help of (5.2) and (5.3), we are able to compute the error generated by the approximate
solution (4.8) involving the boundary curvature term. Upon substituting (4.8) into ε4Spnq “ 0, we
obtain

ε4Spuq “ε4
”

∇x ¨
´

∇x

´ 1

ε2
W ` φ

¯

´
´ 1

ε2
W ` φ

¯

∇xpΓ `H ` ψq
¯ı

´ ε4u ¨ ∇x

´ 1

ε2
W ` φ

¯

“ε2∆xW ` ε4∆xφ´ ∇xpε2W ` ε4φq ¨ ∇xpΓ `H ` ψq ´ pε2W ` ε4φq∆xpΓ `H ` ψq ´ u ¨ ∇x

`

ε2W ` ε4φ
˘

“∆YW ´ 2
B2W

BY1BY2
ρ1pεY1q ` B2W

BY 2
2

rρ1pεY1qs2 ´ ε
BW
BY2

ρ2pεY1q

` ε2∆Y φ´ 2ε2
B2φ

BY1BY2
ρ1pεY1q ` ε2

B2φ

BY 2
2

rρ1pεY1qs2 ´ ε3
Bφ
BY2

ρ2pεY1q

´ pε2∇xW ¨ ∇xΓ ` ε4∇xφ ¨ ∇xΓ ` ε4∇xφ ¨ ∇xψ ´ ε2∇xW ¨ ∇xψq :“ I1

´ pε2W∆xΓ ` ε2W∆xψ ` ε4φ∆xΓ ` ε4φ∆xψq :“ I2

´ ε2W∆xH ´ ε4φ∆xH ´ ε2∇xW ¨ ∇xH ´ ε4∇xφ ¨ ∇xH

´ u ¨ ∇y

`

εW ` ε3φ
˘

` u1

BpεW ` ε3φq
BY2

ρ1pεY1q.

Noting that φ can be decomposed as (4.10) and we strengthen the boundary locally near the location
ξ, one finds pφ, ψqpxq satisfies

φpxq “ 1

ε2
ΦipY qχpY q ` ϕo, ´p∆x ´ 1q´1φ “ ψ. (5.4)

Next, we substitute (5.4) into I1 to get

I1 “ε2∇xW ¨ ∇xΓ ` ε4∇xφ ¨ ∇xΓ ` ε4∇xφ ¨ ∇xψ

“
˜

BW
BY1

´ BW
BY2

ρ1pεY1q, BW
BY2

¸

¨
˜

BΓ
BY1

´ BΓ
BY2

ρ1pεY1q, BΓ
BY2

¸

`
˜

BpΦiχq
BY1

´ BpΦiχq
BY2

ρ1pεY1q, BpΦiχq
BY2

¸

¨
˜

BΓ
BY1

´ BΓ
BY2

ρ1pεY1q, BΓ
BY2

¸

`
˜

BW
BY1

´ BW
BY2

ρ1pεY1q, BW
BY2

¸

¨
˜

BΨ̂i

BY1
´ BΨ̂i

BY2
ρ1pεY1q, BΨ̂i

BY2

¸

`
˜

BpΦiχq
BY1

´ BpΦiχq
BY2

ρ1pεY1q, BpΦiχq
BY2

¸

¨
˜

BΨ̂i

BY1
´ BΨ̂i

BY2
ρ1pεY1q, BΨ̂i

BY2

¸

` ε3∇xϕ
o ¨

˜

BΓ
BY1

´ BΓ
BY2

ρ1pεY1q, BΓ
BY2

¸

` ε4∇xϕ
o ¨ ∇xψ

` ε2

˜

BpΦiχq
BY1

´ BpΦiχq
BY2

ρ1pεY1q, BpΦiχq
BY2

¸

¨ ∇xpψ ´ Ψ̂iq.
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We further rearrange I1 and obtain

I1 “∇YW ¨ ∇Y Γ ´
˜

BW
BY2

BΓ
BY1

` BΓ
BY2

BW
BY1

¸

ρ1pεY1q ` BW
BY2

BΓ
BY2

rρ1pεY1qs2

` ∇Y pΦiχq ¨ ∇Y Γ ´
˜

BpΦiχq
BY2

BΓ
BY1

` BΓ
BY2

BpΦiχq
BY1

¸

ρ1pεY1q ` BpΦiχq
BY2

BΓ
BY2

rρ1pεY1qs2

` ∇YW ¨ ∇Y Ψ̂
i ´

˜

BΨ̂i

BY2
BW
BY1

` BW
BY2

BΨ̂i

BY1

¸

ρ1pεY1q ` BW
BY2

BΨ̂i

BY2
rρ1pεY1qs2

` ∇Y pΦiχq ¨ ∇Y Ψ̂
i ´

˜

BpΦiχq
BY2

BΨ̂i

BY1
` BΨ̂i

BY2
BpΦiχq

BY1

¸

ρ1pεY1q ` BpΦiχq
BY2

BΨ̂i

BY2
rρ1pεY1qs2

` ε3∇xϕ
o ¨

˜

BΓ
BY1

´ BΓ
BY2

ρ1pεY1q, BΓ
BY2

¸

` ε4∇xϕ
o ¨ ∇xψ

` ε2

˜

BpΦiχq
BY1

´ BpΦiχq
BY2

ρ1pεY1q, BpΦiχq
BY2

¸

¨ ∇xpψ ´ Ψ̂iq,

where ´p∆x ´ 1q´1pΦiχq “ Ψ̂i. Proceeding I2 with the same argument, we have

I2 “ε2W∆xΓ ` ε2W∆xψ ` ε4φ∆xΓ ` ε4φ∆xψ

“W
«

∆Y Γ ´ 2
B2Γ

BY1BY2
ρ1pεY1q ` B2Γ

BY 2
2

pρ1pεY1qq2 ´ ε
BΓ
BY2

ρ2pεY1q
ff

` Φiχ

«

∆Y Γ ´ 2
B2Γ

BY1BY2
ρ1pεY1q ` B2Γ

BY 2
2

pρ1pεY1qq2 ´ ε
BΓ
BY2

ρ2pεY1q
ff

`W

«

∆Y Ψ̂
i ´ 2

B2Ψ̂i

BY1BY2
ρ1pεY1q ` B2Ψ̂i

BY 2
2

pρ1pεY1qq2 ´ ε
BΨ̂i

BY2
ρ2pεY1q

ff

` Φiχ

«

∆Y Ψ̂
i ´ 2

B2Ψ̂i

BY1BY2
ρ1pεY1q ` B2Ψ̂i

BY 2
2

pρ1pεY1qq2 ´ ε
BΨ̂i

BY2
ρ2pεY1q

ff

` ε2ϕo

«

∆Y Γ ´ 2
B2Γ

BY1BY2
ρ1pεY1q ` B2Γ

BY 2
2

pρ1pεY1qq2 ´ ε
BΓ
BY2

ρ2pεY1q
ff

` ε4ϕo ¨ ∆xψ ` ε2Φiχ∆xpψ ´ Ψ̂iq.
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Focusing on the inner region |x´ ξ| À ε, we substitute I1 and I2 into ε4Spuq, then obtain

ε4Spuq “∆YW ´ ∇YW ¨ ∇Y Γ ´W∆Y Γ

`
«

´BW
BY2

BΓ
BY1

` BΓ
BY2

BW
BY1

¯

` 2W
B2Γ

BY1BY2
´ 2

B2W

BY1BY2

ff

ρ1pεY1q

`
˜

B2W

BY 2
2

` BW
BY2

BΓ
BY2

´W
B2Γ

BY 2
2

¸

rρ1pεY1qs2 ´ ε
´BW

BY2
´W

BΓ
BY2

¯

ρ2pεY1q

` ∆Y Φ
iχ´ ∇Y Φ

i ¨ ∇Y Γχ ´ ∇YW ¨ ∇Y Ψ
i
χ ´ Φi∆Y Γχ´ W∆Y Ψ

i
χ

´ ρ1pεY1qχ
„

2
B2Φi

BY1BY2
´
´BΦi

BY1
BΓ
BY2

` BΦi

BY2
BΓ
BY1

¯

´
´BW

BY1
BΨi

BY2
` BW

BY2
BΨi

BY1

¯

´ 2Φi B2Γi

BY1BY2
´ 2

B2Ψ
i

BY1BY2
W ´ 2Φi B2Ψ

i

BY1BY2
´
˜

BΦi

BY2
BΨi

BY1
` BΨi

BY2
BΦi

BY1

¸



` rρ1pεY1qs2χ
„B2Φi

BY 2
2

´ BΦi

BY2
BΓ
BY2

´ BW
BY2

BΨi

BY2
´ B2Γ

BY 2
2

Φi ´ B2Ψ
i

BY 2
2

W ´ BΦi

BY2
BΨi

BY2
´ Φi B2Ψ

i

BY 2
2



´ε∇YW ¨ ∇XH ´ εu ¨ ∇YW

´ ε2W∆XH ´ εu ¨ ∇Y Φ
i ` u1

BpεW ` ε3φq
BY2

¨ ρ1pεY1q ` H. O. T. (5.5)

Noting that X1 “ εY1, X2 “ εY2 and ρp0q “ ρ1p0q “ 0, we find ρpX1q, ρ1pX1q and ρ2pX1q can be
expanded as

ρpεY1q “ 1

2
ρ2p0qε2Y 2

1 `Opε3q, (5.6)

ρ1pεY1q “ ρ2p0qεY1 ` 1

2
ρ3p0qε2Y 2

1 `Opε3q, (5.7)

and

ρ2pεY1q “ ρ2p0q ` ρ3p0qεY1 ` 1

2
ρp4qp0qε2Y 2

1 `Opε3q. (5.8)

In addition, it follows from W “ eΓ that

B2W

BY 2
2

` BW
BY2

BΓ
BY2

´W
B2Γ

BY 2
2

“ 0,

´BW
BY2

BΓ
BY1

` BΓ
BY2

BW
BY1

¯

` 2W
B2Γ

BY1BY2
´ 2

B2W

BY1BY2
“ 0,

and
BW
BY2

´W
BΓ
BY2

“ 0. (5.9)

Upon collecting (5.6)–(5.9), we simplify (5.5) as

ε4Spuq “p∆Y Φ
i ´ ∇Y Φ

i ¨ ∇Y Γ ´ ∇YW ¨ ∇Y Ψ
i ´ Φi∆Y Γ ´W∆Y Ψ

iqχ

´ ρ1pεY1qχ
„

2
B2Φi

BY1BY2
´
´BΦi

BY1
BΓ
BY2

` BΦi

BY2
BΓ
BY1

¯

´
´BW

BY1
BΨi

BY2
` BW

BY2
BΨi

BY1

¯

´ 2Φi B2Γ

BY1BY2
´ 2

B2Ψ
i

BY1BY2
W ´ 2Φi B2Ψ

i

BY1BY2
´
˜

BΦi

BY2
BΨi

BY1
` BΨi

BY2
BΦi

BY1

¸



` rρ1pεY1qs2χ
„B2Φi

BY 2
2

´ BΦi

BY2
BΓ
BY2

´ BW
BY2

BΨi

BY2
´ B2Γ

BY 2
2

Φi ´ B2Ψ
i

BY 2
2

W ´ BΦi

BY2
BΨi

BY2
´ Φi B2Ψ

i

BY 2
2



´ ε∇YW ¨ ∇XH ´ εu ¨ ∇YW ` H. O. T. (5.10)
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Now, we have from (5.10) that in the inner region |x ´ ξ| À ε, the leading order error is Opεq and
given by

I3 :“ ´ε∇YW ¨ ∇XH ´ εu ¨ ∇YW. (5.11)

It follows from (5.11) that the leading order error does not include any boundary curvature term
ρ2p0q. It is natural to further formulate the inner and outer problem satisfied by Φi and ϕo. In fact,
since we flatten the boundary locally, the form of outer operator is the same as (4.15). However,
compared to (4.14), the inner operator should be written in Y -variable and the inner problem will
be solved in R2

` rather than R2. After finishing the error estimate to the equation, we focus on the
study of boundary conditions.

Since pn, cq satisfies the no-flux boundary condition, we similarly use (4.10) and calculate to get

ε3
ˆBn

Bν ´ n
Bc
Bν

˙

“εBpW ` ε2φq
Bν ´ εpW ` ε2φqBpΓ `H ` ψq

Bν

“εBW
Bν ´ εW

BΓ
Bν ` ε3

Bφ
Bν ´ εW

Bψ
Bν ´ ε3φ

BΓ
Bν ´ ε3φ

Bψ
Bν ´ εpW ` ε2φqBH

Bν

“ 1
a

1 ` rρ1pεY1qs2

«

´ BW
BY2

`W
BΓ
BY2

` ρ1pεY1q
ˆBW

BY1
´W

BΓ
BY1

˙

´ rρ1pεY1qs2
ˆBW

BY2
´W

BΓ
BY2

˙

´ BpΦiχ ` ε2ϕoq
BY2

`W
BpΨ̂i ` ε2ψoq

BY2
` ρ1pεY1q

ˆBpΦiχ` ε2ϕoq
BY1

´W
BpΨ̂i ` ε2ψoq

BY1

˙

´ rρ1pεY1qs2
ˆBpΦiχ` ε2ϕoq

BY2
´W

BpΨ̂i ` ε2ψoq
BY2

˙

´ pΦiχ` ε2ϕoq
´ BΓ

BY1
ρ1pεY1q ´ BΓ

BY2
´ BΓ

BY2
pρ1pεY1qq2

¯

´ pΦiχ ` ε2ϕoq
´BpΨ̂i ` ε2ψoq

BY1
ρ1pεY1q

´ BpΨ̂i ` ε2ψoq
BY2

´ BpΨ̂i ` ε2ψoq
BY2

pρ1pεY1qq2
¯

` εpW ` Φiχ` ε2ϕoq
´ BH

BX2

´ ρ1pεY1q BH
BX1

` rρ1pεY1qs2 BH
BX2

¯

ff

. (5.12)

Next, we perform the order analysis by regarding ε as the variable. On one hand, we expand
1?

1`rρ1pεY1qs2
as

1
a

1 ` rρ1pεY1qs2
“ 1 ´ 1

2
rρ1pεY1qs2 `Opε4q. (5.13)

On the other hand, since W “ eΓ, one finds

BW
BYi

´W
BΓ
BYi

“ 0, i “ 1, 2. (5.14)
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Upon substituting (5.13) and (5.14) into (5.12), we obtain that in the inner region |x´ ξ| À ε,

ε3
ˆBn

Bν ´ n
Bc
Bν

˙

“εBpW ` ε2φq
Bν ´ εpW ` ε2φqBpΓ `H ` ψq

Bν

“p1 `Opε2qq
«

´ BΦi

BY2
`W

BΨi

BY2
` ρ1pεY1q

ˆBΦi

BY1
´W

BΨi

BY1

˙

´ rρ1pεY1qs2
ˆBΦi

BY2
´W

BΨi

BY2

˙

´ Φi
´ BΓ

BY1
ρ1pεY1q ´ BΓ

BY2
´ BΓ

BY2
pρ1pεY1qq2

¯

´ Φi
´BΨi

BY1
ρ1pεY1q ´ BΨi

BY2
´ BΨi

BY2
pρ1pεY1qq2

¯

` εpW ` Φiq
´ BH

BX2

´ ρ1pεY1q BH
BX1

` rρ1pεY1qs2 BH
BX2

¯

ff

“p1 `Opε2qq
«

´ BΦi

BY2
`W

BΨi

BY2
` ρ2p0qεY1

ˆBΦi

BY1
´W

BΨi

BY1

˙

´ rρ2p0qεY1s2
ˆBΦi

BY2
´W

BΨi

BY2

˙

´ Φi
´ BΓ

BY1
ρ2p0qεY1 ´ BΓ

BY2
´ BΓ

BY2
pρ2p0qεY1q2

¯

´ Φi
´BΨi

BY1
ρ2p0qεY1 ´ BΨi

BY2
´ BΨi

BY2
pρ2p0qεY1q2

¯

`Opε2q
ff

` εpW ` Φiq
´ BH

BX2

´ ρ1pεY1q BH
BX1

` rρ1pεY1qs2 BH
BX2

¯

. (5.15)

By checking (5.15), one finds from Φi and Ψ
i
are both op1q that the leading order error of boundary

estimate is Opεq and given by

II1 :“ εW ¨ BH
BX2

. (5.16)

It follows from (5.16) that the boundary curvature term ρ2p0q also does not influence the leading
term of boundary error.

We summarize the arguments shown in Section 4 and Section 5, then obtain that the approximate
solution of boundary spot is still given by (4.8). To show the existence of remainder term pφ, ψq,
it is necessary to establish the linear theory of corresponding linearized operators, which will be
exhibited in Section 6.

6. Linear Theory: Transported Keller–Segel System

In this section, we shall discuss the properties of linearized Keller–Segel operators. Recall that φ

and ψ satisfy (4.10), (4.12) and (4.13); moreover, the inner problem satisfied by
`

Φi,Ψ
i˘

is formulated
as

"

LW rΦs :“ ∆Y Φ ´ ∇Y ¨ pW∇Y Ψq ´ ∇Y ¨ pΦ∇Y Γq “ h, Y P R2
`,

p´∆Y q´1Φ “ Ψ, Y P R2
`,

(6.1)

where we replace pΦi,Ψ
iq by pΦ,Ψq without confusing the reader. Before studying (6.1), it is

necessary to establish the linear theory of inner problem (6.1) in the whole space R2 at first. Indeed,
assume that the location ξ P Ω and consider the inner problem formulated by

"

LW rΦs :“ ∆yΦ ´ ∇y ¨ pW∇yΨq ´ ∇y ¨ pΦ∇yΓq “ h, y P R2,

p´∆yq´1Φ “ Ψ, y P R2,
(6.2)

then we define the inner norm in R2 as

}h}δ1,ν1 :“ sup
yPR2

ε´δ1 |h|p1 ` |y|qν1 , δ1, ν1 ą 0

and have the following lemma:
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Lemma 6.1. Suppose that h satisfies
ż

R2

hpyqdy “ 0,

ż

R2

hpyqyjdy “ 0 for j “ 1, 2, (6.3)

then for any }h}δ1,4`σ ă 8 with δ1 ą 0, σ P p0, 1q, there exists the solution Φ “ Tirhs to (6.2) such
that

}Φ}δ1,2`σ À }h}δ1,4`σ,

where Tirhs is a continuous linear operator.

The proof of Lemma 6.1 shown in [45] (Cf. Lemma 3.1), crucially relies on the Fourier mode
analysis since we solve (6.2) in 2D. For the sake of completeness, we give the sketch of the proof
here.

Proof. First of all, we define g as

g “ Φ

W
´ Ψ,

then rewrite (6.2) as the following divergence form:
"

∇ ¨ pW∇gq “ h, y P R2,

´∆Ψ “ Φ.
(6.4)

Next, we perform the Fourier expansions of h, Φ, Ψ, g and g :“ Wg. We first write the error term
hpyq as

hpyq “ hpρ, θq “
8
ÿ

k“´8

h̃kpρqeikθ :“ h0pyq ` h1pyq ` hKpyq, (6.5)

where hkpyq “ h̃kpρqeikθ . Then, we decompose pΦ,Ψq and pg, gq as

Φpyq presp. Ψpyqq “ Φpρ, θq presp. Ψpρ, θqq

“
8
ÿ

k“´8

Φ̃kpρqeikθ presp.
8
ÿ

k“´8

Ψ̃kpρqeikθq

:“Φ0pyq ` Φ1pyq ` ΦKpyq presp. Ψ0pyq ` Ψ1pyq ` ΨKpyqq,
and

gpyq presp. gpyqq “ gpρ, θq presp. gpρ, θqq

“
8
ÿ

k“´8

g̃kpρqeikθ presp.
8
ÿ

k“´8

ĝkpρqeikθq

:“g0pyq ` g1pyq ` gKpyq presp. g0pyq ` g1pyq ` gKpyqq, (6.6)

respectively. Now, we construct the solution pΦ,Ψq to (6.4) mode by mode. In each mode k, one
has pΦk, hkq satisfies

"

∇ ¨ pW∇gkq “ hk, y P R
2,

´∆Ψk “ Wgk `WΨk,

which is equivalent to the following mode k problem:
#

Lkrĝks “ hk, y P R2,

´Ψ̃kρρ ´ 1
ρ
Ψ̃kρ ` k2

ρ2 Ψ̃k “ gk `W Ψ̃k,
(6.7)

where Lkrĝks :“ ĝkρρ ` 1
ρ
ĝkρ ´ k2

ρ2 ĝk ´ plnW qρĝkρ ` Wĝk. It is vital to study the bounded kernel

functions such that

Ψ̃kρρ ` 1

ρ
Ψ̃kρ ´ k2

ρ2
Ψ̃k `W Ψ̃k “ 0.
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Indeed, we have the fact that at mode k “ 0, 1, the bounded kernel functions are given by

Z0 :“ ρ2 ´ 1

ρ2 ` 1
, Zj :“ Byj

Γ, j “ 1, 2, (6.8)

where Γ is defined in (4.5).
Owing to the existence of (6.8), we must impose the orthogonality conditions on mode 0 and 1.

At mode 0, we impose the mass condition given by
ż

R2

hdy “ 0.

It immediately follows from (6.5) that
ż

R2

h̃0pρqρdρ “ 0. (6.9)

Then, by choosing the solution g̃0 to (6.7) with k “ 0 as

g̃0pρq “
ż 8

ρ

1

rW prq

ż r

0

h̃0psqsdsdr, (6.10)

we have from (6.9), (6.10) and }h}δ1,4`σ À 1 that g̃0 satisfies

|g̃0pρq| À εδ1ρ2´σ. (6.11)

In light of g “ Wg and (6.6), we use (6.11) to get ĝ0 has the fast decay property, which is

|ĝ0pρq| À εδ1}h}4`σ

ρ2`σ
. (6.12)

We further apply the variation-of-parameters formula on Ψ̃0-equation to choose Ψ̃0 satisfying

|Ψ̃0pρq| À }h}4`σε
δ1 ln ρ. (6.13)

We summarize (6.12) and (6.13) to obtain that

|Φ̃0pρq| À εδ1}h}4`σ

ρ2`σ
,

which gives us the desired estimate of mode 0.
Similarly, to guarantee the desired decay estimate at mode 1, we impose the first moment orthog-

onality condition given in (6.3), which is
ż

R2

hyjdy “ 0, j “ 1, 2.

By direct computation, we further obtain that
ż 8

0

W pρqg̃1pρqZ1pρqρdρ “ 0, (6.14)

where Z1 :“ d
dρ
Γ. Recall that Ψ̃1 satisfies

Ψ̃1ρρ ` 1

ρ
Ψ̃1ρ ´ 1

ρ2
Ψ̃1 `W Ψ̃1 “ 0.

Then we apply the variation-of-parameters formula on Ψ̃1-equation and use (6.14) to choose the
solution satisfying

|Ψ̃1| À εδ1}h}4`σ

ρσ
. (6.15)

On the other hand, we consider the operator Lk and employ the maximum principle to show that
ĝ1 satisfies

|ĝ1| À εδ1}h}4`σ

ρ2`σ
. (6.16)

Upon collecting (6.15) and (6.16), we have the desired estimate of Φ̃1 at mode 1.
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Focusing on other modes arising from hK, it is straightforward to derive the desired estimates by
using the maximum principle, which was shown in [45] and we omit the argument here. �

However, Lemma 6.1 is valid only when the location of spot is assumed to be in the interior of
domain Ω. If ξ P BΩ, we must modify Lemma 6.1 and impose new orthogonality conditions. To
construct the boundary spot, we first define the inner norm in R2

` as

}h}δ2,ν2,H “ ε´δ2 sup
yPR2

`

|h|p1 ` |y|qν2 ,

where δ2 ą 0, ν2 ą 0. Then, with the help of even reflection and Lemma 6.1, we establish the
following linear theory in R2

` :

Lemma 6.2. Given any function hpyq and βpyq satisfying
ż

R
2

`

hdy ´
ż

BR2

`

βdSy “ 0,

ż

R
2

`

hy1dy ´
ż

BR2

`

βy1dSy “ 0, (6.17)

and assume }h}δ2,4`σ,H ă 8 with δ2 ą 0 and σ P p0, 1q. Then, we have the problem
#

LW rΦs “ h, y P R
2
`,

W Bg
Bν “ β, g “ Φ

W
´ Ψ, y P BR2

`

(6.18)

admits a solution Φ “ T H
i

rhs satisfying the following estimate:

}Φ}δ2,2`σ,H À }h}δ2,4`σ,H ,

where T H
i

rhs is a continuous linear operator.

Proof. We refer the reader to Lemma 3.2 in [45]. For the sake of completeness, we exhibit the sketch
of proof. Our strategy is to define the intermediate variable η such that

ż

R
2

`

W∇η ¨ e1dy “ 0,

where e1 “ p1, 0q. Define gN :“ g ´ η, then we transform system (6.18) as the following form:
"

∇ ¨ pW∇gN q “ h´ ∇ ¨ pW∇ηq, y P R2
`

W BgN
Bν “ 0, y P BR2

`,
(6.19)

Next, we perform the even reflection and define gN as

gN :“
#

gN py1, y2q, y2 ě 0;

gN py1,´y2q, y2 ă 0.
(6.20)

Thanks to (6.20), one has (6.19) can be evenly extended into R2 and the form is shown as follows:

∇ ¨ pW∇gN q “ h, y P R
2, (6.21)

where h is given by

h “
#

hpy1, y2q ´ ∇ ¨ pW∇ηqpy1, y2q, y2 ě 0,

hpy1,´y2q ´ ∇ ¨ pW∇ηqpy1,´y2q, y2 ă 0.

We wish to apply the results of Lemma 6.1 on (6.21). To this end, it is necessary to verify the

orthogonality conditions given by (6.3). For the mass condition, noting that h is the even function,
one finds

ż

R
2

´

hpy1,´y2q ´ ∇ ¨ pW∇ηqpy1,´y2qdy “
ż

R
2

`

hpy1, y2q ´ ∇ ¨ pW∇ηqpy1, y2qdy.

Then we use the divergence theorem to obtain from (6.17) that
ż

R2

hdy “ 2

ż

R
2

`

rh´ ∇ ¨ pW∇ηqsdy “ 2

ż

R
2

`

hdy ´ 2

ż

BR2

`

pW∇ηq ¨ νdSy

“ 2

ż

R
2

`

hdy ´ 2

ż

BR2

`

W
Bη
Bν dSy “ 2

ż

R
2

`

hdy ´ 2

ż

BR2

`

βdSy “ 0,

(6.22)
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which verifies the mass condition. On the other hand, we deduce from the even property of h that
ż

R
2

´

“

hpy1,´y2q ´ ∇ ¨ pW∇ηqpy1,´y2q
‰

y1dy “
ż

R
2

`

“

hpy1, y2q ´ ∇ ¨ pW∇ηqpy1, y2q
‰

y1dy.

It similarly follows that
ż

R
2

`

hy1dy “ 2

ż

R
2

`

rh´ ∇ ¨ pW∇ηqsy1dy “ 2

ż

R
2

`

hy1dy ´ 2

ż

BR2

`

βy1dSy “ 0, (6.23)

which verifies the center of mass condition. By using (6.22) and (6.23), we utilize Lemma 6.1 to find
there exists the solution pΦ,Ψq to (6.18) such that

}Φ}δ2,2`σ,H À }h}δ2,4`σ,H , δ2 ą 0, σ P p0, 1q.

It completes the proof of Lemma. �

Lemma 6.1 and Lemma 6.2 help us establish the inner linear theory of linearized Keller–Segel
operator. It is natural to discuss the corresponding property of outer operator Lo defined by (4.15)
next. We assume ϕpxq “ ϕpyq and rewrite Lo in y-variable to obtain the operator becomes

L
orϕs :“ ε2Lorϕs “∆yϕ´ ∇yϕ ¨ ∇yV ´ ε2V ϕ, (6.24)

where V :“ Γ `Hε. By studying (6.24), we define the outer norm as

}h}δ3,ν3,o :“ ε´δ3 sup
yPΩε

|h|
p1 ` |y ´ ξ1|q´ν2

, δ3, ν3 ą 0,

then formulate the following outer linear theory:

Lemma 6.3. Assume that }h}b`2,o ă 8, then the problem
#

L
orϕs “ h, y P Ωε,

Bϕ
Bν “ 0, y P BΩε

admits the solution ϕ “ Tophq satisfying

}ϕ}δ3,b,o À }h}δ3,b`2,o, (6.25)

where δ3 and b are positive constants; moreover, Tophq is a continuous linear mapping.

Proof. The proof of this Lemma is the slight modification of Lemma 3.3, [45]. We shall construct
the barrier function then apply the maximum principle to show the estimate (6.25).

Define the barrier function w as

w “ wb ` w0 ` w1 “ C1

pµ2 ` |y ´ ξ1|qb ` C2w0 ` C3w1.

Here C1, C2, C3 are positive constants and w0, w1 are functions. We will explain and determine
them later on. Since the location satisfies ξ1

j P BΩε, we rewrite BΩε near ξ1
j as the graph py1, y2q “

py1, ρpy1qq with ρp0q “ 0 and ρ1p0q “ 0, then find

Bwb

Bν “ ´ b

|y ´ ξ1
j |pµ2 ` |y ´ ξ1|q1`b

¨ py2 ´ ξ1
2q ´ py1 ´ ξ1

1qρ1py1q
a

1 ` |ρ1pyq|2

“Opεb`1q. (6.26)

To guarantee the boundary condition, we choose w0 as the unique solution to the following problem
"

´∆w0 ` ∇V ¨ ∇w0 ` ε2Gpy, ξ1
jqw0 “ 0, y P Ωε,

Bw0

Bν “ ´ Bwb

Bν , y P BΩε.
(6.27)
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Moreover, one has w0 satisfies w0 À εb. Letting w1 :“ εb, we calculate to get for y P Ωε,

Lorws “
˜

´ C1bpb` 1q
pµ2 ` |y ´ ξ1|qb`2

` C1b

p|y ´ ξ1|qpµ2 ` |y ´ ξ1|qb`1

` 4C1b|y ´ ξ1|2
pµ2 ` |y ´ ξ1|qb`2pµ2 ` |y ´ ξ1|2q

¸

´ C1bpy ´ ξ1q
p1 ` |y ´ ξ1|qb`2

4επ∇Hε

` C1ε
2Gpy, ξ1q

p1 ` |y ´ ξ1|qb ` C3ε
2Gpy, ξ1

jqw1

ě C1bp4 ´ bq
pµ2 ` |y ´ ξ1|qb`2

´ C1bpy ´ ξ1q
p1 ` |y ´ ξ1|qb`2

4επ∇Hε

`
C1ε

2Gpy, ξ1
jq

p1 ` |y ´ ξ1|qb ` C3ε
2Gpy, ξ1

jqw1 ě C4

p1 ` |y ´ ξ1|qb`2
,

where C4 ą 0 is a positive constant. On the other hand, upon combining (6.26) and (6.27), we find
Bw
Bν “ 0 on BΩ. Therefore, we use the maximum principle to show that

|ϕ| À εδ3}h}b`2,ow,

which gives us the desired estimate (6.25). �

With the preparation of error estimates shown in Section 5 and linear theory shown in Section
6 arising from the transported Keller–Segel system, we next investigate the existence of solution to
the u-equation of (1.3). In particular, we shall establish the linear theory of Stokes operator.

7. Error Estimate and Linear Theory: Stokes Operator

In this section, given the ansatz of pn, cq, we compute the error of u-equation at first. Recall that
u-equation of (1.11) is

u ¨ ∇u ` ∇P “ ∆u ´ ε0∇ ¨ p∇c b ∇cq ` ε0∇
´ |∇c|2

2

¯

` ε0∇
´c2

2

¯

. (7.1)

In light of (4.8), we have the forcing term in (7.1) becomes

∇x ¨ p∇c b ∇cq “∇ ¨ r∇pΓ `Hε ` ψq b ∇pΓ `Hε ` ψqs
“∇x ¨ p∇xΓ b ∇xΓq ` 2∇x ¨ p∇xΓ b ∇Hq ` 2∇x ¨ p∇xΓ b ∇xψq

` ∇x ¨ p∇H b ∇Hq ` 2∇x ¨ p∇H b ∇xψq ` ∇x ¨ p∇xψ b ∇xψq. (7.2)

It follows from (7.2) that (7.1) can be written as

u ¨ ∇u ` ∇

´

P ´ ε0
|∇c|2
2

´ ε0
c2

2

¯

“∆xu ´ ε0

”

∇x ¨ p∇xΓ b ∇xΓq ` 2∇x ¨ p∇xΓ b ∇Hq ` 2∇x ¨ p∇xΓ b ∇xψq

` ∇x ¨ p∇H b ∇Hq ` 2∇x ¨ p∇H b ∇xψq ` ∇x ¨ p∇xψ b ∇xψq
ı

. (7.3)

Upon letting P̃ :“ P ´ ε0
|∇c|2

2
´ ε0

c2

2
and

F :“ ´ ε0

”

∇xΓ b ∇xΓ ` 2p∇xΓ b ∇Hq ` 2p∇xΓ b ∇xψq

` ∇H b ∇H ` 2p∇H b ∇xψq ` ∇xψ b ∇xψ
ı

,

we obtain (7.3) becomes

u ¨ ∇xu ` ∇xP̃ “ ∆xu ` ∇x ¨ F.
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Considering the divergence-free and boundary conditions, we rewrite the u-equation in (1.11) as
$

’

’

&

’

’

%

u ¨ ∇xu ` ∇xP̃ “ ∆xu ` ∇x ¨ F, x P Ω,
∇x ¨ u “ 0, x P Ω,
u ¨ ν “ 0, x P BΩ,
pSu ¨ νqτ “ 0, x P BΩ.

(7.4)

It is straightforward to see that in R2, F is a 2 ˆ 2 matrix, i.e. F “ pFijqi,j“1,2. Of concern
the existence of the solution to system (7.4), we find it is necessary to study the corresponding
homogeneous problem and impose the orthogonality conditions on (7.4) if the non-trivial kernel
exists. Indeed, as shown in Section 2, more precisely Theorem 2.13, if the following compatibility
conditions hold:

ż

Ω

pu ¨ ∇xuq ¨ β dx “
ż

BΩ

pF ¨ νqτ ¨ β dS ´
ż

Ω

F : ∇β dx, (7.5)

and
ż

Ω

∇x ¨ u dx “
ż

BΩ

u ¨ ν dx, (7.6)

where β “ cxK ` b and xK “ p´x2, x1qT with c ­“ 0 and b being a constant vector, we have there
exists a unique solution u to system (7.4). Thus, for the proof of the existence, it suffices to verify
(7.5) and (7.6). On one hand, since u ¨ν “ 0 and pSu ¨νqτ “ 0 on BΩ, one obviously has (7.6) holds.
On the other hand, we compute

ż

Ω

p∇x ¨ Fq ¨ β dx “
ż

BΩ

pF ¨ νqτ ¨ β dS ´
ż

Ω

F : ∇β dx, (7.7)

and use ∇ ¨ u “ 0 in Ω to get
ż

Ω

pu ¨ ∇xuq ¨ β dx “
ż

Ω

r∇x ¨ pu b uqs ¨ β dx

“
ż

BΩ

rpu b uq ¨ νsτ ¨ β dS ´
ż

Ω

pu b uq : ∇β dx. (7.8)

Next, we calculate the integrals term by term. Recall that F “ ∇c b ∇c, which is

F “
ˆ

pBx1
cq2 Bx1

cBx2
c

Bx1
cBx2

c pBx2
cq2

˙

.

Then we have

F ¨ ν “
ˆ

Bx1
cpBx1

cν1 ` Bx2
cν2q

Bx2
cpBx1

cν1 ` Bx2
cν2q

˙

“
ˆ

Bx1
c Bc

Bν

Bx2
c Bc

Bν

˙

,

where ν “ pν1, ν2qT . Noting that c satisfies the Neumann boundary condition, one further obtains
ż

BΩ

pF ¨ νqτ ¨ β dS “ 0. (7.9)

Similarly, by using u ¨ ν “ 0 on BΩ, we get
ż

BΩ

rpu b uq ¨ νsτ ¨ β dS “ 0. (7.10)

In addition, since

∇β “
ˆ

0 ´1
1 0

˙

,

we find
ż

Ω

F : ∇β dx “
ż

Ω

pBx1
cBx2

c ´ Bx1
cBx2

cq dx “ 0. (7.11)

Furthermore, the symmetry of u b u implies
ż

Ω

pu b uq : ∇β dx “ 0. (7.12)
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Upon collecting (7.7), (7.8), (7.9), (7.10), (7.11) and (7.12), one obtains (7.5) is true. Therefore, we
have (7.4) admits the unique solution u under the solvability conditions (7.5) and (7.6).

Next, we perform the error analysis. Noting that the location ξ of the single boundary spot is on
BΩ, we have to flatten the boundary locally. Indeed, one has for |x´ ξ| À ε,

∆xu “∆Xu ` pρ1pX1qq2BX2X2
u ´ 2ρ1pX1qBX2X1

u ´ ρ2pX1qBX2
u

“ 1

ε2
∆Y u ` 1

ε2
pρ1pεY1qq2BY2Y2

u ´ 2

ε2
ρ1pεY1qBY2Y1

u ´ 1

ε
ρ2pεY1qBY2

u,

∇xP̃ “
´

BX1
P̃ ´ ρ1pX1qBX2

P̃ , BX2
P̃
¯

“∇X P̃ ´ pρ1pX1qBX2
P̃ , 0q

“1

ε
∇Y P̃ ´ 1

ε
pρ1pεY1qBY2

P̃ , 0q.

and

∇x ¨ F “
´ B

BX1

,
B

BX2

¯

¨ F ´
´ B

BX2

¨ ρ1pX1q, 0
¯

¨ F

“1

ε
∇Y ¨ F ´ 1

ε

´ B
BY2

¨ ρ1pεY1q, 0
¯

¨ F.

Since ρ1 and ρ2 satisfy (5.7) and (5.8), we find in the inner region,

ε2∆xu “ ∆Y u ` op1q, ε∇xP̃ “ ∇Y P̃ ` op1q, ε∇x ¨ F “ ∇Y ¨ F ` op1q. (7.13)

In addition, considering the divergence-free condition ∇x ¨u “ 0 in Ω and Naiver boundary condition
pSu ¨ νqτ “ 0 on BΩ, we have in the inner region,

ε∇x ¨ u “ ∇Y ¨ u ` op1q, εpSxu ¨ νqτ “ pSY u ¨ νqτ ` op1q. (7.14)

Moreover, we decompose u as

u “ εuiχpyq ` uo. (7.15)

By using (7.13), (7.14) and (7.15), we formulate the inner problem satisfied by ui as
$

&

%

∇P1 “ ∆ui ` ∇ ¨ F, Y P R2
`,

∇ ¨ ui “ 0, Y P R2
`,

BY2
ui1 “ ui2 “ 0, Y P BR2

`,

(7.16)

where ui “ pui1, ui2q. Correspondingly, noting that

∆puiχq “ ∆uiχ ` 2∇ui ¨ ∇χ ` ui∆χ,

one establishes the following outer problem of uo:
$

’

’

&

’

’

%

∇xpP̃ ´ χP1q “ ∆xu
o ` p1 ´ χq∇x ¨ F ` 2ε∇xχ ¨ ∇xu

i ` εp∆xχqui ´ P1∇xχ, x P Ω,
∇x ¨ uo “ ´ε∇xχ ¨ ui, x P Ω,
uo ¨ ν “ 0, x P BΩ,
pSxpuoq ¨ νqτ “ ´pSxpεuiχq ¨ νqτ , x P BΩ.

(7.17)

After finishing the error estimate, we shall first focus on (7.16) and establish the inner linear theory,
then find the solution to (7.17) by using the W 2,p estimate of Stokes equation.

To study the inner problem (7.16), our idea is to perform the extension of velocity field ui and
solve the whole space problem, then derive the desired pointwise decay estimate by the representation
formula. To begin with, we state the following useful lemma.

Lemma 7.1 ([40, Lemma 2.2]). Let a ą 0, b ą 0, k ą 0, m ą 0 and k `m ą N . Define

I :“
ż

RN

dz

p|z| ` aqkp|z ´ x| ` bqm , x ­“ 0.



38 F. KONG, C. LAI, AND J. WEI

Then, with R “ maxt|x|, a, bu „ |x| ` a` b, we have

I À RN´k´m ` δkNR
´m log

R

a
` δmNR

´k log
R

b
` 1kąNR

´maN´k ` 1mąNR
´kbN´m,

where δαβ and 1αąβ are defined by

δαβ “
"

1, α “ β,

0, α ­“ β;
1αąβ “

"

1, α ą β,

0, otherwise.

By using Lemma 7.1, we are able to derive the decay estimate satisfied by ui in (7.16). Before
stating our result, we define the norm } ¨ }S,γ´2,a`2 satisfied by the forcing term F as

}F}S,γ´2,a`2 :“ ε´pγ´2q sup
Y PR2

`

}F}H,8p1 ` |Y |a`2q, (7.18)

where γ, a ą 0 and }F}8 is given by

}F}H,8pY q :“ sup
i,j“1,2

|FijpY q| for Y P R
2
`.

Thanks to (7.18), we summarize our result as the following lemma:

Lemma 7.2. Let γ P p0, 1q and a P p0, 1q be constants. Assume that }F}S,ν´2,a`2 ă 8, then the
solution pui, P1q of system (7.16) satisfies

max
j“1,2

|ui
jpY q| À }F}S,γ´2,a`2

εγ´2

1 ` |Y | , (7.19)

and

|P1pY q| À }F}S,γ´2,a`1

εγ´2

1 ` |Y |2 . (7.20)

Proof. First of all, we define EF as an extension of F to R2, which is

EFpY1, Y2q “
„

F11 ´F12

´F21 F22



pY1,´Y2q for Y2 ă 0.

Then, we let ũi be the solution of the following Stokes equation in the whole space R2:
"

∇Q̃1 “ ∆ũi ` ∇ ¨ pEFq, Y P R2,

∇ ¨ ũi “ 0, Y P R
2.

(7.21)

We have from the representation formula that the solution to (7.21) is

ũi
ipY q “

2
ÿ

j“1

ż

R2

UijpY ´ zqp∇ ¨ pEFqqjpzq dz “
2
ÿ

j,k“1

ż

R2

UijpY ´ zqBzkpEFqjkpzq dz,

Q̃1pY q “
2
ÿ

j“1

ż

R2

QjpY ´ zqp∇ ¨ pEFqqjpzq dz “
2
ÿ

j,k“1

ż

R2

QjpY ´ zqBzkpEFqjkpzq dz,
(7.22)

where pUij , Qjq, i, j “ 1, 2 is the Lorentz tensor given by

Uijpxq “ ´ 1

4π
δij log |x| ` 1

4ω2

xixj

|x|2 , Qjpxq “ xj

2ω2|x|2 ,

and ω2 denotes the measure of the unit ball in R2.

Now, we verify that the restriction ũi|R2

`
is the solution to (7.16). It is straightforward to show

that the restriction ũi|R2

`
satisfy Stokes equation (7.16)1. Next, we check the boundary condition
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(7.16)2. Indeed, we rewrite (7.22)1 as the following form:

ũi
1pY q “

ż

R2

ˆ

´ 1

4π
log |Y ´ z| ` 1

4ω2

pY1 ´ z1q2
|Y ´ z|2

˙

p∇ ¨ pEFqq1pzq dz

`
ż

R2

1

4ω2

pY1 ´ z1qpY2 ´ z2q
|Y ´ z|2 p∇ ¨ pEFqq2pzq dz,

ũi
2pY q “

ż

R2

1

4ω2

pY2 ´ z2qpY1 ´ z1q
|Y ´ z|2 p∇ ¨ pEFqq1pzq dz

`
ż

R2

ˆ

´ 1

4π
log |Y ´ z| ` 1

4ω2

pY2 ´ z2q2
|Y ´ z|2

˙

p∇ ¨ pEFqq2pzq dz.

Noting that

p∇ ¨ pEFqq1pzq “Bz1pEFq11pzq ` Bz2pEFq12pzq,
p∇ ¨ pEF qq2pzq “Bz1pEF q21pzq ` Bz2pEF q22pzq,

we find p∇ ¨ pEFqq1 and p∇ ¨ pEFqq2 are even and odd in z2, respectively. Then, we obtain

BY2
ũi
1pY1, 0q “

ż

R2

˜

´ 1

4π

´z2
pY1 ´ z1q2 ` z22

´ 2

4ω2

pY1 ´ z1q2p´z2q
ppY1 ´ z1q2 ` z22q2

¸

p∇ ¨ pEFqq1pzq dz

`
ż

R2

1

4ω2

«

pY1 ´ z1q
`

pY1 ´ z1q2 ` z22
˘

´ 2pY1 ´ z1qz22
ppY1 ´ z1q2 ` z22q2

ff

p∇ ¨ pEFqq2pzq dz “ 0,

and

ũi
2pY1, 0q “

ż

R2

1

4ω2

´z2pY1 ´ z1q
pY1 ´ z1q2 ` z22

p∇ ¨ pEFqq1pzq dz

`
ż

R2

ˆ

´ 1

4π
log

b

pY1 ´ z1q2 ` z22 ` 1

4ω2

z22
pY1 ´ z1q2 ` z22

˙

p∇ ¨ pEFqq2pzq dz “ 0.

It follows that the boundary condition (7.16)2 is satisfied, and hence ui ” ũi|R2

`
solves (7.16).

Our next aim is to show (7.19) by using (7.22). In fact, we have from integration by parts formula
that for ũi

i,

ũi
ipY q “ ´

2
ÿ

j,k“1

ż

R2

BzkUijpY ´ zqpEFqjkpzq dz. (7.23)

Noting that F satisfies }F}S,ν´2,a`2 ă 8, we take

}F}H,8pzq À εγ´2

1 ` |z|2`a
, a P p0, 1q. (7.24)

Upon substituting (7.24) into (7.23), one has

max
j“1,2

|ũi
jpY q| À

ż

R2

1

|Y ´ z|
εγ´2

1 ` |z|2`a
dz. (7.25)

It is necessary to show that the RHS in (7.25) is well-defined. In fact, we find
ż

R2

1

|Y ´ z|
1

1 ` |z|2`a
dz “

ż

R2

1

|z|
1

1 ` |z ´ Y |2`a
dz

“
ż

B0pδq

1

|z|
1

1 ` |z ´ Y |2`a
dz `

ż

R2zB0pδq

1

|z|
1

1 ` |z ´ Y |2`a
dz

“ 2πδ

1 ` |Y |2`a
`
ż

R2zB0pδq

1

|z|
1

1 ` |z ´ Y |2`a
dz.

Hence,

max
j“1,2

|ũi
jpY q| À εγ´2

ż

R2

1

|Y ´ z|
1

1 ` |z|2`a
dz „ εγ´2

ż

R2

1
`

1
2

` |z|
˘`

|z ´ Y | ` 1
2

˘2`a
dz.
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Then, we invoke Lemma 7.1 to find

max
j“1,2

|ũi
jpY q| À εγ´2

ˆ

1

p|Y | ` 1q1`a
` 1

|Y | ` 1

˙

À εγ´2

1 ` |Y | ,

which gives the proof of (7.19).

Next, we derive the decay estimate for pressure Q̃1. Recall that the representation formula for
Q̃1 in (7.22) is

Q̃1pY q “
2
ÿ

j“1

ż

R2

QjpY ´ zqp∇Y ¨ pEF qqjpzq dz, (7.26)

where |Qjpxq| À |x|´1. According to the assumption that }F}S,ν´2,a`2 ă 8, we have

max
j“1,2

|p∇Y ¨ Fqjpzq| À εγ´2

1 ` |z|3`a
. (7.27)

Upon substituting (7.27) into (7.26), one obtains

|Q̃1pY q| À
ż

R2

1

|Y ´ z|
εγ´2

1 ` |z|3`a
dz.

Similarly, we have
ż

R2

1

|Y ´ z|
1

1 ` |z|3`a
dz “

ż

R2

1

|z|
1

1 ` |z ´ Y |3`a
dz

“
ż

B0pδq

1

|z|
1

1 ` |z ´ Y |3`a
dz `

ż

R2zB0pδq

1

|z|
1

1 ` |z ´ Y |3`a
dz

“ 2πδ

1 ` |Y |3`a
`
ż

R2zB0pδq

1

|z|
1

1 ` |z ´ Y |3`a
dz,

where δ ą 0 is a small but fixed number. Thus,

|Q̃1pY q| À
ż

R2

1

|Y ´ z|
εγ´2

1 ` |z|3`a
dz „ εγ´2

ż

R2

1
`

1
2

` |z|
˘`

|z ´ Y | ` 1
2

˘3`a
dz.

By using Lemma 7.1, we further get

|Q̃1pY q| À εγ´2

ˆ

1

p|Y | ` 1q2`a
` 1

|Y | ` 1

˙

À εγ´2

1 ` |Y | .

Now, we derive the decay estimate of Q̃1; however, by noting (7.19), the algebraic decay rate

satisfied by Q̃1 is expected to be 2. To show this, we integrate the solution formula (7.26) of Q̃1 by
parts to get

Q̃1pY q “
2
ÿ

j,k“1

ż

R2

QjpY ´ zqBzkpEFqjkpzq dz

“ ´
2
ÿ

j,k“1

ż

R2

QjpzqBzkrpEFqjkpY ´ zqs dz

“ ´
2
ÿ

j,k“1

ż

B0pδq

QjpzqBzkrpEFqjkpY ´ zqs dz ´
2
ÿ

j,k“1

ż

R2zB0pδq

QjpzqBzkrpEFqjkpY ´ zqs dz

“ ´
2
ÿ

j,k“1

ż

B0pδq

QjpzqBzkrpEFqjkpY ´ zqs dz

`
2
ÿ

j,k“1

ż

BB0pδq

QjpzqpEFqjkpY ´ zq ¨ νz dSz `
2
ÿ

j,k“1

ż

R2zB0pδq

BzkQjpzqpEFqjkpY ´ zq dz,

(7.28)
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where νz denotes the unit outer normal of B0pδq. Noting that |Qjpxq| À |x|´1, we find

ˇ

ˇ

ˇ
´

2
ÿ

j,k“1

ż

B0pδq

QjpzqBzkrpEFqjkpY ´ zqs dz
ˇ

ˇ

ˇ
À

ż

B0pδq

1

|z|
εγ´2

1 ` |z ´ Y |3`a
dz

“εγ´2 2πδ

1 ` |Y |3`a
, (7.29)

and

ˇ

ˇ

ˇ

2
ÿ

j,k“1

ż

BB0pδq

QjpzqpEFqjkpY ´ zq ¨ νz dSz

ˇ

ˇ

ˇ
À

ż

BB0pδq

1

|z|
εγ´2

1 ` |z|2`a
dz

“ 2πεγ´2

1 ` δ2`a
. (7.30)

Moreover, in light of |∇Qjpxq| À |x|´2, combining (7.29) and (7.30), we apply (7.24) on (7.28) and
deduce that

|Q̃1pY q| À εγ´2 2πδ

1 ` |Y |3`a
` 2πεγ´2

1 ` δ2`a

`
ż

R2zB0pδq

1

|z|2
εγ´2

1 ` |z ´ Y |2`a
dz

„εγ´2

ż

R2

1
`

1
2

` |z|
˘2`|z ´ Y | ` 1

2

˘2`a
dz.

Thanks to Lemma 7.1, one finds

|Q̃1pY q| À εγ´2

„

1

p|Y | ` 1q2`a
p1 ` log p1 ` |Y |qq ` 1

p|Y | ` 1q2


À εγ´2

ˆ |Y |δ
p|Y | ` 1q2`a

` 1

p|Y | ` 1q2
˙

, δ ą 0,

À εγ´2

p1 ` |Y |q2`a´δ
` εγ´2

p1 ` |Y |q2
.

(7.31)

Then, we simply take δ “ a in (7.31) to obtain

|Q̃1pY q| À εγ´2

p1 ` |Y |q2
,

which completes the proof of (7.20). �

Lemma 7.2 establishes the desired inner estimate of the velocity field u. Next, we consider the
outer problem (7.17) and hope to find the solution via the W 2,p estimate of Stokes equation. To
this end, we must estimate ∇xu

i and readiy have the following lemma.

Lemma 7.3. Under the assumptions of Lemma 7.2, the following estimates hold:

|∇xu
ipY q| À }F}S,γ´2,a`2

εγ´3

p1 ` |Y |q2 , (7.32)

and

}∇xP1}LppB2δpξqzBδpξqq À }∇x ¨ F}LppB2δpξqzBδpξqq. (7.33)

Proof. Noting the representation formula of ui is (7.22)1, we have

Blũi
mpY q “

2
ÿ

j,k“1

ż

R2

BzlUmjpY ´ zqBzkpEFqjkpzq dz. (7.34)
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Since max
i,j“1,2

|∇2Uijpxq| À |x|´2 and F satisfies

}F}H,8pzq À εγ´2

1 ` |z|2`a
,

one applies the integration by parts on (7.34) to get

|Blũi
mpY q| À

ż

B0pδ1q

1

|z|
εγ´2

1 ` |z ´ Y |3`a
dz `

ż

R2zB0pδ1q

1

|z|2
εγ´2

1 ` |z ´ Y |2`a
dz

„εγ´2

ż

R2

1
`

|z| ` 1
2

˘2`|z ´ Y | ` 1
2

˘2`a
dz.

By using Lemma 7.1, we obtain
ż

R2

1
`

|z| ` 1
2

˘2`|z ´ Y | ` 1
2

˘2`a
dz À 1

p|Y | ` 1q2`a
` 1

p|Y | ` 1q2 .

Moreover, recall that y “ x´ξ
ε

, one completes the proof of (7.32).

For pressure P̃1, invoking the W 2,p theory shown in Theorem 2.13, we readily derive the estimate
(7.33). �

With the help of Lemma 7.3, we now focus on the outer part and formulate the outer linear
theory satisfied by uo. To begin with, noting the existence of non-trivial kernel discussed in (7.5)
and (7.6), we must impose the orthogonality conditions on system (7.17) and modify the problem
as

$

’

’

’

’

&

’

’

’

’

%

∇xpP̃ ´ χP1q “ ∆xu
o ` f̃ ` d1β, x P Ω,

∇x ¨ uo “ ´ε∇xχ ¨ ui, x P Ω,
uo ¨ ν “ 0, x P BΩ,
pSxpuoq ¨ νqτ “ h̃τ , x P BΩ,
ş

Ω
uo ¨ β dx “ 0, uo P H2pΩq,

(7.35)

where β “ cxK ` b with constant c ‰ 0 and constant vector b, and

f̃ :“p1 ´ χq∇x ¨ F ` 2ε∇xχ ¨ ∇xu
i ` εp∆xχqui ´ P1∇xχ,

h̃τ :“ ´ pSxpεuiχq ¨ νqτ .
(7.36)

Here d1 is determined to satisfy
ż

Ω

f̃ ¨ β dx` d1

ż

Ω

β ¨ β dx` 2

ż

BΩ

h̃τ ¨ β dS “ 0.

Then, considering system (7.35), we have the following results:

Lemma 7.4. Assume that }F}S,ν´2,a`1 ă 8, then we have system (7.35) admits the solution puo, P̃ q
satisfying

}uo}W 2,ppΩq ` }P̃ ´ χP1}W 1,ppΩq À }F}S,γ´2,2`a, p ą 2. (7.37)

Moreover, we have the following Hölder estimate holds:

}uo}CαpΩq À }F}S,γ´2,2`a, (7.38)

where α P p0, 1q.
Proof. We shall apply theW 2,p theory on system (7.35). Before this, we must verify the compatibility
conditions. It is straightforward to see the first condition is satisfied since we choose d1 such that

ż

Ω

f̃ ¨ β dx` d1

ż

Ω

β ¨ β dx` 2

ż

BΩ

h̃τ ¨ β dS “ 0. (7.39)

Next, we claim
ż

Ω

∇xχ ¨ ui dx “ 0,
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which establishes the second orthogonality condition. Indeed, we have the fact that ui is divergence-
free. Then in light of u “ uiχ ` uo and the boundary conditions of ui, one completes the proof of
our claim.

Now, we can use the W 2,p estimate (2.22) to find

}uo}W2,ppΩq `
›

›

›
P̃1 ´ χP

›

›

›

W 1,ppΩq
À

›

›p1 ´ χq∇x ¨ F ` 2ε∇xχ ¨ ∇xu
i ` εp∆xχqui ´ P1∇xχ

›

›

LppΩq

`
›

›ε∇xχ ¨ ui
›

›

W 1,ppΩq
`
›

›pSxpεuiχq ¨ νqτ
›

›

W
1´

1

p
,p

pBΩq

` |d1|}β}LppΩq.

(7.40)

For the formulation of the outer estimate, it is necessary to study d1. Thanks to the cut-off function
χ, we have from (7.39) that

d1 “ ´
´

ż

Ω

f̃ ¨ β dx` 2

ż

BΩ

h̃τ ¨ β dS
¯M

ż

Ω

β ¨ β dx

“ ´
´

ż

ΩzBδpξq

f̃ ¨ βdx` 2

ż

BΩzBδpξq

h̃τ ¨ βdS
¯M

ż

Ω

β ¨ β dx.

Then by Hölder’s inequality and Trace theorem, we estimate d1 to get

|d1| À }f̃}LppΩq ` }h̃}
W

1´
1

p
,p

pBΩq
, (7.41)

where f̃ and h̃ are given by (7.36). With the help of (7.41), we utilize the boundedness of }β}LppΩq

and check (7.40) to obtain

}uo}W2,ppΩq `
›

›

›
P̃1 ´ χP

›

›

›

W 1,ppΩq
À

›

›p1 ´ χq∇x ¨ F ` 2ε∇xχ ¨ ∇xu
i ` εp∆xχqui ´ P1∇xχ

›

›

LppΩq

`
›

›ε∇xχ ¨ ui
›

›

W 1,ppΩq
`
›

›pSxpεuiχq ¨ νqτ
›

›

W
1´

1

p
,p

pBΩq
.

(7.42)

Noting the definition of the cut-off function χ, we further have

|p1 ´ χq∇x ¨ F| À }F}S,γ´2,2`aε
a`γ , (7.43)

|2ε∇xχ ¨ ∇xu
i ` εp∆xχqui ´ P1∇xχ| À }F}S,γ´2,2`aε

γ , (7.44)

|ε∇xχ ¨ ui| À }F}S,γ´2,2`aε
γ (7.45)

and

|ε∇xχ ¨ ∇xu
i| À }F}S,γ´2,2`aε

γ . (7.46)

In particular, since BY2
ui1 “ ui2 “ 0 on BR2

`, we get

|pSxpεuiχq ¨ νqτ | À |ε∇xχ ¨ ui| ` |ε2ui| À εγ}F}S,γ´2,2`a (7.47)

and
ˇ

ˇ∇xrpSxpεuiχq ¨ νqτ s
ˇ

ˇ À |ε∇xχ ¨ ∇xu
i| ` |ε∆xχu

i| ` |ε2∇xu
i|

À εγ}F}S,γ´2,2`a. (7.48)

Upon collecting (7.43), (7.44), (7.45), (7.46), (7.47) and (7.48), one finds from (7.42) that (7.37)
holds. Moreover, noting that p is assumed to satisfy p ą 2, we use Sobolev embedding theorem to
readily obtain (7.38). �

For the velocity field u, by using Lemma 7.2 and Lemma 7.4, we have the following proposition:

Proposition 7.5. Assume that }F}S,γ´1,2`a ă 8 with 0 ă γ, a ă 1. Then there exists a solution

puo, P̃ q to system (7.4) satisfying
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‚ for x P Bδpξq :“ tx||x´ ξ| ă δu with δ ą 0 being some sufficiently small number,

|upxq| À }F}S,γ´2,a`2

εγ´1

1 `
ˇ

ˇ

x´ξ
ε

ˇ

ˇ

(7.49)

and

|P̃ pxq| À }F}S,γ´2,a`2

εγ´2

p1 ` |Y |q2
;

‚ for x P ΩzBδpξq,
}u}W 2,ppΩzBδpξqq ` }∇P̃ }LppΩzBδpξqq À }F}S,γ´2,2`a, p ą 2;

moreover,

}u}CαpΩzBδpξqq À }F}S,γ´2,2`a.

Focusing on the results stated in Proposition 7.5, we give some remarks.

Remark 7.6.

‚ For the outer problem (7.17), we find the only difference between (7.17) and (7.35) is the
Lagrange multiplier term d1β. In fact, by solving the reduced problem in Section 8, one can
readily see that d1 “ 0.

‚ (7.49) in Proposition 7.5 implies that

}u}S,γ´1,1 À }F}S,γ´2,2`a.

‚ Noting that u is divergence-free, we can write u ¨ ∇u “ ∇ ¨ pu b uq, where b represents the
tensor product defined by pv b wqij “ viwj . We shall solve u in the class }u}S,γ´1,1 ă 8.
Then the advection term u ¨ ∇xu satisfies

|u ¨ ∇xu| À ε2γ´3

1 `
ˇ

ˇ

x´ξ
ε

ˇ

ˇ

3
,

which is a perturbation compared to ∇ ¨ F. In this case, we are able to solve u by the fixed
point argument and the detailed discussion will be shown in Section 8.

With the help of Proposition 7.5, we are able to study the concentration phenomenon in Section
8.

8. Inner–outer gluing system: existence of solution

This section is devoted to the construction of the boundary spot in stationary problem (1.11) via
the inner-outer gluing method. Before performing the inner-outer gluing procedure, we collect some
notations and definitions. Recall that the inner operator LW rΦs is given by

LW rΦs “ ∆yΦ ´ ∇y ¨ pW∇yΨq ´ ∇y ¨ pΦ∇yΓq, ´∆´1
y Φ “ Ψ;

the outer operator is defined as

L
orϕs “ ∆yϕ ´ ∇yϕ ¨ ∇yV ´ ε2V ϕ,

where the inner and outer norms } ¨ }δ2,ν2 and } ¨ }ν,o are

}h}δ1,ν1 :“ ε´δ1 sup
yPR2

|hpyq|p1 ` |y ´ ξ1|qν1 and }h}ν,o :“ sup
yPΩε

ε´δ3 |hpyq|p1 ` |y ´ ξ1|qν3 ,

with y “ x
ε
and ξ1 “ ξ

ε
. In addition, φ is decomposed as

φpxq “ 1

ε2
Φipyqχp|y ´ ξ1|q ` ϕo,

where χ is

χprq :“
"

1, r ď δ
ε
,

0, r ě 2δ
ε
,
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and δ ą 0 is fixed but small constant. However, the center of the boundary spot is located at the
boundary of Ω. To tackle this, as shown in Section 5, we define the graph ρpx1q as tpx1, x2q “
px1, ρpx1qu with ρp0q “ ρ1p0q “ 0 and transform px1, x2q and py1, y2q as

X1 “x1 ´ ξ1, X2 “ x2 ´ ξ2 ´ ρpx´ ξ1q,

Y1 “y1 ´ ξ1
1, Y2 “ y2 ´ ξ1

2 ´ 1

ε
ρpεpY1 ´ ξ1

1qq,

where y1 “ x1{ε and y2 “ x2{ε. Moreover, for any function w,

∆xw “ ∆Xw ` pρ1pX1qq2BX2X2
w ´ 2ρ1pX1qBX2X1

w ´ ρ2pX1qBX2
w,

p1 ` pρ1pX1qq2qBw
Bν “ pρ1pX1qqBX1

w ´ BX2
w ´ pρ1pX1qq2BX2

w,
(8.1)

and

∆yw “∆Y w ` pρ1pεY1qq2BY2Y2
w ´ 2ρ1pεY1qBY1Y2

w ´ ερ2pεY1qBY2
w,

a

1 ` pρ1pεY1qq2 Bw
Bνε

“ρ1pεY1qBY1
w ´ r1 ` pρ1pεY1qq2sBY2

w.
(8.2)

For the sake of convenience, we denote the flatten operator P ρ,ξ1 such that for any function w,

P ρ,ξwpx1, x2q “ wpX1, X2q, P ρ,ξ1wpy1, y2q “ wpY1, Y2q.

In addition, we are able to compute ∇xpP ρ,ξwq and ∆ypP ρ,ξ1wq in the X and Y variable by using

(8.1) and (8.2), respectively. With the flatten operator P ρ,ξ, we further define the inner norm in the
half space R2

` as

}h}δ2,ν2,H “ ε´δ2 sup
yPR2

`

|h|p1 ` |y|qν2 , δ2, ν2 ą 0.

We can get the desired solution pφ, ψ,uq of (1.11) if pΦi
H , ϕ

o,u, ξq solves the following inner-outer
gluing system:

$

&

%

u ¨ ∇u ` ∇P “ ∆u ´ ε0∇ ¨ F
`

Φi
H , ϕ

o,u, ξ
˘

in Ω,
∇ ¨ u “ 0 in Ω,
u ¨ ν “ 0, pSu ¨ νqτ “ 0 on BΩ,

(8.3)

and
$

’

&

’

%

LW

“

Φi
H

‰

“ H
`

Φi
H , ϕ

o,u, ξH
˘

in R2
`,

BΦi

H

BY2

´W
BΨ

i

H

BY2

“ β
`

Φi
H , ϕ

o,u, ξH
˘

on BR2
`,

ε2L
orϕos “ G

`

Φi
H , ϕ

o,u, ξ
˘

in Ωε,

(8.4)

where Φi
H “ P ρ,ξ1Φi, Ψ

i

H “ ´∆´1
Y Φi

H , ξH “ pξH,1, 0qT ,

F
`

P ρ,ξ1Φi, ϕo,u, ξ
˘

“ ∇c b ∇c´
ˆ |∇c|2

2

˙

´
´c2

2

¯

,

H
`

P ρ,ξ1Φi, ϕo,u, ξH
˘

:“ε∇y ¨
`

W∇xH
ε
˘

χ` εu ¨ ∇yWχ` ε2∇x ¨ pW∇xψ
oqχ

` ε2∇y ¨
´´ 1

ε2
Φiχ ` ϕo

¯

∇yψ
¯

χ ` ε∇y ¨
`

Φi∇xH
ε
˘

χ

` εu ¨ ∇yΦ
iχ´ ∇y ¨

`

W∇yΨ
i˘

χ` ∇y ¨ pW∇yΨ
iqχ

` r∇y ¨ pW∇yΨ̂
iq ´ ∇y ¨ pW∇yΨ

iqχsχ,
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β
`

Φi
H , ϕ

o,u, ξH
˘

:“
«

ρ2p0qεY1
ˆBΦi

H

BY1
´W

BΨi

H

BY1

˙

´ rρ2p0qεY1s2
ˆBΦi

H

BY2
´W

BΨi

H

BY2

˙

´ Φi
H

´ BΓ
BY1

ρ2p0qεY1 ´ BΓ
BY2

´ BΓ
BY2

pρ2p0qεY1q2
¯

´ Φi
H

´BΨi

H

BY1
ρ2p0qεY1 ´ BΨi

H

BY2
´ BΨi

H

BY2
pρ2p0qεY1q2

¯

ff

` εpW ` Φi
Hq

´ BH
BX2

´ ρ1pεY1q BH
BX1

` rρ1pεY1qs2 BH
BX2

¯

` H. O. T. ,

and

G
`

P ρ,ξ1Φi, ϕo,u, ξ
˘

:“ε2∇x ¨
`

W∇xH
ε
˘

p1 ´ χq ` ε2u ¨ ∇xW p1 ´ χq ` ε2∇x ¨ pW∇xψ
oqp1 ´ χq

´ 2∇yΦ
i ¨ ∇yχ´ Φi∆yχ ` Φi∇yΓ ¨ ∇yχ

` ε2∇y ¨ pφ∇yψqp1 ´ χq ` εΦip∇xH
ε ¨ ∇yχq

` εpu ¨ ∇yχqΦi ` ε4u ¨ ∇xϕ
o

` r∇y ¨ pW∇yΨ̂
iq ´ ∇y ¨ pW∇yΨ

iqχsp1 ´ χq.

In particular, as shown in Section 5, all terms involving the curvature are readily perturbations,
which implies

H
`

P ρ,ξ1Φi, ϕo,u, ξ
˘

“ε∇Y ¨
`

W∇XH
ε
˘

χH ` εu ¨ ∇YWχH ` ε2∇X ¨ pW∇Xψ
oqχH

` ε2∇Y ¨
´´ 1

ε2
ΦiχH ` ϕo

¯

∇Y ψ
¯

χH ` ε∇Y ¨
`

Φi∇XH
ε
˘

χ

` εu ¨ ∇Y Φ
iχH ´ ∇Y ¨

`

W∇Y Ψ
i˘

χH ` ∇Y ¨ pW∇Y Ψ
iqχH

` r∇Y ¨ pW∇Y Ψ̂
iq ´ ∇Y ¨ pW∇Y Ψ

iqχH sχH ` H.O.T.,

where the cut-off function χH is defined by

χHpyq “ 1 for y P R
2

` XBδ{εp0q and χHpyq “ 0 for y P R
2
` XBc

2δ{εp0q,

with δ ą 0 is a small constant. For operator LW

“

P ρ,ξ1Φi
‰

, we rewrite it in the Y -variable to get

LW rP ρ,ξ1Φis “ LW,Y rΦi
H s ` 1

ε2
NρrΦi

H s,

where

LW,Y rΦs “ ∆Y Φ ´ ∇Y ¨ pW∇Y Ψq ´ ∇Y ¨ pΦ∇Y Γq, ´∆´1
Y Φ “ Ψ,

and NρrΦi
Hs is given by

NρrΦi
Hs “pρ1pεY1qq2

”B2pΦHχH,jq
BY 2

2

´
´BW

BY2
BΨH

BY2
` B2ΨH

BY 2
2

W

` BpφHχHq
BY2

BΓ
BY2

` B2Γ

BY 2
2

pΦHχHq
¯ı

´ ρ1pεY1q
”B2pφHχHq

BY1BY2
´
´BW

BY1
BΨH

BY2
` BW

BY2
BΨH

BY1

¯

´ B2ΨH

BY1BY2
W

´
´BpΦHχHq

BY1
BΓ
BY2

` BΓ
BY2

BpφHχHq
BY1

¯

´ B2Γ

BY1BY2
pΦHχHq

ı

´ ερ2pεY1q
”BpΦHχHq

BY2
´W

BΨH

BY2
´ pΦHχHq BΓ

BY2

ı

,

(8.5)

with ΨH :“ ´p∆ ` ε2q´1pΦHχHq.
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To use Lemma 6.2, we have to impose the orthogonality condition on (8.4). To begin with, we
define compactly supported radial functions W0prq such that

ż

R
2

`

W0p|Y |q dY “ 1,

and compactly supported radial functions W1,1 such that
ż

R
2

`

W1,1

`

|Y |
˘

Y1 dY “ 1.

Next, we modify (8.4) to formulate the following problem:
$

’

&

’

%

LW,Y

“

Φi
H

‰

“ H̃
`

Φi
H , ϕ

o,u, ξH
˘

´m0rH̃sW0 ´m1rH̃sW1,1 in R2
`,

BΦi

H

BY2

´W
BΨ

i

H

BY2

“ β
`

Φi
H , ϕ

o,u, ξH
˘

on BR2
`,

ε2L
orϕos “ G

`

Φi
H , ϕ

o,u, ξ
˘

in Ωε,

(8.6)

where

H̃pΦi
H , ϕ

o,u, ξHq :“ HpΦi
H , ϕ

o,u, ξHq ´NρrΦi
Hs;

m0rhs and m1rhs are given by

m0rhs “
ż

R
2

`

h dY ´
ż

BR2

`

β dY and m1rhs “
ż

R
2

`

hY1 dY ´
ż

BR2

`

βY1 dY. (8.7)

Given the velocity field u, we are able to find the solution to (8.6) by invoking Lemma 6.2 and
Lemma 6.3. Indeed, based the linear theories developed in Section 6, we shall solve the inner and
outer problems arising from the transported Keller–Segel model in the norms below.

‚ We use the norm } ¨ }δ2,4`σ,H to measure the right hand side H̃ in (8.6), where
›

›h̃
›

›

δ2,4`σ,H
:“ ε´δ2 sup

yPR2

`

ˇ

ˇh̃
ˇ

ˇp1 ` |y|q4`σ

with σ ą 0 and δ2 P p0, 1q.
‚ We use the norm } ¨ }δ2,2`σ,H to measure the inner solution Φi

H in (8.6), where
›

›Φi
H

›

›

δ2,2`σ,H
:“ ε´δ2 sup

yPR2

`

ˇ

ˇΦi
H

ˇ

ˇp1 ` |y|q2`σ. (8.8)

‚ We use the norm } ¨ }δ3,2`b,o to measure the right hand side G in (8.6), where

}g}δ3,2`b,o :“ ε´δ3 sup
yPΩε

|g|p1 ` |y ´ ξ1|q2`b

with δ3 P p0, 1q and b P p2, 3q.
‚ We use the norm } ¨ }δ3,b,o to measure the solution ϕo in (8.6), where

}ϕo}δ3,b,o :“ ε2´δ3 sup
yPΩε

|ϕo|p1 ` |y ´ ξ1|qb.

Based on linear theory developed in Section 7, we shall solve the incompressible Navier-Stokes
equation with the free-slip boundary condition in the following norms.

‚ We use the norm } ¨ }S,γ´2,2`a to measure the forcing term F , where

}F }S,γ´2,a`2 :“ ε´pγ´2q sup
xPΩ

|F pxq|
´

1 `
ˇ

ˇ

ˇ

x´ ξ

ε

ˇ

ˇ

ˇ

a`2¯

with γ P p0, 1q and a P p0, 1q.
‚ We use the norm } ¨ }S,γ´1,1 to measure the solution u, where

}u}S,γ´1,1 :“ ε´pγ´1q sup
xPΩ

|upxq|
´

1 `
ˇ

ˇ

ˇ

x´ ξ

ε

ˇ

ˇ

ˇ

¯

. (8.9)
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We then define the spaces for the inner problem, outer problem and parameters as

Ei “
!

Φi
H PL8pR2

`q : ∇yΦ
i
H P L8pR2

`q;
›

›Φi
H

›

›

δ2,2`σ,H
ă 8

)

, (8.10)

Eo “
!

ϕo P L8pΩεq : ∇yϕ
o P L8pΩεq; }ϕo}δ3,b,o ă 8,

Bϕo

Bνε

“ 0 on BΩε

)

, (8.11)

and

Ep “ tξ P R
2 : }ξ}p “ |ξ| ă 8u. (8.12)

Moreover, we define Eφ and solution φ as

Eφ “ Ei ˆ Eo, φ “ pΦi
H , ϕ

oqT

with the norm } ¨ }Eφ
is given by

}φ}Eφ
“

›

›Φi
H

›

›

δ2,2`σ,H
` }ϕo}δ3,b,o.

For the incompressible Navier-Stokes equation (8.3), we shall solve u in the following space:

Eu “ tu P L2pΩq : ∇ ¨ u “ 0 in Ω, }u}S,γ´1,1 ă Mε0u, (8.13)

where u satisfies the boundary conditions, ε0 ą 0 is the sufficiently small but fixed number and
M ą 0 is some fixed constant.

We collect (8.10), (8.11), (8.12) and (8.13) to define space X as

X :“ Ei ˆ Eo ˆ Ep ˆ Eu (8.14)

In conclusion, we will solve (8.6) and (8.3) in the space X by the fixed point theorem.

8.1. Estimate of remainder term φ.

The coupled system (1.11)1–(1.11)2 is close in spirit to the classical minimal Keller–Segel model.
To find the desired steady state, it suffices to show u ¨ ∇n is a perturbation term in the topology
given above. In this case, we are able to show the existence of φ “ 1

ε2
Φi

HχH `ϕo by performing the
argument shown in [45] with the slight modification.

Effect of the transport term u ¨ ∇n in the inner problem.

As discussed in Section 1, the scaling invariance leads to the fully coupled property of system
(1.11). Concerning the linear theory established in Section 6, we find the term u ¨ ∇n gets coupled
in each mode. More precisely, the mode k of velocity field u solved from (8.3) with the forcing term
´ε0∇ ¨ p∇Γ b ∇ψkq enters the inner problem of transported Keller–Segel model. To study the role
of advection pu ¨ ∇nqk, we note

u ¨ ∇xn “ u ¨ ∇x

´ 1

ε2
W ` 1

ε2
Φi

HχH ` ϕo
¯

,

then use the topology defined in (8.14) and the norms given by (8.8) and (8.9) to obtain in Y -variable
and the inner region,

|ε4pu ¨ ∇nqk| ď εγ
Mε0

1 ` |Y |4`σ
.

It follows that

}ε4pu ¨ ∇nqk}δ2,4`σ,H ď εγ´δ2Mε0.

If we choose δ2 “ γ P p0, 1q and let ε0 be fixed but sufficiently small number, we have u ¨ ∇n is
readily a perturbation compared to the other terms in right hand side H.

Effect of the transport term u ¨ ∇n in the outer problem.

In the outer region, we can see the leading term in advection u ¨ ∇xn is u ¨ ∇xϕ
o. Then, thanks

to the cut-off function, we similarly substitute n “ 1
ε2
W ` 1

ε2
Φi

HχH ` ϕo into u ¨ ∇n to get

|ε4p1 ´ χHqu ¨ ∇n| À εp1 ´ χHq|u ¨ ∇yW | ` εp1 ´ χHq|Wu ¨ ∇yχH |
` εp1 ´ χHq|u ¨ ∇Φi

H | ` εp1 ´ χHq|Φi
Hu ¨ ∇yχH |

` ε3p1 ´ χHq|u ¨ ∇yϕ
o| À εγ`δ2p1 ´ χHq

p1 ` |y ´ ξ1|qb`2
ď Mε0ε

γ`b`2,
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which implies

}ε4p1 ´ χHqpu ¨ ∇nq}δ3,b`2,o ď Mε0ε
γ`δ2´δ3 .

If we choose γ ą δ3 ´ δ2 P p0, 1q, we find the drift term u ¨∇n is a perturbation in the outer problem
due to the smallness of ε0.

We have shown that the transport term u ¨ ∇n can be regarded as the perturbation and hence
does not influence the fixed point argument. Next, we focus on the incompressible Navier-Stokes
equation (8.3) and estimate the velocity field u.

8.2. Estimate of the velocity field u.

For the analysis of solution u to (8.3), the key is to estimate the coupled forcing term ´ε0∇ ¨ F ,
which is

´ε0∇ ¨ F “ ´ε0∇ ¨ p∇c b ∇cq ` ε0∇

ˆ |∇c|2
2

˙

` ε0∇
´c2

2

¯

. (8.15)

First of all, by using the c-equation of (1.11), we obtain the right hand side of (8.15) has the following
equivalent form:

´ε0∇ ¨ p∇c b ∇cq ` ε0∇

ˆ |∇c|2
2

˙

` ε0∇
´c2

2

¯

“ ε0pc´ ∆cq∇c. (8.16)

Then one observes that in (8.16), the main contribution terms come from Γ`Hε `
`

Ψ
i

H,0 `Ψ
i

H,1 `
Ψ

i

H,K

˘

χ, where Ψ
i

H,0, Ψ
i

H,1 and Ψ
i

H,K are mode 0, mode 1 and higher modes in the remainder term,

respectively. Noting that Γ, Hε and Ψ
i

H,0 dominate other small terms thanks to Lemma 6.2, we
compute from ´∆xH

ε `Hε “ ´Γ in Ω that

pc ´ ∆cq∇c «pΓ `Hε ` Ψ
i

H,0 ´ ∆Γ ´ ∆Hε ´ ∆Ψ
i

H,0qp∇Γ ` ∇Hε ` ∇Ψ
i

H,0q
“ ´ ∆xΓ∇xΓ ´ ∆xΓ∇xH

ε

´ ∇ ¨
`

∇Ψ
i

H,0 b ∇Ψ
i

H,0

˘

` ∇

˜

ˇ

ˇ∇Ψ
i

H,0

ˇ

ˇ

2

2

¸

` ∇

˜

pΨi

H,0q2
2

¸

.

Hence, by using ´∆xΓ “ 1
ε2
W , we next only need to evaluate

∇x ¨ p∇xΓ b ∇xΓq and ∇x ¨
`

∇xΓ b ∇xΨ
i

H,0

˘

, (8.17)

and

∆xΓ∇xH
ε. (8.18)

First of all, noting that Ψ
i

H,0 and Γ are both radial, we claim ∇x ¨ p∇xΓ b ∇xΓq and ∇x ¨
`

∇xΓ b
∇xΨ

i

H,0

˘

can be written as potentials. To show this, we shall prove the following lemma:

Lemma 8.1. Assume R1p|y|q and R2p|y|q, y P R2 are radial functions. Then we have there exists
a scalar function ωpyq such that

∇y ¨ p∇yR1 b ∇yR1q “ ∇yω. (8.19)

Proof. We rewrite the left hand side of (8.19) in the polar coordinate pρ, θq and study by component
to get

r∇y ¨ p∇yR1 b ∇yR1qs1 “By1
pBy1

R1By1
R2q ` By2

pBy2
R1By1

R2q

“ cos θBρpBρR1BρR2 cos
2 θq ´ sin θ

ρ
Bθpcos2 θqBρR1BρR2

` sin θBρpBρR1BρR2 sin θ cos θq ` cos θ

ρ
BθpBρR1BρR2 sin θ cos θq

“ cos θ
”

BρpBρR1BρR2q ` 1

ρ
BρR1BρR2

ı

. (8.20)
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Similarly, we obtain the second component satisfies

r∇y ¨ p∇yR1 b ∇yR1qs2 “By1
pBy1

R1By2
R2q ` By2

pBy2
R1By2

R2q

“ sin θ
”

BρpBρR1BρR2q ` 1

ρ
BρR1BρR2

ı

. (8.21)

Combining (8.20) and (8.21), one lets

ω :“
´

BρR1BρR2 `
ż

1

ρ
BρR1BρR2 dρ

¯

,

then has

∇y ¨ p∇yR1 b ∇yR1q “ ∇yω,

which finishes the proof. �

To show our claim, we compute (8.17) to get

∇x ¨ p∇xΓ b ∇xΓq “ 1

ε3
∇y ¨ p∇yΓ b ∇yΓq

∇x ¨
`

∇xΓ b ∇xΨ
i

0

˘

“ 1

ε3
∇y ¨

`

∇yΓ b ∇yΨ
i

0

˘

.

(8.22)

Noting the facts that Γ and Ψ
i

0 are radial, we apply Lemma 8.1 on (8.22) to readily obtain ∇x ¨
p∇xΓ b ∇xΓq and ∇x ¨

´

∇xΓ b ∇xΨ
i

0

¯

are potentials, which can be absorbed in the pressure P̃ of

problem (8.3). It is obvious that other terms such as ∇
´

|∇Ψ
i

H,0|2

2

¯

and ∇

´

pΨ
i

H,0q2

2

¯

are potentials.

On the other hand, we have to estimate (8.18), which is

|∆xΓ∇xH
ε| À 1

ε2
1

p1 ` |Y |q4 ,

so that

}∆xΓ∇xH
ε}S,γ´3,3`a ! 1

with γ P p0, 1q.
In conclusion, the leading order term in F defined by (8.15) is

ˇ

ˇ∇xΓ b ∇xΨ
i

1

ˇ

ˇ ď εδ2´2

p1 ` |Y |q2`σ

›

›Ψ
i

1

›

›

δ2,σ,H
,

from which we conclude that
›

›ε0∇xΓ b ∇xΨ
i

1

›

›

S,γ´2,2`a
ď ε0,

where we have chosen δ2 “ γ P p0, 1q and a “ σ P p0, 1q. For the estimate of u, we give the following
remarks:
Remark 8.2.

‚ As shown in Lemma 6.2, we have constructed the mode 0 solution Ψ
i

0 with the logarithmic
growth owing to the existence of non-trivial kernel Z0, which may cause the slow decay
difficulty in the fixed point argument.

‚ The forcing involving radial modes can be absorbed into the pressure P thanks to Lemma
8.1.

‚ The equation ´∆xH
ε `Hε “ ´Γ helps us rule out the slow decay problem caused by Hε.

‚ The smallness of ε0 and the decay property of mode 1 solution guarantee the required estimate
of the coupled forcing F .

It is necessary to discuss the advection u ¨ ∇u. As mentioned in Remark 7.6, considering the
solution u P Eu with Eu defined by (8.13), the nonlinear term u ¨ ∇u in (8.3) can be regarded as a
perturbation compared to the forcing ε0∇ ¨ F . Indeed, since u P Eu, we get

|u ¨ ∇u| À ε2γ´3

p1 ` |Y |q3 ,
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which implies

}u ¨ ∇u}S,γ´3,a`3 À εγ´a ! 1

if we choose 0 ă a ă γ ă 1.
In summary, we obtain the incompressible Navier-Stokes equation (8.3) serves as the following

perturbed Stokes system:

∇P̃ “ ∆u ´ ε0∇ ¨ F1pΦi
H , ϕ

o,u, ξHq,
with

F1pΦi
H , ϕ

o,u, ξHq “ FpΦi
H , ϕ

o,u, ξHq ` u b u,

where we have rewritten u ¨ ∇u “ ∇ ¨ pu b uq by using the fact that u is divergence-free.

8.3. Fixed point argument: proof of Theorem 1.5.

We are ready to perform the gluing procedure and prove Theorem 1.5. Similarly as in [45], we
use Lemma 6.2, Lemma 6.3 and Proposition 7.5 to rewrite the solution E “ pu,Φi

H , ϕ
o, ξHqT as

u “ Aupu,Φi
H , ϕ

o, ξHq, Φi
H “ Aipu,Φi

H , ϕ
o, ξHq, ϕo “ Aopu,Φi, ϕo, ξHq,

and

ξH “ Appu,Φi, ϕo, ξHq.
Recall that space X is given by (8.14), then we define the norm } ¨ }X as

}E}X “
›

›Φi
›

›

δ2,2`σ,H
` }ϕo}δ3,b,o ` }u}S,γ´1,1 ` }ξH}p.

Now, we formulate the fixed point problem as

E “ ApEq,
where ApEq is given by

ApEq “
`

AupEq,AipEq,AopEq,AppEq
˘

, A : B1 Ă X Ñ X

with

B1 :“
 

E P X : }E}X ă 1
(

.

We claim that A is a contraction mapping from B1 onto itself. The proof is based on Section 4
and Section 5 of [45], we only need to perform the slight modification. For the sake of completeness,
we give the sketch of arguments. First of all, we shall show for }E}X ď 1,

}ApEq}X ď 1.

For the inner operator Ai, since we have shown the drift term u ¨ ∇n is a small perturbation, one
finds for Y P B2δ{εp0q, the leading term in H satisfies

ε|∇Y Φ
i ¨ ∇XH

εpξq| ď Cδεδ2

p1 ` |Y |q4`σ
,

where C ą 0 is some constant. On the other hand, since we flatten the boundary locally near the
location ξ, it is necessary to estimate the new error Nρ given by (8.5). However, according to (5.6),
(5.7) and (5.8), one has Nρ is a small perturbation compared to error H shown in (8.6).

For the outer operator Ao, due to the smallness of u ¨ ∇xn in the outer region, we note that the
error term involving the inner solution Φi are the leading one, then obtain for ∇Y Φ

i ¨ ∇Y χ,

εδ2´δ3 |∇Y Φ
i ¨ ∇Y χH | ď C1ε

δ2´δ3
εδ2

p1 ` |Y |q4`σ
ď C1

εδ3´δ2

δ2δ2´2δ3

εδ2

p1 ` |Y |q4`σ`2δ2´2δ3
,

where C1 ą 0 is some constant. For the Stokes operator Au, as discussed in Subsection 8.2, we have
from the smallness of ε0 that }Au}X ď 1. For the parameter operatorAp, since u¨∇xn is proved to be
the perturbation in the inner problem, we only need to adjust ξH to eliminate Lagrange multipliers
m0 and m1 given by (8.7), which will be discussed later on.

As shown in [45], by choosing suitable δ, δ2, δ3, σ, b γ and a, we prove that A maps from B1

into itself. Here we choose δ, δ2, δ3, σ and b such that δ „ ?
ε, σ “ a P

`

0, 4
5

˘

, γ “ δ2 P pσ, 1q,
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0 ă δ3 “ δ2 ` σ
4

ă 1 and b “ 2 ` σ
2
. Moreover, under the same restriction of parameters, we can

similarly show that there exist constants τ1, τ2, τ3 P p0, 1q such that
$

’

’

&

’

’

%

}AirE1s ´ AirE2s}δ2,2`σ,H ď τ1}E1 ´ E2}X ,
}AorrE1s ´ AorrE2s}δ3,b,o ď τ2}E1 ´ E2}X ,
}AurE1s ´ AurE2s}S,γ´1,1 ď τ3}E1 ´ E2}X ,
}AprE1s ´ AprE2s}p ď τ4}E1 ´ E2}X

for any E1, E2 P X with }E1}X , }E1}X ď 1.
In conclusion, one finds there exists τ P p0, 1q such that

A
`

B1

˘

Ă B1 and }Apφ1q ´ Apφ2q}X ď τ}φ1 ´ φ2}X , @φ1, φ2 P B1.

It follows that which implies that there exist the solution such that φ “ Apφq.
Now, we show the contraction property of the operator Ap. It suffices to adjust the location

ξH such that m0 “ m1 “ 0 defined by (8.7). We shall show ξH only takes care the first moment
orthogonality condition and the mass orthogonality condition will be satisfied automatically. To
begin with, by using the Neumann boundary conditions of pn, cq, we integrate the n-equation in
(1.3) with the Lagrange multiplier by parts to get

0 “
ż

BΩ

´Bn
Bν ´ n

Bc
Bν

¯

dS `
ż

Ω

p∇ ¨ uqn dx´
ż

BΩ

pu ¨ νqn dS `m0,

which implies m0 “ 0 since u is divergence-free and u satisfies the no-slip boundary condition.
We next consider the first moment orthogonality condition stated in (6.17). We have shown that

u ¨∇n can be regarded as a small perturbation in Subsection 8.1. Thus, similarly as in [45], we have
the leading term in the Y -variable is ∇ ¨ pW∇XH

εq. Then by using the integration by parts, one
gets

ε

ż

R
2

`

∇Y ¨ pW∇HεqY1χH dY

“ε
ż

BR2

`

W∇Hε ¨ νY1χH dS ` ε

ż

R
2

`

W∇xH
ε ¨ e1χH dY

` ε

ż

R
2

`

W∇xH
ε ¨ Y1∇χH dY,

(8.23)

where e1 “ p1, 0qT . Then we expand ∇XH
ε as

∇XH
εpxq “ ∇XH

εpξq ` ε∇2
XH

εpξqY `Opε2q. (8.24)

Upon substituting (8.24) into (8.23), we find the boundary integral in (8.23) exactly matches the
corresponding error which comes from β given in (8.6). Proceeding term ∇x ¨ pΦi∇xHq with the
same argument, we finally obtain from the first moment condition that

ξH,1 “ Opεγpq,
where 0 ă γp ă 1 but γp « 1. In addition, we have ξH,2 ” 0 since the centre of boundary spot is
located at BΩ. As a consequence, the leading term of ξH is precisely given by the critical point of
(1.16).

Now, we have established the existence of desired single boundary spot shown in Theorem 1.5
via the fixed point theorem. For the fixed point argument shown in Section 8, we give the following
remarks:
Remark 8.3.

‚ For the mass orthogonality condition arising from the study of n-equation in (1.11), we show
it must be satisfied without adjusting any parameter by integrating the n-equation by parts.

‚ While solving the incompressible Navier-Stokes equation (8.3), we also impose the compati-
bility condition due to the existence of non-trivial kernel β. However, as discussed in Section
7, we find (7.5) holds without adjusting any parameter.

‚ the smallness of ε0 guarantee that the operator Ap has the contraction property.
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For the multi-spot case, we only need to modify the ansatz as

nεpxq “ 1

ε2

m
ÿ

j“1

Wj

ˆ

x´ ξj

ε

˙

`
ˆ

1

ε2

m
ÿ

j“1

Φi
jpy ´ ξ1qχjpy ´ ξ1q ` ϕopxq

˙

cεpxq “
m
ÿ

j“1

”

Γξj

´x´ ξj

ε

¯

` ĉjH
εpx, ξjq

ı

` `
ˆ

1

ε2

m
ÿ

j“1

Ψi
jpy ´ ξ1qχjpy ´ ξ1q ` ψopxq

˙

,

where ξ1
j “ ξj{ε, ξj P Ω and ĉj “ 8π for j ď k; ξj P BΩ and ĉj “ 4π for k ă j ď m. Next, we can

solve the transported Keller–Segel models and the Navier-Stoke equation together, then perform the
argument to construct the desired multi-spots in the same manner. We omit the details.

Appendix A. Appendix: Local-in-time Existence

In this appendix, we shall adapt the argument shown in [73] and take the slight modification to
prove the local well-posedness of system (1.1), which is

Proof of Lemma 3.11:
Existence: Our strategy is to employ the contraction mapping theorem. To this end, we fix

T P p0, 1q and R ą 0. Define the Banach space X as

X :“ L8pp0, T q;C0pΩq ˆW 1,8pΩq ˆ D1pAqqq, q ą 2.

where D1 is defined by

D1pAqq “
 

u P W1,qpΩq X Lq
σpΩq : rSpuqνs

τ
“ 0, u ¨ ν “ 0 on BΩ

(

.

Let the closed set S be

S :“ tpn, c,uq P X |}np¨, tq}L8 ` }c}W 1,8 ` }up¨, tq}W1,q ď R for a.e. t P p0, T qu.

Then we introduce a mapping Φ̂ “ pΦ̂1, Φ̂2, Φ̂3q on S by defining

Φ̂1pn, c,uqp¨, tq :“ et∆n0 ´
ż t

0

ept´sq∆t∇ ¨ pn∇cq ` u ¨ ∇nup¨, sq ds,

Φ̂2pn, c,uqp¨, tq :“ etp∆´1qc0 ´
ż t

0

ept´sqp∆´1qnp¨, sq ds,

and

Φ̂3pn, c,uqp¨, tq :“ e´tAqu0 `
ż t

0

e´pt´sqAqPrpu ¨ ∇qu ` n∇csp¨, sq ds

for pn, c,uq P S and t P p0, T q. Here and below, pet∆qtě0, pe´tAqqtě0 and P are the Neumann heat
semigroup, the Stokes semigroup with the Navier boundary condition and the Helmholtz projection
in L2pΩq, respectively.

For q ą 2, we define B as the sectorial operator ´∆`1 in LqpΩq with the homogeneous Neumann
boundary condition. Then, one has the fact that DpBβq ãÑ C0pΩq continuously, where we pick
β P p0, 1q such that 2q ă β ă 1. Noting that ∇ ¨ pnuq “ u ¨ ∇n, we similarly obtain as in [73] that
there exist constants c1, c2, c3pRq ą 0 such that

}Φ̂1pn, c,uqp¨, tq}L8 ď}et∆n0}L8 ` c1

ż t

0

}Bβe´pt´sqpB´1qnp¨, sq}Lq ds

ď}n0}L8 ` c2

ż t

0

pt ´ sq´β´ 1

2 }pn∇c` nuqp¨, sq}Lq ds

ď}n0}L8 ` c3pRqT 1

2
´β ,

for all t P p0, T q. Here we have used Theorem 3.9 to get u P Lq since α P
`

1
2
, 1
˘

.
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For Φ̂2pn, c,uqp¨, tq, we perform the similar argument to find there exist constants c4, c5, c6pRq
such that

}Φ̂2pn, c,uqp¨, tq}W 1,8 ď}etp∆´1qc0}W 1,8 ` c4

ż t

0

}Bβ1e´pt´sqpB´1q∇ ¨ pn∇c ` nuqp¨, sq}Lq ds

ď}c0}W 1,8 ` c5

ż t

0

pt ´ sq´β1}np¨, sq}Lq ds

ď}c0}W 1,8 ` c6pRqT 1´β1,

where β1 is chosen such that β1 P
`

1
2
, 1
˘

and t P p0, T q.
Finally, we proceed Φ̂3pn, c,uqp¨, tq and use (3.12) in Theorem 3.10 to obtain

}Φ̂3pn, c,uqp¨, tq}W 1,q ď}e´tAqu0}W 1,q ` c7

ż t

0

}e´pt´sqAq rpu ¨ ∇qu ` n∇csp¨, sq}Lq ds

ď}u0}W 1,q ` c8

ż t

0

pt ´ sq´ 1

2 p}pu ¨ ∇qu}Lq ` }n∇c}Lqqp¨, sq ds

ď}u0}W 1,q ` c9pRqT 1

2 ,

where constants c7, c8 and c9pRq are positive. Here we have applied the Hölder’s inequality to find

}pu ¨ ∇qu}Lq ď }u}L8 }∇u}Lq ď c10}u}2W 1,q ,

and

}n∇c}Lq ď c11}n}L8}∇c}W 1,8 ,

with c10 and c11 are positive constants.
Now, we choose R ą 0 large enough at first, then take T ą 0 be sufficiently small to prove that Φ̂

maps S into itself and is further a contraction mapping. Then by the Banach fixed point theorem

that there exists pn, c,uq P S such that φ̂pn, c,uq “ pn, c,uq. Thanks to the standard bootstrap
arguments, parabolic regularity theories and de Rham theory, we have pn, c,u, P q readily solves
(1.1) classically in Ω ˆ p0, T q. Noting that T only depends on }n0}L8 , }c0}W 1,8 and }u0}W 1,q with
q ą 2, one further obtains (3.14) holds.

The positivity of pn, cq is the direct consequence of the parabolic weak and strong maximum
principles.

Uniqueness: we shall argue by contradiction. Assume there are two solutions pn1, c1,u1, P1q
and pn2, c2,u2, P2q satisfying (1.1) in Ω ˆ p0, T q for some T ą 0. We subtract the n1-equation and
n2-equation then multiply it by n1 ´ n2 to get for t P p0, T0q with T0 ă T,

1

2

d

dt

ż

Ω

pn1 ´ n2q2 dx`
ż

Ω

|∇pn1 ´ n2q|2 dx

“
ż

Ω

pn1 ´ n2q∇c ¨ ∇pn1 ´ n2q dx`
ż

Ω

n2∇pc1 ´ c2q ¨ ∇pn1 ´ n2q dx

´
ż

Ω

pu1 ´ u2q∇npn1 ´ n2q dx´
ż

Ω

u2∇pn1 ´ n2qpn1 ´ n2q dx.

Since T0 ă T, one has for some q ą 2,

}n1p¨, tq}L8 ` }n2p¨, tq}L8 ` }∇c1p¨, tq}L8 ` }∇c2p¨, tq}L8 ` }u1}W1,q ` }u2}W1,q À 1.

Similarly as discussed in [73], we apply ∇ ¨u1 “ ∇ ¨u2 “ 0 andW 1,q
ãÑ C0pΩq for q ą 2 to finally

arrive at

1

2

d

dt

ż

Ω

pn1 ´ n2q2 dx` 1

2

ż

Ω

|∇pn1 ´ n2q|2 dx

ď1

2

ż

Ω

|∇pc1 ´ c2q|2 dx` Ĉ1

ż

Ω

pn1 ´ n2q2 dx` Ĉ1

ż

pc1 ´ c2q2 dx` Ĉ1

ż

Ω

|u1 ´ u2|2 dx, (A.1)
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for t P p0, T0q with positive constant Ĉ1. Proceeding the c-equation with the similar argument, one
finds

1

2

d

dt

ż

Ω

pc1 ´ c2q2 dx`
ż

Ω

|∇pc1 ´ c2q|2 dx ď
ż

Ω

pn1 ´ n2q2 dx. (A.2)

For the u-equation, we test the subtraction of u1 and u2 equation against u1 ´ u2 and integrate
it by parts to have

1

2

ż

Ω

pu1 ´ u2q2 dx`
ż

Ω

|∇pu1 ´ u2q|2 dx “ ´
ż

Ω

rpu1 ´ u2q ¨ ∇spu1 ´ u2q ¨ u1 dx

`
ż

Ω

pu1 ¨ ∇qpu1 ´ u2qpu1 ´ u2q dx

`
ż

Ω

pn1 ´ n2q∇c1pu1 ´ u2q dx

`
ż

Ω

n2∇pc1 ´ c2q ¨ pu1 ´ u2q dx.

By using the Hölder’s inequality, one further obtains for t P p0, T0q,
1

2

d

dt

ż

Ω

|u1 ´ u2| dx` 1

2

ż

Ω

|∇pu1 ´ u2q|2 dx

ďĈ2

ż

Ω

pn1 ´ n2q2 dx` 1

2

ż

Ω

|∇pc1 ´ c2q|2 dx` Ĉ2

ż

Ω

|u1 ´ u2|2 dx, (A.3)

where Ĉ2 ą 0 is a constant.
Define y “

ş

Ω
pn1 ´ n2q2 dx`

ş

Ω
pc1 ´ c2q2 dx`

ş

Ω
|u1 ´ u2|2 dx, then we collect (A.1), (A.2) and

(A.3) to find y1 ď Ĉ3y with constant Ĉ3 ą 0, which implies y ” 0 for t P p0, T0q, then reaches
a contradiction. As a consequence, we have (1.1) admits the unique solution locally under the
condition of Theorem 1.3. �
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