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Abstract. We consider the existence of bound states for the coupled elliptic
system

∆u1 − λ1u1 + µ1u
3
1 + βu

2
2u1 = 0 in R

n

,

∆u2 − λ2u2 + µ2u
3
2 + βu

2
1u2 = 0 in R

n

,

u1 > 0, u2 > 0, u1, u2 ∈ H
1(Rn).

where n ≤ 3. Using the fixed point index in cones we prove the existence
of a five-dimensional continuum C ⊂ R

5
+ × H

1(Rn) × H
1(Rn) of solutions

(λ1, λ2, µ1, µ2, β, u1, u2) bifurcating from the set of semipositive solutions
(where u1 = 0 or u2 = 0) and investigate the parameter range covered by C.
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1. Introduction

In this paper, we study solitary wave solutions of time-dependent coupled nonlinear
Schrödinger equations given by





−i ∂
∂t

Φ1 = ∆Φ1 + µ1|Φ1|2Φ1 + β|Φ2|2Φ1 for y ∈ Rn, t > 0,

−i ∂
∂t

Φ2 = ∆Φ2 + µ2|Φ2|2Φ2 + β|Φ1|2Φ2 for y ∈ R
n, t > 0,

Φj = Φj(y, t) ∈ C, j = 1, 2,

Φj(y, t) → 0 as |y| → ∞, t > 0, j = 1, 2

(1.1)

where µ1, µ2 are positive constants, n ≤ 3, and β is a coupling constant.
The system (1.1) has applications in many physical problems, especially in

nonlinear optics. Physically, the solution Φj denotes the j-th component of the
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beam in Kerr-like photorefractive media ([1]). The positive constant µj is for self-
focusing in the j-th component of the beam. The coupling constant β is the inter-
action between the first and the second component of the beam. The interaction
is attractive β > 0, and repulsive if β < 0.

Problem (1.1) also arises in the Hartree–Fock theory for a double condensate,
i.e. a binary mixture of Bose–Einstein condensates in two different hyperfine states
|1〉 and |2〉 ([16]). Physically, Φ1 and Φ2 are the corresponding condensate ampli-
tudes, µj and β are the intraspecies and interspecies scattering lengths. The sign
of the scattering length β determines whether the interactions of states |1〉 and |2〉
are repulsive or attractive. When β < 0, the interactions are repulsive ([30]); in
contrast, when β > 0, they are attractive. For atoms of the single state |j〉, when
µj > 0, the interactions of the single state |j〉 are attractive.

To obtain solitary wave solutions of the system (1.1), we set Φj(y, t) =
eiλjtuj(y), j = 1, 2, and we may transform the system (1.1) to a coupled ellip-
tic system given by

{
∆u1 − λ1u1 + µ1u

3
1 + βu2

2u1 = 0 in Rn,

∆u2 − λ2u2 + µ2u
3
2 + βu2

1u2 = 0 in R
n.

(1.2)

The purpose of this paper is to study the existence of bound states, i.e., solutions
(u1, u2) satisfying (1.2) and the following conditions:

u1, u2 > 0 in R
n, u1(y), u2(y) → 0 as |y| → +∞. (1.3)

We consider b = (λ1, λ2, µ1, µ2, β) ∈ R5
+ as parameter in (1.2) and want to inves-

tigate the parameter range for which solutions of (1.2), (1.3) exist.
When the spatial dimension is one, i.e. n = 1, system (1.2) can become inte-

grable for some special parameters, and there are many analytical and numerical
results on solitary wave solutions of coupled nonlinear Schrödinger equations ([10],
[18], [19], [20]).

Note that for b = (λ1, λ2, µ1, µ2, β) ∈ R
5
+ equation (1.2) admits three trivial

solutions

U0 = (0, 0), Ub,1 = (wλ1,µ1
, 0), Ub,2 = (0, wλ2,µ2

) (1.4)

where wλj ,µj
is the unique solution of the elliptic problem





∆w − λjw + µjw
3 = 0, w > 0 in R

n,

w(0) = max
y∈Rn

w(y), w ∈ H
1(Rn).

(1.5)

Setting w = w1,1 we have wλj ,µj
(y) = (λj/µj)

1/2w(λ
1/2
j y).

A natural question is whether there are bound state solutions other than
Ub,1, Ub,2. We shall investigate this question and give positive answers for certain
parameter ranges.

A more general N coupled Schrödinger equation is studied in [21]. It was
proved that, for β < 0, ground state solutions (i.e. bound states with minimal
“energy”) do not exist; while for β > 0, there exists a β0 ∈ (0,

√
µ1µ2] such that
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for β ≤ β0 a ground state solution exists. We also remark that problem (1.2) in a
bounded domain was studied in [21].

In this paper, we concentrate on the case of β > 0. First, since the problem
has radial symmetry, by the symmetric criticality principle we can restrict the
problem to the space of all ~u = (u1, u2) ∈ X := H1

r(R
n) × H1

r(R
n). Here H1

r(R
n)

consists of all radially symmetric functions in H
1(Rn). In fact, due to the work

of Busca and Sirakov [8], solutions of (1.2), (1.3) must be radially symmetric and
strictly decreasing (this was shown by the moving plane method). Since there exist
solutions having negative or sign-changing components we confine the problem to
the nonnegative cone

P := {(u1, u2) ∈ X : u1 ≥ 0, u2 ≥ 0}.
Using the fixed point index we prove a global bifurcation theorem for positive solu-
tions. We also apply Morse theory to the associated energy functional constrained
to P to obtain further information on the set of all positive bound states. In order
to do this we compute the critical groups at the semipositive solutions as well
as the critical groups at infinity. This idea was used initially in [31] for semilinear
elliptic problems. Since there exist solutions having negative or sign-changing com-
ponents we make use of invariant sets of the negative gradient flow and confine the
problem to the positive cone. To carry out this idea, critical groups with respect
to the cone have to be computed. We remark that the notion of invariant sets has
been used recently to treat sign-changing solutions in [5, 12, 24].

In order to state our main result we denote the set of trivial, i.e. semipositive,
solutions by

Tj := {(b, Ub,j) : b = (λ1, λ2, µ1, µ2, β) ∈ R
5
+}, j = 1, 2,

and the set of nontrivial positive solutions by

S := {(b, ~u) ∈ R
5
+ × P : (b, ~u) solves (1.2), u1, u2 > 0}.

We also need the function β : R+ → R+ defined by

β(s) := inf
φ∈H1

r(Rn)

∫
(|∇φ|2 + sφ2)∫

w2φ2
(1.6)

where w ∈ H
1
r(R

n) is the ground state of (1.5) for λj = µj = 1. It follows that
β(1) =

∫
(|∇w|2 + w2)/

∫
w4.

Theorem 1.1. There exist connected sets S1,S2 ⊂ S with

S1 ∩ T1 = {(b, Ub,1) : b = (λ1, λ2, µ1, µ2, µ1β(λ2/λ1))},
S2 ∩ T2 = {(b, Ub,2) : b = (λ1, λ2, µ1, µ2, µ2β(λ1/λ2))}.

These sets have topological dimension at least 5 at every point. Moreover, S1 ∪ S2

covers the set of all b = (λ1, λ2, µ1, µ2, β) ∈ R5
+ satisfying

β < min{µ1β(λ2/λ1), µ2β(λ1/λ2)}



4 T. Bartsch, Z.-Q. Wang and J. Wei JFPTA

or

β > max{µ1β(λ2/λ1), µ2β(λ1/λ2)}.
Remark 1.2. Similarly we can consider the bounded ball case:





∆u1 − λ1u1 + µ1u
3
1 + βu2

2u1 = 0 in BR(0),

∆u2 − λ2u2 + µ2u
3
2 + βu2

1u2 = 0 in BR(0),

u1, u2 > 0 in BR(0), u1 = u2 = 0 on ∂BR(0).

(1.7)

The proof of Theorem 1.1 can be extended without any difficulty to (1.7). We omit
the details.

2. Proof of Theorem 1.1

Theorem 1.1 is proved through several lemmas. The energy functional associated
with (1.2) is

Eb(u1, u2) =
1

2

∫

Rn

(|∇u1|2 + |∇u2|2) +
1

2

∫

Rn

(λ1u
2
1 + λ2u

2
2)

− 1

4

∫

Rn

µ1u
4
1 −

1

4

∫

Rn

µ2u
4
2 −

β

2

∫

Rn

u2
1u

2
2 (2.1)

for b = (λ1, λ2, µ1, µ2, β) ∈ R5
+ and ~u = (u1, u2) ∈ X = H1

r(R
n) × H1

r(R
n). For

each such b, X is a Hilbert space with inner product

〈~u,~v〉b = 〈∇u1,∇v1〉L2 + λ1〈u1, v1〉L2 + 〈∇u2,∇v2〉L2 + λ2〈u2, v2〉L2 .

Clearly, the associated norms

‖~u‖b = (|∇u1|22 + λ1|u1|22)1/2 + (|∇u2|22 + λ2|u2|22)1/2

are equivalent.
Assume that n ≤ 3. As a consequence of the Sobolev embedding theorem it

follows easily that E : X → R is well-defined and is a C2-functional. The gradient
of E with respect to 〈 · , · 〉b can be computed as

∇bEb(~u) = ~u− (−∆ + Λ)−1fb(~u) =: ~u− Ab(~u) (2.2)

where Λ = diag(λ1, λ2) and fb(~u) = (µ1u
3
1+βu2

2u1, µ2u
3
2+βu2

1u2). By the compact
embedding from H1

r(R
n) into Lq(Rn) for 2 < q < 2∗ the map

A : R
5
+ ×X → X, A(b, ~u) = Ab(~u) = (−∆ + Λ)−1fb(~u),

is completely continuous. It is now standard to show that E satisfies the Palais–
Smale condition, so Morse type methods can be applied. In order to obtain con-
nected sets of solutions we shall apply fixed point index theory to the equation

A(b, ~u) = ~u, b ∈ R
5
+, ~u ∈ P. (2.3)

Clearly Ab(P) ⊂ P. We begin with

Lemma 2.1. If B ⊂ R5
+ is compact then there exists a uniform bound R > 0 such

that S ∩ (B × P) ⊂ B ×BR(0).
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Proof. This can be proved following the nonexistence result for supersolutions in
[17] (see also [14]). �

Lemma 2.2. S ∩ T1 ⊂ {(b, Ub,1) : b = (λ1, λ2, µ1, µ2, µ1β(λ2/λ1))} and S ∩ T2 ⊂
{(b, Ub,2) : b = (λ1, λ2, µ1, µ2, µ2β(λ1/λ2))}.

Proof. Linearizing the equation (1.2) at Ub,1 = (wλ1,µ1
, 0) gives two linear equa-

tions:
∆φ1 − λ1φ1 + 3µ1w

2
λ1,µ1

φ1 = 0, φ1 ∈ H
1
r,

∆φ2 − λ2φ2 + βw2
λ1,µ1

φ2 = 0, φ2 ∈ H
1
r.

The change of variables z =
√
λ1y yields

∆φ1 − φ1 + 3w2φ1 = 0, φ1 ∈ H
1
r, (2.4)

∆φ2 −
λ2

λ1
φ2 +

β

µ1
w2φ2 = 0, φ2 ∈ H

1
r. (2.5)

It is known that φ1 = 0 is the only solution of (2.4); see Appendix C of [27].

For fixed (λ1, λ2, µ1), problem (2.5) can be considered as an eigenvalue prob-
lem in terms of β. The only eigenvalue having a positive eigenfunction is the first
one given by

β1 = µ1 inf
φ∈H1

r(Rn)

∫
(|∇φ|2 + λ2

λ1

φ2)
∫
w2φ2

= µ1β(λ2/λ1). (2.6)

The eigenfunctions associated to higher eigenvalues change sign. The implicit func-
tion theorem now implies that (b, Ub,1) with b = (λ1, λ2, µ1, µ2, β) ∈ R5

+ is a pos-
sible bifurcation point for solutions of (2.3) only if β = β1.

The second inclusion is proved analogously. �

Remark 2.3. In the one-dimensional case, the eigenvalue problem (2.5) can be
computed explicitly by using hypergeometric functions; see [32].

In order to prove equality in Lemma 2.2 we prove that the local fixed point in-
dex indP(Ab, Ub,1), b = (λ1, λ2, µ1, µ2, β) ∈ R5

+, changes when β passes µ1β(λ2/λ1).
An analogous result holds with Ub,2 instead of Ub,1. Recall that this index is defined
as follows. Since P ⊂ X is closed and convex there exists a retraction r : X → P.
The fixed point problem (2.3) is equivalent to the equation

~u− Ab(r(~u)) = 0, b ∈ R
5
+, u ∈ X, (2.7)

with a completely continuous map R5
+ × X → X, (b, ~u) 7→ Ab(r(~u)). With this

notation, indP(Ab, Ub,1) = deg(id − Ab ◦ r,Nε(Ub,1), 0), where ε > 0 is small, Nε

denotes the ε-neighborhood in X, and deg denotes the Leray–Schauder degree.
This is defined when Ub,1 is an isolated fixed point of Ab in P, hence when b =
(λ1, λ2, µ1, µ2, β) ∈ R5

+ with β 6= µ1β(λ2/λ1). Its value can only change when β
passes the critical value µ1β(λ2/λ1).
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Lemma 2.4. For b = (λ1, λ2, µ1, µ2, β) ∈ R5
+ we have

indP(Ab, Ub,1) =

{
−1 if β < µ1β(λ2/λ1),

0 if β > µ1β(λ2/λ1)

and

indP(Ab, Ub,2) =

{
−1 if β < µ2β(λ1/λ2),

0 if β > µ2β(λ1/λ2).

Proof. It is sufficient to deal with the case where Ub,1 is a nondegenerate fixed
point of Ab. We set π : X → H1

r, π(u1, u2) = u2, and Lφ := π ◦DAb(Ub,1)[0, φ] for

φ ∈ H
1
r, and let r(L) denote the spectral radius of L. Finally, lin P = X, so [13,

Theorem 1] applies and yields

indP(Ab, Ub,1) =

{
indX(DAb(Ub,1), 0) if r(L) < 1,

0 if r(L) > 1.

Now Lφ = (−∆ + λ2)
−1(βw2

λ1,µ1
φ2), so a simple calculation shows that r(L) < 1

if and only if β < µ1β(λ2/λ1). Moreover, in this case DAb(Ub,1) has precisely one
eigenvalue larger than 1, hence indX(DAb(Ub,1), 0) = −1. This follows from the
fact that

DAb(Ub,1)[φ1, φ2] = ((−∆ + λ1)
−1(µ1w

2
λ1,µ1

φ1), (−∆ + λ2)
−1(µ2w

2
λ1,µ1

φ2))

splits, the second component being Lφ2 has no eigenvalue larger than 1, and the
first component has precisely one eigenvalue larger than 1 because wλ1,µ1

is a
mountain pass critical point. This proves the statement about indP(Ab, Ub,1), and
the other one follows analogously. �

Proof of Theorem 1.1. We first prove bifurcation from T1. We set

B−

1 := {b = (λ1, λ2, µ1, µ2, β) ∈ R
5
+ : β < µ1β(λ2/λ1))},

B+
1 := {b = (λ1, λ2, µ1, µ2, β) ∈ R

5
+ : β > µ1β(λ2/λ1)},

and fix parameter values b± ∈ B±

1 . The essential ingredient in the proof is the
global bifurcation theorem [2, Theorem 2.2]. This deals with bifurcation of fixed
points of completely continuous maps F : D ⊂ Rn ×X → X satisfying F (b, 0) = 0
for every b. In our case, F : R

5
+ ×X → X is given by

F (b,~v) = A(b, r(Ub,1 + ~v)) − Ub,1.

Then F (b,~v) = ~v is equivalent to ~u := Ub,1 +~v ∈ P solving A(b, ~u) = ~u. Bifurcation
of fixed points from the trivial fixed point set R5

+ × {0} of F corresponds to
bifurcation of positive fixed points of A from T1.

By Lemma 2.4 we may apply [2, Theorem 2.2] and obtain a connected set
S1 ⊂ Fix(F ) bifurcating from R5

+ × {0} with topological dimension at least 5 at
every point. In order to express the global structure of S1 we need to introduce
some notation. First, let Ȟ∗ denote Čech cohomology (see [15] for an excellent
presentation). Then we need to add a point ∞ to R5

+ ×X. A neighborhood basis
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of ∞ consists of complements of sets C×B where C ⊂ R5
+ is compact and B ⊂ X

is bounded. For M ⊂ R
5
+ ×X we set M+ := M ∪ {∞}. Denote by

F1 := S1 ∩ R
5
+ ⊂ B1 := {b = (λ1, λ2, µ1, µ2, β) ∈ R

5
+ : β = µ1β(λ2/λ1)}

the set of bifurcation points of F . Then there exists a continuous map

e : S+

1 /F+
1 → S

5

into the five-dimensional unit sphere such that the induced map in Čech cohomol-
ogy

e∗ : Ȟ5(S5) → Ȟ5(S+

1

/
F+

1 )

is not zero. Moreover, given any point b ∈ B1 there exists a path in R5
+ from

b− to b+ intersecting B1 precisely in b. Then e has the additional property that

e|[S+

1 \ {b}]
/
[F+

1 \ {b}] is inessential. This implies immediately that b ∈ F1, hence

F1 = S1 ∩ R
5
+ = B1.

We claim that S1 covers B−

1 or B+
1 . In order to see this we recall the con-

struction of e from [2]. Choose a regular and injective curve γ : [0, 1] → R5
+ from

b− to b+ and choose ε > 0 small such that no fixed points of F lie in the sets

{(b,~v) : |b− b±| < 4ε, 0 < ‖~v‖ < 4ε}.
Let Σ denote the sphere of radius ε in X centered at 0. For δ small enough the
δ-neighborhood of tr(γ) × Σ = {(γ(t), ~v) : t ∈ [0, 1], ‖~v‖ = ε} in tr(γ) × X is a
tubular neighborhood and can be written as

Nδ(tr(γ) × Σ) =
⋃

(t,~v)∈tr(γ)×Σ

Dδ(t, ~v) ⊂ tr(γ) ×X

whereDδ(t, ~v) denotes the δ-disc in the normal space of tr(γ)×Σ around (γ(t), ~v) ∈
tr(γ) × Σ. Observe that Dδ(t, ~v) is a disc of dimension 5. Let ρ : [0, 1] → [0, δ) be
continuous with ρ vanishing only at 0 and 1. Finally, we set

A :=
⋃

(t,~v)∈tr(γ)×Σ

Dρ(t)(t, ~v) ⊂ Nδ(tr(γ) × Σ).

Then the map e is constructed as follows. For each t ∈ [0, 1] and ~v ∈ Σ let

pt,~v : Dρ(t)(t, ~v)/∂Dρ(t)(t, ~v) → D5/∂D5 = S
5

be the natural radial diffeomorphism and define

e : ((R5 ×X)+/F+
1 ) \ ({b−, b+} × Σ) → D5/∂D5 = S

5

by

e(~u) :=

{
pt,~v(~u) if ~u ∈ Dρ(t)(t, ~v),

∗ else;

here ∗ ∈ S5 corresponds to ∂D5.
Suppose there are two points b±1 ∈ B± such that S1 ∩ ({b−1 , b+1 } × X) = ∅.

Then we claim that one can isotope A to a subset Ã ⊂ (R5 × X) \ S1 in such a
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way that {b−, b+} × Σ never intersects Fix(F ) during the isotopy. This induces a
homotopy of e to a map

e1 : ((R5 ×X)+/F+
1 ) \ ({b−, b+} × Σ) → D5/∂D5 = S

5

with e1(S1/F+
1 ) = ∗, implying that the induced map

e∗ = e∗1 : Ȟ5(S5) → Ȟ5(S+

1

/
F+

1 )

is trivial, a contradiction.
The isotopy is constructed as follows. Choose regular curves γ± in B±

1 from
b± to b±1 so that the composition γ1 : [0, 1] → R5

+ of the three paths γ−, γ, γ+ is a

regular and injective curve from b−1 to b+1 . If ε, δ are small then the δ-neighborhood
of tr(γ1)×Σ is a tubular neighborhood and (tr(γ−)∪tr(γ+))×Σ does not intersect
Fix(F ). Then one can deform A to a set

A1 :=
⋃

(t,~v)∈tr(γ1)×Σ

Dρ1(t)(t, ~v) ⊂ Nδ(tr(γ1) × Σ)

with a continuous function ρ1 : [0, 1] → [0, δ) as above. By Lemma 2.1 there exist
σ > 0 and R0 > 0 such that

Fix(F ) ∩ (Nσ(tr(γ1)) ×X) ⊂ Nσ(tr(γ1)) × {~v : ‖~v‖ < R0}.
Now it is easy to isotope A1 into the complement of S1. Choose a continuous map
R : [0, 1] → [1, 2R0/ε] with R(0) = R(1) = 1 and R(t) = 2R0/ε for t ∈ [τ, 1 − τ ]
such that

Ã :=
⋃

(t,~v)∈tr(γ1)×Σ

Dρ1(t)(t, R(t)~v)

⊂ (Nσ({b−1 , b+1 }) ×X) ∪ (Nσ(tr(γ1)) × {~v : ‖~v‖ ≥ R0}).
Then the isotopy is induced by the isotopy of tr(γ1)×Σ given by H(γ1(t), ~v, s) :=
(γ1(t), (1 − s+ sR(t))~v).

This shows that S1 covers B−

1 or B+
1 and the same holds for the corresponding

fixed point set

S̃1 := {(b, Ub,1 + ~v) : (b,~v) ∈ S1} (2.8)

of the original map A.
Now we get back to fixed points of A and change notation writing S1 instead

of S̃1. In an analogous way one obtains a set S2 ⊂ S of fixed points of A bifurcating
from

B2 := {b = (λ1, λ2, µ1, µ2, β) ∈ R
5
+ : β = µ2β(λ1/λ2)},

that is,
S2 ∩ T2 = {(b, Ub,2) : b ∈ B2},

and covering

B−

2 := {b = (λ1, λ2, µ1, µ2, β) ∈ R
5
+ : β < µ2β(λ1/λ2))}

or
B+

2 := {b = (λ1, λ2, µ1, µ2, β) ∈ R
5
+ : β > µ2β(λ1/λ2)}.
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It remains to prove that S1 ∪ S2 covers (B−

1 ∩ B−

2 ) ∪ (B+
1 ∩ B+

2 ). This is a
consequence of the nonexistence theorem [6, Theorem 1.5]. If λ1 = λ2 and µ1 6= µ2

then (1.2), (1.3) does not have any positive solution if

min{µ1β(λ2/λ1), µ2β(λ1/λ2))} ≤ β ≤ max{µ1β(λ2/λ1), µ2β(λ1/λ2))}.
This means that there exist parameters lying between B1 and B2 that are not
covered by S1 ∪ S2 and it implies that S1 ∪ S2 covers (B−

1 ∩B−

2 )∪ (B+
1 ∩B+

2 ). �

We conclude this note by computing the critical groups in P of the semipos-
itive solutions and the critical groups at infinity. As a consequence we obtain a
second proof for the existence of positive solutions in the parameter range given
in Theorem 1.1. Let ηb(t, ~u) be the flow on X defined by the vector field ∇bEb, i.e.

d

dt
ηb(t, ~u) = −∇bEb(ηb(t, ~u)), ηb(0, ~u) = ~u ∈ X = H

1
r × H

1
r.

Proposition 2.5. The cone P is invariant under ηb in the sense that η(t, ~u) ∈ P for

all ~u ∈ P and t > 0.

Proof. By the form (2.2) of ∇bEb the claim follows from the fact that Ab(~u) ∈ P

for all ~u ∈ P; see [9, I.6.2]. �

As before we shall work on P. For a ∈ R define

Ea
b = {(u1, u2) ∈ X : Eb(u1, u2) ≤ a}.

We shall use Ẽb to denote the restriction of Eb to P, i.e.,

Ẽa
b = {(u1, u2) ∈ P : Eb(u1, u2) ≤ a}.

We also set S
∞ := {~u ∈ X : ‖~u‖ = 1}.

Proposition 2.6. For any M > 0, we have Ẽ−M
b ≃ S∞∩P, i.e., S∞∩P is homotopy

equivalent to Ẽ−M
b .

Proof. For ~u ∈ P and t > 0 with Eb(t~u) < 0 we have

d

dt
Eb(t~u) = t‖~u‖2

b −
∫

Rn

fb(t~u)~u =
4

t
Eb(t~u) − t‖~u‖2

b < 0.

Now fixing M > 0, for every ~u ∈ P ∩ S∞ there exists a unique T (~u) > 0 such that

Eb(T (~u)~u) = −M.

From this and the implicit function theorem, T (~u) ∈ C(P∩ S∞,R). It follows that
the map

P ∩ S
∞ → {~u ∈ P : Eb(~u) = −M}, ~u 7→ T (~u)~u,

is a homeomorphism with inverse ~v 7→ ~v/‖~v‖b, and that the map

Ẽ−M
b → P ∩ S

∞, ~v 7→ ~v/‖~v‖b,

is a homotopy equivalence. �
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We shall make use of the concept of critical groups for isolated critical points,
as defined in [9]. Given an isolated critical point ~u0 with Eb(~u0) = c, define for
k ∈ N0,

Ck(Eb, ~u0) = Hk(Ec
b , E

c
b \ {~u0})

where H∗ denotes singular homology with coefficients in a field F. Since P is
invariant under the negative gradient flow of Eb we may also consider the critical
groups of isolated critical points in P relative to the cone P (see [9]),

Ck(Ẽb, ~u0) = Hk(Ec
b ∩ P, (Ec

b ∩ P) \ {~u0}).

Proposition 2.7. Hk(P ∩ S∞) = δk0F for k ∈ Z.

Proof. Fix a ~ϕ ∈ P ∩ S
∞ with ϕ1, ϕ2 > 0 in R

n. Then for any ~u ∈ P ∩ S
∞,

‖s~ϕ+ (1 − s)~u‖ 6= 0. Define τ : [0, 1] × P ∩ S∞ → P ∩ S∞ by

τ (s, ~u) =
s~ϕ+ (1 − s)~u

‖s~ϕ+ (1 − s)~u‖ ,

which shows that P∩S
∞ is contractible to a point. Then the conclusion follows. �

Proposition 2.8. (i) Hk(P, Ẽ−1
b ) = 0, k ∈ Z.

(ii) For δ > 0 small enough, Hk(Ẽδ
b , Ẽ

−1
b ) = δk0F, k ∈ Z.

Proof. (i) follows from Propositions 2.7 and 2.6.

(ii) follows from the fact that 0 is a strict local minimizer, that 0 is the only

critical point of E in Ẽδ for δ > 0 small, and that E satisfies the Palais–Smale
condition. �

Now we compute the critical groups of Eb at Ub,j , j = 1, 2, relative to the
cone P. Since Ub,1 is an isolated critical point of Eb in P if β 6= µ1β(λ2/λ1),

the critical groups Ck(Ẽb, Ub,1) are defined for all b = (λ1, λ2, µ1, µ2, β) ∈ R5
+

with β 6= µ1β(λ2/λ1). By [9, Theorem I.5.6] the critical groups Ck(Eb, Ub,1) can
only change when β passes the critical value µ1β(λ2/λ1). Since the cone P is
positive invariant under the negative gradient flow of Eb for all b, the proof of

[9, Theorem 5.6] yields the same result for Ck(Ẽb, Ub,1). An analogous statement

holds for Ck(Ẽb, Ub,2), of course.

Proposition 2.9. For b = (λ1, λ2, µ1, µ2, β) ∈ R
5
+ we have

Ck(Ẽb, Ub,1) =

{
δk1F if β < µ1β(λ2/λ1),

0 if β > µ1β(λ2/λ1).

An analogous result holds for Ub,2 with µ1β(λ2/λ1) replaced by µ2β(λ1/λ2).

Postponing the proof of Proposition 2.9 we give a second proof for the exis-
tence of positive solutions for the parameter values b from Theorem 1.1.
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Corollary 2.10. Given b = (λ1, λ2, µ1, µ2, β) ∈ R5
+, problem (1.2), (1.3) has a

positive solution if

β < min{µ1β(λ2/λ1), µ2β(λ1/λ2)}
or

β > max{µ1β(λ2/λ1), µ2β(λ1/λ2)}.

Proof. Assume that Ẽb has only three critical points in P: U0 = 0, U1 = Ub,1,
U2 = Ub,2. The Morse identity implies

∞∑

k=0

(−1)k dimHk(P, Ẽ−M
b ) =

2∑

j=0

∞∑

k=0

(−1)k dimCk(Ẽb, Uj) (2.9)

By Proposition 2.8, the left hand side of (2.9) is 0. The right hand side is −1 when
β<min{µ1β(λ2/λ1), µ2β(λ1/λ2), and 1 when β>max{µ1β(λ2/λ1), µ2β(λ1/λ2)}.
This is a contradiction. �

The rest of the paper is devoted to

Proof of Proposition 2.9. Since the critical groups Cq(Ẽb, Ub,1) are constant for b ∈
B−

1 and for b ∈ B+
1 , it is sufficient to compute them for some β < µ1β(λ2/λ1) and

some β > µ1β(λ2/λ1). In particular, we may assume that Ub,1 is a nondegenerate
critical point of Eb, that is, β is not an eigenvalue of (2.5). Fixing b, for simplicity
of notation we set w1 := wλ1,µ1

, so Ub,1 = (w1, 0). For (u1, u2) ∈ X, define

K(u1, u2) = K1(u1) +K2(u2)

with

K1(u1) = E(Ub,1) +
1

2

∫
(|∇(u1 − w1)|2 + λ1(u1 − w1)

2 − 3µ1w
2
1(u1 − w1)

2)

− µ1

∫
w1(u1 − w1)

3 − µ1

4

∫
(u1 − w1)

4

and

K2(u2) =
1

2

∫
(|∇u2|2 + λ2u

2
2 − βw2

1u
2
2).

Choosing β appropriately, we may also assume that K2 is a nondegenerate
quadratic form. It is readily checked that

∇K1(u1) = u1 − w1 − (−∆ + λ1)
−1(µ1u

3
1 − µ1w

3
1),

∇K2(u2) = u2 − (−∆ + λ2)
−1g2(βw

2
1u2).

They satisfy u1 −∇K1(u1) ≥ 0 and u2 −∇K2(u2) ≥ 0 for u1, u2 ≥ 0. Similar to
Proposition 2.5 the negative gradient flow of Ki on H

r
1 preserves the positive cone

P1 = {v ∈ Hr
1 : v ≥ 0}, therefore the negative gradient flow for K preserves the

cone P in X.
Consider Jt(u1, u2) = tK(u1, u2)+ (1− t)Eb(u1, u2) for t ∈ [0, 1]. Then using

the fact that (w1, 0) is a nondegenerate critical point of Eb it is easy to check
that (w1, 0) is a nondegenerate critical point of Jt for all t ∈ [0, 1]. Again by [9,
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Theorem I.5.6] we have Ck(Eb, Ub,1) = Ck(K,Ub,1) for all k. Since the positive
cone P is invariant under the gradient flow of Jt for all t ∈ [0, 1], the proof in

[9] yields Ck(Ẽb, Ub,1) = Ck(K̃, Ub,1) for all k, where similar to Ẽb, K̃ is the
restriction of K to P. Since K has a direct sum decomposition with respect to
u1 and u2, by [9, Theorem I.5.5] we have C∗(K,Ub,1) = C∗(K1, w1) ⊗ C∗(K2, 0).
Again since the negative gradient flows of K1 and K2 preserve P1, we also have

C∗(K̃, Ub,1) = C∗(K̃1, w1) ⊗ C∗(K̃2, 0).

In order to compute Ck(K̃1, w1) one shows as in Proposition 2.6 that K̃−M
1

is radially homotopy equivalent to {v ∈ P1 : ‖v‖ = 1} for M > 0. It follows

that Hk(P1, K̃
−M
1 ) = 0 for all k ∈ Z. The only non-negative critical points of K1

are 0 and w1. Since 0 is a local minimum we have Ck(K̃1, 0) = δk0F. The Morse
inequality now implies

0 =

q∑

k=0

(−1)q−k dimHk(P1, K̃
−M
1 )

≤
q∑

k=0

(−1)q−k(dimCk(K̃1, 0) + dimCk(K̃1, w1))

= (−1)q +

q∑

k=0

(−1)q−k dimCk(K̃1, w1)

and therefore Ck(K̃1, w1) = δk1F for all k, independently of β.

In case β < µ1β(λ2/λ1), 0 is a local minimum ofK2. Thus we get Ck(K̃2, 0) =
δk0F, so the proposition follows in this case.

It remains to consider the case β > µ1β(λ2/λ1). We claim that in this case

Ck(K̃2, 0) = 0 for all k, which implies the proposition. To that end, we first notice
that the first eigenvalue of K ′′

2 (0) is negative corresponding to a positive eigenfunc-
tion ψ ∈ P1. Given u2 we write a direct sum decomposition u2 = αψ+v+w where
v lies in the subspace V spanned by the eigenfunctions corresponding to negative
eigenvalues different from the first one, and w lies in the subspace W spanned by
the eigenfunctions corresponding to positive eigenvalues. Then we choose a neigh-
borhood O of 0 of the form O = [−δ0, δ0]ψ × Bδ0

(V ⊕W ). We need to compute
H∗(K

0
2 ∩ O ∩ P, (K0

2 ∩ O ∩ P) \ {0}). We observe that if u2 ∈ P, then α ≥ 0, and
α = 0 if and only if v = w = 0. Note that if u2 = αψ + v +w is in K0

2 ∩O ∩ P, so
is αψ+ v+ sw for s ∈ [0, 1], because K2(u2) = 1

2 〈K ′′
2 (0)u2, u2〉. Now we use s as a

deformation parameter to deform K0
2∩O∩P to K0

2∩([−δ0, δ0]ψ×Bδ0
(V ))∩P. Sim-

ilarly, if u2 = αψ+v is in K0
2 ∩([−δ0, δ0]ψ×Bδ0

(V ))∩P, so is αψ+sv for s ∈ [0, 1].
Thus we may deformK0

2∩([−δ0, δ0]ψ×Bδ0
(V ))∩P toK0

2∩([−δ0, δ0]ψ∩P = [0, δ0]ψ.
This homotopy deforms (K0

2 ∩O ∩ P) \ {0} to (0, δ0]ψ, which proves the claim.

The computation for Ub,2 is the same. �

This is a revised version of our preprint [7]. Since then there have been
several interesting papers containing results related to ours: see [3, 4, 6, 14, 25, 29]
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for existence of ground and bound state solutions, in particular [3, 6, 25, 29]
giving an existence result for β in the large, a result in similar spirit to ours; and
[23, 28, 33, 34] for multiplicity results and semiclassical states. The results and
the two approaches we used here are different from the existing techniques in the
above papers, and they give a different perspective into the problems which should
be useful in further investigations.
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