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Abstract. The Hopf bifurcation for the classical Gierer-Meinhardt system in an one-dimensional
interval is considered. The existence of time-periodic solution near the Hopf bifurcation param-
eter for a boundary spike is rigorously proved by the classical Crandall-Rabinowitz theory. The
criteria for the stability of limit cycle is determined and it is numerically shown that the Hopf
bifurcation is subcritical.

1. Introduction

In this paper we consider the following canonical one-dimensional Gierer-Meinhardt system
([6] [12])

(1.1)


Ãt = ε2Ãxx − Ã+

Ã2

H̃
, Ã > 0 for 0 < x < 1, t > 0,

τH̃t = DH̃xx − H̃ + Ã2, H̃ > 0 for 0 < x < 1, t > 0,

Ãx = H̃x = 0, for x = 0, 1, t ≥ 0,

where the unknowns Ã = Ã(x, t) and H̃ = H̃(x, t) characterize the concentrations of the activa-
tor and inhibitor at a point x ∈ (0, 1) and at a time t > 0. Throughout this paper, we assume
that

ε > 0 is a small parameter independent of x and t,
τ > 0 is a fixed constant independent of x, t and ε, and
D > 0 depends on ε but is independent of x and t.

We further assume that D = D(ε) → ∞ as ε → 0 and call this the weak coupling, or shadow
limit, case.

Using the reduction techniques of [22], one can easily show that the stationary system of (1.1)
has solutions with a single boundary spike at x = 0, as ε→ 0 and D = D(ε)→∞ at a suitable
speed. (See also early work [17].) Since we consider a boundary single spike solution at x = 0,
it is convenient to consider the even extension (with respect to the spatial variable x) of the
system (1.1) on the interval [−1, 1]. In this case the spike solution becomes symmetric about
x = 0.

The aim of this paper is to rigorously prove that, for ε > 0 sufficiently small, there exists a Hopf
bifurcation threshold for τ beyond which a time-periodic solution of (1.1) bifurcates from the
single spike stationary solution. In addition, we prove that this Hopf bifurcation is subcritical, i.e.
the bifurcating time-periodic solution is unstable. Previous studies into Hopf bifurcations for the
one-dimensional Gierer-Meinhardt have used matched asymptotic expansions to derive leading
order nonlocal eigenvalue problems (NLEPs) with purely imaginary eigenvalues for specific,
numerically computed, values of τ [20, 21]. The numerical simulations in these studies suggest
that the Hopf bifurcation is subcritical, though a rigorous proof has not yet been given. The
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aim of this paper is to give the first rigorous proof of the existence of time-periodic patterns and
its sub-criticality.

To prove the existence, uniqueness, and stability of the Hopf bifurcation we use the classical
Crandall-Rabinowitz bifurcation theory ([1]). More precisely we use a more concise formulation
given in Theorem I.8.2 of [9]. The linear stability of the bifurcating periodic solutions is obtained
using Corollary I.12.3 in [9]. Specifically, stability is determined by the sign of certain Floquet
multipliers relative to a transversality condition. To apply these results we need to write (1.1)
in the form of an evolution equation

(1.2) Ut = Fε(U) ≡ LεU +R(τ, U),

where

U =

[
U1

U2

]
=

[
Ã−Aε
H̃ −Hε

]
and

Lε =

[
L1

L2

]
=

[
ε2 d2

dx2
− 1 + 2Aε

Hε
−A2

ε
H2
ε

2
τAε

1
τ (D d2

dx2
− 1)

]
denote the perturbation and linearization about the stationary single-spike solution (Aε, Hε)

T

respectively, and R(τ, U) indicates the remaining higher order term

(1.3) R(τ, U) =

[
(Aε+U1)2

Hε+U2
− A2

ε
Hε
− 2AεU1

Hε
+ A2

εU2

H2
ε

1
τU

2
1

]
.

To motivate the remaining sections we outline briefly the key components of the Hopf bifur-
cation theorem derived in [9]. This theorem states that under suitable spectral conditions on
the operator Lε at some critical parameter τ := τhε , as well as additional regularity conditions
on the nonlinear term, there exists a family of unique time-periodic solutions bifurcating from
the stationary steady state. Central to the conditions is the study of the eigenvalue problem

(1.4)

 ε2(φε)xx − φε + 2
Aε
Hε
φε −

A2
ε

H2
ε

ψε = λεφε,

D(ε)(ψε)xx − ψε + 2Aεφε = τλεψε,

where λε is some complex number,

(1.5) φε ∈ H2
N ([−1, 1]), ψε ∈ H2

N ([−1, 1]),

and (Aε, Hε) is the stationary solution of (1.1). Here

(1.6) H2
N ([−1, 1]) =

{
φ ∈ H2([−1, 1]) : φx(−1) = φx(1) = 0

}
.

Closely related to Lε is its adjoint:

(1.7) L∗ε =

[
ε2 d2

dx2
− 1 + 2Aε

Hε
2
τAε

−A2
ε

H2
ε

1
τ (D d2

dx2
− 1)

]
and the corresponding eigenvalue problem

(1.8)


ε2(φ∗ε )xx − φ∗ε + 2

Aε
Hε
φ∗ε +

2

τ
Aεψ

∗
ε = λ∗εφ

∗
ε ,

D(ε)(ψ∗ε )xx − ψ∗ε − τ
A2
ε

H2
ε

φ∗ε = τλ∗εψ
∗
ε .

To make the definition of adjoint clear we establish the following definitions. For two functions
φj ∈ L2([−1, 1]), j = 1, 2, their inner product is defined by

〈φ1, φ2〉L2([−1,1]) =

∫ 1

−1
φ1(x)φ2(x)dx,
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where the overbar denotes the complex conjugate. Set Z = L2([−1, 1])× L2([−1, 1]). Then, for
two function pairs Θj = (φj , ψj) ∈ Z (j = 1, 2), their inner product is defined by

(1.9) 〈Θ1,Θ2〉Z = 〈φ1, φ2〉L2([−1,1]) + 〈ψ1, ψ2〉L2([−1,1]).

With these definitions, the defining characteristic of the adjoint operator L∗ is that

(1.10) 〈LεΘ1,Θ2〉Z = 〈Θ1,L∗εΘ2〉Z ,

for Θ1,Θ2 ∈ Z.
Additionally, we have the following relationships between the eigenvalues and eigenfunctions

of Lε and L∗ε . First, it is easy to see that λ ∈ C is an eigenvalue of Lε if and only if λ is an
eigenvalue of L∗ε . Furthermore, if λ ∈ C is a simple nonzero eigenvalue of Lε with a nontrivial
eigenfunction Θ, and Θ∗ is a nontrivial eigenfunction of L∗ε corresponding to λ, i.e.

LεΘ = λΘ, L∗εΘ∗ = λΘ∗,

then

λ〈Θ,Θ∗〉 = 〈LεΘ,Θ∗〉 = 〈Θ,L∗εΘ∗〉 = λ〈Θ,Θ∗〉,
and therefore

(1.11) 〈Θ,Θ∗〉 = 〈Θ,Θ∗〉 = 0.

On the other hand if (λI − Lε)−1 is compact for all λ ∈ ρ(Lε), we have that

(1.12) 〈Θ,Θ∗〉 6= 0.

for the simple eigenvalue λ.

The main results of this paper can be summarized as follows: we first rigorously prove that
there exists a unique τ = τhε at which a Hopf bifurcation appears. This Hopf bifurcation is
transversal (and hence is simple and of codimension 1) (Lemmas 4.1 and 5.17). By apply-
ing Crandall-Rabinowitz theory we prove that near τ ∼ τhε a time-periodic solution bifurcates
(Theorem 6.1). To show stability/instability of this time periodic solution, we use Kielhöfer’s
formula and derive a stability criteria. By a numerical computation we then show that the Hopf
bifurcation is subcritical (Theorem 7.1).

The study of localised patterns in the so-called Turing’s diffusion-driven-instability reaction-
diffusion systems has attracted lots of attention in the last couple of decades ([11]). The one-
dimensional canonical model system such as the Gierer-Meinhardt system ([6] [12]) has been
intensively studied in many papers. For the existence and stability of steady spiky patterns in a
bounded interval or the whole space, we refer to [5], [3], [18], [8], [14], [24] and the book [25]. The
dynamics of spiky patterns for one dimensional Gierer-Meinhardt system has been studied in
[4] and [16]. For Hopf bifurcations out of spiky patterns for one-dimensional Gierer-Meinhadrt
system, we refer to [20, 21].

The results in this paper can be easily extended to the whole R1. The existence of slowly
varying amplitude Hopf bifurcation for the one-dimensional Gierer-Meinhardt system in R1 is
studied in [19], by geometric singular perturbation technique and centre manifold analysis. It
is unclear if the same technique works for bounded intervals. Furthermore, in [bottom of page
2218, [19]] it is assumed, without proof, that the Hopf bifurcation (eigenvalue) is simple and is of
codimension 1. This is a key element in applying Crandall-Rabinowitz bifurcation theory. One
of our main technical results in this paper is to give a rigorous proof of the transversality of the
Hopf bifurcation. See Lemma 4.1 and also the formula (5.17). Our proof is more PDE-oriented.
We believe that the techniques and computations presented in this paper can be used for the
study of sub-criticality or super-criticality of Hopf bifurcations of spiky patterns in many other
Turing systems.
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The remainder of this paper is organized as follows. In Section 2 we summarize important
properties of the stationary single spike solution (Aε, Hε)

T for 0 < ε � 1. Then in Section 3
we discuss the spectral properties of the leading order NLEP obtained from (1.4) for ε � 1.
Sections 4 and 5 are dedicated to analyzing the spectral properties of the perturbed problem 1.4
for ε sufficiently small. This is followed by Sections 6 and 7 where we apply, set-up, and state the
Hopf bifurcation theorem. Finally, in Section 8 we numerically compute an unknown quantity
whose sign dictates the criticality of the Hopf bifurcation, while in Section 9 we perform some
numerical simulations which illustrate the theoretical predictions.

2. Preliminaries

As remarked in the introduction, investigating the eigenvalue problem (1.4) is crucial to
establishing the main results of this paper. It is therefore imperative that the properties of the
stationary solution (A,H)T , appearing as coefficients in (1.4), be well understood. Indeed the
study of the stationary solutions to (1.1) has been the subject of numerous studies. Specifically
the two-dimensional case for small ε > 0 was studied in [22]. The one-dimensional case is similar
and we review here the most pertinent characteristics for our analysis.

We begin by supposing that

(2.1) D(ε) =
1

β2(ε)
,

so that D = D(ε)→∞ is equivalent to β = β(ε)→ 0. The stationary system for (1.1) is then

(2.2)


ε2Axx −A+

A2

H
= 0, A > 0 in [0, 1],

1

β2
Hxx −H +A2 = 0, H > 0 in [0, 1],

Ax = Hx = 0, for x = 0, 1.

As stated in the introduction, we consider the even extension of A and H to the interval [−1, 1].
In this sense, (2.2) becomes

(2.3)


ε2Axx −A+

A2

H
= 0, A > 0 in (−1, 1),

1

β2
Hxx −H +A2 = 0, H > 0 in (−1, 1),

Ax = Hx = 0, for x = −1, 1.

The equation in H can be solved using a β-dependent Green’s function whose properties we now
review. Let G0(x, ξ) be the Green’s function satisfying

(2.4)


(G0)xx(x, ξ)− 1

2
+ δ(x− ξ) = 0 in (−1, 1),

(G0)x(x, ξ) = 0, for x = −1, 1,∫ 1

−1
G0(x, ξ)dx = 0.

For a complex number β ∈ C such that d2

dx2
− β2I : H2

N ([−1, 1]) → L2([−1, 1]) is invertible, we
let Gβ(x, ξ) be the Green’s function given by

(2.5)

{
(Gβ)xx − β2Gβ + δ(x− ξ) = 0 in [−1, 1],

(Gβ)x(x, ξ) = 0, for x = −1, 1,
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We can relate Gβ and G0 as follows. From (2.5) we get∫ 1

−1
Gβ(x, ξ)dx = β−2.

Set

Gβ(x, ξ) =
1

2
β−2 + Ḡβ(x, ξ).

Then

(2.6)


(Ḡβ)xx − β2Ḡβ −

1

2
+ δ(x− ξ) = 0 in [−1, 1],∫ 1

−1
Ḡβ(x, ξ)dx = 0,

(Ḡβ(x, ξ))x = 0 for x = −1, 1.

(2.4) and (2.6) imply that

Ḡβ(x, ξ) =

(
d2

dx2
− β2I

)−1(
1

2
− δ(x− ξ)

)
=

(
d2

dx2
− β2I

)−1 [(
d2

dx2
− β2I

)
G0(x, ξ) + β2G0(x, ξ)

]
= G0(x, ξ) + β2

(
d2

dx2
− β2I

)−1

G0(x, ξ).

Since G0(·, ξ) ∈ L2([−1, 1]), we have

β2

(
d2

dx2
− β2I

)−1

G0(x, ξ) = O(1)

in the operator norm of L2([−1, 1])→ H2([−1, 1]). Hence

(2.7) Gβ(x, ξ) =
1

2
β−2 +G0(x, ξ) + β2

(
d2

dx2
− β2I

)−1

G0 =
1

2
β−2 +G0(x, ξ) +O(1)

in the operator norm of L2([−1, 1])→ H2([−1, 1]).
We assume that for ε sufficiently small and D = 1

β2 sufficiently large such that

(2.8) β(ε) = O(εσ) for some constant σ > 0.

From the argument found in [22], we have the following theorem.

Theorem 2.1. Problem (2.3) has a solution with the following properties:

(i) Aε(−x) = Aε(x), x ∈ [−1, 1], and

(2.9) Aε(x) = ξεw
(x
ε

)
+O(β2)

uniformly for x ∈ [−1, 1], where

(2.10) ξε =
2

ε
∫
R w

2(y)dy
,

and w is the unique solution of the problem

(2.11)


wyy − w + w2 = 0, w > 0, in R,

w(0) = max
y∈R

w(y),

w(y)→ 0, as |y| → ∞;
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(ii) Hε(−x) = Hε(x), x ∈ [−1, 1]

(2.12) Hε(x) = ξε(1 +O(β2)) uniformly for x ∈ [−1, 1].

Remark 2.2. The symmetry requirement of Aε and Hε implies that problem (2.2) has a bound-
ary spike solution at x = 0 with corresponding properties.

3. The nonlocal eigenvalue problems

In this section we study the following nonlocal eigenvalue problem (NLEP)

(3.1) Lφ := φyy − φ+ 2wφ− 2

1 + τλ0

∫
R+

wφ∫
R+

w2
w2 = λ0φ, φ ∈ H2

N (R+),

as well as the corresponding adjoint problem given by

(3.2) L∗φ∗ := φ∗yy − φ∗ + 2wφ∗ − 2

1 + τλ∗0

∫
R+

w2φ∗∫
R+

w2
w = λ∗0φ

∗, φ∗ ∈ H2
N (R+).

As we will demonstrate in the next section, these two NLEPS serve as the limiting problems for
both eigenvalue problems (1.4) and (1.8) respectively when ε > 0 tends to zero.

It is easy to see that (3.1) can be extended to the entire real line

(3.3) Lφ := φyy − φ+ 2wφ− 2

1 + τλ0

∫
R wφ∫
R w

2
w2 = λ0φ, φ ∈ H2(R), φ(y) = φ(−y).

We define the function

(3.4) ψ ≡ 2

1 + τλ0

∫
wφ∫
R w

2
.

Similarly the adjoint problem (3.2) is equivalent to

(3.5) L∗φ∗ := φ∗yy − φ∗ + 2wφ∗ − 2

1 + τλ∗0

∫
R w

2φ∗∫
R w

2
w = λ∗0φ

∗, φ ∈ H2(R), φ∗(y) = φ∗(−y).

For the remainder of this section we will establish several properties of the spectrum of (3.3).
We first recall the following well-known result:

Lemma 3.1. The eigenvalue problem

(3.6) L0φ := φyy − φ+ 2wφ = µφ, φ ∈ H2(R),

admits the set of eigenvalues

(3.7) µ1 > 0, µ2 = 0, µ3 < 0, · · · .
The eigenfunction φ1 corresponding to µ1 can be made positive and even; the space of eigen-
functions corresponding to the eigenvalue 0 is

(3.8) K0 := span {wy} .

For the proof of this lemma we refer to Theorem 2.1 of [10] and Lemma C of [13]. In fact

(3.9) w(y) =
3

2
sech2

(y
2

)
.

Note that the nontrivial eigenfunctions corresponding to the eigenvalue 0 are odd functions.
A noteworthy identity for w is obtained as follows. Multiplying the equation for w by ywy

and integrating over R we obtain

−1

2

∫
R
w2
y +

1

2

∫
R
w2 − 1

3

∫
R
w3 = 0.
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Multiplying the equation for w by w and integrating over R we obtain

−
∫
R
w2
y −

∫
R
w2 +

∫
R
w3 = 0.

Therefore we have the integral identities

(3.10)

∫
R
w2
y =

1

5

∫
R
w2 =

1

6

∫
R
w3.

Integrating the equation for w over R we obtain

(3.11)

∫
R
w =

∫
R
w2.

Lemma 3.2. There exists a unique τ = τh > 0 such that for τ < τh, (3.1) admits a positive
eigenvalue, and for τ > τh, all nonzero eigenvalues of problem (3.1) satisfies Re(λ0) < 0. At
τ = τh, (3.1) has a pair of pure imaginary eigenvalues λ0(τh) = ±iαI with αI ∈ (0,∞) uniquely
determined by τh. Moreover, the following transversality condition holds

(3.12) Re(λ′0(τh)) 6= 0.

Proof. The existence and uniqueness part of the lemma is essentially part of Theorem 2.2 and
Lemma 2.4 of [22], which treats interior spike solutions in a two-dimensional space. The proof
found there can be applied here almost without modification but for the sake of completeness
we reproduce it here. The transversality condition (3.12) and its proof here are new.

Note we here only consider even functions. By Theorem 1.4 of [23], for τ = 0 and by
perturbation for τ small, all eigenvalues lie on the left half-plane. By [2], for τ large, there exist
unstable eigenvalues. Therefore, for an intermediate value of τ = τh an eigenvalue λ0 must cross
the imaginary axis into the positive real-part half-plane. We first show that this eigenvalue may
not cross through the origin, and then we show the value of τh must be unique.

Suppose that there is a zero-eigenvalue crossing, λ0 = 0, when τ = τh. Let

L0φ ≡ φyy − φ+ 2wφ,

so that at the zero-eigenvalue crossing the NLEP (3.3) becomes

L0φ− 2

∫
R wφ∫
R w

2
w2 = 0,

and hence

L0

(
φ− 2

∫
R wφ∫
R w

2
w

)
= 0.

Thus

φ− 2

∫
R wφ∫
R w

2
w ∈ K0,

and since φ is even by Lemma 3.1 we must have

(3.13) φ− 2

∫
R wφ∫
R w

2
w = 0.

It follows from φ 6≡ 0 that ∫
R
wφ 6= 0.

But on the other hand, multiplying (3.13) by w and integrating over R, we arrive at the contra-
diction ∫

R
wφ = 2

∫
R
wφ.
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From the preceding argument we deduce that there must exist a τh ∈ (0,∞) at which L has
a pair of pure imaginary eigenvalues

λ0(τh) = ±αIi,

where i =
√
−1 and αI > 0. Next we show that τh is unique. From

(L0 − λ0)φ0 =
2

1 + τλ0

∫
R wφ0∫
R w

2
w2,

we obtain for λ0 = αIi that

φ0 =
2

1 + τλ0

∫
R wφ0∫
R w

2
(L0 − λ0)−1w2,

and hence αIi is a simple eigenvalue in the sense that

Ker(L− αIi) = Span{(L0 − αIi)−1w2}.

Thus we may assume that φ0 = (L0 − αIi)−1w2 whence (3.3) becomes

(3.14)

∫
R
wφ0 =

1 + ταIi

2

∫
R
w2.

Let φ0 = φR0 + φR0 i. Then from (3.14) we obtain∫
R
wφR0 =

1

2

∫
R
w2,

and ∫
R
wφI0 =

ταI
2

∫
R
w2.

But from

φ0 = (L0 − αIi)−1w2 = (L0 + αIi)(L
2
0 + α2

I)
−1w2,

we have

φR0 = L0(L2
0 + α2

I)
−1w2, φI0 = αI(L

2
0 + α2

I)
−1w2.

It follows that

(3.15)

∫
R

[wL0(L2
0 + α2

I)
−1w2] =

1

2

∫
R
w2,

(3.16)

∫
R

[w(L2
0 + α2

I)
−1w2] =

τ

2

∫
R
w2.

Let h(αI) ≡
∫
R[wL0(L2

0 + α2
I)
−1w2]. Then

h′(αI) = −2αI

∫
R

[wL0(L2
0 + α2

I)
−2w2].

By integration by parts, the last equation yields

h′(αI) = −2αI

∫
R

[w2(L2
0 + α2

I)
−2w2] < 0.

Since

h(0) =

∫
R
w(L−1

0 w2) =

∫
R
w2, and h(αI)→ 0 as αI →∞,

there exists a unique αI ∈ (0,∞) that (3.15) holds. The unique value of τ = τh ∈ (0,∞) then
comes from (3.16).
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It is left to show that (3.12) holds. Setting λ0 = λR(τ) + iλI(τ) we have the system of
equations

(3.17)


1 + τλR

2

∫
R
w2 =

∫
R
w

L0 − λR
(L0 − λR)2 + λ2

I

w2,

τ

2

∫
R
w2 =

∫
R
w

1

(L0 − λR)2 + λ2
I

w2,

Suppose that ∂(λR)
∂τ (τh) = 0 and differentiate the second equation of (3.17) with respect to τ

and evaluate it at τ = τh to obtain

(3.18)
1

2

∫
R
w2 = −2λI(τh)

∂(λI)

∂τ
(τh)

∫
R
w[L2

0 + λ2
I(τh)]−2w2,

where we have used λR(τh) = 0. This implies that ∂(λI)
∂τ (τh) 6= 0. If we now differentiate the

first equation of (3.17) with respect to τ we obtain

(3.19) 0 = −
∂(λ2

I)

∂τ
(τh)

∫
R
wL0[L2

0 + λ2
I(τh)]−2w2.

However
∂(λ2I)
∂τ (τh) 6= 0 and integrating by parts we see also that∫

R
wL0[L2

0 + λ2
I(τh)]−2w2 =

∫
R

[w2(L0 + α2
I)
−2w2] > 0,

which yields a contradiction. Therefore ∂(λR)
∂τ (τh) 6= 0.

�

The next lemma is a continuation of Lemma 3.2.

Lemma 3.3. Let λ0 = ±αIi be the unique imaginary eigenvalue pair described in Lemma 3.2
(at τ = τh). Then

(3.20) Re(λ′0(τh)) > 0.

Proof. Consider the eigenvalue problem

(3.21) L0φ−
2

1 + τλ0

∫
R wφ∫
R w

2
w2 = λ0φ.

As in the proof the transversality condition of Lemma 3.2 we have

φ =
2

1 + τλ0

∫
R wφ∫
R w

2
(L0 − λ0)−1w2,

so that multiplying by w and integrating gives

(3.22)
1 + τλ0

2

∫
R
w2 =

∫
R
w(L0 − λ0)−1w2.

Differentiating (3.22) with respect to τ we obtain

(3.23)
λ0 + τλ′0

2

∫
R
w2 = λ′0

∫
R
w(L0 − λ0)−2w2,

or equivalently

(3.24) λ′0 = λ0

∫
R w

2

2

(∫
R
w(L0 − λ0)−2w2 − τ

2

∫
R
w2

)−1

.
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Letting τ = τh and using Re(λ0(τh)) = 0 we obtain

(3.25) Re(λ′0(τh)) = −Im(λ0(τh))

∫
R w

2

2
Im

[(∫
R
w(L0 − λ0(τh))−2w2 − τh

2

∫
R
w2

)−1
]
.

Denote ∫
R
w(L0 − λ0(τh))−2w2 = a+ ib, c =

τh
2

∫
R
w2, with a, b, c ∈ R.

Then we have

(3.26)

Im

[(∫
R
w(L0 − λ0(τh))−2w2 − τh

2

∫
R
w2

)−1
]

= Im
[
(a+ bi− c)−1

]
=

−b
(a− c)2 + b2

.

On the other hand

(3.27)

∫
R
w(L0 − λ0(τh))−2w2 =

∫
R
w
L2

0 − λI(τh)2 + 2iλI(τh)L0

(L2
0 + λI(τh)2)2

w2,

and consequently by integration by parts we obtain

b = 2λI(τh)

∫
R
w

L0

(L2
0 + λI(τh)2)2

w2

= 2λI(τh)

∫
R

(L0w)(L2
0 + λI(τh)2)−2w2

= 2λI(τh)

∫
R
w2(L2

0 + λI(τh)2)−2w2.

Hence

(3.28) Re(λ′0(τh)) =
λI(τh)2

∫
R w

2

(a− c)2 + b2

∫
R
w2(L2

0 + λI(τh)2)−2w2 > 0.

�

We conclude this section with an alternative representation of λ′0(τh) and bounding the spec-
trum of (3.1). In (3.3) we write µ0 = τλ0, φ as φ0, and differentiate the equation with respect
to τ

L0φ
′
0 −

2

1 + µ0

∫
R wφ

′
0∫

R w
2
w2 +

2µ′0
(1 + µ0)2

∫
R wφ0∫
R w

2
w2 =

(
−µ0

τ2
+
µ′0
τ

)
φ0 +

µ0

τ
φ′0.

Multiplying by the conjugate of the adjoint eigenfunction φ∗0 and integrating over R, we obtain

(3.29)

∫
R

[φ∗0L0φ
′
0]− 2

1 + µ0

∫
R wφ

′
0∫

R w
2

∫
R
w2φ∗0 +

2µ′0
(1 + µ0)2

∫
R wφ0∫
R w

2

∫
R
w2φ∗0

=

(
−µ0

τ2
+
µ′0
τ

)∫
R
φ0φ∗0 +

µ0

τ

∫
R
φ∗0φ

′
0.

Taking conjugate of (3.5) and recalling that λ∗0 = λ0 we obtain

L0φ∗0 −
2

1 + µ0

∫
R w

2φ∗0∫
R w

2
w =

µ0

τ
φ∗0.
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Multiplying by φ′0 and integrating over R, we obtain

(3.30)

∫
R

[φ′0L0φ∗0]− 2

1 + µ0

∫
R w

2φ∗0∫
R w

2

∫
R
wφ′0 =

µ0

τ

∫
R
φ∗0φ

′
0.

Note that by integration by parts,∫
R

[φ∗0L0φ
′
0] =

∫
R

[φ′0L0φ∗0].

We obtain from (3.29) and (3.30) that

(3.31)
2µ′0

(1 + µ0)2

∫
R wφ0∫
R w

2

∫
R
w2φ∗0 =

(
−µ0

τ2
+
µ′0
τ

)∫
R
φ0φ∗0.

Therefore we have the formula

(3.32) µ′0(τh) =
λ0(τh)

∫
R φ0φ∗0∫

R φ0φ∗0 −
2τh

[1+τhλ0(τh)]2
∫
R w

2

∫
R wφ0

∫
R w

2φ∗0
.

Finally we have the following bound estimates for the spectrum of (3.1) which will play a key
role in showing the unperturbed linear operator is sectorial.

Lemma 3.4. Let λ0 be an eigenvalue of (3.1). Then one of the following alternative cases
happens:

(i) Im(λ0) = 0 and λ0 ≤ µ1, where µ1 > 0 is the first eigenvalue of L0, or
(ii) Im(λ0) 6= 0 and |τλ0 − 1| ≤

√
2.

Proof. Multiplying (3.1) by w and integrating over R, we obtain

(3.33)

∫
R
w2φ =

(
λ0 +

2

1 + τλ0

∫
R w

3∫
R w

2

)∫
R
wφ.

Using (3.10) we obtain It follows that

(3.34)

∫
R
w2φ =

(
λ0 +

12

5(1 + τλ0)

)∫
R
wφ.

Taking the conjugate

(3.35)

∫
R
w2φ =

(
λ0 +

12

5(1 + τλ0)

)∫
R
wφ.

Multiplying (3.1) by φ and integrating over R, we obtain that

(3.36)

∫
R

(|φy|2 + |φ|2 − 2w|φ|2) = −λ0

∫
R
|φ|2 − 2

1 + τλ0

∫
R wφ∫
R w

2

∫
R
w2φ̄.

Combining (3.35) and (3.36) we obtain

(3.37)

∫
R

(|φy|2 + |φ|2 − 2w|φ|2) = −λ0

∫
R
|φ|2 −

(
2λ̄0

1 + τλ0
+

24

5|1 + τλ0|2

) | ∫R wφ|2∫
R w

2
.

Writing

λ0 = λR + iλI , φ = φR + iφI ,

and considering the imaginary part of (3.37) we obtain

(3.38) λI

∫
R
|φ|2 =

2λI(1 + 2τλR)

(1 + τλR)2 + τ2λ2
I

|
∫
R wφ|

2∫
R w

2
.
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We first consider the case that λI 6= 0. In this case we have∫
R
|φ|2 =

2(1 + 2τλR)

(1 + τλR)2 + τ2λ2
I

|
∫
R wφ|

2∫
R w

2
.

Using the Schwartz inequality

|
∫
R
wφ|2 ≤

∫
R
w2

∫
R
|φ|2,

we get
2(1 + 2τλR)

(1 + τλR)2 + τ2λ2
I

≥ 1,

which is case (ii).
Now assume that λI = 0. If τλR + 1 = 0, then

λ0 = λR = −1

τ
< 0 < µ1.

If τλR + 1 6= 0, we then use the Rayleigh’s formula∫
R
|φy|2 +

∫
R
|φ|2 − 2

∫
R
w|φ|2 ≥ −µ1

∫
R
|φ|2,

and (3.37) to get that

λR

∫
R
|φ|2 +

(
2λR

1 + τλR
+

6

|1 + τλR|2

) | ∫R wφ|2∫
R w

2
≤ µ1

∫
R
|φ|2.

If λR ≤ 0, we are done. If λR > 0, we then have

λR

∫
R
|φ|2 ≤ µ1

∫
R
|φ|2.

Hence case (i) happens. �

4. Spectral analysis of (1.4)

We want to show that the operator Lε is an infinitesimal generator of the a strongly continuous
and analytical semigroup. Since it suffices to show that Lε is a sectorial operator this naturally
leads us to study the following eigenvalue problem

(4.1)


(φε)yy − φε + 2

Aε
Hε
φε −

A2
ε

H2
ε

ψε = λεφε,

1

β2
(ψε)xx − ψε + 2Aεφε = τλεψε,

where y = ε−1x, D = β−2, λε is some complex number, and

(4.2) φε ∈ H2
N ([−ε−1, ε−1]), ψ ∈ H2

N ([−1, 1]).

It is convenient to set Âε = ξ−1
ε Aε and Ĥε = ξ−1

ε Hε so that (4.1) becomes

(4.3)


(φε)yy − φε + 2

Âε

Ĥε

φε −
Â2
ε

Ĥ2
ε

ψε = λεφε,

1

β2
(ψε)xx − ψε + 2ξεÂεφε = τλεψε.

The second equation in (4.3) is equivalent to

(4.4) (ψε)xx − β2
λεψε + 2β2ξεÂεφε = 0.

where

(4.5) β2
λε ≡ β

2(1 + τλε).
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We may assume that ‖φε‖H2([−ε−1,ε−1]) = 1.

Let χ be a smooth cut-off function which is equal to 1 in [−1
2 ,

1
2 ] and equal to 0 in R \ [−1, 1].

Let

(4.6) χε(y) = χ (εy) , y ∈ [−ε−1, ε1].

Define the cut-off of φε:

(4.7) φcε(y) = φε(y)χε(y),

where x = εy. Then if Re(1 + λε) > c, or |Im(λε)| > c, for a small constant c > 0, we have

(4.8) φcε = φε + e.s.t. in H2([−ε−1, ε−1]).

Then by the standard procedure, we extend φcε to a function defined on R such that

(4.9)

‖φcε‖L2(R) ≤ C0‖φε‖L2([−ε−1,ε−1]),

‖(φcε)y‖L2(R) ≤ C0‖(φε)y‖L2([−ε−1,ε−1]),

‖(φcε)yy‖L2(R) ≤ C0‖(φε)yy‖L2([−ε−1,ε−1]),

for a constant C0 > 1. Since ‖φε‖H2([−ε−1,ε−1]) = 1, we have ‖φcε‖H2(R) ≤ C0.
Using the Green’s function introduced in Section 2 we write

(4.10) ψε(x) =

∫ 1

−1
2β2ξεGβλε (x, ξ)Âε

(
ξ

ε

)
φε

(
ξ

ε

)
dξ.

At x = 0, we calculate

(4.11)

ψε(0) = 2β2

∫ 1

−1
Gβλε (0, ξ)ξεw

(
ξ

ε

)
φcε

(
ξ

ε

)
dξ + o(1)

= 2β2

∫ 1

−1

(
(βλε)

−2

2
+G0(0, ξ) +O(1)

)
ξεw

(
ξ

ε

)
φcε

(
ξ

ε

)
dξ + o(1)

= 2

∫ 1

−1

(
1

2(1 + τλε)
+ β2G0(0, ξ) +O(β2)

)
ξεw

(
ξ

ε

)
φcε

(
ξ

ε

)
dξ + o(1)

=
1

1 + τλε
ξεε

∫
R
w(y)φcε(y)dy +O(β2ξεε) + o(1)

=
1 + o(1)

1 + τλε
εξε

∫
R
wφcε

=
2[1 + o(1)]

(1 + τλε)
∫
R w

2

∫
R
wφcε as ε→ 0.

Substituting (4.11) into the first equation of (4.3) we arrive at

(4.12) (φε)yy − φε + 2wφε −
2[1 + o(1)]

1 + τλε

∫
R wφ

c
ε∫

R w
2
w2 = λε[1 + o(1)]φε

As in the proof of Theorem 1 in [2] one obtains

(4.13) λε → λ0, φε(y)→ φ0(y) in H2
loc(R), as ε→ 0,

where (λ0, φ0) is an eigenpair of the NLEP (3.1).
We can now prove the following spectral result for the eigenvalue problem (4.1).

Lemma 4.1. If ε > 0 is sufficiently small then there exists a unique value τ = τhε for which
(4.1) has a pair of purely imaginary eigenvalues λε± = ±iαεI with αεI > 0. Moreover this pair is
unique in the sense that if iβεI is an eigenvalue of (4.1), then βεI = αεI or βεI = −αεI . Furthermore

at this value of τ = τhε all other eigenvalues have negative real parts.
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Proof. For ε > 0 sufficiently small, as in the proof of Lemma 3.2 all eigenvalues of (4.1) have
negative real parts when τ > 0 is small, whereas there exist eigenvalues with positive real part
when τ > 0 is sufficiently large. Furthermore, we can show that there are no zero eigenvalues
for any τ > 0. Thus, there exists a τhε ∈ (0,∞) such that (4.1) has a pair of pure imaginary
eigenvalues.

The uniqueness comes from the fact that for Re(λε) > −c we define hε(λ
ε
I) :=

∫
R wRe(φ

c
ε)

for the unperturbed problem (4.12) so that subject to a subsequence, αεI → αI and φε → φ0 as
ε→ 0 we have

(4.14) h′ε(λ
ε
I)→ h′(λI) < 0 as ε→ 0,

according to the calculation in the proof of Lemma 3.2 and the uniform continuity of h′(λI) in
λI .

�

The following two lemmas establish the semigroup framework.

Lemma 4.2. Let λε ∈ C be an eigenvalue of problem (4.1). Then for sufficiently small ε > 0,
one of the following cases happens:

(i) Im(λε) = 0 and λε ≤ 2µ1, or
(ii) Im(λε) 6= 0 and |τλε| ≤ 7.

Proof. We may assume that the constant C0 > 1 in (4.9) is arbitrarily close to 1. Multiplying
(4.12) by φcε and integrating over R we get

(4.15) −
∫
R
|(φcε)y|2−

∫
R
|φcε|2 +2

∫
R
w|φcε|2−

2[1 + o(1)]

1 + τλε

∫
R wφ

c
ε∫

R w
2

∫
R
w2φcε = λε[1+o(1)]

∫
R
|φcε|2.

Multiplying (4.12) by w and integrating over R we get

(4.16) [1 + o(1)]λε

∫
R
wφcε =

∫
R

[wyy − w + 2w2]φcε −
2[1 + o(1)]

1 + τλε

∫
R w

3∫
R w

2

∫
R
wφcε.

Using (3.10) we obtain

(4.17)

∫
R
w2φcε = [1 + o(1)]

(
λε +

12

5(1 + τλε)

)∫
R
wφcε.

From (4.15) and (4.17) we obtain
(4.18)

[1 + o(1)]

∫
R

(|(φcε)y|2 + |φcε|2 − 2w|φcε|2) = −λε
∫
R
|φcε|2 −

(
2λε

1 + τλε
+

24

5|1 + τλε|2

) | ∫R wφcε|2∫
R w

2
.

Considering the imaginary part of (4.18) we get

(4.19) [1 + o(1)]λεI

∫
R
|φcε|2 =

2λεI(1 + 2τλεR)

(1 + τλεR)2 + τ2(λεI)
2

|
∫
R wφ

c
ε|2∫

R w
2

.

If λεI 6= 0, we have

2(1 + 2τλεR)

(1 + τλεR)2 + τ2(λεI)
2
≥ 1

2
for sufficiently small ε > 0,

or equivalently, for small ε > 0,

(4.20) (τλεR − 3)2 + (τλεI)
2 ≤ 13,

From here we obtain the coarse bounds

3−
√

13 ≤ τλεR ≤ 3 +
√

13, −
√

13 ≤ τλεI ≤
√

13,
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and hence

(4.21) |τλε| ≤ 3 +
√

13 ≤ 7.

If λεI = 0, then λε = λεR, and (4.18) becomes

[1 + o(1)]

∫
R

(|(φcε)y|2 + |φcε|2 − 2w|φcε|2) = −λεR
∫
R
|φcε|2 −

(
2λεR

1 + τλεR
+

24

5|1 + τλεR|2

) | ∫R wφcε|2∫
R w

2
.

Using the inequality ∫
R

(|(φcε)y|2 + |φcε|2 − 2w|φcε|2) ≥ −µ1

∫
R
|φcε|2,

we obtain that for ε > 0 sufficiently small

(4.22) − 2µ1

∫
R
|φcε|2 ≤ −λεR

∫
R
|φcε|2 −

(
2λεR

1 + τλεR
+

24

5|1 + τλεR|2

) | ∫R wφcε|2∫
R w

2
.

Then λεR ≤ 0, or λεR > 0. In the case λεR > 0, we obtain from (4.22) that

λεR

∫
R
|φcε|2 ≤ 2µ1

∫
R
|φcε|2,

and hence

(4.23) λεR ≤ 2µ1.

This finishes the proof of the lemma. �

In view of Lemma 4.2, there exist constants ε0 > 0, a > 0 and θ ∈ (π2 , π) such that the sector

(4.24) Sa,θ := {λ ∈ C : |arg(λ− a)| < θ} ∪ {a}
is contained in the resolvent set of Lε for all ε ∈ (0, ε0].

Lemma 4.3. The operator Lε is a sectorial operator and hence generates a strongly continuous
and analytic semigroup on the space L2([−1, 1])×L2([−1, 1]). Moreover, for λ ∈ Sa,θ with a� 1,
the operator R(λ, a) = (λ − Lε)−1 is compact as an operator mapping L2([−1, 1]) × L2([−1, 1])
into itself and there exists a constant M > 0 such that

(4.25) ‖R(λ, a)‖ ≤ M

|λ− a|
, for λ ∈ Sa,θ.

Proof. For any λ ∈ Sa,θ we consider the resolvent equation

(4.26) (Lε − λ)

[
φ
ψ

]
=

[
f1

f2

]
,

namely,

(4.27)


(φε)yy − φε + 2

Âε

Ĥε

φε −
Â2
ε

Ĥ2
ε

ψε = λφε + f1,

1

β2
(ψε)xx − ψε + 2ξεÂεφε = τλψε + τf2.

From the second equation of (4.27) we get

(4.28) ψε(x) =

∫ 1

−1
Gβλ(x, ξ)

[
2β2ξεÂε

(
ξ

ε

)
φε

(
ξ

ε

)
− τβ2f2

(
ξ

ε

)]
dξ.

As before we calculate at x = 0 to get that

(4.29) ψε(0) = [1 + o(1)]

(
2

1 + τλ

∫
R wφ

c
ε∫

R w
2
− 2τ

1 + τλ

∫
R
f c2

)
.
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We assume a� 1 and θ be fixed. Then from the first equation in (4.27) we get

(4.30) φε =

[
ε2
d2

dx2
− (1 + λ) + 2

Aε
Hε

]−1(
A2
ε

H2
ε

ψε + f1

)
Since for ε small,

max
[−1,1]

Aε
Hε
≤ 2w(0) = 2 max

R
w,

there exists, by the resolvent estimate, a constant M > 0, such that

‖φε‖L2([−1,1]) ≤
M

|λ+ 1− 4w(0)|
(w2(0)‖ψε‖L2([−1,1]) + ‖f1‖L2([−1,1])).

While

‖ψε‖L2([−1,1]) ≤
4

‖w‖L2(R)|1 + τλ|
‖φcε‖L2(R) +

4τ

|1 + τλ|
‖f c2‖L2(R)

≤ C

|1 + τλ|
(‖φε‖L2([−1,1]) + ‖f2‖L2([−1,1])).

Let a > 0 be sufficiently large, then if λ ∈ Sa,θ, we have

Mw2(0)C

|1 + τλ||λ+ 1− 4w(0)|
<

1

2
,

and hence

(4.31) ‖φε‖L2([−1,1]) ≤
CM

|λ− a|
(
‖f1‖L2([0,1])) + ‖f2‖L2([−1,1])

)
.

From (4.29) we then have

(4.32) ‖ψε‖L2([−1,1]) ≤
CM

|λ− a|
(
‖f1‖L2([−1,1])) + ‖f2‖L2([−1,1])

)
,

and therefore

(4.33) ‖R(λ, a)‖ ≤ CM

|λ− a|
, for λ ∈ Sa,ε.

The compactness of (λ− Lε)−1 is obvious. This finishes the proof of the lemma. �

The semigroup generated by Lε is defined by the formula

(4.34) T (t) = eLεt =
1

2πi

∫
Γ
eλtR(λ, a)dλ,

where Γ is a smooth curve in Sa,θ that connects ∞e−θi and ∞eθi.

5. The transversality condition for the perturbed system

We begin from the eigenvalue problem

(5.1)


(φε)yy − φε + 2

Âε

Ĥε

φε −
Â2
ε

Ĥ2
ε

ψε = λεφε,

1

β2
(ψε)xx − ψε + 2ξεÂεφε = τλεψε.

We let µε = τλε. Then (5.1) is equivalent to the following eigenvalue problem

(5.2)


τ{(φε)yy − φε + 2

Âε

Ĥε

φε −
Â2
ε

Ĥ2
ε

ψε} = µεφε,

1

β2
(ψε)xx − ψε + 2ξεÂεφε = µεψε.
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Namely,

(5.3) L

[
φε
ψε

]
= µε

[
φε
ψε

]
,

with L = τL. We note that L ∗ = τL∗.
Let τε be the parameter value from Lemma 4.1, so that Re(λε(τ

h
ε )) = 0. Then, via the

relationship

(5.4) µ′ε(τ) = τλ′ε(τ) + λε(τ),

we obtain that Re(µ′ε(τ
h
ε )) = τhε Re(λ

′
ε(τ

)
ε )). We now show that µ′ε(τ

h
ε ) > 0 for ε > 0 sufficiently

small.
Let Θε = (φε, ψε)

T be a nontrivial eigenfunction of L corresponding to µε and Θ∗ε = (φ∗ε , ψ
∗
ε )
T

be a nontrivial eigenfunction of L ∗ corresponding to µ∗ε . We have by definition

(5.5) 〈Θε,Θ∗ε 〉 = 〈Θε,Θ
∗
ε 〉 = 0.

Since λ0 is a simple eigenvalue, µε is simple. Moreover we also have

(5.6) 〈Θε,Θ
∗
ε 〉 = 〈Θε,Θ∗ε 〉 6= 0.

Write

(5.7) Θε =

[
φε
ψε

]
, Θ∗ε =

[
φ∗ε
ψ∗ε

]
.

Using the Green’s function introduced in Section 2 we write

(5.8) ψε(x) =

∫ 1

−1
2β2ξεGβλε (x, ξ)Âε

(
ξ

ε

)
φε

(
ξ

ε

)
dξ.

By (4.11) we have

(5.9) ψε(0) =
(1 + o(1))

(1 + τλε)
εξε

∫
R
wφ0

Similar to the calculation of (4.11), we write

ψ∗ε (x) = −
∫ 1

−1
τβ2Gβλ∗ε

(x, ξ)
Â2
ε

Ĥ2
ε

(
ξ

ε

)
φ∗ε

(
ξ

ε

)
dξ,

and calculate

(5.10)

ξεψ
∗
ε (0) = −β2τξε

∫ 1

−1
Gβλ∗ε

(0, ξ)w2

(
ξ

ε

)
(φ∗ε )

c

(
ξ

ε

)
dξ + o(1)

= −β2τξε

∫ 1

−1

(
(βλ∗ε )

−2

2
+G0(0, ξ) +O(1)

)
w2

(
ξ

ε

)
(φ∗ε )

c

(
ξ

ε

)
dξ + o(1)

= −τξε
∫ 1

−1

(
1

2(1 + τλ∗ε )
+ β2G0(0, ξ) +O(β2)

)
w2

(
ξ

ε

)
(φ∗ε )

c

(
ξ

ε

)
dξ + o(1)

= − τεξε
2(1 + τλ∗ε )

∫
R
w(y)2(φ∗ε )

c(y)dy +O(β2)

= − τ(1 + o(1))

(1 + τλ∗ε )
∫
R w

2

∫
R
w2(φ∗ε )

c

= − τ(1 + o(1))

(1 + τλ∗ε )
∫
R w

2

∫
R
w2φ∗0 as ε→ 0.

Differentiating (5.3) with respect to τ we find that

(5.11)
∂L

∂τ
Θε + L

∂Θε

∂τ
=
∂µε
∂τ

Θε + µε
∂Θε

∂τ
.
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Taking the inner product with Θ∗ε gives

(5.12) 〈∂L

∂τ
Θε,Θ

∗
ε 〉+ 〈L ∂Θε

∂τ
,Θ∗ε 〉 = 〈∂µε

∂τ
Θε,Θ

∗
ε 〉+ 〈µε

∂Θε

∂τ
,Θ∗ε 〉,

and then using

〈L ∂Θε

∂τ
,Θ∗ε 〉 = µε〈

∂Θε

∂τ
,Θ∗ε 〉,

we obtain

(5.13) µ′ε(τ
h
ε ) =

∂µε
∂τ

(τhε ) =
〈∂L
∂τ Θε,Θ

∗
ε 〉

〈Θε,Θ∗ε 〉
=
µε
τhε

∫ 1
−1 φεφ

∗
ε

〈Θε,Θ∗ε 〉
.

We compute

(5.14)

∫ 1

−1
φεφ∗ε dx = ε

∫ ε−1

−ε−1

φεφ∗ε (y) dy

= ε[1 + o(1)]

∫
R
φ0φ∗0 dy,

and

(5.15)

∫ 1

−1
ψεψ∗ε dx =

1

ξε

∫ 1

−1
ψε(x)ξεψ∗ε (x) dx

= −ε[1 + o(1)]
2τhε

[1 + µε(τhε )]2
∫
R w

2

∫
R
w2φ∗0

∫
R
wφ0,

so that in view of (3.32), we obtain

(5.16) µ′ε(τ
h
ε ) =

[1 + o(1)]λ0(τh)
∫
R φ0φ∗0∫

R φ0φ∗0 −
2τh

(1+τhλ0(τh))2
∫
R w

2

∫
R wφ0

∫
R w

2φ∗0
= [1 + o(1)]µ′0(τh).

As a consequence of Lemma 3.3 we therefore have

(5.17) Re(λ′ε(τ
h
ε )) =

1

τhε
Re(µ′ε) = [1 + o(1)]Re(λ′0(τh)) > 0, for sufficiently small ε > 0.

6. Hopf bifurcation: existence, uniqueness and symmetry

We have now established all the assumptions of the Hopf bifurcation theorem of [9]. Indeed,
the relevant spectral and semigroup assumptions on the linearization DUFε = Lε at τ = τhε
were established in Sections 4 and 5. Furthermore, with X = H2

N ([0, 1]) × H2
N ([0, 1]) and

Z = L2([0, 1])×L2([0, 1], the map Fε : X → Z satisfies the required regularity assumptions. We
introduce the spaces

Cγ2πρ(R, X) :=

{
U : R→ X

∣∣U(t+ 2πρ) = U(t) t ∈ R,

||U ||X,γ := max
t∈R
||U(t)||X + sup

s6=t

||U(t)− U(s)||X
|t− s|γ

<∞
}
,

(6.1)

and

C1+γ
2πρ (R, Z) :=

{
U : R→ Z

∣∣U ∈ Cγ2πρ(R, Z), dUdt ∈ C
γ
2πρ(R, Z),

||U ||Z,1+γ := ||U ||Z,γ + ||dUdt ||Z,γ <∞
}
,

(6.2)



HOPF BIFURCATIONS FROM SPIKE SOLUTIONS 19

where γ ∈ (0, 1] is the Hölder exponent. The relevant space for solutions to (1.2) is Y ≡
Cγ2πρ(R, X) ∩ C1+γ

2πρ (R, Z) with the norm

(6.3) ||U ||Y ≡ ||U ||X,γ + ||dUdt ||Z,γ .
The Hopf bifurcation theorem thus applies and yields the following result.

Theorem 6.1. There exists an ε0 > 0 such that for every 0 < ε ≤ ε0 there are numbers
δε, ηε > 0 and continuously differentiable functions ρε(s), τε(s), and (Ãε(s), H̃ε(s)) ∈ Y defined

in −ηε < s < ηε such that (Ãε(s), H̃ε(s)) is a 2πρε(s)-periodic solution to (1.1) and

τε(0) = τhε , ρε(0) = 1/αεI , Ãε(0) = Aε, H̃ε(0) = Hε.

In addition the solutions are nontrivial in that (Ãε(s), H̃ε(s)) 6= (Aε, Hε) for 0 < |s| < ηε.

Furthermore we have uniqueness in the sense that if (τε1 , Ãε,1, H̃ε,1) is a 2πρε,1-periodic solution

of (1.1) with |ρε,1 − 1/αεI | < δε, |τε,1 − τhε | < δε, and ||(Ãε,1, H̃ε,1)− (Aε, Hε)||Y < δε, then there

exist numbers s ∈ [0, ηε) and θ ∈ [0, 2πρε,1) so that τε,1 = τε(s) and the solution (Ãε,1, H̃ε,1) is

obtained from a θ-phase shift of (Ãε(s), H̃ε(s)), i.e.

(Ãε,1, H̃ε,1)(t) = [Sθ(Ãε(s), H̃ε(s))](t) ≡ (Ãε(s), H̃ε(s))(t+ θ) for all t ∈ R.
Finally, the bifurcating solutions have the following symmetry property

(Ãε(−s), H̃ε(−s)) = Sπρε(s)(Ãε(s), H̃ε(s)), τε(−s) = τε(s), ρε(−s) = ρε(s) for all −ηε < s < ηε.

7. Linearized stability of the Hopf bifurcation

In this section we investigate the linearized stability of the periodic solutions obtained in
Theorem 6.1 from the previous section. This stability analysis is carried out in the context of a
generalization of Floquet Theory from ODEs to semilinear parabolic PDEs and we refer here to
Section I.12 of [9]. We briefly summarize the main aspects of this theory so that our stability
result may be accurately stated.

Suppose A(t) is a time-dependent linear operator which is p-periodic in t and consider the
problem

(7.1)
dw

dt
−A(t)w = 0.

The Floquet multipliers of (7.1) are the eigenvalues of U(p), where w(t) = U(t)x is the solution
of (7.1) satisfying w(0) = x. We say that κ is a Floquet exponent of (7.1) if and only if e−pκ is
a Floquet multiplier, or equivalently if κ is an eigenvalue of d

dt −A(t) in the space of p-periodic
functions.

The concepts of Floquet Theory arise in the study of periodic solutions as follows. If u is a
p-periodic solution of the nonlinear problem

(7.2)
du

dt
= g(u),

then the linearization about this periodic solution results in the variational equation

(7.3) dv
dt − gu(u(t))v = 0,

from which the Floquet multipliers and exponents are defined as for (7.1) with A(t) = gu(u(t)).
If u̇ = du

dt 6≡ 0, formally differentiating (7.2) shows that

du̇

dt
= gu(u(t))u̇,

so that 0 is always a Floquet exponent and 1 is a Floquet multiplier for u. It has been shown
that the stability properties of a periodic solution to (7.2) are determined by the moduli of its
Floquet multipliers (see Section 8. 2 of [7]). Specifically, if the Floquet exponent κ = 0 is simple
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and all remaining Floquet exponents have positive real parts, then the p-periodic solution u is
linearly stable.

The Floquet exponent for the 2πρε(s)-periodic solutions Uε(s) = (Ãε(s), H̃ε(s)) from Theorem
6.1 are therefore numbers κ such that the problem

(7.4)
1

ρε(s)

dw

dt
−
(
Lε +RU (τε(s), Uε(s)(ρε(s)t))

)
w = κw, w(0) = w(2π)

has a nontrivial solution. At s = 0, (7.4) becomes

(7.5) αεI
dw

dt
− Lεw = κw, w(0) = w(2π).

The set of values of κ for which (7.5) has a nontrivial solution is {αεIni−σ(Lε) : n = ±1,±2, , . . .},
so the corresponding multipliers are e2πσ(Lε)/αεI . Thus, 1 is clearly a Floquet multiplier with
multiplicity two corresponding to the double eigenvalue κ = 0 inherited from ±iαI ∈ σ(Lε). On
the other hand, Lemma 4.1 implies that the remaining eigenvalues of Lε at s = 0 have negative
real part and therefore the remaining Floquet exponents have positive real parts.

Since a zero Floquet exponent persists for all values of −ηε < s < ηε, it is a second, nontrivial,
Floquet exponent, κε(s), with κε(0) = 0 which determines the linear stability of the periodic
solution. Specifically, if Re(κε(s)) > 0 then the periodic solution is linearly stable in the sense
of [7], and is otherwise unstable. With · denoting a derivative with respect to s, Theorem I.12.2
of [9] implies that κ̇ε(0) = 0 and τ̇ε(0) = 0. Moreover, formula (I.12.34) of [9] relates the second
derivatives according to

κ̈ε(0) = 2τ̈ε(0)Re(λ′ε(τ
h
ε )).

From Section 5 we know Re(λ′ε(τ
h
ε )) > 0 and therefore the first part of Corollary I.12.3, or the

Principle of Exchange of Stability, of [9] applies.

Theorem 7.1. Let the hypotheses of Theorem 6.1 be satisfied. Then

sgn(τε(s)− τhε ) = sgn(κε(s)) for − ηε < s < ηε.

Hence, the bifurcating periodic solutions of Theorem 6.1 are linearly stable (resp. unstable) if
the bifurcation is supercritical (resp. subcritical).

To conclude the stability question it remains therefore to determine the sign of τ̈ε(0). For this
we use the formula (see equation (I.9.11) of [9])

(7.6) τ̈ε(0) =
1

Re(λ′ε(τ
h
ε ))

Re(K(ε)),

where

(7.7)

K(ε) = −〈D3
UUUR(τhε , 0)[Θε,Θε,Θε],Θ

∗
ε 〉

+ 〈D2
UUR(τhε , 0)[Θε, (Lε − 2αεIi)

−1D2
UUR(τhε , 0)[Θε,Θε]],Θ

∗
ε 〉

+ 2〈D2
UUR(τhε , 0)[Θε,L−1

ε D2
UUR(τhε , 0)[Θε,Θε]],Θ

∗
ε 〉

= K1(ε) +K2(ε) +K3(ε),

where Θε = (φε, ψε) is a nontrivial eigenfunction of Lε corresponding to the eigenvalue αIi,
Θ∗ε = (φ∗ε , ψ

∗
ε ) is a nontrivial eigenfunction of L∗ε corresponding to the eigenvalue −αIi, and

moreover

(7.8) 〈Θε,Θ
∗
ε 〉 = 1.
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As calculated before

(7.9)

〈Θε,Θ
∗
ε 〉 =

∫ 1

−1
φεφ∗ε dx+

∫ 1

−1
ψεψ∗ε dx

= ε[1 + o(1)]

[∫
R
φ0φ∗0 −

2τh
(1 + τhλ0(τh))2

∫
R w

2

∫
R
wφ0

∫
R
w2φ∗0

]
.

Therefore, we have

(7.10)

∫
R
φ0φ∗0 −

2τh
(1 + τhλ0(τh))2

∫
R w

2

∫
R
wφ0

∫
R
w2φ∗0 =

1 + o(1)

ε
.

Recall that

(7.11) R(τ, U) =

[
R1(τ, U)
R2(τ, U)

]
with

R1(τ, U) =
(Aε + U1)2

Hε + U2
− A2

ε

Hε
− 2AεU1

Hε
+
A2
εU2

H2
ε

,

and

R2(τ, U) =
1

τ

(
(Aε + U1)2 −A2

ε − 2AεU1

)
=

2

τ
U2

1 .

For functions

g =

[
g1

g2

]
, h =

[
h1

h2

]
, l =

[
l1
l2

]
∈ Z,

We calculate

D2
UUR1(τ, 0)[g, h] =

2

Hε
g1h1 −

2Aε
H2
ε

[g1h2 + g2h1] +
2A2

ε

H3
ε

g2h2,

D3
UUUR1(τ, 0)[g, h, l] = − 2

H2
ε

[g1h2l1+g2h1l1+g1h1l2]+
4Aε
H3
ε

[g2h2l1+g1h2l2+g2h1l2]− 6A2
ε

H4
ε

g2h2l2,

D2
UUR2(τ, 0)[g, h] =

4

τ
g1h1,

D3
UUUR2(τ, 0)[g, h, l] = 0.

Therefore,

(7.12)

K1(ε) = −〈D3
UUUR(τhε , 0)[Θε,Θε,Θε],Θ

∗
ε 〉

=

∫ 1

−1

[
2

H2
ε

(2|φε|2ψε + φ2
εψε)−

4Aε
H3
ε

(ψ2
εφε + 2φε|ψε|2) +

6A2
ε

H4
ε

ψε|ψε|2
]
φ∗ε dx,

(7.13)

ξεK2(ε) = 〈D2
UUR(τhε , 0)[Θε, ξε(Lε − 2αεIi)

−1D2
UUR(τhε , 0)[Θε,Θε]],Θ

∗
ε 〉

=

∫ 1

−1

[
2

Hε
φεz

ε
1 −

2Aε
H2
ε

(φεz
ε
2 + ψεz

ε
1) +

2A2
ε

H3
ε

ψεz
ε
2

]
φ∗ε dx+

4

τhε

∫ 1

−1
zε1φεψ

∗
ε dx,

(7.14)

ξεK3(ε) = 2〈D2
UUR(τhε , 0)[Θε, ξεL−1

ε D2
UUR(τhε , 0)[Θε,Θε]],Θ

∗
ε 〉

= 2

∫ 1

−1

[
2

Hε
φεh

ε
1 −

2Aε
H2
ε

(φεh
ε
2 + ψεh

ε
1) +

2A2
ε

H3
ε

ψεh
ε
2

]
φ∗ε dx+

8

τhε

∫ 1

−1
hε1φεψ

∗
ε dx.

Here[
zε1
zε2

]
= ξε(Lε − 2αεIi)

−1D2
UU (τhε , 0)[Θε,Θε] = ξε(Lε − 2αεIi)

−1

[
2
Hε
φ2
ε − 4Aε

H2
ε
φεψε + 2A2

ε
H3
ε
ψ2
ε

4
τhε
φ2
ε

]
.
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Namely,
(7.15)
ε2(zε1)′′ − (1 + 2αεIi)z

ε
1 +

2Aε
Hε

zε1 −
A2
ε

H2
ε

zε2 =
2ξε
Hε

φ2
ε −

4ξεAε
H2
ε

φεψε +
2ξεA

2
ε

H3
ε

ψ2
ε in [−1, 1],

(zε2)′′ − β2(1 + 2τhε α
ε
Ii)z

ε
2 + 2β2Aεz

ε
1 = 4β2ξεφ

2
ε in [−1, 1],

(zε1)′ = (zε2)′ = 0 for x = −1, 1.

By the discussions in previous sections, we can derive a limit equation of (7.15)
z′′1 − (1 + 2αIi)z1 + 2wz1 −

2

1 + 2τhαIi

∫
R(wz1 − 2φ2

0)∫
R w

2
w2 = 2φ2

0 − 4wφ0ψ0 + 2w2ψ2
0 in R,

z2 =
2

1 + 2τhαIi

∫
R(wz1 − 2φ2

0)∫
R w

2
in R.

While[
hε1
hε2

]
= ξε(Lε)−1D2

UU (τhε , 0)[Θε,Θε] = ξε(Lε)−1

[
2
Hε
|φε|2 − 2Aε

H2
ε

(φεψε + ψεφε) + 2A2
ε

H3
ε
|ψε|2

4
τhε
|φε|2

]
.

Namely,
(7.16)
ε2(hε1)′′ − hε1 +

2Aε
Hε

hε1 −
A2
ε

H2
ε

hε2 =
2ξε
Hε
|φε|2 −

2ξεAε
H2
ε

(φεψε + ψεφε) +
2ξεA

2
ε

H3
ε

|ψε|2 in [−1, 1],

(hε2)′′ − β2hε2 + 2β2Aεh
ε
1 = 4β2ξε|φε|2 in [−1, 1],

(hε1)′ = (hε2)′ = 0 for x = −1, 1.

Accordingly, the limit equation of (7.16) is
h′′1 − h1 + 2wh1 − 2

∫
R(wh1 − 2|φ0|2)∫

R w
2

w2 = 2|φ0|2 − 2w(φ0ψ0 + ψ0φ0) + 2w2|ψ0|2 in R,

h2 = 2

∫
R(wh1 − 2|φ0|2)∫

R w
2

in R.

Therefore we have, as ε→ 0, that
(7.17)

ε−1ξ2
εK1(ε) = [1 + o(1)]

∫
R

[
2(2|φ0|2ψ0 + φ2

0ψ0)− 4w(ψ2
0φ0 + 2φ0|ψ0|2) + 6w2ψ0|ψ0|2

]
φ∗0 dy.

Using the estimate (5.10) we obtain, as ε→ 0, that

(7.18)

ε−1ξ2
εK2(ε) =[1 + o(1)]

∫
R

[
2φ0z1 − 2w(φ0z2 + ψ0z1) + 2w2ψ0z2

]
φ∗0 dy

− [1 + o(1)]
4

(1 + τhαIi)
∫
R w

2

∫
R
z1φ0

∫
R
w2φ∗0 dy.

Similarly, as ε→ 0,

(7.19)

ε−1ξ2
εK3(ε) =2[1 + o(1)]

∫
R

[
2φ0h1 − 2w(φ0h2 + ψ0h1) + 2w2ψ0h2

]
φ∗0 dy

− [1 + o(1)]
8

(1 + τhαIi)
∫
R w

2

∫
R
h1φ0

∫
R
w2φ∗0 dy.

Here

(7.20) ψ0 ≡
2

1 + τhαIi

∫
R wφ0∫
R w

2
.
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Remark 7.2. Thus the criticality of the Hopf bifurcation is the same as for the corresponding
limiting ε→ 0 problem.

8. Numerical Computation of Re(K(ε))

It remains to compute the sign of Re(K(ε)) as given by (7.7) and using the limiting behaviour
as ε→ 0 of K1, K2, and K3 found in equations (7.17), (7.18), and (7.19) respectively. This re-
quires us to first calculate the Höpf bifurcation time constant τh and purely imaginary eigenvalue
λ0 as well as its corresponding eigenfunction φ0 and adjoint eigenfunction φ∗0. Following this we
must evaluate the auxiliary functions zk and hk for k = 1, 2 satisfying the limiting equations of
(7.15) and (7.16) respectively.

To calculate the Höpf bifurcation threshold τh and eigenvalue λ0 = iαI we first rewrite the
NLEP (3.1) as

(8.1) 1 + τhλ0 − 2

∫∞
−∞w(L0 − λ0)−1w2∫∞

−∞w
2

= 0.

The term (L0 − λ0)−1w2 appearing in the numerator is calculated by solving the boundary
value problem (L0 − λ0)ζ = w2 with boundary conditions ζ ′(0) = 0 and ζ(y) → 0 as y → ∞.
Numerically this is solved on the truncated domain 0 < y < L for which the exponential decay
of the solution can be leveraged to replace the decay at infinity with ζ(L) = 0 provided L is
sufficiently large. For this and subsequent truncated domain computations we will use a value
of L = 500. Additionally we use the solve bvp routine from the scipy . integrate library. Having
computed the relevant boundary value problem it is then straightforward to solve (8.1) for τh
and λ0 = iαI using a zero-finding routine. Specifically, by equating real and imaginary parts,
we first solve

1− 2Re

{∫∞
−∞w(L0 − iαI)−1w2∫∞

−∞w
2dy

}
= 0,

for αI and then obtain τh from

τh =
2

αI
Im

{∫∞
−∞w(L0 − iαI)−1w2∫∞

−∞w
2dy

}
.

Using the brentq routine from the scipy library we compute

(8.2) τh = 0.77107, λ0 = iαI = 1.2376i,

for which the left hand side of (8.1) evaluates to an O(10−13) value. We remark that these
values are in agreement with those found in Table 1 of [20].

The corresponding eigenfunction φ0 can then be found by solving the boundary value problem

(L0 − λ0)φ0 = w2, 0 < y <∞, φ′0(0) = 0, φ0(y)→ 0 as y → +∞
Numerical integration then gives ψ0 ≈ 1 which can be verified explicitly from the definition of
ψ0. The adjoint eigenfunction φ∗0 is found similarly. We first solve the problem

(L0 − λ̄0)q∗0 = w, 0 < y <∞, φ′0(0) = 0, φ0(y)→ 0 as y → +∞,
and then let φ∗0 = β̄q∗0 where the constant β is chosen so that φ0 and φ∗0 adhere to the normal-
ization (7.10) which yields

β =
1

ε

[∫ ∞
−∞

φ0q̄∗0 −
2τh

(1 + iτhαI)2

∫∞
−∞wφ0

∫∞
−∞w

2q̄∗0∫∞
−∞w

2

]−1

.

To calculate z1 and z2 we first rewrite the z1 limit equation of (7.15) as

(L0 − 2λ0)z1 = f1 +
2

1 + 2τhλ0

∫∞
−∞wz1∫∞
−∞w

2
w2, z′1(0) = 0, z1(y)→ 0 as y → +∞,
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where

f1 := 2φ2
0 − 4wφ0ψ0 + 2w2ψ2

0 −
4

1 + 2τhλ0

∫∞
−∞ φ

2
0∫∞

−∞w
2
w2.

Let ξ1 and ξ2 be the solutions to

(8.3) (L0 − 2λ0)ξ1 = f1, 0 < y <∞, ξ′1(0) = 0, ξ1(y)→ 0 as y → +∞,
and

(8.4) (L0 − 2λ0)ξ2 = w2, 0 < y <∞, ξ′2(0) = 0, ξ2(y)→ 0 as y → +∞,
respectively. Then

z1 = ξ1 +
2

1 + 2τhλ0

∫∞
−∞wz1∫∞
−∞w

2
ξ2,

so that multiplying by w and integrating allows us to solve for
∫
wz1 from which we deduce

(8.5) z1 = ξ1 +

2
1+2τhλ0

∫∞
−∞ wξ1∫∞
−∞ w2

1− 2
1+2τhλ0

∫∞
−∞ wξ2∫∞
−∞ w2

ξ2.

Therefore z1 can be computed by solving the two corresponding boundary value problems nu-
merically. It is then straightforward to numerically calculate z2 ≈ −1.402−1.373i. The function
h1 can be found similarly by writing the limit equation of (7.16) as

L0h1 = f2 +
2
∫∞
−∞wh1∫∞
−∞w

2
w2, h′1(0) = 0, h1(y)→ 0 as y → +∞,

where

f2 := 2|φ0|2 − 2(φ0ψ̄0 + φ̄0ψ0)w + 2w2|ψ0|2 −
4
∫∞
−∞ |φ0|2∫∞
−∞w

2
w2,

We then let η1 and η2 be the solutions to

(8.6) L0η1 = f2, 0 < y <∞, η′1(0) = 0, η1(y)→ 0 as y → +∞,
and

(8.7) L0η2 = w2, 0 < y <∞, η′2(0) = 0, η2(y)→ 0 as y → +∞,
respectively. Solving these two boundary value problems we obtain h1 in the form

(8.8) h1 = η1 +

2
∫∞
−∞ wη1∫∞
−∞ w2

1− 2
∫∞
−∞ wη2∫∞
−∞ w2

η2,

and obtain h2 ≈ −0.14669. Using (7.17), (7.18), and (7.19) we thus calculate

ξ2
εK1 = −1.2732− 2.5039i+ o(1),

ξ2
εK2 = −1.3820− 0.39262i+ o(1),

ξ2
εK3 = 2.6454 + 7.0406i+ o(1),

and therefore

(8.9) ξ2
εK(ε) = −0.0098061 + 4.1441i+ o(1),

where the ε−1 term from the normalization of φ∗0 has cancelled out the ε−1 in front of the
expressions (7.17), (7.18), and (7.19). The negative sign of Re(K(ε)) indicates that the Höpf
bifurcation is subcritical and the bifurcating periodic solutions are therefore linearly unstable.
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Figure 1. Numerical simulations performed for D = 5000 and ε = 0.02. (A)
The onset of oscillatory instabilities as τ exceeds the Höpf bifurcation threshold.
(B) Long-time behaviour illustrating the instability and annihilation of a time-
periodic solution for values of τ = 0.79 (top), 0.9 (middle), and 1.2 (bottom).

9. Numerical Verification

In this section we illustrate the theoretical results of the previous sections by numerically
computing solutions of the time-dependent system (1.1) for a variety of τ values and fixed
values of D = 5000 and ε = 0.02. For convenience we introduce the scaling

Ã(x, t) = ε−1u(x, t), H̃(x, t) = ε−1v(x, t),

so that the nontrivial equilibrium from Theorem 2.1 becomes O(1). Furthermore the system
(1.1) becomes

(9.1)


ut = ε2uxx − u+

u2

v
, u > 0 for 0 < x < 1, t > 0,

τvt = Dvxx − v + ε−1u2, v > 0 for 0 < x < 1, t > 0,

ux = vx = 0, for x = 0, 1, t ≥ 0.

With the (scaled) equilibrium from Theorem 2.1 as the initial condition we can illustrate the
theoretical results given above by solving (9.1) numerically for values of τ below and above the
predicted Höpf bifurcation threshold.

The numerical solutions are calculated by discretizing the interval 0 ≤ x ≤ 1 into 1000 equidis-
tant points and using a second-order semi-implicit backwards difference (2-SBDF) implicit-
explicit (IMEX) time stepping scheme (see [15] for details) with a time-step size of 0.0001. Since
IMEX schemes use explicit (resp. implicit) methods for the nonlinear (resp. diffusive) terms they
are well suited for reaction diffusion systems where they can avoid the nonlinear solvers used in
fully implicit schemes and the small time-steps required in fully explicit schemes. In Figure 1 we
collect results of the numerical simulations for different values of τ . In 1a we observe the onset
of an oscillatory instability of the value of τ = 0.79 exceeding the Höpf bifurcation threshold
τh = 0.77107. On the other hand, when τ = 0.75 < τh we observe the solution settles to the
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original equilibrium. The long-time behaviour is shown in Figure 1b, where we have chosen
to plot log(1 + u(0, t)) to better demonstrate the solution’s variability. While the uppermost
subplot (τ = 0.79) appears to exhibit a stable limit-cycle solution, these oscillations are instead
large-amplitude instabilities cased by the instability of the trivial equilibrium for τ < 1 (see [20]
for details). Indeed the middle subplot (τ = 0.9) shows how the oscillations eventually subside
and then lead to a substantial jump from the unstable zero-solution. Meanwhile the bottom
subplot (τ = 1.2) shows how the initial oscillatory instabilities subside and the solutions settles
to the trivial equilibrium solution. Together, the numerical results shown in Figure 1 illustrate
the theoretical prediction that the Höpf bifurcation is subcritical.
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