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Abstract. In this paper, we provide a unified framework to classify homogeneous stable so-
lutions of arbitrary order polyharmonic Lane-Emden equations. The key idea is the spherical

decomposition of polyharmonic operator into differential operators.

1. Introduction and main results

The polyharmonic Lane-Emden equations

(−∆)mu = |u|p−1u, in Rn (1.1)

have attracted a lot of attention in the past few decades as important semi-linear PDEs. Here
n ≥ 2,m ≥ 1,m ∈ N+ and p > 1.

When m = 1, a celebrated result of Gidas and Spruck [14] states that the equation has no
positive classical solutions (radial or non-radial) if

1 < p < pS :=

{
+∞ n ≤ 2,
n+2
n−2 n ≥ 3.

When p = pS , radially symmetric solution exists. Caffarelli, Gidas and Spruck [6] proved that
all positive solutions are radially symmetric around some point. For non-radial sign-changing
solutions we refer to del Pino, Musso, Pacard and Pistoia [7, 8], Musso and Wei [22] and the
references therein.

When p > pS there are very few classification results. A seminal work by Farina [13] proves
that there is no nontrivial stable solutions if p is below the Joseph-Lundgren exponent [17]

1 < p < pJL :=

{
∞ 3 ≤ n ≤ 10,

1 + 4
n−4−2

√
n−1 n ≤ 11.

For the general nonlinearity and more results on stable solutions to elliptic equations, we refer
to Dupaigne-Farina [11] and the monograph by Dupaigne [12]. For stable solutions on bounded
domains, we refer to Cabré [1, 3], Cabré and Ros-Oton [2], and the references therein. For recent
results on stable solutions of second order elliptic equations see Cabré and Poggesi [4] and Cabré,
Figalli, Ros-Oton and Serra [5] in which they solved a longstanding conjecture on the optimal
dimension for regularity of stable solutions in bounded domains with general nonlinearity.

When m ≥ 2 and p ≤ n+2m
n−2m , the classification of positive solutions has been given by Wei and Xu

[24]. When p > n+2m
n−2m , the classification of stable solutions requires new set of ideas as the Moser

iteration techniques as in Farina [13] do not work when m ≥ 2. In Davila, Dupaigne, Wang and Wei
[9], a new scheme of proof is derived. It consists of two steps. First they obtained a monotonicity
formula. Then by dimension reduction method, they reduced the problem to classification of
homogeneous stable solutions. We recall that a solution u is called homogeneous if it has the
form u(x) = |x|kw( x

|x| ) for some k ∈ R and some function w. In particular, by some algebraic

computation, a solution to (1.1) is called homogeneous if u = |x|−
2m
p−1w( x

|x| ) for some function w.

Combining these two steps they gave a complete classification result for stable or finite Morse index
solutions to (1.1) in the biharmonic case. These two-step approaches have been extended to m = 3
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in [19] and [16], and to m = 4 in [20]. This paper concerns about the second step, i.e., classification
of homogeneous stable solutions to (1.1). For the case of 0 < m < 1,m = 1, 1 < m < 2 and m = 2
such classification are given by Davila, Dupaigne and Wei in [10], Farina in [13], Fazly and Wei in
[15] and Davila, Dupaigne, Wang and Wei in [9], respectively. Recently, the monotonicity formula
and classification of stable solutions for general m ≥ 3 in large dimensions are obtained by the
authors in [21].

We first introduce the higher dimensional Joseph-Lundgren exponent. For m ≥ 3, it is well-
known that the radial solution of (1.1) is stable under the following condition

p
Γ(n2 −

m
p−1 )Γ(m+ m

p−1 )

Γ( m
p−1 )Γ(n−2m2 − m

p−1 )
≤

Γ(n+2m
4 )2

Γ(n−2m4 )2
, where 0 < m <

n

2
, n ∈ N+. (1.2)

In [18] we have shown that there exists a unique exponent pJL(n,m) > n+2m
n−2m such that (1.2) is

equivalent to

p ≥ pJL(n,m). (1.3)

In this paper we give a complete classification of homogeneous stable (radial or non-radial)
solutions for the polyharmonic Lane-Emden equations (1.1) for any m ≥ 3 and p < pJL(n,m), i.e.,

p
Γ(n2 −

m
p−1 )Γ(m+ m

p−1 )

Γ( m
p−1 )Γ(n−2m2 − m

p−1 )
>

Γ(n+2m
4 )2

Γ(n−2m4 )2
, where 0 < m <

n

2
, n ∈ N+. (1.4)

To simplify the notations in polyharmonic equations, we use the following notations

∇j ◦ w =

{
∆

j
2w, j is even,

∇∆
j−1
2 , w j is odd,

(1.5)

∇jθ ◦ w =

∆
j
2

θ w, j is even,

∇θ∆
j−1
2

θ w, j is odd,

where θ = x
|x| , ∆θ = ∆Sn−1 and ∇θ denotes the co-variant derivative on Sn−1.

We recall that a solution to (1.1) is called stable if∫
Rn

|∇m ◦ ϕ|2dx− p
∫
Rn

|u|p−1ϕ2dx ≥ 0, for ∀ϕ ∈ C∞0 (Rn). (1.6)

In the literature, the basic idea to classify the homogeneous stable solutions of polyharmonic
Lane-Emden equations is by choosing ”right” test functions and then making the refined energy
estimates. For any fixed m, we may perform tedious calculations to obtain some classification
results. However the amount of the calculations would be exponentially growth with the order
of polyharmonic order. See the case m = 3 in [19] and [16], and the case m = 4 in [20]. On
the other hand, the sharp estimates of pJL(n,m) are also needed for every known result when
m = 1, 2, 3. In this paper, we develop a new, simple and unified method of classification stable
solutions to homogeneous solutions by using the inner symmetry and monotonicity properties of
the corresponding symmetric differential operator.

Next we state the main results of the paper. The first one establishes a priori estimate of the
homogeneous stable solutions by introducing a symmetric function. The second one gives the
classification of the supercritical homogeneous stable solutions to (1.1).

Theorem 1.1. Let u ∈ Wm,2
loc (Rn \ {0}), |u|p+1 ∈ L1(Rn \ {0}) be a homogeneous, stable solution

of equations (1.1). Then the following inequality holds:

m∑
j=0

∫
Sn−1

(
pJj,m(

2m

p− 1
)− Jj,m(

n− 2m

2
)
)
|∇jθ ◦ w|

2 ≤ 0.
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Here the symmetric function Jj,m(x) is defined by (see (2.1))

Jt,m(x) =
∑

0≤i1<i2<···<im−t≤m−1

Πm−t
j=1 a(x+ 2ij), a(x) = x(n− 2− x).

Theorem 1.2. Assume that n > 2m. Let u ∈ Wm,2
loc (Rn \ {0}), |u|p+1 ∈ L1(Rn \ {0}) be a

homogeneous stable solution of the polyharmonic Lane-Emden equations (1.1). If n+2m
n−2m < p <

pJL(n,m), then u ≡ 0.

Remark 1.1. The condition p < pJL(n,m) is sharp since there is a radial stable solution for
p ≥ pJL(n,m), see [18].

The proofs of Theorems 1.1-1.2 depend on two key observations: first we can write (−∆)m in
symmetric operators. Second, we prove monotonicity properties for these corresponding symmetric
functions (due to [23]). In the rest of the paper we prove these two observations.

Acknowledgment: Part of this work was carried out when S. Luo was a postdoc at the mathe-
matics department of University of British Columbia. The research of J. Wei is partially supported
by NSERC of Canada. The research of S. Luo is partially supported by double thousand plan of
Jiangxi and NSFC of China.

2. decomposition of polyharmonic operator and new combinatorial operators

Let us introduce some combinatorial operators which will be frequently used in our analysis.

First, let a(x) := x(n− 2− x), where n is the dimension. a(x) is naturally related to the radial
Laplacian operator ∂rr + n−1

r ∂r. In fact, (∂rr + n−1
r ∂r)r

−x = a(x)r−x−2.

Next, for m ≥ 1, we define the symmetric function

Jt,m(x) :=
∑

0≤i1<i2<···<im−t≤m−1

Πm−t
j=1 a(x+ 2ij), (2.1)

which is associated with the following symmetric differential operator

Pt,m :=
∑

all the different arrangements of

(r−2, · · · , r−2︸ ︷︷ ︸
t

, ∂rr +
n− 1

r
∂r, · · · , ∂rr +

n− 1

r
∂r︸ ︷︷ ︸

m−t

). (2.2)

To unify the notations, it is natural to assume that Pt,m = 0 if t > m or t < 0. For example, when
t = 1,m = 4, we have

P1,4 = (∂rr +
n− 1

r
∂r)

2(r−2(∂rr +
n− 1

r
∂r)) + (∂rr +

n− 1

r
∂r)

3r−2

+(∂rr +
n− 1

r
∂r)(r

−2(∂rr +
n− 1

r
∂r)

2) + r−2(∂rr +
n− 1

r
∂r)

3.

The differential operator Pt,m and the symmetric function Jt,m(x) are related by

Pt,m ◦ r−x = (−1)m−tJt,m(x)r−x−2(m−t). (2.3)

By definition (2.2) it is easy to see that we have the following recursing relation.

Proposition 2.1.

Pj,m+1 = (∂rr +
n− 1

r
∂r)Pj,m + r−2Pj−1,m.

Next we turn to the spherical decomposition of the polyharmonic operator.

Proposition 2.2. (Decomposition of polyharmonic operator)

∆m =

m∑
j=0

∆j
θPj,m, m = 1, 2, 3 · · · . (2.4)
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Proof. We prove it by induction. For the case m = 1, since P0,1 = ∂rr + n−1
r ∂r, P1,1 = r−2 and

∆ = ∂rr + n−1
r ∂r + r−2∆θ, (2.4) holds immediately.

Suppose that ∆m =
∑m
j=0 ∆j

θPj,m. Let us consider ∆m+1:

∆m+1 = ∆∆m = (∂rr +
n− 1

r
∂r + r−2∆θ)

m∑
j=0

∆j
θPj,m

=

m∑
j=0

∆j
θ(∂rr +

n− 1

r
∂r)Pj,m +

m∑
j=0

∆j+1
θ r−2Pj,m

=

m∑
j=0

∆j
θ(∂rr +

n− 1

r
∂r)Pj,m +

m+1∑
j=1

∆j
θr
−2Pj−1,m

=

m+1∑
j=0

∆j
θPj,m+1.

Here we have used Proposition 2.1. Therefore by induction, one gets (2.4). �

3. Proof of Theorem 1.1

In this Section, we consider a homogeneous stable solution to (1.1), i.e., u = r−
2m
p−1w(θ) and

prove Theorem 1.1.
By Proposition (2.2), we have the following

∆m(r−kw(θ)) =

m∑
j=0

∆j
θPj,m ◦ (r−kw(θ))

=

m∑
j=0

Pj,m ◦ r−k∆j
θw(θ) =

m∑
j=0

(−1)m−jJj,m(k)∆j
θw(θ)r−k−2m.

(3.1)

As in [9], we use the cut off function ϕ(r, θ) = r−qw(θ)ηε(r), q = n−2m
2 . Here ηε ∈ C∞0 ( ε2 ,

2
ε )

and ηε = 1 in (ε, 1ε ).

Depending on m is odd or even, the analysis will be slightly different. We divide the proofs into
two cases.

Case 1: m is even. In this case we compute

∆
m
2 ϕ = r−

n
2 ηε(r)

m
2∑
j=0

(−1)
m
2 −jJj,m2 (q)∆j

θw +

m
2∑
i=1

m−2i∑
j=1

Cj,ir
−n

2 +jη(j)ε ∆i
θw(θ) (3.2)

and ∫
Rn

|∆m
2 ϕ|2 =

∫ +∞

0

r−1η2ε(r)dr
( ∫

Sn−1

m
2∑
i=1

q2i(m)|∆i
θw|2 + q2i−1(m)|∇θ∆i−1

θ w|2
)

+
(∫ +∞

0

∑
1≤i+j≤2m;i,j≥0

Ci,jr
i+j−1η(i)ε η(j)ε dr

)(∫
Sn−1

m
2∑
i=1

(|∆i
θw|2 + |∇θ∆i−1

θ w|2)
)
,

where

q2i(m) := J2
i,m2

(q) + 2
∑

0≤s≤i−1

Js,m2 (q)J2i−s,m2 (q), i = 1, 2, · · · , m
2

;

q2i−1(m) := 2
∑

0≤s≤i− 1
2

Js,m2 (q)J2i−1−s,m2 (q), i = 1, 2, · · · , m
2
.
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One can rewrite q2i(m) and q2i−1(m) in a unified way as

qi(m) =
∑
s≥0

Js,m2 (q)Ji−s,m2 (q), i = 1, 2, · · · ,m. (3.3)

Here Jt,m(x) = 0 if t < 0 or t > m.

Case 2: m is odd. In this case, making the use of the fact that |∇u|2 = 1
r2 |∇θu|

2 + |∂ru|2 and
(3.2), we have

|∇∆
m−1

2 (r−qw(θ)ηε(r))|2 =
1

r2
|∇θ∆

m−1
2 (r−qw(θ)ηε(r))|2

+ | ∂
∂r

∆
m−1

2 (r−qw(θ)ηε(r))|2

= |r−n
2 ηε(r)

m−1
2∑
j=0

(−1)
m−1

2 −jJj,m−1
2

(q)∇θ∆j
θw|

2

+ (
n− 2

2
)2r−nη2ε(r)|

m−1
2∑
j=0

(−1)
m−1

2 −jJj,m−1
2

(q)∆j
θw|

2 +Remainder terms.

The remainder terms satisfy

|
∫
Rn

Remainder terms| ≤ C
∫ +∞

0

ri+j−1η(i)ε η(j)ε dr

·
(∫

Sn−1

m
2∑
i=1

(|∆i
θw|2 + |∇θ∆i−1

θ w|2)
)
.

(3.4)

Therefore ∫
Rn

|∇∆
m−1

2 ϕ|2 =

∫ +∞

0

r−1η2ε(r)dr
(∫

Sn−1

m∑
j=0

qj(m)|∇jθ ◦ w|
2
)

+

∫
Rn

Remainder terms.

(3.5)

Here

qj(m) = (
n− 2

2
)2
∑
s≥0

Js,m−1
2

(q)Jj−s,m−1
2

(q) +
∑
t≥0

Jt,m−1
2

(q)Jj−1−t,m−1
2

(q), j = 0, 1, · · · ,m. (3.6)

Substituting (3.4) and (3.5) into the stability condition for u in (1.6), one obtains that

p

∫
Sn−1

|w|p+1 ·
∫ +∞

0

r−1η2ε(r)dr ≤
∫
Rn

|∇m ◦ ϕ|2.

Notice that ∫ +∞

0

r−1η2ε(r)dr ≥ | log ε| → +∞, as ε→ 0+,

∫ +∞

0

∑
1≤i+j≤2m,i,j≥0

ri+j−1|η(i)ε (r)η(j)ε (r)|dr ≤ C,C is a constant independent of ε.

Hence we obtain that

p

∫
Sn−1

|w|p+1dθ ≤
∫
Sn−1

m∑
j=0

qj(m)|∇jθ ◦ w|
2. (3.7)
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From the polyharmonic equations (1.1), setting u = r−kw(θ), k = 2m
p−1 and combining with

(2.2), one has
m∑
j=0

(−1)jJj,m(k)∆j
θw(θ) = |w|p−1(θ)w(θ). (3.8)

Testing (3.8) with w(θ) and integrating by parts on the sphere Sn−1, one gets that

m∑
j=0

∫
Sn−1

Jj,m(k)|∇jθ ◦ w(θ)|2 =

∫
Sn−1

|w|p+1.

Therefore, in view of (3.7), we obtain that

m∑
j=0

∫
Sn−1

(
pJj,m(k)− qj(m)

)
|∇jθ ◦ w|

2 ≤ 0. (3.9)

Here qj(m) is given in (3.3) and (3.6) for m being even and odd respectively.
This proves Theorems 1.1.

4. Properties of the symmetric function Jj,m(x)

In this section, we discuss the properties of the symmetric function Jj,m(x), defined in (2.1), in
details. Observe that the energy inequality (3.9) has the precise and unified expression for coeffi-

cients of terms
∫
Sn−1 |∇jθ◦w|2, j = 1, 2, · · · ,m by the combinatorial operators and the corresponding

symmetric functions. Therefore, if we can prove that pJj,m(k) − qj(m) > 0 for j = 1, 2, · · · ,m,
then w ≡ 0, which then implies that the homogeneous stable solution must be trivial.

Proposition 4.1 (Symmetry). If x+ x = n− 2m, then

Jj,m(x) = Jj,m(x). (4.1)

Proof. By the definition of Jj,m(x) in (2.1), we know that Jj,m(x) is a symmetric function of the
set

{a(x+ 2j)}m−1j=0 , where, a(x+ 2j) = (x+ 2j)(n− 2− x− 2j).

Notice that when x = n− 2m− x, then the set below is the same as above, that is,

{a(x+ 2j)}m−1j=0 = {a(x+ 2j)}m−1j=0 .

Therefore by definition, we have Jj,m(x) = Jj,m(x).
�

Proposition 4.2 (Additivity). For any nonnegative integers t, p, q, t ≤ p+ q and any x ∈ R,

Jt,p+q(x) =
∑
i+j=t

Jj,p(x)Ji,q(x+ 2p)

=
∑
i+j=t

Ji,q(x)Jj,p(x+ 2q).

In particular,

Jt,m(x) = Jt−1,m−1(x)J1,1(x+ 2m− 2) + Jt,m−1(x)J0,1(x+ 2m− 2)

= Jt−1,m−1(x) + (x+ 2m− 2)(n− x− 2m)Jt,m−1(x),

and for m is even

Jt,m(x) =
∑
s≥0

Js,m2 (x)Jt−s,m2 (x+m).
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Proof. Applying formula (3.1), we have

(−∆)p+q(r−kw(θ)) =

m∑
t=0

Jt,p+q(k)r−k−2p−2q(−∆Sn−1)tw(θ), (4.2)

and
(−∆)p+q(r−kw(θ)) = (−∆)p ◦ (−∆)q(r−kw(θ))

= (−∆)q ◦
( m∑
j=0

Jj,p(k)r−k−2p(−∆Sn−1)jw(θ)
)

=
∑
i,j

Jj,p(k)Ji,q(k + 2p)r−k−2p−2q(−∆Sn−1)i+jw(θ).

(4.3)

Comparing the coefficients of the term r−k−2p−2q(−∆Sn−1)tw(θ) in equations (4.2) and (4.3), we
get the desired identity. �

Proposition 4.3. For m is even, it holds that∑
s≥0

Js,m2 (
n− 2m

2
)Jj−s,m2 (

n− 2m

2
) = Jj,m(

n− 2m

2
). (4.4)

Proof. By Propositions 4.1 and 4.2, we have∑
s≥0

Js,m2 (
n− 2m

2
)Jj−s,m2 (

n− 2m

2
)

=
∑
s≥0

Js,m2 (
n− 2m

2
)Jj−s,m2 (

n− 2m

2
+m)

=Jj,m(
n− 2m

2
).

�

Corollary 4.1. Let m be even and qj(m) be defined in (3.3). We have

qj(m) = Jj,m(
n− 2m

2
) = Jj,m(q). (4.5)

Hence for m is even,

pJj,m(k)− qj(m) = pJj,m(k)− Jj,m(q).

Proposition 4.4 (Recursion formula). For m is odd and any x ∈ R, we have

Js,m(x) =a(x+m− 1) ·
∑
s≥0

Js,m−1
2

(x)Jj−s,m−1
2

(x+m+ 1)

+
∑
s≥0

Jt,m−1
2

(x)Jj−1−s,m−1
2

(x+m+ 1).

Proof. Since Jj,m(x) is a symmetric function of the set

{a(x+ 2j)}m−1j=0 , where, a(x+ 2j) = (x+ 2j)(n− 2− x− 2j).

We divide above set into three parts as follows,

{a(x+ 2j)}
m−1

2 −1
j=0 ; a(x+m− 1); {a(x+m− 1 + 2j)}

m−1
2 −1

j=0 ;

Regrouping the terms by the criteria of involving the term a(x+m− 1) or not, one gets the terms
a(x + m − 1) ·

∑
s≥0 Js,m−1

2
(x)Jj−s,m−1

2
(x + m + 1) and

∑
s≥0 Jt,m−1

2
(x)Jj−1−s,m−1

2
(x + m + 1)

respectively, therefore the conclusion follows. �
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Corollary 4.2. For m is odd and q = n−2m
2 , we have

(
n− 2

2
)2
∑
s≥0

Js,m−1
2

(q)Jj−s,m−1
2

(q) +
∑
t≥0

Jt,m−1
2

(q)Jj−1−t,m−1
2

(q) = Jj,m(q).

Therefore, when m is odd, the qj(m) defined in (3.3) can be rewritten as

qj(m) = Jj,m(q).

Proof. Taking x = n−2m
2 in the recursion formula as in Proposition 4.4, and noting that a(x+m−

1) = (n−22 )2, one has

Jj,m(q) =(
n− 2

2
)2 ·
∑
s≥0

Js,m−1
2

(q)Jj−s,m−1
2

(q +m+ 1)

+
∑
s≥0

Jt,m−1
2

(q)Jj−1−s,m−1
2

(q +m+ 1).
(4.6)

On the other hand by Proposition 4.1, one also has

Jj−1−s,m−1
2

(q +m+ 1) = Jj−1−s,m−1
2

(q), (4.7)

Therefore by (4.6) and (4.7), one completes the proof.
�

Proposition 4.5 (Monotonicity and concavity). The function Jj,m(x) is concave on the interval
[0, n−2m]; monotonically increasing on the interval [n−2m2 , n−2m], and monotonically decreasing

on the interval [n−2m2 , n− 2m].

Proof. Let ai := a(x + 2i), then Jj,m(x) = σm−j(a0, · · · , am−1), where σj is the elementary sym-
metric function. Hence

d2

dx2
Jj,m(x) =

∑
i,t

∂2σm−j(a)

∂ai∂at

dai
dx

dat
dx

+
∑
i

∂σm−j(a)

∂ai

d2ai
dx2

,

≤ −2
∑
i

∂σm−j(a)

∂ai
,

< 0.

Here we have used the fact that for x ∈ (0, n− 2m),ai > 0, a = (ai) belongs to the cone Γ(m), and

ai > 0, a = (ai) ∈ the cone Γ(m), then {∂
2σm−j(a)

∂ai∂at
} ≤ 0 on the cone Γ(m).

See Wang [23].
Therefore Jj,m(x) is concave on the interval [0, n− 2m]. On the other hand, by Proposition 4.1,

we have Jj,m(x) is symmetric about the axis x = n−2m
2 . Therefore one concludes that Jj,m(x) is

monotonically increasing on the interval [0, n−2m2 ], and monotonically decreasing on the interval

[n−2m2 , n− 2m]. �

Remark 4.1. A direct calculation d
dxJj,m(x) =

∑m−1
i=0

∂σm−j(a)
∂ai

dai
dx doesn’t work for the proof of

the monotonicity on interval [0, n−2m2 ] or [n−2m2 , n− 2m], since dai
dx = n− 2− 4i− 2x may change

sign when i ≥ m
2 . So here we use the second derivative of Jj,m(x).

Corollary 4.3. Let k = 2m
p−1 , q = n−2m

2 . For k < q, it holds that

Jj,m(k) < Jj,m(q).

Proposition 4.6 (Monotonicity and convexity). The function
Jj,m(x)
J0,m(x) is convex on the interval

[0, n − 2m]; monotonically decreasing on the interval [0, n−2m2 ], and monotonically increasing on

the interval [n−2m2 , n− 2m].
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Remark 4.2. This can be viewed as a dual version of Proposition 4.5, see the formula below.

Proof. We adopt the same notations as in Proposition 4.5. Noting that

− Jj,m(x)

J0,m(x)
= −σm−j(a0, · · · , am−1)

σm(a0, · · · , am−1)
= −σj(

1

a0
, · · · , 1

am−1
).

Then a similar analysis as in Proposition 4.5 leads to the conclusion.
�

5. Proof of Theorem 1.2

Using the properties of Jj,m(k) proved in the previous section, we give the proof of Theorem
1.2.

By Corollaries 4.1 and 4.2, we have the simplification of pJj,m(k)− qj(m), that is

pJj,m(k)− qj(m) = pJj,m(k)− Jj,m(q).

Then the stability inequality (3.9) reads as

m∑
j=0

∫
Sn−1

(
pJj,m(k)− Jj,m(q)

)
|∇jθ ◦ w|

2 ≤ 0. (5.1)

A straightforward calculation shows that

pJ0,m(k)− J0,m(q) = p
Γ(n2 −

m
p−1 )Γ(m+ m

p−1 )

Γ( m
p−1 )Γ(n−2m2 − m

p−1 )
−

Γ(n+2m
4 )2

Γ(n−2m4 )2
. (5.2)

Therefore by the classification results in [18], we have that

pJ0,m(k)− J0,m(q) > 0⇔ p < pJL(n,m). (5.3)

Another interesting observation here is that when j = m, pJm,m(k) − Jm,m(q) = p − 1. Hence it
is positive automatically. Next we show that

Lemma 5.1. Assume that p > n+2m
n−2m . If pJ0,m(k)− J0,m(q) > 0, then pJj,m(k)− Jj,m(q) > 0 for

j = 1, 2, · · · ,m− 1.

Proof. Since pJ0,m(k)−J0,m(q) > 0, one gets that p >
J0,m(q)
J0,m(k) directly. Then pJj,m(k)−Jj,m(q) > 0

if

J0,m(q)

J0,m(k)
Jj,m(k)− Jj,m(q) ≥ 0. (5.4)

Inequality (5.4) equivalents to

Jj,m(k)

J0,m(k)
≥ Jj,m(q)

J0,m(q)
. (5.5)

On the other hand, (5.5) is followed by the monotonically property of
Jj,m(x)
J0,m(x) on the interval

[0, n−2m2 ] in Proposition 4.6 since 0 < k < q = n−2m
2 (p > n+2m

n−2m ). �

Therefore combining the stability equality (5.1) and the critical exponent in (5.3) with Lemma
5.1, we obtain that when p < pJL(n,m), then w(θ) ≡ 0, which completes the proof of Theorem
1.2.
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