SINGULAR RADIAL ENTIRE SOLUTIONS AND WEAK
SOLUTIONS WITH PRESCRIBED SINGULAR SET FOR A
BIHARMONIC EQUATION

ZONGMING GUO, JUNCHENG WEI, AND FENG ZHOU

ABSTRACT. Positive singular radial entire solutions of a biharmonic equation with
subcritical exponent are obtained via the entire radial solutions of the equation
with supercritical exponent and the Kelvin transformation. The expansions of
such singular radial solutions at the singular point 0 are presented. Using these
singular radial entire solutions, we construct solutions with a prescribed singular
set for the Navier boundary value problem

A2u=u? inQ, u=Au=0 ondQ

where 2 is a smooth open set of R™ with n > 5.

1. INTRODUCTION

We study existence, uniqueness, asymptotic behavior and further qualitative prop-
erties of radial solutions of the biharmonic equation

(1.1) A%y =wP in R"\{0}
' w >0, and limpou(z) = +00

n+4
n—4"

When p = Z—J_rj, the equation

where n > 5 and " <p <
n

(1.2) A*u=vu? inR"

is studied by Lin [14] via the moving-plane method and all the regular solutions are

well-established. When p > 2£2 (1.2) is studied by Gazzola and Grunau [11], Guo

and Wei [10], all the radial entire solutions are classified.

We recall that the corresponding second order equation (when n > 3 and 5 <

p < 2

(1.3) { —Au =uP in R"\{0}

v >0, and lim,_ou(z) = 400
is studied in [5] and [4]. The following result is established:
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n+2
n—2

Proposition 1.1. ([5]) Suppose that "5 < p < and u is a solution of (1.3).

Then either u(x) = cp|x|_p2T1 or there exists a constant > 0 such that
1

2 2 ="
lim [z|""u(z) = B, where ¢, = [— (n -2- —)} o
a0 p_1 -1
Conversely, for any f > 0, there exists a unique solution u(x) of (1.3) such that
im0 2] 2u(z) = B.

Using this proposition, Chen and Lin [5] constructed positive weak solutions with

a prescribed singular set of the Dirichlet problem
(1.4) Au+u’=01inQ, u=0 on JN

where (2 is a smooth open set in R™ with n > 3. Singular solutions of the equations
as (1.4) with various singular sets have been studied by many authors, see, for
example, [2, 3, 7, 12, 15, 16, 17, 18, 19, 20, 21, 22].

In this paper, we first obtain the following result.

Theorem 1.2. Suppose that 5 < p < Z—fj Then for any B > 0, there exists a

unique radial entire solution u(r) of (1.1) such that lim,_, o " u(r) = B and

lim r7-1u(r) = C,
P =
ook

where C, = [K (p,n)]Y*~V and
8

(p—1)1

—16(n —4)(p— 1) + 32].

K(p,n) = [(n —2)(n —4)(p — 1)* + 2(n® — 10n + 20)(p — 1)?

Moreover, the expansions of the radial singular entire solutions at the singular
point are presented. Using such singular radial entire solutions, we will construct
positive weak solutions with a prescribed singular set for the Navier boundary value

problem:
(1.5) Au=v" inQ, u=Au=0 ondQ

where € is a smooth open set in R” with n > 5. u € LP(Q) is called a weak solution
of (1.5) if the equality

/ A?pudr = / uPpde,

i Q
holds for any ¢ € C*(Q) N C3*(Q2) and ¢ = Ay = 0 on Of.

Let
. n42+vVn2+4—4yn+H,
p =
n—6++\/n2+4—4yn?+ H,
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with

Hn = (n(n4— 4)>2‘

It is known from [6] that p is the unique number for p € (n/(n—4),(n+4)/(n—4))
such that pK(p,n) = H, for p = p° and pK(p,n) < H, for n/(n —4) < p < p%
pK(p,n) > H, for p <p < (n+4)/(n—4).

Theorem 1.3. Suppose thatn > 5, n/(n—4) < p < p°, Q is a bounded smooth open
set in R™ and S is a closed subset of €2. Then there exist two distinct sequences of
solutions of (1.5) having S as their singular set such that one sequence converges to

0in L1(2), and the other sequence converges to a smooth solution of (1.5) in L9(2)
forqg<p*:=n(p-1)/4.

Some special singular solutions of (1.5) have been constructed in [1] by using the
special singular solution u(r) = Cpr*p%l of (1.1).
In order to obtain Theorem 1.2, we need to consider the following equation:

(1.6) APy = |z|*u? in R,

where « > —4, n > 5 and p > "+4+2O‘ and use the Kelvin transformation. We need

the following theorem.

Theorem 1.4. Suppose that n > 5, o > —4, p > 2% then for any a > 0, (1.6)

admits a unique positive radial entire solution uy(r) Such that u,(0) = a and

(1.7) r%ua(r) - [Ko(p,n,a)]z’%l —0 asr — 400
where
Kopma) = 89 Lo 9) i 4)(p— 1) + (4 + a) (n? — 10n + 20)(p — 1)?

(p—1)1
24+ a)*n—4)(p—1)+ (4+a)?
Moreover, if there are P := P(n,a) > (n + 4+ 2a)/(n —4) (P maybe co) and
De = pe(n,a) € (n+4+2a)/(n —4), P) such that
2
pKo(p,n, a) — (@) >0 for BEEE <p <p.,
2
pEKo(p,n, o) — (@) =0 forp=p,
2
ng(p,n,a)— (@) <0 forpc<p<Pa

then ug,(r) — [Ko(p,n,a)]l/(p_l)f% changes sign infinitely many times provided

(n+442a)/(n —4) < p < pe; ua(x) < us(w) := [Ko(p,n, a)]/P=D|g|~ @)/ =1)
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for all x € R™ and the solutions are strictly ordered with respect to the initial value
a = u,(0) provided p. < p < P. Namely, if ui(x) and us(x) are two radial entire
solutions of (1.1) with uy(0) < ug(0), then uy(z) < uz(z) for x € R™. Moreover,

uq(z) = 0, Auy(z) =0 foranyz € R" asa — 0

and

uo(z) = us(x) for x € R"\{0} as a — oo.

In the following, if there is no confusion, we omit p,n on K(p,n) and p,n,« on
KD (pv n, Oé).

Theorem 1.5. For n > 13, there exists a positive weak solution of

n+4

(1.8) APy = yn=i

in L%(R”, dp) whose singular set is the whole R".

2. CLASSIFICATION OF RADIAL ENTIRE SOLUTIONS OF (1.6): PROOF OF
THEOREM 1.4

In this section we classify the radial entire solutions of (1.6) and prove Theorem
1.4.

The proof of existence and uniqueness of entire solutions of (1.6) is similar to that
of Theorem 1 of [11]. We only present the main ideas.

In radial coordinates r = |x|, the equation (1.6) reads

(2.1)
u(r) + 20Dy D023y DD ) o,
Note that if p > 222 then
(2.2) (n—4)(p—1) > 2(a+4).
We set
(2.3) w(r) = r - to(lnr), v(t) = ertu(e).

Then, equation (2.1) can be written as

(2.4) v (t) 4+ Kgv”(t) + Kov"(t) + K0 (t) + Kou(t) = vP(t) t € R,
where the constants K; = K;(p,n,a) (i =0,...,3) are given by

d+a)
(p—1)*

24+ a)*n—4)(p—1)+ (4 + )|,
4

K 2(n —2)(n —4)(p— 1) + (4 + a)(n® — 10n + 20)(p — 1)*



2 3 2 2
K = —m[(n—Q)(n—4)(p—1) + (44 a)(n? — 10n +20)(p — 1)

—3(a® +8a+16)(n — 4)(p — 1) + 2a(a® + 12 + 48) + 128,

1 2 2
Ky = m[(n — 100+ 20)(p — 1)2 — 6(4 + o) (n — 4)(p — 1)

+6ala+8) + 96} ,

Ky = %[(n—@(p— 1) —2(4+a)].
By using (2.2), it is not difficult to show that K; = K3 = 0 if p = ®£%2¢ and that
n+4+ 2«
n—4
Note that (2.4) admits two constant solutions vy = 0 and v, = Ké/ »=1) which by
(2.3), correspond to the following solutions of (2.1):

Ky>0, Ki<0, K3y>0, Vn>5,a>—4, p>

KD

up(r) =0,  us(r) = —
rr—

Consider the initial value problem

{0 ) et et ) <

u,(0) =1, ¥, (0) =u(0) =0, uj(0)=~y<0.

Arguments similar to those in the proof of Theorem 2 of [11] imply that there
exists a unique 7 < 0 such that the solution us of (2.5) exists on [0, 00), is positive
everywhere and vanishes at +o0o0. Moreover, it is seen from the proof of Theorem
1 of [11] that us is the unique entire positive solution of (2.5) which vanishes at
+00. Note that we need a comparison principle as Lemma 2 of [11] here and such
comparison principle still holds for our nonlinearity here.

We denote u;(r) := us(r). Then it is easily seen that u(r) satisfies (i) uj(r) <0
for all » > 0, (ii) Auy(r) < 0 for all » > 0, (iii) (Awuy)'(r) > 0 for all » > 0.
Moreover, for any a > 0, if we define uy(r) = auy (aP~H/+%)y) we obtain a unique
entire solution of (1.6) satisfying u,(0) = @ and wu,(r) — 0 as r — oo. Thus we
obtain a class of entire solutions {u,}q~0 of (1.6). Note that for each a, u)(r) <0,
Aug(r) < 0 and (Au,)'(r) > 0 for r > 0. Moreover, arguments similar to those in
the proof of Theorem 3 of [11] imply that

44«

1
rrtug(r) — KV asr — +oo.

This completes the proof of the first part of Theorem 1.4.
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To prove the second part of Theorem 1.4, we need to analyze the characteris-
tic equations of the linearized equations of (2.4) at vy and vs. The characteristic

polynomials of the linearized equations of (2.4) at vy and vy are

(2.6) A= A KA+ KON 4+ K\ + K
and
(2.7) v vt 4 Ka? 4+ Ko + Kyv + (1 — p) Ko,

respectively. Then, according to MAPLE, the eigenvalues of (2.6) are given by
Al=m, d=m+2, M=44+m—n, M=2+m—n,

here and in the following
_d+ta

m .
p—1

The eigenvalues of (2.7) are given by

N+ No + 4N N, — /N2 + 4y/Ny

Vo =

151

20—-1) 20-1)
V_N1+\/N2—4\/F3 _Nl_\/N2_4\/W3
R Ve VI
where
Nii=—(n—4)p—-1)+24+a), Ny:=(n>—4n+8)(p—1)3
Ns: = (n=2)[n—-2+2(n—-4)4+a)(p-1)*

+(4 + a)[(n® — 10n + 20)(4 + @) + 2(n® — 6n + 8)](p — 1)°
+(4 + @)?[(n* — 10n + 20) + 2(4 — n)(4 + a)](p — 1)?
+@d+a)Pd+a+24—n)p—1)+ @+ a).

Note that N; < 0 by (2.2).

Let us define
44+«

p—1’

VvV, = V;

i=1,2,3,4.

Proposition 2.1. Assume that o > —4 and p > ’”;4%2‘1, then
(i) For any n > 5 we have o <2 —n < 0 < 1.
(it) If there are P := P(n,a) > (n+ 4+ 2a)/(n —4) (P maybe o0) and p, ==
pe(n,a) € (n+4+2a)/(n—4), P) such that
Ny :=16N; — N >0, for M2 < p<p
N, :=16N3 — N =0, forp=p.,

N, :=16N3 — N? <0, forp.<p<P,
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then
-f s n+4+20‘ < p < pe, then 3,04 € R and R€V3 =Rev, = 4_Tn < 0.
if p = pe. then 7y, 71 € R and iy = 75 = 52 < 0.

-if po < p < P, then 3,04 € R and vy < 3 <0 and
4—n
172<4—n<94<T<173<0<171, v+, =4—n.

Proof. Note that

16(pNj 1y - PR (n(n4_ 4)>2'

Note also that if @ = 0, it is known from [11] that for 5 < n < 12, p.(n,0) =
p¢ = +oo, ie,, Ny > 0 for all p > (n+4)/(n —4). It is also known from [11],
(n+4)/(n—4) < p.(n,0) < +oo exists provided n > 13. Using (2.2), we see that
No— N2 = 4n=2)(p—172+4(@d+a)(n—4)(p—1) —4(4 + a)?

> dn—2)(p— 17 +8(+a) — 4(4+a)?

> 0.
Next, we show that
(N2 — NP)?

2. N.
(2.8) 3 > 16

Indeed, by using (2.2) again, we have
(N2 — NP)?

N_
3 16

(p—1D*+ (4 +a)*(n® —10n +20)(p — 1)

> (4+ ) (n = 2)(n —4)(p— 1)* + 44+ a)2(p — 1)’

—2(4+ a)’(n —4)
=44 +a)p-12+4d+a)P@p -1+ @A +a)(p—1) > 0.
Thus, N3 > 0. Note that

D_4—TL N2+4\/N3 ~ _4—72_ N2+4\/N3
1 2 2(p—1)

2 21 T
Then Ny > 0 and N3 > 0 imply that 75 < 0. A simple calculation shows that

7 > 0. We obtain 75 < 2 — n from the fact that /N3 > (n —2)(p — 1)? and it can
7



be obtained from
Ny, — N?
VNz > =t > (= 2)(p - 1P+ ()’ > (n - 2)(p - 1)

This proves statement (i) in Proposition 2.1. To show (ii), we only need to show
vy < v3 <0 for p > p.(n,a). This can be easily seen from (2.8). O
We now obtain the expansions of u,(r) at r = +o0. If there is no confusion, we

drop the index a. We have the following propositions.

Proposition 2.2. Let —tfa < p < pe with « > —4 and u be the unique entire

solution of (1.6) with w(0) = a. Then we have for r large:

n+4
n—

N
(2.9)  w(r) = us(r) + Myr™ cos(kInr) + Mor” sin(kInr) + O(Tmax{@i—ln_mm_m})

whereT:‘l’T”,m:%>Oande—l—M%#O.

Ny
2(p—1)

Proof. It is easily seen that vy < < 0. Using the Emden-Fowler transfor-

mation:
v(t) =r"u(r), t=Inr,
and letting v(t) = (Ko)"/®=Y) 4 h(t), we see that h(t) satisfies
(2.10) KW (t) + K3h"(t) + Kb (t) + K b (t) + (1 — p)Koh(t) + O(h*) =0, t>1

and limy_,, h(t) = 0. By arguments similar to those in the proof of Theorem 3.3 of

[10], we have that we can write
N N N
(2.11)  h(t) = M,eo-1 cos(kt) + MyeZw-1 sin(kt) + Mze”" + O(emax{pfll’”?}t).

The fact M7+ M2 # 0 can be obtained by arguments similar to those in the proof of
Theorem 3.3 of [10]. Note that if ¢ := ¢(r) is a nontrivial solution of the linearized
equation

A2p = prouP~t¢, ¢(r) — 0 as r — 4oo,

then

o(r) = c(it?u(r} + ru'(r))

for some ¢ # 0. Now, (2.9) can be obtained from (2.11). This completes the
proof. O

Remark 2.3. Proposition 2.2 implies that u(r) —us(r) changes sign infinitely many
times in (0, 00). Moreover, we can also claim that if u; (1) and us(r) are two different

regular entire solutions, i.e. u1(0) # ug(0), then u;(r) —uy(r) changes sign infinitely
8



many times in (0,00). In fact, if uy(r) = r="wv1(t), ua(r) = r~""vs(t), then k(t) :=
v1(t) — vo(t) satisfies the equation (for ¢ > 1)

(2.12)

FO (7)+ Kk (1) + Kok (8) + Kok (1) + (1 — p) Kok (1) + O(eTo T k() + O(KX(t)) = 0.

Therefore, k(t) admits a similar expansion to that in (2.11) with M? + M2 # 0.

Thus, our claim holds.

Proposition 2.4. Assume that p. < p < P. Then the set of the solutions {u,(r)} to
(1.6) is well ordered. That is, if a > b, then uy(r) > wy(r) for all ¥ > 0. Moreover,
the following statements hold.

(1) If k(—v3) < (—vq) < (k+ 1)(—v3) and ((—vy) < (—1n) < ({4 1)(—v4) for
some positive integers k and ¢, then u(r) has the asymptotic expansion near oo:
u(r) = K/ pars T 4 agrt T
Fhy AT b ™ATT e 4 O ()
for a; # 0 and some dy > 0 depending only on p, n and «, which satisfies

4+a n—4 VN + 4V

D
(1) If k(—v3) = —vq and ((—vy) < (—1v2) < (+1)(—vy) for some positive integers

k and £, then u(r) has the asymptotic expansion near oo:

u(r) = Ké/(pfl)r_m +ar Tt ag T g T g
Fhy T L b ™AT™ p er2T 4 O (P2 0)
for a; # 0 and some oy > 0 depending only on p, n and o as the above.
(i1i) If k(—vs3) < (—va) < (k+ 1)(—v3) and ((—vy) = (—1s) for some positive
integers k and £, then u(r) has the asymptotic expansion near oo:
U(T) — Ké/(p—l)rfm _i_alrugfm 4. +CL]€,17’(k71)V37m _i_akrk:ugfm
Fb T b AT e 2T O(rv2—m=%)
for ay # 0 and some oy > 0 depending only on p, n and « as the above.
(iv) If k(—vs) = (—v4) and ((—vy) = (=) for some positive integers k and {,
then u(r) has the asymptotic expansion near 0o:
u(r) = Ké/(p_l)r_m T At ap g rRFTDTT g R
Fbyr AT 4 by DT Ty e 2™ O (P2 %)

for ay # 0 and some oy > 0 depending only on p, n and « as the above.
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The coefficients as,...,ar are functions of a1 and by, ...by are functions of by.
Moreover, if two solutions have the same ay, by and ¢y, then these two solutions

must be identical.

Proof. Note that v, < vy < v3 <0 for p > p. and v, < vy = v3 for p = p.. The
first part of this proposition can be obtained by arguments similar to those in the
proof of (1) of Corollary 4.3 of [10]. Note that we have r™u(r) — Ké/(p_l) — 0 as
r — oo. The expansions of u(r) near co can be obtained by (2.10) and some ODE
arguments similar to those in [13], [8] and [9]. We refer to Theorem 2.5 of [8]. The
fact that a; # 0 can be obtained from Corollary 4.3 of [10]. O

Proof of Theorem 1.4. The proof of Theorem 1.4 can be done by arguments
as the above. Moreover, we also obtain that u,(z) — 0, Au,(z) — 0 for any z € R"
as a — 07 and u,(z) = us(z) for any z € R"\{0} as a — oo provided p. < p < P.
These can be easily seen from the fact uq(r) = auy(a®~1/4+)r). We also notice
that for each a > 0, u/ () < 0, (Au,)(r) < 0, (Aug)'(r) > 0 for r > 0 and u,(r) — 0,
Aug(r) — 0 as r — oo. O

3. SINGULAR SOLUTIONS OF (1.1): PROOF OF THEOREM 1.2

In this section we will use Kelvin transformation and Theorem 1.4 to obtain a
class of singular solutions of (1.1).

We first show the following lemma.

Lemma 3.1. Let u(x) be a solution of (1.1). Let

. x
(3.1) u(y) = [a["Mu(z) y= R
Then v(y) satisfies the equation
(3.2) Au(y) = [y (y) Y e R

Proof. First of all, let v(y) = |z|*u(z) for s > 0. Then

0 0
5y () = —slalau+ Jal 72

(3.3) () = 2|z|°z - Vux,,

(3.4) Ayo(y) = [z Auu(z) — (n — s — 2)|z|*"(su + 22 - V).
We now take s = n — 4, then
Ayo(y) = |z|"Au — 2|z|"?[(n — 4)u + 22 - V),

Ay (8y) = Ayl ) = 2 {faf" [0 = )20 Vul).



To calculate the first term, we take s = n in (3.4). Then

A, (7" Au) = |z|" M A(Au) + 2|2[" P [nAu + 27 - V(Au)).
Similarly, taking s =n — 2,

—2A,(|z[" 2 (n — 4)u) = —2(n — 4)|z|""? Au.

From the fact that A(z - Vu) = 2Au+ x - V(Au),

—2A,(|z[" 22 - Vu) = —4lz|"A(z - Vu)

= =8|z|""?Au — 4|z 2z - V(Au).
We finally deduce
Aju(y) = || Afu(@).

Yy
This completes the proof. U

Let o, = (n—4)p—(n+4). Then —4 < a, < 0forn/(n—4) < p < (n+4)/(n—4).

Moreover,
n+4 n+4 4 2a;
n—4a P7P n—4
This implies that if p € (n/(n —4),(n+4)/(n —4)), then p € ((n + 4 + 2a,)/(n —

4),(n+8+2a.)/(n—4)). Then we obtain the following theorem from Theorem 1.4.

Theorem 3.2. Let n > 5 and p € (2, ;L—fi). Then for any 5 > 0, the equation
(3.2) admits a unique radial entire solution v = vg(p) (p = |y|) such that v(0) = 3
and
dtax _1
pr1o(p) = [Ko(a)]P~ T as p — oo,
where Ko(aw) is the Ko in Theorem 1.4 with o = cv.. Moreover, v'(p) < 0, Av(p) < 0
for p>0.

Proof of Theorem 1.2. Direct calculations imply
(3.5) Ko(a,) = K,

where K = K (p,n) is given in Theorem 1.2. Then, for any 5 > 0, the solution ug(r)
of (1.1) corresponding to vg(p) in Theorem 3.2 satisfies r" *ug(r) — 8 as r — oo
and r¥/®=Dyy(r) — C, as r — 0. This completes the proof of Theorem 1.2. [
We now obtain the expansions of ug(r) given in Theorem 1.2 near r = 0. It is
known that
O Vys(r) — C, asr — 0F.

Since




and Ko(a,) = K, we see that p° > (n +4 4 2a,)/(n —4) and

2
po(a) < ("572), pe (20,

2
pKo(Oé*):(@>, p =1

2
pEo(an) > ("52), pe o, 25).

Let N4(cv.) be the Ny in Proposition 2.1 with a@ = a,.. Then
—4)q2 — 4)72
(3.6) 152[;(?*1))4 = plKo(aw)] — [n(n4 4)] =Pk - [n(n4 4>} '
Therefore,
Ny(ew) >0, pe (p 75,
Ny(e) =0,  p=7p",
Ny(aw) <0, pe (327,99
We now obtain the following propositions from Propositions 2.4 and 2.2 (by using

the Kelvin transformation).

Proposition 3 3. Assume that n > 5 and p € (-"4,p°]. Then 0 < ug(r) < u,(r) <
Us(r) == Cpr™ o= = for 0 < B <y < o0, and r > 0. Moreover, limg_,o ug(z) =
and limg_,o ug(z) = 0 for any x € R™"\{0}. Furthermore, for

o1 = —1a(a), 09 =—1(),

o3 = —vaw), o4 =—v3(),
where vi(aw) (i = 1,2,3,4) are the numbers given in Proposition 2.1 with a = o,
the following statements hold:
(1) If koy < 03 < (k+ 1)oy and bos < o1 < (£ + 1)o3 for some positive integers k

and ¢, then u(r) has the asymptotic expansion near 0,
u(r) = KY®Dp=55 4o qur vt g T
AN bﬂ“_ﬁJr 7 4o pi Ol 4 O(T_P%JFQMO)

for a; # 0 and some dy > 0 depending only on p, n, which satisfies
. +o1 = _n-d + do.
p—1 2
(i1) If koy = o3 and log < o1 < ({+ 1)o3 for some positive integers k and ¢, then
u(r) has the asymptotic expansion near 0,

k-1 -4 4k
(k=Doa 4 qp~p1thoa g

_ 4 __4 -4
u(r) — Kl/(P*UTn =1 4 qqr p—1 104 + ...+ ap_17 1t
4 4 __4 _ 4
_'_bl,r 71)_1-"—0'3 4.+ bg?” 7p_1+£0'3 + eqr p_1+0'1 + O(r p_1+01+50)

for ay # 0 and some oy > 0 depending only on p, n as the above.
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(i1i) If koy < 03 < (k+1)oy and loz = oy for some positive integers k and ¢, then
u(r) has the asymptotic expansion near 0,

) 4 4 _ 4 (e 4
u('r) — Kl/(P 1)7’ =1 4 aqr p—17104 + .ot ap_qr P—1+(k Jou “+ agr p—1Tkoa
4 4
4 4. _ 4 (-1
by BT by T

4 4 4
b P T Iy ey PO 4 O(riﬁﬂ’ﬁ‘so)

for ay # 0 and some oy > 0 depending only on p, n as the above.

() If koy = o3 and loz = o1 for some positive integers k and ¢, then u(r) has
the asymptotic expansion near 0,

4 4 4 4
u(r) = KY® U 57 papr o1t 4 ogggr e T ETDO g e TR g

_ 4 — 4 4 -4 4
+b17" P*1+03+...+b5_17a p71+( )US—FbgT =1 Tlos Inr

4 4
ey 1T O T

for ay # 0 and some oy > 0 depending only on p, n as the above.

The coefficients as,...,ar are functions of a1 and by, ...by are functions of by.

Moreover, if two solutions have the same ay, by and cy, then these two solutions
must be identical.

Remark 3.4. The o; (i = 1,2,3,4) in Proposition 3.3 are given by

_N1+\/]\72+4\/N3 _Nl—\/N2+4\/N3
T | S

Ni + \/ Ny — 4/ Ny Ny — \/ Ny — 4y/ Ny
03 = , 04 = s
2(p—1) 2(p—1)

the g is given by dp = —M

S 1) where

Nyi=—(n—4)(p—1)+8, Ny:=(n’—4n+38)(p—1)%

Ny: = (9n—34)(n—2)(p—1)*+8(3n —8)(n—6)(p —1)°
+(16n* — 288n + 832)(p — 1)* — 128(n — 6)(p — 1) + 256.

Note that Ny > 0 for p € (n/(n —4), (n+4)/(n — 4)).

13



Remark 3.5. It is clear that pK < H, for p € (n/(n —4),p°). Therefore, the

Hardy’s inequality implies that for any a > 0, we have
/ pub lpide < / put ' dx
D D
o?
pTr

pK 2
< — [ (Ayp)d
< [ e
for any ¢ € C3°(R™).

Proposition 3.6. Assume thatn >5 and p € (p°, (n+4)/(n —4)). Then we have

for r near 0:

(3.7)
—n 1 “n 1 )
u(r) = us(r) + M17’4T cos (/%ln —) + M2T4T sin (/%ln —) + O(rmm{‘l_”*p%l"’l_p%l})
r r
where
VAN = N,
K= >0

2(p—1)
and M? + M2 # 0. Therefore, u(r) — u(r) changes sign infinitely many times for
r € (0,00).

4. CONSTRUCTING WEAK SOLUTIONS OF (1.5) WITH PRESCRIBED SINGULAR
SET: PROOF OF THEOREM 1.3

In this section we construct weak solutions with prescribed singular set for the

Navier boundary value problem:
(4.1) A*u=v" inQ, u=Au=0 ondQ,

where n > 5 and p € (n/(n — 4), p°).
We first construct approximate solutions for (4.1).

A pair of functions (, f) is called quasi-solution of (4.1) if
(4.2) A% - = f in Q

where 2 is assumed to be a bounded smooth domain in R™ throughout this section.
Using the family of radial singular entire solutions {u,}.~o (instead of 5 in The-
orem 1.2, we use a here) of (1.1) given in Theorem 1.2 and Proposition 3.3, we
have
lim [ wldx =0

a—0 Rn
14



for any 0 < ¢ < p*, where p* is defined by
n(p—1)
VR
When " < p < p° let € be defined by (see Remark 3.5)

(4.3) P =

K
60:1—1;{—>O.

Lemma 4.1. Fiz pg,qy such that p < pg <_p*, HQ—L < q < % n >0 and
{Z1,..., 7} C Q. Then a quasi-solution (ug, fi.) of (4.1) can be constructed to
satisfy the followings:

(1) Ty, is smooth except atT;, 1 < j < k. AtT;, uy(x) has the asymptotic behavior
(4.4) lim |z — 7|7 Tl (x) = Ko7

T—T;
(it)

(4.5) (/ﬂi%x)plo <mn, and (/?iodx)qlo <.
Q 0

(iii) Set
Qrlp) = <1 + ZWGO - €0> /Q(AsO)2 - p/ﬂﬂi‘lgo?

for o € H*(Q)NHL(Q). Then Qy, is positive definite and equivalent to H*(Q)NHJ ()
norm in H*(Q) N H(Q).

Proof. A quasi-solution of (4.1) will be constructed by induction on k. Let
£(z) = &(Jz|) be a smooth cut-off function such that £(t) = 1 for 0 < ¢t < 3, and
£(t) = 0 for t > 1. For any r > 0, we denote &.(z) = £(¥). For k =0, (0,0) is a
trivial quasi-solution satisfying (i)-(iii) of Lemma 4.1.

Now suppose that conclusions of Lemma 4.1 hold true for {Zy,...,Tx_1} and a

quasi-solution {7, 1, f,_, } satistying (i)-(iii).

Let
1
0<m < émin{dist(fk,(?ﬁ), |z — 7], 1<j<k-1},
and define
(46) U = Ugp_1 + &k (l’ — Ek)ua(x — fk) =Up_1 + {kua

where a will be chosen later.

If a is small enough, we have
1 _
(4.7) [ttallLro < 5 (1 — [[T—1]|Lro ).

2
15



Therefore we have

1
(4.8) Ikl < S+ @h1llzro) < 1.

Set

[ = ANy -
= A%y + A*(Gu,) — T
= fio— (@ —T_, — &ub)
(&R — EDUL 4 uaA*E) + 2A8u AL 4+ 2VE,V (Auy)
F2A(VEV L) + 2V, V (AL)]

= fro1— g1+ 92

We note that %y is smooth in B(Zy, ). Hence

(49) [lalo= [ gmse [ (1w,
Q B(@y,mx) B(@g,rx)

which can be small if both r; and a are small, and n2_f4 < qo < 7. Also we have

(4.10) lgsllzo < Clittallos

which is small if @ is small, where Dy, = {z € R" : & < |z| < r}. Therefore, if a is
small, by (4.9) and (4.10), we have

1Fkllzeo < [feallzo + llgillzo + llg2llzo < n.

It is obvious that (4.4) holds for uy at Zy.
We divide the proof of (iii) into two steps.
Step 1. For any € > 0, there exists a constant C' > 0, such that

an) oy [ @< (1 Y 50— )14 [@errc [+ 1vep)

holds true for any p € H*(Q)NH{ (), where C' > 0 depends on € but is independent
of a.
Let n; € C=(Q), i = 1,2, such that n? + 72 = 1, the support of 7 is disjoint from

B(Ty, i), and the support of 7 is disjoint from {7y, ...,Zx_1}. Then it follows from
16



the induction assumption that

p/ﬂi_1@2 = p/ﬂi‘lnf¢2+p/ﬂi‘ln§w2
Q Q Q
< 6 [(Ame)P+1-a) AP+ [ @
Q Q Q
< 50(1+6)/(Ag0)2+02/[302+ IVl
Q Q

for any € > 0, where 69 = 1 + Zf;ll 377ey — €. Note that w,_; is smooth in the
support of 7y and

/ AP = / N(AG) + 2V + d(An)]?

< / (A + (An)*6?] + ()| 12| VT 1
L2l AS) el AD)l e + AIVEV S| sell o (A o2
4 / VnVeP

< (149 [[P@eP)+C [ [+ Vo
Q
Step 2. Fix a small ¢, > 0. We can find a finite dimensional subspace N of
H?(Q) N H () such that
0/[90§+ Val’] < 1Qi-1(p)
Q

for all ¢ € H?(Q) N HY(Q), where ¢ = @1 + 2 01 € N, 2 € N1, which is the
orthogonal complement of A/ with respect to the quadratic form Qj_; and C' is the
constant stated in (4.11).

For any p € H?(Q)NH(Q), decompose ¢ = @1 + 2, o1 € N and p; € Nt (with
respect to Qr_1). Let Uy = U_1 + vx and By := B(Tg,rx). Then

p/ﬂi_1<ﬁ2 = p/ﬂi_1(901+<p2)2
Q Q
= p/ﬂi_lﬁﬂ/ﬂi_l@g+2p/ﬂ§_1901902
Q) Q Q
< p/ﬂi190§+p/ﬂi_i¢?+2p/ﬂi_i¢w2
Q Q Q
(1.12) ool [t [ ol + [ ol + ol
Q Q By

where we notice that @, = U_; outside By, Tj_; is smooth in By, and the constant

C3 depends on supp, 1.
17



To estimate the sum of the first three terms, we utilize Step 1 and induction step

and obtain
p/ﬂilwg +p/ﬂi—i<ﬂ% +2P/ﬂi_1%01902
Q Q0 Q
= 50(/9(A801)2 + (A¢2)2> +2p/QEZjS01<P2 + C/Q[Sog + Vi)
+(506/Q(Ag02)2.

Since ¢ is orthogonal to ¢y, we have

5 / (A1) (D) = p / T 0100,
(9] Q

Therefore we have, by the choice of N/,
p/ﬂi 1s0§+p/ﬂi i¢?+2p/ﬂi_i¢w2
Q Q Q
—6 [ (802 +C [ I3+ [Viaf)
Q Q
+(506/(A<p2)2
Q
< 0+ 37 e [ (AP

Q
provided that € and €; are sufficiently small. And, for any € > 0,

/vzww < N/v{l 5+ C: /vk_lwf
Q

ex
< € /A<p2 —i—C’/vk ©?  (by Remark 3.5)

< 27'3~(kD) /(As@) +Ce/ﬂvi_1¢?

provided that € is sufficiently small.
For the last two terms of (4.12), for any € > 0,

/[sol|2+|solug02n < cg/ 90?+€/<p2
By By, Q
< Og/ ¢%+Ce/(Aw)2
By, Q

< 913~ (k+1) /(Agp) +Cg/ 90%
By
Therefore, (4.12) becomes

p/ﬂﬂ;’i” [5 +33 ]/Q(ASO)QJré(/QvZ_IsO?Jr/Bks&f)

18



where C' is a positive constant independent of a and 7. Since the dimension of N

is finite, r, can be chosen so small such that
é/ pi < 2737 Qi (1)
By
27137 Ve Qi ()
S 2_13_(k+1)€0/(Agﬁ)2.
Q

After fixing 7, we may choose a so small such that the left-hand side of (4.10) is

IN

small and, by Proposition 3.3 and Remark 3.5, we have
é/QU];:_lQO% < 27137 eQp 1 (1)
2713 " e Q1 ()
< 213(k+1)60/(A¢)2'
Q

This completes the proof of this lemma. U

IA

Let (@, f) be a quasi-solution of (4.1) as stated in Lemma 4.1. Suppose that a
solution of (4.1) can be written as u = u + v, then v satisfies
A +7 — (@+v)P+f=0 inQ,
u+v>0 in Q,
v=Av=0 on 0.

Note that w = Au = 0 on 0f). This can be seen from the construction of @ in

Lemma 4.1.

Define ( ) .
B s+ t)P — sP, or s,t >0,
f+(s,t)—{ 0, for t <0,
F+(S,t) = f(; f—i—(SaT)dTa
1 _
B = [(@ef - [ Fiwo)+ [ To wex
Q Q Q
where
L Ls+tP(s+1t) — P — (p+1)sPt},  for s,t >0
— p+1 ) v Y
Fi(s:t) { 0, for t <0,

and X = H*(Q) N H}(Q).

Lemma 4.2. £ € C'(X;R) and any critical point v of E satisfies

A —[u+ovfP+w+f=0 inQ,
(4.13) T+v>0 in Q,
v=Av=0 on Of).

Moreover, E satisfies the (P.S.) condition.
19



Proof. The first part of this lemma is standard. We leave the details of the
proof to the reader. To prove the second part of this lemma, suppose that there is

a sequence {v;} C X such that

(4.14) E(v;) = C, and

(4.15) E'(v;) =0 in X

as 7 — 0o. We want to show that there exists a strongly convergent subsequence of

vj. The derivative of E/ can be computed as

416)  (Bw)e) = [ Avap— [ var-we+ [ Fe

Case 1. p < 2.

A direct calculation shows that

1 ,
m(E (vj), v5)

2 - et e [

Since p < 2, the inequality

E(v;) —

—1
Mﬂ+vfwﬁ—ﬂ“1—pww;;gBQE—QW’%%U2

holds. By (4.14) and (4.15), we have

s [ w2 =it < €L+ 18l

By Lemma 4.1, we see that ||Av;||z2 is bounded. Furthermore, by (4.16), we have

(A17) (') = Bw) i) = [ (A=) [ (o7 +al =Jof 1) (0, -0
Q Q

Since

‘|1 +af? = [1 4yl < pmax{|L+ |2[["7" [T+ [yl "~ Ha -y

< ple—yl+ (2" + 1yl — y]

for all z,y € R, we see from (4.17) that

/Q (A —0)))* —p / o — v, < / (TP + [0y~ (os — v;)? + (s — vy1x).

By Holder inequality, the first term of the right hand side can be estimated by

(n=4)(p—1)

(n=4)(p—1) 1
/ (o™ + o) (s = 3)? < / o™+ o)) / o5 = 0;21)°
Q Q Q

20



where
1 —4(p—1 4 —4
L =dp-1) | 4 _n-4
q 2n n n

namely 2q < %. Hence there exists a subsequence of v; (still denoted by v;) which
is convergent in L?4(2). (Note that the boundedness of {||v;||x} and compactness of
the embedding X — L%(Q) imply that the convergent subsequence exists.) Then,

by the above inequality, we conclude that v; is strongly convergent in X.

Case 2. p > 2.
We see that
E)w) = [ (Guf = [ GuroP -+ [ Fo.
Q 0 0
Since
2 -1
(1+x)Pxr —x — ?((1 +a)Pt —1—(p+ 1)x) > pTpo for z > 0,
p p
we have
(r—-1) -
(1.18) 2 [ op Pt < 2B() ~ (Bw).0) + [ Fos

For any € > 0, there exists C. > 0 such that

VP p + —p1(, 2 +yp+1
(@ + v )Pof —aPvy < (p+e)u ™ (v))” + Ce(v] ).

By (4.16),

J@wy - +o [ @) < (B - [ Fure [ @

Q Q Q 0

Together with Lemma 4.1, (4.14), (4.15) and (4.18), we see, for small € > 0,
1Av;]1Z22 < C(|Avy] 2 +1).

After establishing boundedness of || Av;|| .2, we can use (4.17) and arguments similar
to those in Case 1 to obtain a strongly convergent subsequence in X. Therefore, the

(P.S.)-condition is satisfied and the proof of Lemma 4.2 is complete. O

Lemma 4.3. Let n > 5; n/(n —4) < p < p° and {x1,...,xx} be any set of
finite points in Q). Then there exist at least two distinct solutions of (1.5) having

{z1,..., 2} as their singular set.

Proof. We claim that there exist positive numbers 7y, p,6 > 0 (19 and 6 depend
on p) such that if (@, f) is a quasi-solution of (4.1) as stated in Lemma 4.1 with
0 <n < ng, then

E(u)>60>0
21



for u € X such that p < ||ul|x < 2p. After this claim, the existence’s part of Lemma
4.3 follows immediately. Because one solution can be obtained from the minimizing
min |, <, F(u) < E(0) = 0 < 6, and the other solution can be obtained from the
Mountain Pass Lemma.

For any € > 0, there exists C'; > 0 such that

F(s,t)| < L

< 5(1 + €)sP 1 4 CtP T

Thus,

2E(v) 2/(Av)2—p(1+e)/ﬂp_102—206/vp+1 —277(/@71231>%.
Q Q Q Q

By Sobolev’s embedding and Lemma 4.1, for small € > 0,

p+1

2B (v) > C’l/ﬂ(Av)Q - (33[(/9(&)2) : +n(/ﬂ(m})2)m].

Then the claim follows easily (note that 7 is small).

Suppose that u = @ + v is any solution of (4.1) with v € X. Since p < (n +
4)/(n — 4), then a bootstrap argument can show that v € C®°(Q\{z1, xa,...,Tx}).
If we assume that z; is a removable singular point of w, by (i) of Lemma 4.1,
—u < v(z) < C — T in a neighborhood of z; which implies that v & LF*(Q2) (note
that 4(p + 1)/(p — 1) > n), a contradiction to v € X (since p+ 1 < 2n/(n — 4)).
This completes the proof of Lemma 4.3. U

To complete the proof of Theorem 1.3, we need another lemma.

Lemma 4.4. Let v be a solution of (4.13) and v € X. Then |v|* € X for some

a > 1. The constant o depends only on p, qo and the dimension n.

Proof. By Lemma 4.3, we know that v € C* except at x;, 1 <i < k. We claim
that there exists a constant § > 0 depending on p, go and n such that |z — x;|~%v €
Li(Q), 1<i <k

Let n(x) =
Multiplying (4.13) by n*v, we have

J

(Jz — i* + 02)_3, 1 < ¢ < k for some sufficiently small o > 0.

>

wAute) = [[@+oy =@l [ Frto

< (p—l—e)/ﬂp17)2@2+C’E/n2|v|p+1—/7772v.
0 Q Q

22



Moreover,

/Q AvAGR) = /Q (A(m))® - /Q V(A

+2/ |VnlPvAv — 4/(V77 - Vv)? — 4/ vAn(Vn - Vo)
Q 0 Q

and
4/[(V77 V)2 +vAnVn - V] = 4/(V77 -Vv)[Vn - Vv + vAn)
0 0
= 4/(Vn-Vv)div(vVn)
0
= —4[/ v(Vn - Vu)An + / U\Vn|2Av]
0 0
The latter identities imply
/(Vn Vo) + 2/ vAn(Vn - Vo) + / v|Vn|*Av = 0.
0 Q 0
Therefore,
[aonere) = [ @eop- [ e
Q Q 0
—6/(V77 - Vv)? — 8/ vAn(Vn - Vo)
0 0
Since |Vn|? < 6*n%|z — x;|72, we have
[@nevep < & [ e -l vop
Q 0
- 52/[|V(m)\2 VP — 20n(Vi - Vo)lla — 1]
Q
< & [ 1960 + VaPe?)e - o]
0
—1—52/ vnPr — x| 7t + 52/(V77 - V)2,
0 0
Thus,
(1= (- Vo2 < & [ (Vo) + 90 - o 2
0 0

+52/02n2|m — x|t
Q
23



and we obtain

/Q (AG))* — (Ap)?
— 9 ¢ —p—1 2 Ce 2|, |p+1
s/ﬁmm o+ >/Qu ()2 + /Qn!vl
+6/Q(Vn~Vv)2+8/Q|UAnHVn-Vv|
— 9 ¢ —p—1 2 Ce 2|, |p+1
S/Qlfvln o+ >/Qu ()2 + /Qn!vl
+10/Q(vn-vu)2 +4/Q(A77)2v2

< / Folr + (p+ € / @ ()2 + C. / 2o
Q Q Q

. 1062
1—-462

1062
+ /(m))2|x — x|t + 4 / (An)*v®.
Let w = nu in Q, w =0 in R"\Q. Then w € H*(R") N H}(R"). Since

|Vwl|? N wAw

2 ]

/ ]VwP_/ wa-Vw_/ wAw
w ] w2l e J2f?

Thus, using the Young’s inequality, we obtain

|Vwl|? 1/ ) 1/ w?
< - A Z

+1/ |Vw]2+4/ w?
4 Jon |x|? re ||
Thus,

2 1 2
§/ [Vl < —/(Aw)2+9/w—
4 Jpn |z|? 2 Jrn 2 Jgn |x|?

1

/Q (V)2 + [Vl |z — 2]

Y

wAw) o WT - Vuw

|t

= div(

|z

we see that

< 5 /Rn(Aw)2 + gﬁ /n(Aw)2 (by Hardy inequality)
1 9 16 :— o 2
_ [§+§(n(n_4))2]/nmw) — )/n(A 2.
This implies that
U < o) [ (am>
o | — il Q
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Therefore,

J @y = @ = o) [ @y

Q
< [ (ot + €. [ aplop
Q
1 52 152
T N
- Q

1062
s [l )+ 4 / (An)?

1—06% Jgo Q

n+4 n—4 1 o (n*42)7(Lp+1)
< ([ @) () ™ o) (f p)
10C(n)é? 1062
S T at? + 5 /r:c w2V
- Q

1042
g [ o=l ) 4 / (ne?

P+1)(n—4)
2n

where é =1- . On the other hand, we easily see that
(An)* < C&Ple — o™ |[Vn* < 80Pl — a2

Since f € L%() with gy >
by Lemma 4.1, to obtain

= + —=t, we can choose 0 > 0 and € > 0 sufficiently small,

[@amy<c.
)
Sending o to 0, our claim is proved.
Since |v(z)| < ¢l — ;|77 in By, (x;) for 1 < i < k and some 7 > zﬁ’ the claim

above implies that v € L%O‘O(Q) for some «y > 1 which depends only on p, ¢y and

n. To estimate |||v|*||x, we multiply (4.13) by |v]|?>®~2

/ AvA(Jufo ) = / ([a+ o] = @) = F)[of**~2
Q Q
S <p+€)/ﬂp1|v|2ao+/|7‘|vl2ao1+CE/|U‘p+2a01_
Q Q Q

v, then

This implies that

200 — 1
Lt @R = o) [ @i
0 Q Q

< (ao—1)2(2a0—1)/ |U|20‘°_4|V|v||4+/ |?||U|2a0—1_|_06/ jp[Pr2e0=1
:(a0—1)2(2a0—1)/|U’2ao|v(1n|vl>|4+/ ’7|’U|2a01+06/ ’U|p+2a071.
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Since |v(x)| < c|lz — ;|77 in By, (z;) for 7 > 4/(p — 1), we see that
Injv(z)| <Inc—7ln|x — ;| for x € B, (x;).

This implies that

(4.19) IV(n |v(z))|* < 7o — 2" for v € B,, ()

provided r; sufficiently small. On the other hand, since w + v > 0 in €2, we can see
from the construction of % in Lemma 4.1 that v(z) > 0 for z € Q\UL, B, (x;). (Note
that we can construct @ such that %(z) = 0 for z € Q\ U, B,.(x;).) Therefore,

2c0 a —p— ag
ot [l =g [ @

<C. [ et [ i

+@WUW%—UAMMW®MW

This, the Hardy inequality, (4.19) and Lemma 4.1 imply that if both ap — 1 and €

are small, then
[@ppr <o
Q

where C'is a constant depending on ||Av||2(q). The proof of Lemma 4.4 is complete.
O
Proof of Theorem 1.3
First we give a proof of the existence of weak solutions with prescribed singular
set. If the singular set S is a set of finite points, then the existence of two distinct
solutions is proved in Lemma 4.3. Let {z1,xs,...,2,...} be a countable dense
subset of S, pr is an increasing sequence, limg .., pr = p*. For any n > 0, by
Lemma 4.1, we can construct a sequence of quasi-solutions (, fk) with singular set
{x1,xs,..., 2k} such that

/ U1 — TP < ?

and

= 7 U
l/mﬂ—nWSg

where qq is a fixed constant such that =% < o < 7. Hence u;, converges strongly

to w in L(Q)) for any ¢ < p*. When 77 is small, by Lemma 4.3, we can find two
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sequence of solutions u}, of (1.5) such that u}, = u; + v}, ¢ = 1,2 such that

/ (Av})? < pp < / (A2)? < py
Q Q

where p; > py are two constants independent of k. Let vg be one of the two solutions

obtained in Lemma 4.3. Then by Lemma 4.4, we have
| Alvg|* || L2y < Ch

for some v > 1 where « and (' are independent of k. By Sobolev’s embedding and
the Holder inequality, we may further assume that v, converges in L%Q(Q) and
weakly converges to v in X. We want to prove that v strongly converges to v in
X. By elliptic estimates, it suffices to show that |y + vy|P — ), converges strongly
in Ln%(Q) To prove this statement, we need the following two steps:

Step 1. ﬂi_lvk strongly converges to uw?~!v in Ln%(Q)

SC[/ = [ D, ol ]
/|—p L _ P 1|fff4 /|Uk|2"a a<n+4)
/m(pl)i+4 /,Uk_vyi"‘z ‘“"*4)]’

Q

where
I n—4 - 8
q (n+4)a ™ n+4
Since 2nq < % and 7, converges to u in L(Q) for ¢ < p* = @, we have
2n nao
lim [/ - +/ o —v[ 5] =0
Thus, Step 1 is proved.
Step 2. Since
p+1
@ + okl? =T — pay o) < e(@ g + ok,
by Step 1 and Lebesgue’s dominated theorem, we have
p+1
klim Ty + P — T — pul o — [T P T+ par | T = 0.
—00 Q
Since ’%1 =1 —|— > 1+ 24 = 2% and [y, + k|’ — U, can be written as the sum

of |ay + vi|P — uk puy Ly and pﬂﬁ_lvk, we conclude that [wy, + v |P — @), strongly
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converges in Ln%l(Q) By elliptic estimates, v converges to v strongly in X. Since
vi, i = 1,2 strongly converges to v%, i = 1,2 in X, we have v! # v2.

Set u = u+v where v is one of v’ obtained above. Then u is a solution of (1.5). It
is obvious that u € C*°(Q\S). For any xy € S, any open neighborhood of z contains
xy, for some k. If u is bounded in this neighborhood, |v| > @ —c¢ > ¢l —xk|_?4f1 —c
by (i) of Lemma 4.1. It is a contradiction to v € LPT}(2). Therefore, the singular
set of u is exactly equal to S.

Let n = % where k is any large positive integer. By the above, we can construct
two sequence of solutions uf, i = 1,2 of (1.5) such that u}, = u}, + v} with v, € X

which satisfy
A 1
/(E}c)p’“ < — fori=1,2and
0 k

[ <p<ms [y <n
Q Q

where p; is an increasing sequence converging to p*, limg_ .., pr = 0, both py and
p1 are two constants independent of k. Thus, uj converges to zero in L9(f2) for
any ¢ < p*. As in the proofs of step 1 and step 2 above, vi, after passing to a
subsequence, converges to v in X and fQ(Av)2 > po. Therefore, u? converges to v in
L1(Q) for any ¢ < p*. This implies that v is a weak solution of (1.5). Since v € X,
by a bootstrap argument, we can show that v € C*°(£2). The proof of Theorem 1.3
is complete. O

Proof of Theorem 1.5

Let m > 4 be a positive integer such that the following hold:

(4.20) pK (p,m) < H,, (:: (M)Q)
and
(4.21) m> ; 1
where
8

K(p,m) = L m = 2)(m = 9 - 1)?

(p—1)
+2(m? — 10m +20)(p — 1)2 — 16(m — 4)(p — 1) + 32]

and p = (n+4)/(n —4) here and in the following. We easily see that (4.20) holds if

m n+4 ~m+2+Vm2+4—4ym? + H,

— <p:= < pf(m) : .
m—4 n—4 m—6—+v/m?+4—4vm? + H,,
28




It is not difficult to check that for n > 13 if m is chosen as m = "TH’ when n is
odd, and m = ™% when n is even, then m satisfies (4.20) and (4.21).

Let S™™ be an (n — m)-dimensional sphere in R™, and gy € S™ ™. By using
solutions of (1.1) obtained in Theorem 1.2 and the Kelvin transformation, we can

construct a family of solutions ug(z), 8 € (0, 00, of
(4.22) A’ug = uj in R,

where p = Z—fj in the remainder of this section. The family of solutions wug satisfies

(4.23)-(4.26) below.

(4.23) lim  ug(z)d(z)T = C(p,m)

r—Sn—m

uniformly in any compact set of S*~"™\{qo}, where d(z) denotes the distance between
x and S™™ and C(p,m) = [K(p, m)](piim

(4.24) ug(x) is strictly increasing in 3, and limg_,o ug(z) =0
uniformly in any compact set of R™U{oc0}\S™ ™. Moreover, there exists a constant
¢ independent of 8 such that ug(z) < ¢|z|*™ for |z| large. Therefore, we have

(4.25) lim [ wujdr = 0.

B—0 Rn

We denote by D*?(R™) the closure of C2°(R") functions with respect to the norm
[u]| = ([ |Aul?dz)z. By the Sobolev embedding D**(R") < LP(R") for n > 5, it

is clear that
DQ’Z(R”) ={ue LP(R"); Au € L2(R")}.

Now for ¢ € D*?*(R™), we have by (iii) of Lemma 4.1,

(4.26) p/n ug_l(x)gf(x)dx < (1 —¢€) /H(Ago)zdx
for some positive constant €y depending only on n and m.
’

To see this, let tg(2’, 2") = ws(2’) := ws(|2’|) where wg(r) (r = |2/]) is the radial

entire solution of

n+4
A2 wp = wp~" in R™,
wg(r) >0 and lim, o 7™ tws(r) = 8
- : +4 +4
and 2/ € R™, 2 € R*™. Since 7734 > "2, we have ™= > o Hence, wg(2')

is a weak solution of A*wg = wj " in R™ and dg(z/,2”) is a weak solution of
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n+d
A%lig = 45" in R™. Let e = (1,0,...,0) and ug(z) = \x—x}ﬂn*‘laﬁ(wx—_joﬂ? + e) for
x € R™ with zy € R"™™. Then ug(x) is a weak solution of

n+4

Aug(z) =uy*(z) in R,
ug(z) = O<|x‘%> at o0o.

T—xo
|x—x0|?

to see that S™~ is an (n — m)-dimensional sphere in R” and ug is a family of weak
solutions of A%y = ya-1 in R" satisfying (4.23)-(4.26). For (4.26), it is easy to check

that both sides of (4.26) are invariant under the Kelvin transformation. Since Sn—m

Let S™™ be the pre-image of R"™™ under the mapping z — +e. It is easy

is congruent to any (n — m)-sphere, the above claim follows immediately.

Step 1. Let Sy,..., Sk, ... be a sequence of disjoint (n — m)-dimensional spheres.
Fix a small positive number n > 0 which will be chosen later. A sequence of positive
approximate solutions y is constructed to satisfy (4.27)-(4.30).

Fix & € Sk, k=1,2,.... We have

(4.27) lim  T()d? () = [K (p.m)]7T,
T — Sj
x ¢ Sj

uniformly in any compact set of S;\{¢;}, j = 1,2,...,k, where d;(z) denotes the

distance between z and 5.
Denote f, by f, = A%u, — u!. We have

1 2n LJ»:;
(4.28) (/ Eﬁdm)p <n, < |7k|mdx> <.
n Rn
(4.29) Ty () converges to @ in LP(R") and support of f, C Ur_\B(S),75),

where B(S;,7;) = {z € R": d;(z) <r;} and lim;_,, 7; = 0. The quadratic form:

(4.30) Qlyp) = (1 + 381376 — 60) /n(AsD)2 — p/n w

is positive definite and its square root is equivalent to the D*?—norm in D*?(R").
The construction of w; is exactly the same as before except the cut off function
nk(x — Ty) is replaced by nx(dg(z)). To prove (4.30), it suffices to note that (4.11)

becomes
s p [ @R <1+ (S Ta - a1 +0) [ (BeP+C [ (4 TP
n K

where C' is a positive constant depending on e but is independent of #, K is a

n

bounded set independent of 5. Then the rest of the proof of Lemma 4.1 can go

through to prove (4.30) without any modification.
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Let
B =3 [ @0r= [ Pawo)+ [ T

2 -
for ¢ € D*?(R") where

1
F(s,t) = [s—l—tps+t — Pt (p+1 spt].
(5:8) = [ls + s+ 1)

It is not difficult to see that F(y) is continuous in the strong topology of D*?(R™).
For any € > 0, there exists C. > 0 such that

F(s,t)] < 2

< 5(1 + €)sP T + Ot

Thus

2E(p) > / (D) —p(1+¢) / w2 o0, [ ot
n n Rn

+4
([ tor+
Rn

2( [ A7) T
Rn
Fix €; > 0 so that, by (4.30),

(432 [ @i -pira) [ @@ za [ @or

By the Sobolev’s embedding, we see

(4.33) 2E(p) > @ /n(Aso)2 - [(/W(AW) . 277</n(A<P)2) %]-

Therefore, there exists small p = p(n) such that

>1/(p+1)

inf E(p) > ﬁ >0
lloll=p 4
with lim,_, p(n) = 0.

Step 2. We claim that there exists vg € D?*(R"™) with |lvg|]] < p such that
E(v) = infj, <, E(v) < 0 (note that f, # 0 in R"). Let v; € D**(R") with
|v;]| < p and lim;_, ;o E(v;) = infjy<, E(v). Since v; is bounded in D*?*(R™), we
can assume that v; — vy weakly for some vy € D*?(R™). If v; is strongly convergent
to vy, we are done. Hence we may assume that ¢; = v; — vy is weakly convergent
to 0 and 0 < lim;_, [|;]| = p < p. Without loss of generality, we may assume that

@; is weakly convergent to 0 in L%(R”) also. To obtain a contradiction, we have

E(vo + ¢;) = E(vo)

= %/n(A@j)Q — /n[F(ﬂ, Vo + QOj) — F(u,v)]dz + o(1),
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because f, € L%(R”) where, for the simplicity of notation, u denotes the approx-

imate solution u,. We decompose the second term into two terms,

F(a,vg + ¢;) — F(u, vo)

=0T [+ vy + @; [P (@ + v + @;) — @ + vo|” (T + )

—(p+ 1)|a+v0|%j] + [|a+v0|7’ — TP | p;
=91t 925

For g;, we have, for any ¢ > 0, there exists C. > 0,

p+e€) _ -
ol < P agpgt v e
P+ 26\ _,_ -
< (B57)me + Cllwl ™6 + o).

Therefore,

D+ 2e _ _
[ s < )/u“ﬁ+Q/Hw“ gyl da
n Rn

(\]

+
< ( 5 up_lgojz +CpP [ (Ap)
Rn
For g9, we note that p := i4 for n > 13 and

[T+ vo|? — @ — puP~ vy < ep|vol?
for some constant ¢, > 0. By Sobolev’s embedding, we have
1T + vo|? — @ — pa?~wo| € L7 (R™).
Therefore,
/n Gop; = /L[|U + volP — T — puP~ gl p; +p/Rn " Lugp;
= o(1).
Combining these two estimates, we have
E(vo + ¢;) — E(vo)
> %/W(A%)Q—pz%/w—p tol = Cep”” / (Ap;)* + o(1).

Choosing € = Z* where ¢ is the constant in (4.32), and 7 is small enough such that
CpP™! < /4, then we have

lim E(vo + ¢;) > E(vo)
j—o0

which is a contradiction. The proof of step 2 is complete.
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Let vy be the solution of E(vy) = infjy<, E(v). Then, we can obtain that u, =
U, + v is a positive weak solution of

n+4 .
A%y = uyn—1 in R”

via the maximum principle. Note that ux(z) — 0 and Aug(z) — 0 as |z| — oo,
it follows from the maximum principle that A(Awu) > 0 (£ 0) in R™ and hence
Aug < 0, ug, > 0 in R™. Since vy, is bounded in D*?(R"), we can assume that, after
passing to a subsequence, vy, converges to v € D**(R") in L?(K) for any compact
set K C R". Hence u = u + v is a nonnegative weak solution of (1.8), where @ is
the limit of @, in LP(R"). Since v € D2*(R") N HY(R"), we have v € L1 (dp).
Hence u € L%i(du). We claim that the singular set of v must include U3, 5;. If
q € S;\{¢;}, and ¢ ¢ singular set of u, then there exists a neighborhood U of ¢ such
that u(xz) < ¢ in U. This implies

—u(x) <wv(r) <c—mu(r), namely,

lv(z)| > u(x) — ¢ > u;(x) — c. (Note that if v(z) > 0, then u(x) = u(z) +v(z) < c

implies that v(x) > 0 > u(z) —c.) However, v € L%(U) implies that u; € L%(U)
which is impossible (note that m — 4(];”%11) < 0). Therefore, U2, S; C the singular

set of u. Suppose that U32,5; is dense in R™, and because the singular set of u is
closed, we conclude that the singular set of w is the whole space R™. The proof of

the theorem is complete. U
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