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Abstract. We classify finite Morse index solutions of the following nonlocal Lane-Emden equation

(−∆)su = |u|p−1u Rn

for 1 < s < 2 via a novel monotonicity formula. For local cases s = 1 and s = 2 this classification is provided

by Farina in [10] and Davila, Dupaigne, Wang and Wei in [8], respectively. Moreover, for the nonlocal case
0 < s < 1 finite Morse index solutions are classified by Davila, Dupaigne and Wei in [7].

1. Introduction and Main Results

We study the classification of stable solutions of the following equation

(1.1) (−∆)su = |u|p−1u Rn

where (−∆)s is the fractional Laplacian operator for 1 < s < 2. For various parameters s and p this equation
has been of attention of many experts in the field of partial differential equations.

1.1. The local case. For the case of s = 1, a celebrated result of Gidas and Spruck in [12] shows that the
only nonnegative solution solution of the Lane-Emden equation is u = 0 for 1 < p < pS where

pS(n) =

{
∞ if n ≤ 2,

n+2
n−2 if n > 2,

that is called the Sobolev exponent. In addition, for the critical case p = pS(n) it is shown by Caffarelli-
Gidas-Spruck [1] that there is a unique (up to translation and rescaling) positive solution for the Lane-Emden
equation. For finite Mose index solutions (not necessarily positive), such classification is provided by Farina
in [10] and the critical exponent, called Joseph-Lundgren [16] exponent, is given by

pc(n) =

{
∞ if n ≤ 10,

(n−2)2−4n+8
√
n−1

(n−2)(n−10) if n ≥ 11,
(1.2)

Note that pc(n) > pS(n) for n > 2.
For the case of s = 2, Wei and Xu [19] (see also Lin [15]) proved that the only nonnegative solution of

the fourth order Lane-Emden equation is u = 0 for 1 < p < pS where pS(n) is the Sobolev exponent, i.e.

pS(n) =

{
∞ if n ≤ 4,

n+4
n−4 if n > 4.

(1.3)

Moreover, for the critical case p = pS(n) they showed that there is a unique (up to translation and rescaling)
positive solution for the fourth order Lane-Emden equation. For finite Mose index solutions (not necessarily
positive), Davila, Dupaigne, Wang and Wei in [8] gave a complete classification. The Joseph-Lundgren
exponent, computed by Gazzola and Grunau in [11], is the following

pc(n) =

 ∞ if n ≤ 12,
n+2−

√
n2+4−n

√
n2−8n+32

n−6−
√
n2+4−n

√
n2−8n+32

if n ≥ 13,
(1.4)
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The key idea of the proof of Davila, Dupaigne, Wang and Wei in [8] is proving and applying a monotonicity
formula. Note that a monotonicity formula for the second order equation is established by F. Pacard in [17].

We also refer the interested readers to Wei-Xu in [19] for classification of solutions of higher order confor-
mally invariant equations, i.e. s any positive integer.

1.2. The nonlocal case. Assume that u ∈ C2σ(Rn), σ > s > 0 and∫
Rn

|u(y)|
(1 + |y|)n+2s

dy <∞

so the fractional Laplacian of u

(1.5) (−∆)su(x) := p.v.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

is well-defined for every x ∈ Rn.
For the case of 0 < s < 1, a counterpart of the classification results of Gidas-Spruck [12] and Caffarelli-

Gidas-Spruck [1] holds for the fractional Lane-Emden equation, see the work of Li [14] and Chen-Li-Ou [5].
In this case, the Sobolev exponent is the following

pS(n, s) =

{
∞ if n ≤ 2s,

n+2s
n−2s if n > 2s.

(1.6)

Very recently, for the case of 0 < s < 1, Davila, Dupaigne and Wei [7] gave a complete classification of finite
Morse index solutions of (1.1) via proving and applying a monotonicity formula. As a matter of fact, they
proved that for either 1 < p < pS(n, s) or p > pS(n, s) and

p
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )
>

Γ(n+2s
4 )2

Γ(n−2s4 )2

the only finite More index solution is zero. In this work, we are interested in knowing whether such classifi-
cation results hold for finite Morse index solutions of (1.1) when 1 < s < 2.

There are different ways of defining the fractional operator (−∆)s where 1 < s < 2, just like the case of
0 < s < 1. Applying the Fourier transform one can define the fractional Laplacian by

(̂−∆)su(ζ) = |ζ|2sû(ζ)

or equivalently define this operator inductively by (−∆)s = (−∆)s−1o(−∆), see [18]. Recently, Yang in [21]
gave a characterization of the fractional Laplacian (−∆)s, where s is any positive, noninteger number as
the Dirichlet-to-Neumann map for a function ue satisfying a higher order elliptic equation in the upper half
space with one extra spatial dimension. This is a generalization of the work of Caffarelli and Silvestre in [2]
for the case of 0 < s < 1. See also Case-Chang [3] and Chang-Gonzales [4].

Throughout this note set b := 3− 2s and define the operator

∆bw := ∆w +
b

y
wy = y−b div(yb∇w)

for a function w ∈W 2,2(Rn+1, yb).

Theorem 1.1. [21] Let 1 < s < 2. For functions ue ∈W 2,2(Rn+1
+ , yb) satisfying the equation

∆2
bue = 0

on the upper half space for (x, y) ∈ Rn × R+ where y is the special direction, and the boundary conditions

ue(x, 0) = f(x)

lim
y→0

yb∂yue(x, 0) = 0

along {y = 0} where f(x) is some function defined on Hs(Rn) we have the result that

(−∆)sf(x) = Cn,s lim
y→0

yb∂y∆bue(x, y)
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Moreover, ∫
Rn
|ξ|2s| ˆu(ξ)|2dξ = Cn,s

∫
Rn+1

+

yb|∆bue(x, y)|2dxdy

Applying the above theorem to solutions of (1.1) we conclude that the extended function ue(x, y) where
x = (x1, · · · , xn) and y ∈ R+ satisfies

∆2
bue = 0 in Rn+1

+ ,
limy→0 y

b∂yue = 0 in ∂Rn+1
+ ,

limy→0 y
b∂y∆bue = Cn,s|u|p−1u in ∂Rn+1

+

(1.7)

Moreover, ∫
Rn
|ξ|2s| ˆu(ξ)|2dξ = Cn,s

∫
Rn+1

+

yb|∆bue(x, y)|2dxdy

Then u(x) = ue(x, 0).
For 1 < s < 2, Chen et al in [6] have classified all positive solutions of (1.1) for 1 < p ≤ pS(n, s). The

main goal of this paper is to classify all (positive or sign-changing) solutions of (1.1) which are stable outside
a compact set. To this end, we first introduce the corresponding Joseph-Lungren’s exponent. As it is shown
by Herbst in [13] (and also [20]), for n > 2s the following Hardy inequality holds∫

Rn
|ξ|2s|φ̂|2dξ > Λn,s

∫
Rn
|x|−2sφ2dx

for any φ ∈ C∞c (Rn) where the optimal constant given by

Λn,s = 22s
Γ(n+2s

4 )2

Γ(n−2s4 )2

Definition 1.1. We say that a solution u of (1.1) is stable outside a compact set if there exists R0 > 0 such
that

(1.8)

∫
Rn

∫
Rn

(φ(x)− φ(y))2

|x− y|n+2s
dxdy − p

∫
Rn
|u|p−1φ2 ≥ 0

for any φ ∈ C∞c (Rn \BR0
).

In the following lemma we provide an explicit singular solution for (1.1).

Lemma 1.1. Suppose that 1 < s < 2 and p > pS(n, s) then

(1.9) us(x) = A|x|−
2s
p−1

where

Ap−1 =
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )

solves (1.1).

Proof. From Lemma 3.1 in [9], we conclude that when 0 < t < 1, for any −n+2t
2 < β < n−2t

2

(1.10) (−∆)t|x|
2t−n

2 +β = γt(β)|x|
2t−n

2 +β−2t

where

(1.11) γt(β) = 22t
Γ(n+2t+2β

4 )Γ(n+2t−2β
4 )

Γ(n−2t−2β4 )Γ(n−2t+2β
4 )

From the fact that (−∆)s = (−∆)o(−∆)t for 0 < t = s− 1 < 1 we have

(−∆)s|x|
2t−n

2 +β = γt(β)(−∆)|x|
2t−n

2 +β−2t = −γt(β)ηt(n+ ηt − 2)|x|
2t−n

2 +β−2t−2(1.12)

where ηt = 2t−n
2 + β − 2t. Now using the change of variable t = s− 1 we get

(−∆)s|x|
2s−n

2 +β−1 = −γs−1(β)ηs−1(n+ ηs−1 − 2)|x|
2s−n

2 +β−2s−1(1.13)

= −γs−1(β)ηs−1(n+ ηs−1 − 2)
(
|x|

2s−n
2 +β−1

)p
(1.14)
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where
2s−n

2 +β−2s−1
2s−n

2 +β−1 = p. From this we conclude that β = −2s
p−1 + n−2s

2 + 1. This implies

(1.15) us(x) = A|x|−
2s
p−1

where

Ap−1 = λ

(
n− 2s

2
− 2s

p− 1
+ 1

)
is a solution of (1.1) for

(1.16) λ(β) = −γs−1(β)ηs−1(n+ ηs−1 − 2)

Elementary calculations show that

γs−1(β) = 22s−2
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 − 1)

Γ( s
p−1 )Γ(n−2s2 − s

p−1 + 1)
(1.17)

and

−ηs−1(n+ ηs−1 − 2) = 4

(
s+

s

p− 1
− 1

)(
n− 2s

2
− s

p− 1

)
(1.18)

From (1.17) and (1.18) and using the property aΓ(a) = Γ(a+ 1) we conclude the desired result.
�

Here is our main result.

Theorem 1.2. Suppose that n ≥ 1 and 1 < s < δ < 2. Let u ∈ C2δ(Rn) ∩ L1(Rn, (1 + |y|)n+2sdy) be a
solution of (1.1) that is stable outside a compact set. Then either for 1 < p < pS(n, s) or for p > pS(n, s)
and

(1.19) p
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )
>

Γ(n+2s
4 )2

Γ(n−2s4 )2

solution u must be zero. Moreover for the case p = pc(n), solution u has finite energy that is∫
Rn
|u|p+1 =

∫
Rn

∫
Rn

(u(x)− u(y))2

|x− y|n+2s
<∞

If in addition u has finite energy then u must be zero.

Note that when s = 1 and s = 2 assumption (1.19) is equivalent to 1 < p < pc(n) where pc(n) is given
by (1.2) and (1.4), respectively. Here is the computation for the case of s = 1. Note that when s = 1 the
assumption (1.19) is

(1.20) p
Γ(n2 −

1
p−1 )Γ(1 + 1

p−1 )

Γ( 1
p−1 )Γ(n2 − 1− 1

p−1 )
>

Γ(n+2
4 )2

Γ(n−24 )2
.

We now use properties of the gamma function, i.g. Γ(1 + a) = aΓ(a) for a > 0, to get

Γ

(
n

2
− 1

p− 1

)
=

(
n

2
− 1− 1

p− 1

)
Γ

(
n

2
− 1− 1

p− 1

)
(1.21)

Γ

(
1 +

1

p− 1

)
=

(
1

p− 1

)
Γ

(
1

p− 1

)
(1.22)

Γ

(
n+ 2

4

)
=

(
n− 2

4

)
Γ

(
n− 2

4

)
.(1.23)

Substituting this in (1.20) we get

p

(
n

2
− 1− 1

p− 1

)(
1

p− 1

)
>

(
n− 2

4

)2

.

Straightforward calculations show that this is equivalent to 1 < p < pc(n) where pc(n) is given by (1.2).
Some remarks are in order. Even though the proof of Theorem 1.2 follows from the general procedure

used in [8] and [7], there are a few new ingredients in our proofs. First (in Section 2) we have derived the
4



monotonicity formula involving higher order fractional operators. Second (in Section 3) we have developed
a new and direct method to prove the non-existence of stable homogeneous solutions. This method avoids
multiplication or integration by parts and works for any fractional operator.

The monotonicity formula we derived in Section 2 implicitly used the Pohozaev’s type identity. For higher
order factional operator the Pohozaev identity has been derived recently by Ros-Oton and Serra [18].

2. Monotonicity Formula

The key technique of our proof is a monotonicity formula that is developed in this section. Define

E(r, x, ue) := r2s
p+1
p−1−n

(∫
Rn+1

+ ∩Br(x0)

1

2
y3−2s|∆bue|2 −

Cn,s
p+ 1

∫
∂Rn+1

+ ∩Br(x0)

up+1
e

)

− s

p− 1

(
p+ 2s− 1

p− 1
− n

)
r−3+2s+ 4s

p−1−n
∫
Rn+1

+ ∩∂Br(x0)

y3−2su2e

− s

p− 1

(
p+ 2s− 1

p− 1
− n

)
d

dr

[
r

4s
p−1+2s−2−n

∫
Rn+1

+ ∩∂Br(x0)

y3−2su2e

]

+
1

2
r3
d

dr

[
r

4s
p−1+2s−3−n

∫
Rn+1

+ ∩∂Br(x0)

y3−2s
(

2s

p− 1
r−1u+

∂ue
∂r

)2
]

+
1

2

d

dr

[
r2s

p+1
p−1−n

∫
Rn+1

+ ∩∂Br(x0)

y3−2s

(
|∇ue|2 −

∣∣∣∣∂ue∂r
∣∣∣∣2
)]

+
1

2
r2s

p+1
p−1−n−1

∫
Rn+1

+ ∩∂Br(x0)

y3−2s

(
|∇ue|2 −

∣∣∣∣∂ue∂r
∣∣∣∣2
)

Theorem 2.1. Assume that n > p+4s−1
p+2s−1 + 2s

p−1 − b. Then, E(λ, x, ue) is a nondecreasing function of λ > 0.

Furthermore,

(2.1)
dE(λ, x, ue)

dλ
≥ C(n, s, p) λ

4s
p−1+2s−2−n

∫
Rn+1

+ ∩∂Bλ(x0)

y3−2s
(

2s

p− 1
r−1u+

∂ue
∂r

)2

where C(n, s, p) is independent from λ.

Proof: Suppose that x0 = 0 and the balls Bλ are centred at zero. Set,

(2.2) Ē(ue, λ) := λ2s
p+1
p−1−n

(∫
Rn+1

+ ∩Bλ

1

2
yb|∆bue|2dxdy −

C(n, s)

p+ 1

∫
∂Rn+1

+ ∩Bλ
up+1
e

)
Define ve := ∆bue, u

λ
e (X) := λ

2s
p−1ue(λX), and vλe (X) := λ

2s
p−1+2ve(λX) where X = (x, y) ∈ Rn+1

+ . There-

fore, ∆bu
λ
e (X) = vλe (X) and

∆bv
λ
e = 0 in Rn+1

+ ,
limy→0 y

b∂yu
λ
e = 0 in ∂Rn+1

+ ,

limy→0 y
b∂yv

λ
e = Cn,s(u

λ
e )
p

in ∂Rn+1
+

(2.3)

In addition, differentiating with respect to λ we have

(2.4) ∆b
duλe
dλ

=
dvλe
dλ

.

Note that

Ē(ue, λ) = Ē(uλe , 1) =

∫
Rn+1

+ ∩B1

1

2
yb(vλe )2dxdy − Cn,s

p+ 1

∫
∂Rn+1

+ ∩B1

|uλe |p+1

Taking derivate of the energy with respect to λ, we have

dĒ(uλe , 1)

dλ
=

∫
Rn+1

+ ∩B1

ybvλe
dvλe
dλ

dxdy − Cn,s
∫
∂Rn+1

+ ∩B1

|uλe |p
duλe
dλ

(2.5)
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Using (2.3) we end up with

dĒ(uλe , 1)

dλ
=

∫
Rn+1

+ ∩B1

ybvλe
dvλe
dλ

dxdy −
∫
∂Rn+1

+ ∩B1

lim
y→0

yb∂yv
λ
e

duλe
dλ

(2.6)

From (2.4) and by integration by parts we have∫
Rn+1

+ ∩B1

ybvλe
dvλe
dλ

=

∫
Rn+1

+ ∩B1

yb∆bu
λ
e∆b

duλe
dλ

= −
∫
Rn+1

+ ∩B1

∇∆bu
λ
e · ∇

(
duλe
dλ

)
yb +

∫
∂(Rn+1

+ ∩B1)

∆bu
λ
ey
b∂ν

(
duλe
dλ

)
Note that

−
∫
Rn+1

+ ∩B1

∇∆bue · ∇
duλe
dλ

yb =

∫
Rn+1

+ ∩B1

div(∇∆bu
λ
ey
b)
duλe
dλ
−
∫
∂(Rn+1

+ ∩B1)

yb∂ν(∆bu
λ
e )
duλe
dλ

=

∫
Rn+1

+ ∩B1

yb∆2
bu
λ
e

duλe
dλ
−
∫
∂(Rn+1

+ ∩B1)

yb∂ν(∆bu
λ
e )
duλe
dλ

= −
∫
∂(Rn+1

+ ∩B1)

yb∂ν(∆bu
λ
e )
duλe
dλ

Therefore, ∫
Rn+1

+ ∩B1

ybvλe
dvλe
dλ

=

∫
∂(Rn+1

+ ∩B1)

∆bu
λ
ey
b∂ν

(
duλe
dλ

)
−
∫
∂(Rn+1

+ ∩B1)

yb∂ν(∆bu
λ
e )
duλe
dλ

Boundary of Rn+1
+ ∩B1 consists of ∂Rn+1

+ ∩B1 and Rn+1
+ ∩ ∂B1. Therefore,∫

Rn+1
+ ∩B1

ybvλe
dvλe
dλ

=

∫
∂Rn+1

+ ∩B1

−vλe lim
y→0

yb∂y

(
duλe
dλ

)
+ lim
y→0

yb∂yv
λ
e

duλe
dλ

+

∫
Rn+1

+ ∩∂B1

ybvλe ∂r

(
duλe
dλ

)
− yb∂rvλe

duλe
dλ

where r = |X|, X = (x, y) ∈ Rn+1
+ and ∂r = ∇ · Xr is the corresponding radial derivative. Note that the first

integral in the right-hand side vanishes since ∂y

(
duλe
dλ

)
= 0 on ∂Rn+1

+ . From (2.6) we obtain

dĒ(uλe , 1)

dλ
=

∫
Rn+1

+ ∩∂B1

yb
(
vλe ∂r

(
duλe
dλ

)
− ∂r

(
vλe
) duλe
dλ

)
(2.7)

Now note that from the definition of uλe and vλe and by differentiating in λ we get the following for X ∈ Rn+1
+

duλe (X)

dλ
=

1

λ

(
2s

p− 1
uλe (X) + r∂ru

λ
e (X)

)
(2.8)

dvλe (X)

dλ
=

1

λ

(
2(p+ s− 1)

p− 1
vλe (X) + r∂rv

λ
e (X)

)
(2.9)

Therefore, differentiating with respect to λ we get

λ
d2uλe (X)

dλ2
+
duλe (X)

dλ
=

2s

p− 1

duλe (X)

dλ
+ r∂r

duλe (X)

dλ
6



So, for all X ∈ Rn+1
+ ∩ ∂B1

∂r
(
uλe (X)

)
= λ

duλe (X)

dλ
− 2s

p− 1
uλe (X)(2.10)

∂r

(
duλe (X)

dλ

)
= λ

d2uλe (X)

dλ2
+
p− 1− 2s

p− 1

duλe (X)

dλ
(2.11)

∂r
(
vλe (X)

)
= λ

dvλe (X)

dλ
− 2(p+ s− 1)

p− 1
vλe (X)(2.12)

Substituting (2.11) and (2.12) in (2.7) we get

dĒ(uλe , 1)

dλ
=

∫
Rn+1

+ ∩∂B1

ybvλe

(
λ
d2uλe
dλ2

+
p− 1− 2s

p− 1

duλe
dλ

)
− yb

(
λ
dvλe
dλ
− 2(p+ s− 1)

p− 1
vλe

)
duλe
dλ

(2.13)

=

∫
Rn+1

+ ∩∂B1

yb
(
λvλe

d2uλe
dλ2

+ 3vλe
duλe
dλ
− λdv

λ
e

dλ

duλe
dλ

)

Taking derivative of (2.8) in r we get

r
∂2uλe
∂r2

+
∂uλe
∂r

= λ
∂

∂r

(
duλe
dλ

)
− 2s

p− 1

∂uλe
∂r

So, from (2.11) for all X ∈ Rn+1
+ ∩ ∂B1 we have

∂2uλe
∂r2

= λ
∂

∂r

(
duλe
dλ

)
− p+ 2s− 1

p− 1

∂uλe
∂r

(2.14)

= λ

(
λ
d2uλe
dλ2

+
p− 2s− 1

p− 1

duλe
dλ

)
− p+ 2s− 1

p− 1

(
λ
duλe
dλ
− 2s

p− 1
uλe

)
= λ2

d2uλe
dλ2

− 4s

p− 1
λ
duλe
dλ

+
2s(p+ 2s− 1)

(p− 1)2
uλe

Note that

vλe = ∆bu
λ
e = y−b div(yb∇uλe )

and on Rn+1
+ ∩ ∂B1, we have

div(yb∇uλe ) = (urr + (n+ b)ur)θ
b
1 + divSn(θb1∇Snuλe )

where θ1 = y
r . From the above, (2.10) and (2.14) we get

vλe = λ2
d2uλe
dλ2

+ λ
duλe
dλ

(n+ b− 4s

p− 1
) + uλe (

2s

p− 1
)(
p+ 2s− 1

p− 1
− n− b) + θ−b1 divSn(θb1∇Snuλe )

7



From this and (2.13) we get

dĒ(uλe , 1)

dλ
=

∫
Rn+1

+ ∩∂B1

θb1λ

(
λ2
d2uλe
dλ2

+ αλ
duλe
dλ

+ βuλe

)
d2uλe
dλ2

(2.15)

+

∫
Rn+1

+ ∩∂B1

θb13

(
λ2
d2uλe
dλ2

+ αλ
duλe
dλ

+ βuλe

)
duλe
dλ

(2.16)

−
∫
Rn+1

+ ∩∂B1

θb1λ
duλe
dλ

d

dλ

(
λ2
d2uλe
dλ2

+ αλ
duλe
dλ

+ βuλe

)
(2.17)

+

∫
Rn+1

+ ∩∂B1

θb1λ
d2uλe
dλ2

θ−b1 divSn(θb1∇Snuλe )(2.18)

+

∫
Rn+1

+ ∩∂B1

3θb1
duλe
dλ

θ−b1 divSn(θb1∇Snuλe )(2.19)

−
∫
Rn+1

+ ∩∂B1

θb1λ
d

dλ

(
θ−b1 divSn(θb1∇Snuλe )

) duλe
dλ

(2.20)

where α := n+ b− 4s
p−1 and β := 2s

p−1

(
p+2s−1
p−1 − n− b

)
. Simplifying the integrals we get

dĒ(uλe , 1)

dλ
=

∫
Rn+1

+ ∩∂B1

θb1

(
2λ3

(
d2uλe
dλ2

)2

+ 4λ2
d2uλe
dλ2

duλe
dλ

+ 2(α− β)λ

(
duλe
dλ

)2
)

(2.21)

+

∫
Rn+1

+ ∩∂B1

θb1

(
β

2

d2

dλ2
(
λ(uλe )2

)
− 1

2

d

dλ

(
λ3

d

dλ

(
duλe
dλ

)2
)

+
β

2

d

dλ
(uλe )2

)

+

∫
Rn+1

+ ∩∂B1

λ
d2uλe
dλ2

divSn(θb1∇Snuλe ) + 3 divSn(θb1∇Snuλe )
duλe
dλ
− λ d

dλ

(
divSn(θb1∇Snuλe )

) duλe
dλ

Note that from the assumptions we have α − β − 1 > 0, therefore the first term in the RHS of (2.21) is
positive that is

2λ3
(
d2uλe
dλ2

)2

+ 4λ2
d2uλe
dλ2

duλe
dλ

+ 2(α− β)λ

(
duλe
dλ

)2

= 2λ

(
λ
d2uλe
dλ2

+
duλe
dλ

)2

+ 2(α− β − 1)λ

(
duλe
dλ

)2

> 0

From this we have

dĒ(uλe , 1)

dλ
≥

∫
Rn+1

+ ∩∂B1

θb1

(
β

2

d2

dλ2
(
λ(uλe )2

)
− 1

2

d

dλ

(
λ3

d

dλ

(
duλe
dλ

)2
)

+
β

2

d

dλ
(uλe )2

)

+

∫
Rn+1

+ ∩∂B1

λ
d2uλe
dλ2

divSn(θb1∇Snuλe ) + 3 divSn(θb1∇Snuλe )
duλe
dλ
− λ d

dλ

(
divSn(θb1∇Snuλe )

) duλe
dλ

=: R1 +R2.

Note that the terms appeared in R1 are of the following form∫
Rn+1

+ ∩∂B1

θb1
d2

dλ2
(
λ(uλe )2

)
=

d2

dλ2

(
λ

4s
p−1+2(s−1)−n

∫
Rn+1

+ ∩∂Bλ
ybu2e

)
∫
Rn+1

+ ∩∂B1

θb1
d

dλ

[
λ3

d

dλ

(
duλe
dλ

)2
]

=
d

dλ

[
λ3

d

dλ

(
λ

4s
p−1+2s−3−n

∫
Rn+1

+ ∩∂Bλ
yb
[

2s

p− 1
λ−1ue +

∂ue
∂r

]2)]
∫
Rn+1

+ ∩∂B1

yb
d

dλ
(uλe )2 =

d

dλ

(
λ2s−3+

4s
p−1−n

∫
Rn+1

+ ∩∂Bλ
ybu2e

)
8



We now apply integration by parts to simplify the terms appeared in R2.

R2 =

∫
Rn+1

+ ∩∂B1

λ
d2uλe
dλ2

divSn(θb1∇Snuλe ) + 3 divSn(θb1∇Snuλe )
duλe
dλ
− λ d

dλ

(
divSn(θb1∇Snuλe )

) duλe
dλ

=

∫
Rn+1

+ ∩∂B1

−θb1λ∇Snuλe · ∇Sn
d2uλe
dλ2

− 3θb1∇Snuλe · ∇Sn
duλe
dλ

+ θb1λ

∣∣∣∣∇Sn duλedλ
∣∣∣∣2

= −λ
2

d2

dλ2

(∫
Rn+1

+ ∩∂B1

θb1|∇θuλe |2
)
− 3

2

d

dλ

(∫
Rn+1

+ ∩∂B1

θb1|∇θuλe |2
)

+ 2λ

∫
Rn+1

+ ∩∂B1

θb1

∣∣∣∣∇θ duλedλ
∣∣∣∣2

= −1

2

d2

dλ2

(
λ

∫
Rn+1

+ ∩∂B1

θb1|∇θuλe |2
)
− 1

2

d

dλ

(∫
Rn+1

+ ∩∂B1

θb1|∇θuλe |2
)

+ 2λ

∫
Rn+1

+ ∩∂B1

θb1

∣∣∣∣∇θ duλedλ
∣∣∣∣2

≥ −1

2

d2

dλ2

(
λ

∫
Rn+1

+ ∩∂B1

θb1|∇θuλe |2
)
− 1

2

d

dλ

(∫
Rn+1

+ ∩∂B1

θb1|∇θuλe |2
)

Note that the two terms that appear as lower bound for R3 are of the form

d2

dλ2

(
λ

∫
Rn+1

+ ∩∂B1

θb1|∇θuλe |2
)

=
d2

dλ2

[
λ2s

p+1
p−1−n

∫
Rn+1

+ ∩∂Bλ
yb

(
|∇u|2 −

∣∣∣∣∂u∂r
∣∣∣∣2
)]

d

dλ

(∫
Rn+1

+ ∩∂B1

θb1|∇θuλe |2
)

=
d

dλ

[
λ2s

p+1
p−1−n−1

∫
Rn+1

+ ∩∂Bλ
yb

(
|∇u|2 −

∣∣∣∣∂u∂r
∣∣∣∣2
)]

2

Remark 2.1. It is straightforward to show that n > p+1
p−12s implies n > p+4s−1

p+2s−1 + 2s
p−1 − b.

3. Homogeneous Solutions

In this section, we examine homogenous solutions of the form u = r−
2s
p−1ψ(θ). Note that the methods

and ideas that we apply here are different from the ones used in [7].

Theorem 3.1. Suppose that u = r−
2s
p−1ψ(θ) is a stable solution of (1.1) then ψ = 0 provided p > n+2s

n−2s and

p
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )
>

Γ(n+2s
4 )2

Γ(n−2s4 )2

Proof. Since u satisfies (1.1), the function ψ satisfies (we omit the P.V.)

|x|−
2ps
p−1ψp(θ) =

∫
|x|−

2s
p−1ψ(θ)− |y|−

2s
p−1ψ(σ)

|x− y|n+2s
dy

=

∫
|x|−

2s
p−1ψ(θ)− r−

2s
p−1 t−

2s
p−1ψ(σ)

(t2 + 1− 2t < θ, σ >)
n+2s

2 |x|n+2s
|x|ntn−1dtdσ where |y| = rt

= |x|−
2ps
p−1 [

∫
ψ(θ)− t−

2s
p−1ψ(θ)

(t2 + 1− 2t < θ, σ >)
n+2s

2

tn−1dtdσ

+

∫
t−

2s
p−1 (ψ(θ)− ψ(σ)

(t2 + 1− 2t < θ, σ >)
n+2s

2

tn−1dtdσ]

We now drop |x|−
2ps
p−1 and get

(3.1) ψ(θ)An,s(θ) +

∫
Sn−1

K 2s
p−1

(< θ, σ >)(ψ(θ)− ψ(σ))dσ = ψp(θ)

where

An,s :=

∫ ∞
0

∫
Sn−1

1− t−
2s
p−1

(t2 + 1− 2t < θ, σ >)
n+2s

2

tn−1dσdt
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and

K 2s
p−1

(< θ, σ >) :=

∫ ∞
0

tn−1−
2s
p−1

(t2 + 1− 2t < θ, σ >)
n+2s

2

dt

Note that

K 2s
p−1

(< θ, σ >) =

∫ 1

0

tn−1−
2s
p−1

(t2 + 1− 2t < θ, σ >)
n+2s

2

dt+

∫ ∞
1

tn−1−
2s
p−1

(t2 + 1− 2t < θ, σ >)
n+2s

2

dt

=

∫ 1

0

tn−1−
2s
p−1 + t2s−1+

2s
p−1

(t2 + 1− 2t < θ, σ >)
n+2s

2

dt

We now set Kα(< θ, σ >) =
∫ 1

0
tn−1+α+t2s−1+α

(t2+1−2t<θ,σ>)
n+2s

2

dt. The most important property of the Kα is that Kα is

decreasing in α. This can be seen by the following elementary calculations

∂αKα =

∫ 1

0

−tn−1−α ln t+ t2s−1+α ln t

(t2 + 1− 2t < θ, σ >)
n+2s

2

dt

=

∫ 1

0

ln t(−tn−1−α + t2s−1+α)

(t2 + 1− 2t < θ, σ >)
n+2s

2

dt < 0

For the last part we have used the fact that for p > n+2s
n−2s we have 2s− 1 + α < n− 1− α.

From (3.1) we get the following

(3.2)

∫
Sn−1

ψ2(θ)An,s +

∫
Sn−1

K 2s
p−1

(< θ, σ >)(ψ(θ)− ψ(σ))2dθdσ =

∫
Sn−1

ψp+1(θ)dθ

We set a standard cut-off function ηε ∈ C1
c (R+) at the origin and at infinity that is ηε = 1 for ε < r < ε−1

and ηε = 0 for either r < ε/2 or r > 2/ε. We test the stability (1.8) on the function φ(x) = r−
n−2s

2 ψ(θ)ηε(r).
Note that ∫

Rn

φ(x)− φ(y)

|x− y|n+2s
dy =

∫ ∫
Sn−1

r−
n−2s

2 ψ(θ)η(r)− |y|−n−2s
2 ψ(σ)η(|y|)

(r2 + |y|2 − 2r|y| < θ, σ >)
n+2s

2

dσd(|y|)

Now set |y| = rt then∫
Rn

φ(x)− φ(y)

|x− y|n+2s
dy = r−

n
2−s

∫ ∞
0

∫
Sn−1

ψ(θ)η(r)− t−n−2s
2 ψ(σ)η(rt)

(t2 + 1− 2t < θ, σ >)
n+2s

2

tn−1dtdσ

= r−
n
2−s

∫ ∫
Sn−1

ψ(θ)η(r)− t−n−2s
2 ψ(σ)η(r) + t−

n−2s
2 (η(r)ψ(θ)− η(rt)ψ(σ))

(t2 + 1− 2t < θ, σ >)
n+2s

2

tn−1dtdσ

= r−
n
2−sη(r)ψ(θ)

∫ ∞
0

∫
Sn−1

1− tn−2s
2

(t2 + 1− 2t < θ, σ >)
n+2s

2

tn−1dtdσ

+r−
n
2−sη(r)

∫ ∞
0

∫
Sn−1

tn−1−
n−2s

2 (ψ(θ)− ψ(σ))

(t2 + 1− 2t < θ, σ >)
n+2s

2

dtdσ

+r−
n
2−s

∫ ∞
0

∫
Sn−1

tn−1−
n−2s

2 (η(r)− η(rt))ψ(σ)

(t2 + 1− 2t < θ, σ >)
n+2s

2

dtdσ

Define Λn,s :=
∫∞
0

∫
Sn−1

1−t
n−2s

2

(t2+1−2t<θ,σ>)
n+2s

2

tn−1dσdt. Therefore,∫
Rn

φ(x)− φ(y)

|x− y|n+2s
dy = r−

n
2−sη(r)ψ(θ)Λn,s

+r−
n
2−sη(r)

∫
Sn−1

Kn−2s
2

(< θ, σ >)(ψ(θ)− ψ(σ))dσ

+r−
n
2−s

∫ ∞
0

∫
Sn−1

t−
n−2s

2 (η(r)− η(rt))ψ(σ)

(t2 + 1− 2t < θ, σ >)
n+2s

2

dtdσ
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Applying the above, we compute the left-hand side of the stability inequality (1.8),∫
Rn

∫
Rn

(φ(x)− φ(y))2

|x− y|n+2s
dxdy = 2

∫
Rn

∫
Rn

(φ(x)− φ(y))φ(x)

|x− y|n+2s
dxdy

= 2

∫ ∞
0

r−1η2(r)dr

∫
Sn−1

ψ2Λn,sdθ

+2

∫ ∞
0

r−1η2(r)dr

∫
Sn−1

Kn−2s
2

(< θ, σ >)(ψ(θ)− ψ(σ))2dσdθ

+2

∫ ∞
0

[∫ ∞
0

r−1η(r)(η(r)− η(rt))dr

] ∫
Sn−1

∫
Sn−1

tn−1−
n−2s

2 ψ(σ)ψ(θ)

(t2 + 1− 2t < θ, σ >)
n+2s

2

dσdθdt(3.3)

We now compute the second term in the stability inequality (1.8) for the test function φ(x) = r−
n−2s

2 ψ(θ)η(r)

and u = r−
2s
p−1ψ(θ),

p

∫ ∞
0

|u|p−1φ2 = p

∫ ∞
0

r−2sr−(n−2s)ψp+1η2(r)dr

= p

∫ ∞
0

r−1η2(r)dr

∫
Sn−1

ψp+1(θ)dθ(3.4)

Due to the definition of the ηε, we have
∫∞
0
r−1η2ε (r)dr = ln(2/ε) + O(1). Note that this term appears in

both terms of the stability inequality that we computed in (3.3) and (3.5). We now claim that

fε(t) :=

∫ ∞
0

r−1ηε(r)(ηε(r)− ηε(rt))dr = O(ln t)

Note that ηε(rt) = 1 for ε
t < r < 1

tε and ηε(rt) = 0 for either r < ε
2t or r > 2

tε . Now consider various ranges
of value of t ∈ (0,∞) to compare the support of ηε(r) and ηε(rt). From the definition of ηε, we have

fε(t) =

∫ 2
ε

ε
2

r−1ηε(r)(ηε(r)− ηε(rt))dr

In what follows we consider a few cases to explain the claim. For example when ε < ε
t <

1
ε then

fε(t) ≈
∫ ε

t

ε
2

r−1dr +

∫ 2
εt

1
ε

r−1dr ≈ ln t

Now consider the case 1
ε <

ε
t <

1
ε then t ≈ ε2. So,

fε(t) ≈
∫ ε

t

ε
2

r−1dr +

∫ 2
ε

ε
t

r−1dr ≈ ln t+ ln ε ≈ ln t

Other cases can be treated similarly. From this one can see that∫ ∞
0

[∫ ∞
0

r−1η(r)(η(r)− η(rt))dr

] ∫
Sn−1

∫
Sn−1

tn−1−
n−2s

2

(t2 + 1− 2t < θ, σ >)
n+2s

2

ψ(σ)ψ(θ)dσdθdt(3.5)

≈
∫
Sn−1

∫
Sn−1

∫ ∞
0

tn−1−
n−2s

2 ln t

(t2 + 1− 2t < θ, σ >)
n+2s

2

ψ(σ)ψ(θ)dtdσdθ(3.6)

= O(1)(3.7)

Collecting higher order terms of the stability inequality we get

(3.8) Λn,s

∫
Sn−1

ψ2 +

∫
Sn−1

Kn−2s
2

(< θ, σ >)(ψ(θ)− ψ(σ))2dσ ≥ p
∫
Sn−1

ψp+1

From this and (3.2) we obtain

(Λn,s − pAn,s)
∫
Sn−1

ψ2 +

∫
Sn−1

(Kn−2s
2
− pK 2s

p−1
)(< θ, σ >)(ψ(θ)− ψ(σ))2dσ ≥ 0
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Note that Kα is decreasing in α. This implies Kn−2s
2

< K 2s
p−1

for p > n+2s
n−2s . So, Kn−2s

2
− pK 2s

p−1
< 0. On

the other hand the assumption of the theorem implies that Λn,s − pAn,s < 0. Therefore, ψ = 0.
�

Remark 3.1. Note that in this section we never used the fact that 1 < s < 2. So this proof holds for a
larger range of the parameter s.

4. Energy Estimates

In this section, we provide some estimates for solutions of (1.1). These estimates are needed in the next
section when we perform a blow-down analysis argument. The methods and ideas provided in this section
are strongly motivated by [7, 8].

Lemma 4.1. The following identities hold for any functions ζ and η,

∆bζ∆b(ζη
2)− |∆b(ζη)|2 = −ζ2|∆bη|2 + 2ζ∆bζ|∇η|2 − 4|∇ζ · ∇η|2 − 4ζ∆bη∇ζ · ∇η(4.1)

∆b(ζη) = η∆bζ + ζ∆bη + 2∇ζ · ∇η(4.2)

Proof. We omit the proof, since it is elementary. �

We apply the given identities to get some energy estimates.

Lemma 4.2. Let u be a solution of (1.1) that is stable outside a ball BR0 and ue satisfies (1.7). Then there
exists a positive constant C such that∫

∂Rn+1
+

|ue|p+1η2 +

∫
Rn+1

+

yb|∆bue|2η2 ≤ C

∫
Rn+1

+

ybu2e
(
|∆bη|2 + |∆b|∇η|2|+ |∇η · ∇∆bη|

)
(4.3)

+C

∫
Rn+1

+

yb|ue||∆bue||∇η|2(4.4)

Proof. Multiply the equation with ybuη2 where η is a test function to get

0 =

∫
Rn+1

+

yb(ueη
2)∆2

bue =

∫
Rn+1

+

ueη
2 div(yb∇∆bue)

= −
∫
Rn+1

+

yb∇(ueη
2) · ∇∆bue +

∫
∂Rn+1

+

lim
y→0

yb∂y(∆bue)(ueη
2)

= −
∫
Rn+1

+

yb∇(ueη
2) · ∇∆bue + Cn,s

∫
∂Rn+1

+

|ue|p+1η2

From this we get

(4.5) Cn,s

∫
∂Rn+1

+

|ue|p+1η2 =

∫
Rn+1

+

yb∆bue∆b(ueη
2)

Apply Lemma 4.1 for ζ = ue we get

Cn,s

∫
∂Rn+1

+

|ue|p+1η2 =

∫
Rn+1

+

yb|∆b(ueη)|2 −
∫
Rn+1

+

ybu2e|∆bη|2 + 2

∫
Rn+1

+

ybue∆bue|∇η|2

−4

∫
Rn+1

+

yb|∇ue · ∇η|2 − 4

∫
Rn+1

+

ybue∆bη∇ue · ∇η(4.6)

Note that the last integral is

−4

∫
Rn+1

+

ybue∆bη∇ue · ∇η = −2

∫
Rn+1

+

yb∆bη∇(u2e) · ∇η

= 2

∫
Rn+1

+

u2e div(yb∆bη∇η) = 2

∫
Rn+1

+

ybu2e(|∆bη|2 +∇η · ∇∆bη)
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From this and (4.6) we get

Cn,s

∫
∂Rn+1

+

|ue|p+1η2 =

∫
Rn+1

+

yb|∆b(ueη)|2 + 2

∫
Rn+1

+

ybue∆bue|∇η|2(4.7)

−4

∫
Rn+1

+

yb|∇ue · ∇η|2 +

∫
Rn+1

+

ybu2e(|∆bη|2 + 2∇η · ∇∆bη)(4.8)

We now apply the stability inequality (1.8) for φ = uη to get

(4.9) p

∫
Rn
|u|p+1η2 ≤

∫
Rn+1

+

yb|∆b(ueη)|2

From (4.9) and (4.7) we obtain∫
∂Rn+1

+

|ue|p+1η2 +

∫
Rn+1

+

yb|∆b(ueη)|2 ≤ C

∫
Rn+1

+

yb|ue||∆bue||∇η|2 + C

∫
Rn+1

+

yb|∇ue|2|∇η|2

+C

∫
Rn+1

+

ybu2e(|∆bη|2 + |∇η · ∇∆bη|)(4.10)

Note that from Lemma 4.1 we have ∆b(ueη) = η∆bue + ue∆bη + 2∇ue · ∇η. So from (4.10) we get∫
∂Rn+1

+

|ue|p+1η2 +

∫
Rn+1

+

yb|∆bue|2η2 ≤ C

∫
Rn+1

+

yb|ue||∆bue||∇η|2 + C

∫
Rn+1

+

yb|∇ue|2|∇η|2(4.11)

+C

∫
Rn+1

+

ybu2e(|∆bη|2 + |∇η · ∇∆bη|)(4.12)

Note also that 2|∇ue|2 = ∆b(u
2
e)− 2ue∆bue. Therefore,

2

∫
Rn+1

+

yb|∇ue|2|∇η|2 =

∫
Rn+1

+

yb|∇η|2∆b(u
2
e)− 2

∫
Rn+1

+

ybue∆bue|∇η|2(4.13)

=

∫
Rn+1

+

ybu2e∆b|∇η|2 − 2

∫
Rn+1

+

ybue∆bue|∇η|2(4.14)

From this and (4.11) we get∫
∂Rn+1

+

|ue|p+1η2 +

∫
Rn+1

+

yb|∆bue|2η2 ≤ C

∫
Rn+1

+

yb|ue||∆bue||∇η|2

+C

∫
Rn+1

+

ybu2e(|∆bη|2 + |∇η · ∇∆bη|+ |∆b|∇η|2|)(4.15)

This finishes the proof. �

Corollary 4.1. With the same assumption as Lemma 4.2. Then there exists a positive constant C such that

(4.16)

∫
BR∩∂Rn+1

+

|ue|p+1 +

∫
BR∩Rn+1

+

yb|∆bue|2 ≤ CR−4
∫
BR∩Rn+1

+

ybu2e

Proof. This is a direct consequence of the estimate (4.3). Substitute η with ηm in (4.3) for a number
3 < m ∈ N. Therefore

m2

∫
Rn+1

+

yb|ue||∆bue||∇η|2η2m−2 ≤ ε
∫
Rn+1

+

yb|∆bue|2wη2m + C(ε)

∫
Rn+1

+

ybu2eη
2m−4|∇η|4(4.17)

for a small enough ε > 0. One can apply the standard test function to finish the proof. �

Lemma 4.3. Suppose that u is a solution of (1.1) that is stable outside some ball BR0
⊂ Rn. For η ∈

C∞c (Rn \BR0
) and x ∈ Rn define

(4.18) ρ(x) =

∫
Rn

(η(x)− η(y))2

|x− y|n+2s
dy.
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Then

(4.19)

∫
Rn
|u|p+1η2dx+

∫
Rn

∫
Rn

|u(x)η(x)− u(y)η(y)|2

|x− y|n+2s
dxdy ≤ C

∫
Rn
u2ρdx

Proof. Proof is quite similar to Lemma 2.1 in [7] and we omit it here. �

Lemma 4.4. Let m > n/2 and x ∈ Rn. Set

(4.20) ρ(x) =

∫
Rn

(η(x)− η(y))2

|x− y|n+2s
dy where η(x) = (1 + |x|2)−m/2

Then there is a constant C = C(n, s,m) > 0 such that

(4.21) C−1(1 + |x|2)−n/2−s ≤ ρ(x) ≤ C(1 + |x|2)−n/2−s

Proof. Proof is quite similar to Lemma 2.2 in [7] and we omit it here. �

Corollary 4.2. Suppose that m > n/2, η given by (4.20) and R > R0 > 1. Define

(4.22) ρR(x) =

∫
Rn

(ηR(x)− ηR(y))2

|x− y|n+2s
dy where ηR(x) = η(x/R)ψ(x/R0)

for the standard test function ψ that is ψ ∈ C∞(Rn) and 0 ≤ ψ ≤ 1, ψ = 0 on B1 and ψ = 1 on Rn \ B2.
Then there exists a constant C > 0 such that

ρR(x) ≤ Cη2(x/R)|x|−(n+2s) +R−2sρ(x/R).

Lemma 4.5. Suppose that u is a solution of (1.1) that is stable outside a ball BR0
. Consider ρR that is

defined in Corollary 5.2 for n/2 < m < n/2 + s(p+ 1)/2. Then there exists a constant C > 0 such that∫
Rn
u2ρR ≤ C

(∫
B3R0

u2ρR +Rn−2s
p+1
p−1

)
for any R > 3R0

Proof. Proof is quite similar to Lemma 2.4 in [7] and we omit it here. �

Lemma 4.6. Suppose that p 6= n+2s
n−2s . Let u be a solution of (1.1) that is stable outside a ball BR0 and ue

satisfies (1.7). Then there exists a constant C > 0 such that∫
BR

ybu2e ≤ CR
n+4−2s p+1

p−1

for any R > 3R0.

Proof. The extension ue satisfies

ū(x, y) ≤ Cn,s
∫
Rn
u2(z)

y2s

(|x− z|2 + y2)
n+2s

2

dz

From this we have∫
BR

y3−2su2edxdy ≤ Cn,s

∫
|x|≤R,z∈Rn

u2e(z)

(∫ R

0

y3

(|x− z|2 + y2)
n+2s

2

dy

)
dzdx

≤ Cn,s

∫
|x|≤R,z∈Rn

u2e(z)

[∫ R2

0

(|x− z|2 + α2)1−
n
2−sdα− |x− z|2

∫ R2

0

(|x− z|2 + α2)−
n
2−sdα

]

= Cn,s

∫
|x|≤R,z∈Rn

u2e(z)(−2 +
n

2
+ s)−1

[
(|x− z|2)2−

n
2−s − (|x− z|2 +R2)2−

n
2−sdα

]
+Cn,s

∫
|x|≤R,z∈Rn

u2e(z)|x− z|2(
n

2
+ s− 1)−1

[
(|x− z|2 +R2)1−

n
2−s − (|x− z|2)2−

n
2−sdα

]
We now split the integral to |x− z| < 2R and |x− z| > 2R. For the case of |x− z| < 2R we get
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∫
|x|≤R,|x−z|<2R

u2e(z)(−2 +
n

2
+ s)−1

[
(|x− z|2)2−

n
2−s − (|x− z|2 +R2)2−

n
2−s
]

+

∫
|x|≤R,|x−z|<2R

u2e(z)|x− z|2(
n

2
+ s− 1)−1

[
(|x− z|2 +R2)1−

n
2−s − (|x− z|2)2−

n
2−s
]

≤ C

∫
|x|≤R,|x−z|<2R

u2e(z)(|x− z|2)2−
n
2−s

≤ R4−2s
∫
B3R

u2e(z)dz ≤ CR4−2s
(∫

B3R

|u|p+1η2R

)2/(p+1)(∫
B3R

η
−4/(p−1)
R

)(p−1)/(p+1)

≤ CR4−2s+n p−1
p+1

(∫
B3R

u2(z)ρR(z)dz

)2/(p+1)

≤ CRn+4−2s p+1
p−1

Here we have used Lemma 4.3 and Lemma 4.5. For the case of |x − z| > 2R we apply the mean value
inequality to get∫

|x|≤R,|x−z|≥2R
u2e(z)(−2 +

n

2
+ s)−1

[
(|x− z|2)2−

n
2−s − (|x− z|2 +R2)2−

n
2−s
]

+

∫
|x|≤R,|x−z|≥2R

u2e(z)|x− z|2(
n

2
+ s− 1)−1

[
(|x− z|2 +R2)1−

n
2−s − (|x− z|2)2−

n
2−s
]

≤ CR4

∫
|x|≤R,|x−z|≥2R

u2e(z)(|x− z|2)−
n
2−s

≤ CR4

∫
|z|≥R

u2e(z)ρdz

≤ CRn+4−2s p+1
p−1 .

Here we have used Corollary 4.2 and Lemma 4.5. This finishes the proof.
�

Lemma 4.7. Let u be a solution of (1.1) that is stable outside a ball BR0
and ue satisfies (1.7). Then there

exists a positive constant C such that

(4.23)

∫
BR∩∂Rn+1

+

|ue|p+1 +

∫
BR∩Rn+1

+

yb|∆bue|2 ≤ CRn−2s
p+1
p−1

Proof. This is a direct consequence of Corollary 4.1 and Lemma 4.6. �

5. Blow-Down Analysis

In this section we provide the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that u is a solution of (1.1) that is stable outside the ball of radius R0

and suppose that ue is its extension satisfying (1.7).
Let’s first consider the subcritical case, i.e. 1 < p ≤ pS(n). Note that for the subcritical case Lemma

implies that u ∈ Ḣs(Rn) ∩ Lp+1(Rn). Multiplying (1.1) with u and doing integration, we obtain

(5.1)

∫
Rn
|u|p+1 = ||u||2

Ḣs(Rn)

in addition multiplying (1.1) with uλ(x) = u(λx) yields∫
Rn
|u|p−1uλ =

∫
Rn

(−∆)s/2u(−∆)s/2uλ = λs
∫
Rn
wwλ
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where w = (−∆)s/2u. Following ideas provided in [8, 18] and the using the change of variable z =
√
λx one

can get the following Pohozaev identity

− n

p+ 1

∫
Rn
|u|p+1 =

2s− n
2

∫
Rn
w2 +

d

dλ
|λ=1

∫
Rn
w
√
λw1/

√
λdz =

2s− n
2
||u||2

Ḣs(Rn)

This equality together and (5.1) proves the theorem for the subcritical case.
We now focus on the supercritical case, i.e. p > pS(n). We perform the proof in a few steps.

Step 1. limλ→∞E(ue, 0, λ) <∞.
From Theorem 2.1 E is nondecreasing. So, we only need to show that E(ue, 0, λ) is bounded. Note that

E(ue, 0, λ) ≤ 1

λ

∫ 2λ

λ

E(ue, 0, t)dt ≤
1

λ2

∫ 2λ

λ

∫ t+λ

t

E(ue, 0, γ)dγdt

From Lemma 4.7 we conclude that

1

λ2

∫ 2λ

λ

∫ t+λ

t

γ2s
p+1
p−1−n

(∫
Rn+1

+ ∩Bγ

1

2
y3−2s|∆bue|2dydx−

Cn,s
p+ 1

∫
∂Rn+1

+ ∩Bγ
up+1
e dx

)
dγdt ≤ C

where C > 0 is independent from λ. For the next term in the energy we have

1

λ2

∫ 2λ

λ

∫ t+λ

t

(
γ−3+2s+ 4s

p−1−n
∫
Rn+1

+ ∩∂Bγ
y3−2su2edydx

)
dγdt ≤ 1

λ2

∫ 2λ

λ

t−3+2s+ 4s
p−1−n

∫
Bt+λ\Bt

y3−2su2edydxdt

≤ 1

λ2

∫ 2λ

λ

t−3+2s+ 4s
p−1−n

(∫
B3λ

y3−2su2edydx

)
dt

≤ λn+4−2s p+1
p−1

1

λ2

∫ 2λ

λ

t−3+2s+ 4s
p−1−ndt

≤ C

where C > 0 is independent from λ. In the above estimates we have applied Lemma 4.6. For the next term
we have

1

λ2

∫ 2λ

λ

∫ t+λ

t

γ3

2

d

dγ

[
γ2s−3−n+

4s
p−1

∫
∂Bγ

y3−2s
(

2s

p− 1
γ−1ue +

∂ue
∂r

)2
]
dγdt

=
1

2λ2

∫ 2λ

λ

[(t+ λ)2s−n+
4s
p−1

∫
∂Bt+λ

y3−2s
(

2s

p− 1
(t+ λ)−1ue +

∂ue
∂r

)2

−t2s−n+
4s
p−1

∫
∂Bλ

y3−2s
(

2s

p− 1
γ−1ue +

∂ue
∂r

)2

]dt

− 3

2λ2

∫ 2λ

λ

∫ t+λ

t

[
γ2s−1−n+

4s
p−1

∫
∂Bγ

y3−2s
(

2s

p− 1
γ−1ue +

∂ue
∂r

)2
]
dγdt

≤ λ−2+2s−n+ 4s
p−1

∫
B3λ\Bλ

y3−2s
(

2s

p− 1
λ−1ue +

∂ue
∂r

)2

≤ C

where C > 0 is independent from λ. The rest of the terms can be treated similarly.
Step 2. There exists a sequence λi → ∞ such that (uλie ) converges weakly in H1

loc(Rn, y3−2sdxdy) to a
function u∞e .

Note that this is a direct consequence of Lemma 4.7.
Step 3. u∞e is homogeneous.
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To prove this claim, apply the scale invariance of E, its finiteness and the monotonicity formula; given
R2 > R1 > 0,

0 = lim
i→∞

(E(ue, 0, R2λi)− E(ue, 0, R1λi))

= lim
i→∞

(
E(uλie , 0, R2)− E(uλie , 0, R1)

)
≥ lim inf

i→∞

∫
(BR2

\BR1
)∩Rn+1

+

y3−2sr
4s
p−1+2s−2−n

(
2s

p− 1
r−1uλie +

∂uλie
∂r

)2

dydx

≥
∫
(BR2

\BR1
)∩Rn+1

+

y3−2sr
4s
p−1+2s−2−n

(
2s

p− 1
r−1u∞e +

∂u∞e
∂r

)2

dydx

In the last inequality we have used the weak convergence of (uλie ) to u∞e in H1
loc(Rn, y3−2sdydx). This implies

2s

p− 1
r−1u∞e +

∂u∞e
∂r

= 0 a.e. in Rn+1
+ .

Therefore, u∞e is homogeneous.
Step 4. u∞e = 0.

This is a direct consequence of Theorem 3.1.
Step 5. (uλie ) converges strongly to zero in H1(BR \Bε, y3−2sdydx) and (uλie ) converges strongly to zero in
Lp+1(BR \Bε) for all R > ε > 0.
Step 6. ue ≡ 0.

I(ue, λ) = I(uλe , 1)

=
1

2

∫
Rn+1

+ ∩B1

y3−2s|∆bu
λ
e |2dxdy −

κs
p+ 1

∫
∂Rn+1

+ ∩B1

|uλe |p+1dx

=
1

2

∫
Rn+1

+ ∩Bε
y3−2s|∆bu

λ
e |2dxdy −

κs
p+ 1

∫
∂Rn+1

+ ∩Bε
|uλe |p+1dx

+
1

2

∫
Rn+1

+ ∩B1\Bε
y3−2s|∆bu

λ
e |2dxdy −

κs
p+ 1

∫
∂Rn+1

+ ∩B1\Bε
|uλe |p+1dx

= εn−
2s(p+1)
p−1 I(ue, λε) +

1

2

∫
Rn+1

+ ∩B1\Bε
y3−2s|∆bu

λ
e |2dxdy −

κs
p+ 1

∫
∂Rn+1

+ ∩B1\Bε
|uλe |p+1dx

≤ Cεn−
2s(p+1)
p−1 +

1

2

∫
Rn+1

+ ∩B1\Bε
y3−2s|∆uλe |2dxdy −

κs
p+ 1

∫
∂Rn+1

+ ∩B1\Bε
|uλe |p+1dx

Letting λ→ +∞ and then ε→ 0, we deduce that limλ→+∞ I(ue, λ) = 0. Using the monotonicity of E,

(5.2) E(ue, λ) ≤ 1

λ

∫ 2λ

λ

E(t) dt ≤ sup
[λ,2λ]

I + Cλ−n−1+
2s(p+1)
p−1

∫
B2λ\Bλ

u2e

and so limλ→+∞E(ue, λ) = 0. Since u is smooth, we also have E(ue, 0) = 0. Since E is monotone, E ≡ 0
and so ū must be homogeneous, a contradiction unless ue ≡ 0.

Remark 5.1. Note that we expect that when (1.19) does not hold that is when

(5.3) p
Γ(n2 −

s
p−1 )Γ(s+ s

p−1 )

Γ( s
p−1 )Γ(n−2s2 − s

p−1 )
≤

Γ(n+2s
4 )2

Γ(n−2s4 )2

there exist radial entire stable solutions. The method of construction of such solutions is the one that is applied
in [7] and references therein. More precisely, one needs to mimic the standard proof for the existence of a
minimal solution that is axially symmetric for the associated problem on bounded domains. Then applying
the truncation method and the moving plane method one can show that the minimal solution is bounded and
radially decreasing. From elliptic estimates and some classical convexity arguments the minimal solution
would converge to the singular solution that is stable. This implies that (5.3) should hold. Finally using
the singular solution and the minimal solution one can construct a radial, bounded and smooth solution via
rescaling arguments.
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