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Abstract
In this paper we study the following conformally invariant poly-harmonic equa-
tion
m 3+2m . 3
A"y = —u3—2n  inR°, u >0,

with m = 2,3. We prove the existence of radial solutions with prescribed volume
6

ng, u3-2m dx. We show that the set of all possible values of the volume is a bounded

interval (0, A*] for m = 2, and it is (0,00) for m = 3. This is in sharp contrast to

_6
m = 1 case in which the volume ng u3=2m dx is a fixed value.

1 Introduction to the problem

We consider the negative exponent problem

Ay = —yizm in R3, >0, (1)

where m is either 2 or 3. Geometrically, if u is a smooth solution to then

4
the conformal metric g, := u3=2m|dz|? (]dz|? is the Euclidean metric on R3) has
constant Q-curvature on R?, see [I], 3, 5, 19]. Moreover, the volume of the metric
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which is invariant under the scaling uy(z) := )\wu()\a:) with A > 0.
Equation belongs to the class of conformally invariant equations. When
m = 1 this is called Yamabe equation; while for m = 2 it is Q—curvature equation.
In recent years Problem has been extensively studied in [3}, 14} 7, [10L 111 [15] [1§]
for m = 2, in [6, 5] for m = 3 and in [12],[16] for higher order case (but to an integral
equation). We recall that radial solutions to with m = 2 has either exact liner
growth or exact quadratic growth at infinity, that is,
u(r) u(r)

TlggoT € (0,00) or Tlggor—z € (0,00).

The solution with exact linear growth is unique (up to a scaling) and is given by

Uo(r) = \//1/15 + 12, (2)

However, there are infinitely many (radial or nonradial) solutions with quadratic
growth, see [4, [7, 10]. For m = 3, radial solutions grows either cubically or quatri-
cally at infinity, that is,
u(r u(r
lim ulr) € (0,00) or lim % € (0,00).
r—o0 T
In this case also we have an explicit solution which grows cubically at infinity,
namely
3
Ur(r) = (31575 +12)°
It is worth pointing out that both solutions Uy and U; can be obtained by pulling
back the round metric of S? via stereographic projection, and they satisfy an integral
equation of the form

342m
U(x) = cn / & — yPUER (4)dy,
R3

where p = 1 for m = 2 and p = 3 for m = 3. Nevertheless, U; is not unique (up to
scaling) among the radial solutions having exact cubic growth at infinity.

We now state our main results concerning the existence of radial solutions to (|1
with prescribed volume. For m = 2 we prove:

Theorem 1.1 There exists a radial solution to

dz
I o
Ay = inR%, uw>0, Ay: /RleG(ZL‘) (3)

if and an only if Ay € (0, A*], where A* is the volume of the metric gy,, that is,

. dx _ dx
A '_/Rs Us () /R3( 1/15 + |z]2)3 )

Moreover, if A, = A* then up to a re-scaling we have u = Ug.




For m = 3 we prove existence of radial solution for every prescribed volume.

Theorem 1.2 For every A > 0 there exists a positive radial solution to

1
Ay = 3 in R3 (5)

dx
/R e = A (6)

A similar phenomena has already been exhibited in a higher order Liouville
equation, namely

such that

(—A)%u =(n—-1" inR" V:= / e™dx < oo. (7)

(Here V is the volume of the conformal metric g, = e**|dz|?). More precisely, if u
is a solution to (7)) with n = 4 then necessarily V' € (0, V*], and V = V* if and only
if u is a spherical solution, that is, for some A > 0 and xzy € R™ we have

2\
uw(x) = up 5, () = log (1+>\2|$—l’0’2> .

However, if n > 5 then for every V € (0,00) there exists a radial solution to ([7])

See [2, 8, 9, 13, 14, 17] and the references therein.
Finally, we remark that the upper bound of V in with n = 4 comes from
a Pohozaev type identity, and it holds for every solutions to (radial and non-
radial). However, from a similar Pohozaev type identity one does not get the same

4

conclusion on the volume of the metric g, := u3-2=, compare [10, Lemma 2.3].

Notations For a radially symmetric function v we will write u(|x|) to denote the
same function u(x).

2 Proof of the theorems

We shall use the following comparison lemma of two radial solutions to A"u = f(u),
whose proof is quite elementary.

Lemma 2.1 Let f be a continuous and monotone increasing function on (0,00).
Let uy,up € C?([0, R)) be two positive solutions of

AFy = f(u) on (0, R)
Aui(0) > Alug(0) for every j € J
(AJuy)'(0) = (AVug) (0) =0 for every j € J,

where J := {0,1,...,k —1}. Then Auy > Aluy and (Alui) > (Alug)’ on (0, R)
for every j € J. Moreover, if Au1(0) > AJus(0) for some j € J then Auy > Alug
and (Alup)’ > (Aug)' on (0, R) for every j € J.

3



With the help of above comparison lemma and the fact that AUp(co) = 0 we
prove Theorem

Proof of Theorem For p € R we consider the solution u, to the initial value
problem

A2up =1

u,(0) = Uo(po) +p (8)
Au,(0) = AUy(0)

u)(0) = (Au,)'(0) =0

It follows from Lemma [2.1] that u, exists and u, > Up on (0, 00) for every p > 0. In
fact, u,(r) > p + Up(r) on (0, 00), which implies that

. dx
lim 5
P Jr3 Uy (.’L’)

=0.

Hence, from the continuity of the map p — [ps u,%dx on (0,00) we conclude that
for every A € (0, A*] there exists a solution u to (3)) with A = A,,.

To prove the converse we let u to be a solution of for some A, > 0. We
set u(x) = /\%u()\x) where A > 0 is such that Au(0) = AUp(0). Then we have
Ay = Ay, and @ = u, for some p € R where u, is the solution to . We claim that
p > 0. In order to prove the claim we assume by contradiction that p < 0. Then
we have u, < U on (0,00). Hence, using the identity

1 /1
w(r) = w(0) + / = | Aw(z)dzdt forwe C?,, 9)
47 0 t2 B:

we obtain for r > 1

1 [t 1 1
A < AUy(r)—e, e:=— | = — —— ) dxdt > 0.
wlr) <At e e= [ [ (u;m) U5<x>> v

Therefore, as AUp(cc) = 0, we have Au,(r) < —5 on (R,00) for some R >> 1.
Using this in (9) we get u,(r) < C—C.r? on (0, 0o) for some C; > 0, a contradiction
as u, > 0 on R3.

Thus p > 0, and hence by Lemma we have @ > Uy on (0,00). This in turn
implies that Az < A*, and Az = A* if and only if u = Uj. ]

We now move to the proof of Theorem We start with the following lemma.

Lemma 2.2 For k large and ¢ € (0, 1) there exists a positive entire radial solution

to
Adu=—1
u(0) =
Au(0) = —¢ (10)
A?u(0) =1



Moreover, if u is a positive entire radial solution to for some € € R then

necessarily € < /%%, and the solution u satisfies

k—%r <u(r)<k—-—r —i—r— on (0,00). (11)

Proof. Tt follows from the ODE local existence theorem that for every € > 0 there
exists a unique positive solution to in a neighborhood of the origin. We let
(0,6) to be the maximum interval of existence. From the identity (9 we see that
A2y is strictly monotone decreasing on (0,4). Let 6 € (0,8] be the largest number
such that

APy > on (0, 6). (12)

N =

Using this lower bound in @ with w = Awu one obtains

Au(r) > —e+ 11—27‘2 for r € (0,0).

Again by (9) with w = u we obtain for r € (0, 4)

A 4
€ o ko r
SkoSp2p 1 1
u(r) >k 67“ +240_2+250 (13)

for k sufficiently large and for every ¢ € (0,1). Using this lower bound of u we
obtain a lower bound of A%u. Indeed, for r € (0,8) and for k sufficiently large, we

have
2
A / t2 /Bt _|_ |m|4

250
21—/ o el
2
> —. 14
> (14)

Thus, from the definition of § we get § = §, and going back to we conclude
that § = co. This proves the first part of the lemma.

Now we let u be the positive entire radial solution to for some ¢ € R. As
A2y is strictly monotone decreasing on (0, 00) we have

0< A2u(oo) <A?u<1 on (0, 00).

This implies that Awu is monotone increasing on (0,00), and a repeated use of @
gives . Finally, the upper bound of « in and the positivity of v implies that

/ 6k
€</ %

We conclude the lemma. O



As a consequence of the above lemma the number € given by (for £ large)
ep :==sup{e >0: has a positive entire solution}

exists, and it satisfies the estimate &) < %. Moreover, for every € € (—00,¢€})

there exists a positive entire solution to ((10]), thanks to Lemma

Lemma 2.3 For k large has a positive entire solution with € = €}.

Proof. For simplicity we ignore the subscript k& and write €* instead of €7. Let
u be the solution to with e = ¢*, and let (0, R) be the maximum interval of
existence. We assume by contradiction that R < oo. Then necessarily we have

li =0.
Lo () =0

It follows from the definition of £* that there exists a sequence of positive entire
solutions (u,) to with Au,(0) | —e*. Then, from the continuous dependence
on the initial data, we have that u, — w locally uniformly in [0, R). In particular,
there exists x,, — R such that u,(x,) — 0. We claim that there exists C' > 0 such
that

Un(r) <up(xy) +C(r—zy) forz, <r <z, +1 (15)
Indeed, as 0 < A?u,, <1 on (0,00), by (9) we obtain
—e* < Aug(r) < r? on (0, 00).

This gives |uj,| < C on (0, R+3) for some C > 0, and hence we have (15). Therefore,
by @ and together with we get

R+3 1 d
A%, (R+3)<1— — 7

- dt
4m R+2 t2 Tn<|z|<zn+1 (un(xn) + C(|$’ - xn))3

<1_ i 1 / dzx
T An (R+3)? Jocpal<ant1 (Un(zn) + C(lz| — 2,))?

n—oo

a contradiction as A%u,, > 0 on (0, 00).

We conclude the lemma. O

Lemma 2.4 Letu be a positive entire radial solution to . Assume that A%u(o0) >
0. Then there exists a positive entire radial solution v to such that

v(0) = u(0), Av(0) < Au(0) and A*v(0) = A?u(0).



Proof. For p > 0 small we consider the initial value problem

Ay = -4
v(0) = u(0)
Av(0) = Au(0) — p (16)

Since A2u(o0) > 0, it follows that u(r) > dr* at infinity for some § > 0. We fix

R; >> 1 such that
r 1% ), ud(2) ’

where € > 0 will be chosen later. By continuous dependence on the initial data we
can choose p > 0 sufficiently small such that the solution v = v(p, u) to exists
on (0, Ry) and
2 ].
u—v<e on(0,R;) and pr<< éu(r) on (0,00).

We claim that for such p > 0 the solution v exists entirely.

In order to prove the claim we let Ry > 0 (possibly the largest one) be such that
v > 5 on (0, Rz). (Note that v < u on the iterval of existence, and for ¢ > 0 small
enough we have Ry > Rp). Then for 0 < r < Ry we have

AZy(r) — A / /B | i g dadt

R21
e 4, e

> —(Che.

Y

The above estimate and a repeated use of @ leads to

_P r? — Csert.

Now we fix € > 0 sufficiently small so that Cser? < 2u(r) on (0,00). Then we have

C/O\I\D

v(r) = Zu(r) on (0, Ry).
This proves the claim. (Il

Proof of Theorem Let (ug) be a sequence of positive entire radial solutions
0 with € = ¢}, as given by Lemma We claim that (ug) satisfies

d o0
Rs U (7)



In order to prove the claim first we note that by Lemma [2.4{ we have A2uy(c0) = 0,

that is
1 >*1 d
dm Jo  t* Jp, up(x)

Moreover, ur — oo locally uniformly in [0,00), thanks to and the estimate

ep < \/%. We consider the following two cases, and we show that holds in
each case.

Case 1 min g o) up — 00.
Since uj, — oo locally uniformly in R3, from we obtain

1 [>*1 dx 1 dx
1=o0(1 — — —dt < o(1
o(1) + 47r/1 2 /Bt u(z) o(1) + 47 mings uy, /Rs ui(z)’

which gives ((17)).

Case 2 ming o) ux =: ug(wx) < C.
We claim that

1
up(zp +71) <up(zr)+1 for 0 <r < —.
Tk

In order to prove the claim we first note that uj, > 0 on [z}, 00) and u)(zx) = 0.
Moreover, as A%uy, < A?uy(0) =1, by (9) we have

Wi+ 1) + ——uh(wp 4 1) = A +7) < <o+ 1)

S| =

T+ 71

Hence, u(zy + 7) < ¢(zx + 7)?, and by a Taylor expansion, we have our claim.
Therefore, as z, — 0o, we get

/ de 1 <(x L1 3 xg)
- k — -
a<lol<zit up(x) — (1 + ug(ar))? Tk g

> 3$k
T (14 ug(zg))?

k—o0

This proves .
Theorem follows immediately as the integral in depends continuously

on the initial data, and
dx pP—r00
——— — 0,
R3 upyk(x)

where u, ), is the solution to with Au, 1 (0) = p > —¢j . O
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